自动土壤水分观测规范(试行)

自动土壤水分观测规范(试行)
自动土壤水分观测规范(试行)

自动土壤水分观测规范

(试行)

中国气象局综合观测司

前言

自动土壤水分观测规范分八个章节,包括:自动土壤水分观测的基本任务、观测方法、技术要求以及观测记录的处理方法,观测仪器的工作原理、安装、操作、维护与田间标定方法等内容。

本规范既对自动土壤水分观测仪器生产厂家的设备生产、安装、维护、标校等提出具体要求,又规范台站对仪器的使用方法、明确仪器在标校过程中进行人工对比观测取土的要求,目的是为了使安装在作物地段和固定地段的自动土壤水分观测仪能够顺利投入业务化运行,为农业气象干旱监测服务,发挥项目建设效益。

本规范适用于利用频域反射法(FDR:Frequancy Domain Reflection)原理来测定土壤体积含水量的自动土壤水分观测仪。

本规范由中国气象局综合观测司组织、中国气象局气象探测中心编写,国家气象中心、河南省气象局、湖北省气象局等单位参与了编写工作。

目录

前言 ........................................................................................................................................ I 第1章总则 .. (1)

第2章观测的一般要求 (1)

2.1 观测场地 (1)

2.1.1观测地段 (1)

2.1.2选址 (1)

2.1.3场地建设 (2)

2.1.4仪器布设 (2)

2.1.5地段描述与记载 (2)

2.1.6土壤水文、物理特性的测定 (3)

2.2 时制、日界和对时 (3)

2.3 计算项目 (3)

2.4 仪器性能要求 (3)

2.4.1总体要求 (3)

2.4.2传感器性能要求 (3)

第3章观测仪器 (4)

3.1系统结构及工作原理 (4)

3.1.1系统结构 (4)

3.1.2工作原理 (4)

3.2硬件 (4)

3.2.1传感器 (4)

3.2.2数据采集器 (5)

3.2.3系统电源 (5)

3.2.4通信接口与通讯模块 (6)

3.2.5微机 (6)

3.3软件 (6)

3.3.1采集软件 (6)

3.3.2业务软件 (6)

3.4主要功能 (6)

3.4.1初始化功能 (6)

3.4.2数据采集功能 (6)

3.4.3数据处理功能 (6)

3.4.4数据存储功能 (7)

3.4.5数据传输功能 (7)

3.4.6系统管理功能 (7)

3.5采样和算法 (7)

3.5.1采样 (7)

3.5.2算法 (7)

第4章仪器安装与维护 (9)

4.1基本要求 (9)

4.2传感器的安装 (9)

4.2.1探针式传感器 (9)

4.2.2插管式传感器 (10)

4.3电缆的安装与连接 (12)

4.4采集器、电源、计算机等的安装 (12)

4.5防雷要求 (12)

4.6软件安装 (13)

第5章传感器标定 (13)

5.1传感器标定 (13)

5.1.1实验室标定 (13)

5.1.2田间标定 (13)

5.2业务化检验标准 (14)

第6章日常工作、维护与仪器检定 (14)

6.1日常工作 (15)

6.2维护 (15)

6.3值班日志填写 (15)

6.4仪器检定 (15)

第7章组网传输 (16)

7.1组网方式 (16)

7.2数据上传原则 (16)

7.3数据上传时间规定 (17)

第8章自动土壤水分月报表 (17)

8.1月报表的编制要求 (17)

8.2 自动土壤水分月报表记录处理和编制 (17)

8.2.1 土壤水分月记录的处理 (17)

8.2.2 缺测处理 (17)

8.3自动土壤水分观测记录月报表格式(纸质) (18)

8.3.1 月报表的填写规定 (18)

8.3.2 自动土壤水分观测记录月报表式样 (19)

附录1 人工对比观测记录簿格式 (27)

附录2 值班日志格式 (28)

附录3 自动土壤水分观测数据文件格式 (31)

附录4 自动土壤水分观测站上传数据传输文件格式 (35)

第1章总则

土壤水分状况是水分在土壤中的移动、各层中数量的变化以及土壤和其它自然体(大气、生物、岩石等)间的水分交换现象的总称。土壤水分是土壤成分之一,对土壤中气体的含量及运动、固体结构和物理性质有一定的影响,制约着土壤中养分的溶解、转移和吸收及土壤微生物的活动,对土壤生产力有着多方面的重大影响。土壤水分是水分平衡组成项目,是植物耗水的主要直接来源,对植物的生理活动有重大影响。经常进行土壤水分状况的测定,掌握其变化规律,对农业生产实时服务和理论研究都具有重要意义。

自动土壤水分观测仪是一种利用频域反射法原理来测定土壤体积含水量的自动化测量仪器,从传感器安装方法上区分为插管和探针两种。自动土壤水分观测仪可以方便、快速的在同一地点进行不同层次土壤水分观测,获取具有代表性、准确性和可比较性的土壤水分连续观测资料,可减轻人工观测劳动量、提高观测数据的时空密度,为干旱监测、农业气象预报和服务提供高质量的土壤水分监测资料。

第2章观测的一般要求

2.1 观测场地

2.1.1观测地段

土壤湿度测定地段划分为三类:

⑴作物观测地段:为研究作物需水量、监测土壤水分变化对作物生长发育及产量形成的影响,在当地主要旱地作物、牧草和果树等生育期观测地段上所设置的土壤湿度观测地段。仪器安装场地与所在作物地段做相同的田间管理。

⑵固定观测地段:为研究土壤水分平衡及其时空变化规律,所设置的长期固定的、反映当地自然下垫面、无灌溉状态下的土壤湿度观测地段。地段对所在地区的自然土壤水分状况应具有代表性。

⑶辅助观测地段:为满足墒情服务的需要进行临时性或季节性墒情观测,所设置的地段。这类地段数量一般较多,应代表当地的土壤类型和土壤水分状况。为便于历年土壤水分状况比较也应相对固定。辅助地段的设置、测定时间、测定深度等由上级业务主管部门和台站自行确定。辅助地段采用便携式土壤水分仪进行观测,便携式土壤水分仪另行规定。

2.1.2选址

观测地段的选择应充分考虑仪器安装地点对于当地土壤类型、地貌、地质条件的代表性。应遵从以下4个条件:

⑴所选地段土壤应能够代表本地区的主要土壤类型,须尽量选择在地势平坦、能

代表本地区自然环境下土壤水分变化特征的地块,山丘地区应避免选取沟底、山顶、斜坡和积水洼地等地块。

⑵所选安装地段距离建筑物、道路(公路和铁路)、水塘等须在20米以上,远离河流、水库等大型水体。

⑶作物观测地段,种植面积一般不小于0.1公顷。

⑷固定观测地段,面积一般不小于10m×10m;仪器安装位置必须为自然下垫面,有较厚的自然土壤,而非回填土。

观测地段一经确定不得随意改变,以保持土壤水分观测资料的一致性和连续性。

2.1.3场地建设

⑴在仪器安装位置周围建设观测场,仪器位于观测地段中央,且同沟槽和供水渠道垂直距离须大于10m,避免沟渠侧渗对土壤含水量观测代表性造成的影响。

⑵观测场四周应设置3m(东西向)×4m(南北向)稀疏围栏,高度不低于1.2m,围栏不宜采用反光太强的材料。

⑶如果场内仪器安装需要敷设线缆,应在远离传感器安装地点的一侧修建电缆沟(管)。电缆沟(管)应做到防水、防鼠,并便于维护。

⑷观测场的防雷应符合气象行业规定的防雷技术标准的要求。

2.1.4仪器布设

与场地内其它仪器应互不影响,便于操作。具体要求如下:

⑴数据采集箱安置在北边,土壤水分传感器安置在南边;土壤水分传感器埋设位置距离数据采集箱不小于1m。

⑵根据需要确定传感器安装深度和层次。在农业气象观测中一般为:0-10、10-20、20-30、30-40、40-50、50-60、70-80、90-100cm,可根据观测需求进行调整。地下水位深度小于1m的地区,测到土壤饱和持水状态为止;因土层较薄,测定深度无法达到规定要求的地区,测至土壤母质层为止。

⑶仪器距观测场边缘护栏不小于1 m。

2.1.5地段描述与记载

观测地段一经选定,应对地段位置及代表区域的自然地理、水文气象、地质地貌、农田水利工程及农业种植等情况在值班日志中进行勘查记载,其主要内容有:

⑴观测地段所属行政区划,经纬度(精确到秒)和拔海高度(精确到0.1m)。

⑵观测地段地形及地势、地貌。

⑶观测地段类型、种植作物名称。

⑷土壤质地、酸碱度。

⑸灌溉条件、水源、地下水位深度。

⑹土壤水文、物理特性测定值。

⑺自动土壤水分观测站示意图。

2.1.6土壤水文、物理特性的测定

在选定观测地段后,应按《农业气象观测规范》要求,在观测地段附近分层测定土壤容重、田间持水量和凋萎湿度等土壤水文、物理常数,并在土壤水分自动站值班日志中填写。

2.2 时制、日界和对时

土壤水分自动观测采用北京时,以北京时20时为日界。

以自动土壤水分观测仪采集器的内部时钟为观测时钟;采集器与计算机应每小时自动对时一次,以保持两者时钟同步。

值班员应每天9时正点检查屏幕显示的采集器时钟,当与电台报时的北京时相差大于15秒时,在正点后按操作手册规定的操作方法调整采集器的内部时钟,保证误差在15秒之内。

2.3 计算项目

仪器自动测量结果为土壤体积含水量,根据土壤水文、物理常数和相关公式可计算出土壤重量含水率(%)、土壤相对湿度(%)、土壤水分总贮存量(mm)和土壤有效水分贮存量(mm),具体规定见本规范3.5.2。

2.4 仪器性能要求

2.4.1总体要求

⑴应具有国务院气象主管机构业务主管部门颁发的使用许可证,或经国务院气象主管机构业务主管部门审批同意用于观测业务。

⑵准确度满足本规范2.4.2要求。

⑶可靠性高,保证获取的观测数据可信。

⑷同一厂家的同类采集器和传感器应能互换。

⑸操作和维护方便,具有详细的技术及操作手册。

2.4.2传感器性能要求

自动土壤水分观测仪传感器的测量性能应遵循下表1.1。

表1.1 传感器测量性能要求

注:1、重复性误差:在全测量范围内和同一工作条件下,同一传感器对相同被测标准介质进行多次连续测量时,测量结果之间的随机误差。

2、最大绝对误差:在全测量范围内,所能允许的传感器测量值和参考标准之间的绝对差值的极限,在经过实验室特殊标定后,传感器最大绝对误差在实验室内可达到2.5%,在野外环境下可达到5%。

第3章观测仪器

3.1系统结构及工作原理

本观测方法针对的是利用频域反射法(FDR:Frequancy Domain Reflection,以下简称FDR)原理来测定土壤体积含水量的自动土壤水分观测仪,从传感器安装方法上区分为插管和探针两种。

3.1.1系统结构

自动土壤水分观测仪是基于现代测量技术构建,由硬件和软件组成。其硬件可分成传感器、采集器和外围设备三部分,其软件可分成采集软件和业务软件二种。

该结构的特点是既可以与微机终端连接组成土壤水分测量系统,也可以作为土壤水分分采集系统挂接在其他采集系统上。设备组成见图3.1。

图3.1自动土壤水分观测仪组成

3.1.2工作原理

自动土壤水分传感器利用频域反射法原理(FDR)来测定土壤体积含水量,它由传感器发出100MHz高频信号,传感器电容(压)量与被测层次土壤的介电常数成函数关系。由于水的介电常数比一般介质的介电常数要大得多,所以当土壤中的水分变化时,其介电常数相应变化,测量时传感器给出的电容(压)值也随之变化,这种变化量被CPU实时控制的数据采集器所采集,经过线性化和定量化处理,得出土壤水分观测值,并按一定的格式存储在采集器中。

3.2硬件

3.2.1传感器

本规范所介绍的自动土壤水分传感器根据安装方式不同,可分为两类:

⑴探针式传感器:传感器由高频发射器、接收器、微处理电路、探针等组成,处

理电路等安装在一个密封防水室内,感应探针一端与密封防水室相连,另一端直接插入土壤,根据电磁波在不同阻抗下的变化测量土壤中水分含量变化。

图3.2 探针式传感器外观

⑵插管式传感器:传感器由电容式传感器、处理电路、护管等组成,护管垂直插在土壤中,传感器以并联方式安装在护管中,不与土壤直接接触。根据探测器发出的电磁波在不同介电常数物质中的频率不同,计算被测物含水量。

图3.3 插管式传感器外观

3.2.2数据采集器

数据采集器是自动土壤水分测量系统的核心,其主要功能是完成数据采样、数据处理、质量控制、数据存储、数据通信。其功能包括:

⑴数据采样速率及算法符合本规范3.5的规定。

⑵存储器具备掉电保存功能,能够存储至少一个月的各层正点土壤体积含水量数据。

⑶具备对电源电压状态、传感器状态、通信状态进行自检、自诊断功能。

⑷具有RS232或RS485通讯接口,在设定时间里可自动传输观测数据。

⑸能响应终端命令,对采集器进行更新程序、设置参数、测试调试等控制操作。

⑹采集器实时时钟走时误差不大于15秒/月。

⑺可以使用交流或直流供电。

3.2.3系统电源

系统所用电源为:交流220V(+10%~-15%),直流12V。配有蓄电池,并对蓄电池浮充充电,以备市电停电时可由蓄电池供电,也可以配置辅助电源(包括太阳能、风能)对蓄电池充电。

⑴在没有市电的情况下,后备蓄电池应能保证传感器、采集器及传输模块至少5天正常工作。

⑵系统设计有低电压告警装置,当蓄电池电压低到不足以维持符合质量要求的观测工作时,应予以自动报警。

3.2.4通信接口与通讯模块

联接采集器与计算机、计算机与中心站、采集器与中心站等的通信连接设备。

⑴采集器应具有采集电压、电流、频率、并行码、计数输入等信号的能力,以连接各种传感器,测量相应气象要素,并可进行扩展。

⑵采集器应至少配置2个通信接口,既可以支持本地通信,又可以通过扩展其它通信设备实现远程通信。

⑶远程通讯模块,可支持无线通讯。

3.2.5微机

系统微机用作采集器的终端,实现对采集器的监控、数据处理和存储,应能满足采集软件和业务软件运行的基本配置要求。

3.3软件

3.3.1采集软件

采集软件由厂家按本规范要求编制,写在采集器中。其主要功能有:

⑴接受和响应业务软件对参数的设置和系统时钟的调整(时钟也可在采集器上直接调整,但必须保证采集器和计算机时钟一致);

⑵实时和定时采集各传感器的输出信号,经计算、处理形成土壤重量含水率、土壤相对湿度和土壤有效水分贮存量等观测要素值,见本规范附录3;

⑶存储和传输土壤重量含水率、土壤相对湿度、土壤水分总贮存量和土壤有效水分贮存量等观测要素值,见本规范附录4。

⑷运行状态监控。

3.3.2业务软件

业务软件根据农业气象观测业务的需要编制,由国务院气象主管机构颁发。其主要功能包括:参数设置、实时数据显示、定时数据存储、运行监控,数据维护、数据审核、报表编制,形成统一的数据文件等。

3.4主要功能

3.4.1初始化功能

操作员须通过终端,输入或修改嵌入式软件必要的业务参数,如站点的地理位置、拔海高度,检定与维护记录、时间、传感器参数、数据缓冲文件位置、质量控制等方面的参数等。

3.4.2数据采集功能

采集器分别对挂接的传感器按预定的采样频率进行扫描,并将获得的电信号转换成数据信号。

3.4.3数据处理功能

将采样信号按规定的采样算法处理成符合格式要求的数据文件。文件包括:正点土壤水分测量数据文件、实时土壤水分测量数据文件。

3.4.4数据存储功能

包括采集器内部的数据存储和采集器外围设备的数据存储。

采集器内部的数据存储。采集器至少能够存储一个月的正点土壤水分体积含水量,采集器内部的数据存贮器应具备掉电保存功能。

外围设备的数据存储。在计算机的磁盘存储器中,存储正点土壤水分测量数据文件、实时土壤水分测量数据文件,包括经过处理的数据、人工输入数据、质量控制信息(内部管理数据)等。

3.4.5数据传输功能

将采集器采集的数据及时传输到终端。根据响应方式的不同,可分为两种情况:定时传输是在设定时间下的传输,即土壤水分自动监测仪器正常运行时的自动传输;响应终端命令的传输,即人工干预下的传输。这种情况下,往往还允许通过终端或远距离设备,对采集器进行控制,如更新程序、设置参数、测试调试等。

3.4.6系统管理功能

⑴质量监控功能

采集器应分级并采用多种方法对采集的数据进行质量监控。主要包括以下内容:

A.出错总量报告与标识。

B.界限值检测。体积含水量不能为负值、采样值合理性(粗大误差)检查,验证

每次采样值在正常传感器测量范围内。

C.时间一致性检查。验证瞬时值的变化率,可检测不真实的尖峰或跳变值,判

断传感器是否损坏。

⑵时钟管理功能

采集器提供高精度实时时钟,以采集器时钟为准,定时与微机终端进行校时,确保系统内时间的同步。采集器实时时钟走时误差不大于15秒/月。

⑶状态监测功能

采集器应设置自动监测关键部件运行状况的内置式装置,如电源故障监测器、看门狗计时器和用于监测电路某些部分的测试电路。应配有相应的软件,可在终端自动显示状态信息,用于设备的运行控制和维护。终端和采集器之间应建立完善的数据缺测检查和补收机制。建立报警机制。

⑷现场软件升级功能

基于采集器的本地通信口,可以在现场为采集器进行嵌入式软件升级。

3.5采样和算法

3.5.1采样

土壤体积含水量的采样频率为每分钟1次。

3.5.2算法

⑴10分钟平均值

取10分钟内的10个采样值,作质量控制后求算术平均,即为该10分钟时段内的土壤体积含水量观测值。

⑵正点瞬时值

小时正点前10分钟的平均值记为正点瞬时值。 ⑶小时平均值

对前1小时内的 6个 10分钟平均值作质量控制后求算术平均,即为该小时土壤体积含水量观测值;超过2次10分钟平均值丢失,则当前小时平均值标识为“缺失”。

⑷导出量的计算方法 i. 土壤重量含水率

以土壤体积含水量与土壤容重的比值表示。

ρ

Q

w =

w :土壤重量含水率(%);

Q :土壤体积含水量(%); ρ

:地段实测土壤容重(g/cm 3)。

ii. 土壤相对湿度

以重量含水率占田间持水量的百分比表示。

%

100?=

c

f w R

R

:土壤相对湿度(%),取整数记载;

w :土壤重量含水率(%);

c

f :田间持水量(用重量含水率表示,%)。

iii. 土壤水分贮存量

土壤水分总贮存量指一定深度(厚度)的土壤中总的含水量,以水层深度mm 表示。

10

???=w h v ρ

v :土壤水分总贮存量(mm ),取整数记载; ρ

:地段实测土壤容重(g/cm 3);

h

:土层厚度(cm );

w :土壤重量含水率(%)。

iv. 土壤有效水分贮存量

土壤有效水分贮存量是指土壤中含有的大于凋萎湿度的水分贮存量。

10

)(?-??=k w w h u ρ

u :有效水分贮存量(mm ); ρ:地段实测土壤容重(g/cm 3

);

h:土层厚度(cm);

w:土壤重量含水率(%);

w:凋萎湿度(用重量含水率表示)。

k

第4章仪器安装与维护

4.1基本要求

⑴自动土壤水分观测站建设前,按照本规范2.1要求进行观测场选址,做好基础建设工作。

⑵设备安装前应认真阅读仪器技术手册,按照要求进行安装。土壤水分传感器按本规范2.1要求安装在观测场规定的位置上,数据采集器可安装在观测场内或观测值班室内,保证设备的安全。

⑶传感器的安装层数和高度应符合土壤水分观测的要求。

⑷计算机、打印机及其电源(蓄电池、UPS电源)等设备均安放在观测值班室内。

⑸传感器和数据采集器用专用电缆连接。

⑹做好安装区域的保护,应该在传感器安装区域、数据采集器安装区域以及通讯电缆敷设区域做明显的标识和围栏,避免观测设施遭受破坏。

4.2传感器的安装

4.2.1探针式传感器

插针式传感器平行于地面安装,传感器安装按照做安装剖面、传感器定位、传感器埋设、联机检查、原土回填等步骤进行。

⑴做安装剖面:在传感器安装点向北约18cm处挖安装剖面,剖面大小1.2m(长)×0.7m(宽)×1.2m(高),挖土同时在各安装层次进行环刀取土,用于测定土壤水文、物理常数。传感器的埋设层次、安装剖面示意、实际效果见图4.1。

图4.1传感器的埋设层次、安装剖面示意、实际效果图

⑵传感器定位:在土壤剖面上根据各传感器安装层次确定各层传感器的安装定位

点(见图4.2)。为减少相邻层次间影响,将8支传感器按安装层次间隔为两列进行安装。

图4.2 传感器安装定位

⑶传感器埋设:使用专用土钻以各传感器安装定位点为中心,沿与土壤剖面垂直方向做安装孔,安装孔的深度约为18cm。使用专用的电木底座将传感器插入安装孔。在土壤剖面制作线槽,分别将各传感器电缆经传感器线槽引至垂直主线槽后固定,统一引出地面(见图4.3) 。传感器的引线在线槽中不易拉的太直,应以S型布置,或者留有部分余量,避免将来回填土沉降后,将传感器引线拉断。

图4.3传感器埋设及安装效果图

⑷联机检查:将各传感器接入数据采集器,联机检查正常后再进行回填操作。

⑸原土回填:在土壤剖面上做电缆布设槽,将传感器电缆固定在槽内。然后按照“后出先回填”的原则进行原土回填,要求逐层压实。土壤回填后,第一次大的降水后,应该及时检查土壤水分传感器安装区域,回填土是否发生沉降及沉降的多少,适当的给予补充并压实。

4.2.2插管式传感器

插管式传感器垂直于地面安装,传感器的安装需要专用的安装工具(专用三脚架、取土钻、大锤等),安装步骤如下:

⑴在安装地点展开并固定三脚架,将三脚架的水平调节好,根据传感器安装深度选择合适长度的护棺,并将护管插入安装支架。

图4.4 传感器的埋设层次、安装与固定三脚架

⑵利用重锤将护管每次敲入10cm,利用土钻将护管中土壤取出。将取出来的土按照不同的深度层次分别堆放,用于测定土壤水文、物理常数。

图4.5 安装传感器护管

⑶重复上述步骤,直至将护管按刻度要求敲入土中。

⑷利用专用工具清理护管管壁、封堵护管下口,将传感器插入护管中,走线。

图4.6 清洁管壁、封堵管底口

⑸放置干燥剂,密封管口。

图4.7 密封管口

4.3电缆的安装与连接

为了防雷、防鼠、防水和安装、维修方便,自动土壤水分观测仪的电缆应穿入电缆管内,电缆管应安置在电缆沟内。

电缆沟应便于排水、通风,两侧应砌砖墙,砖墙壁上预设安置电缆管的金属支架(或金属挂钩),为防止电缆被积水浸泡,安置电缆的金属支架(或金属挂钩)距离地沟底的高度以不小于30cm为宜;观测场内的电缆沟一般在小路下面,沟上面盖的水泥盖板就是小路的路面,沟的宽度以30cm左右为宜,沟的深度以便于安装电缆和防止大雨后积水为宜。

不宜建电缆沟的台站,也可采用埋电缆管和修建电缆井的方法铺设电缆。电缆不能架空敷设。

4.4采集器、电源、计算机等的安装

采集器安装在观测室外的,需要浇注数据采集器杆体基础,在基础内埋设地脚螺栓。杆体基础建议选择长、宽、高至少30cm×30cm×30cm的混凝土基础。

电源与计算机等的安装位置以便于操作为宜。

4.5防雷要求

⑴观测场需要安装避雷针。传感器应在避雷针的有效保护范围内,自动土壤水分仪避雷装置应符合《QX4-2000 气象台(站)防雷技术规范》要求。

⑵整个自动土壤水分观测设备的机壳应连接到接地装置上。室内部分的接地线可连接在市电的地线上,也可接到专门为自动土壤水分观测设备做的接地装置上,接地电阻应小于5Ω;连接传感器电缆线的转接盒要有接地装置,接地电阻原则上应小于5Ω;设备接地端与避雷接地网联在一起时,要通过地线等电位连接器连接。

⑶低压配电系统应安装3级电涌保护器进行保护。

4.6软件安装

采集软件已由厂家在设备出厂前安装在采集器中。配备计算机的需安装业务软件,安装方法按照业务软件技术操作手册进行,运行前需进行初始化,初始化的主要内容有:

⑴对时(设定和修改采集器、计算机时钟);

⑵设定系统管理权限;

⑶设定台站基本参数和自动土壤水分观测仪有关参数。

第5章传感器标定

5.1传感器标定

由于自动土壤水分传感器在实际测量过程中受到土壤质地、容重、安装结合紧密度等因素的影响,读数差别很大,因此在正式使用前需要进行标定。一般认为,传统的烘干法测得的土壤水分值是可信的,可以作为其它各种土壤含水量测量方法的校正标准。

标定分二个步骤:实验室标定和田间标定。实验室标定是从田间取回土样在标准容器内回填成均匀的土体,控制加入的水量可得到不同的土壤湿度,传感器与人工对比观测,进行标定。田间标定是以人工与自动土壤水分传感器进行同时次的对比观测,用人工观测数据对仪器进行标定。仪器安装3个月以后,待传感器安装地段的土层恢复稳定,再进行田间标定。

5.1.1实验室标定

为确保自动土壤水分观测仪器的准确性,仪器生产厂家应对每一种土壤质地样本,进行土壤标定参数试验。

按照相同土壤质地合并原则进行组合,至少分为10-30cm,40-60cm,80-100cm 三层。对合并后的土层,分别制作标准土壤水分样本,每层制作样本的土壤体积含水量分别为小于10%、10%-15%、15%-20%、20%-25%、25%-30%、30%-35%和大于35%七个等级(3层共21个样本)。将传感器分别插入标准土壤水分样本中测量,获取器测值。通过专用环刀在各个土盒样本中取土烘干、称重,获得对应样本的实际土壤含水量值。对烘干称重法获得的土壤含水量值与器测值进行分析比较,建立各层相应的对比曲线。利用数学方程进行拟合计算,确定传感器标定参数方程。

5.1.2田间标定

田间标定以仪器观测的10cm土层体积含水量变化为判断标准,在小于10%、10%-15%、15%-20%、20%-25%、25%-30%、30%-35%和大于35%等七个不同土壤水分体积含量区间进行相应的人工对比观测。原则上每一个土壤体积含水量等级样本数不少于4个,总样本数不少于30个。对各层人工对比观测数据和器测值进行分析比

较,建立各层相应的对比曲线。利用数学专用工具进行拟合计算,确定传感器标定参数方程。

进行人工对比取土观测时,须跨越干湿两季,使获得的样本分布均匀、能够代表当地土壤水分含量范围并验证仪器在干湿两季过渡期的适应性。取土钻孔的位置应分布在传感器埋设位置四周半径2-10m之间的范围内,完成取土观测后取土孔要立即分层回填,不得在回填孔中再次取土进行对比观测,取土时记录每个钻孔取不同深度土样时的详细时间。人工对比观测记录簿包括人工取土观测各重复数据(烘干前后土壤样本重量),格式见附录1。

由相关技术人员利用人工和同时次的仪器观测数据分别计算不同层次的标定参数,完成对传感器的田间标定。

5.2业务化检验标准

在完成田间标定工作后,需达到业务化检验标准,方能投入业务使用。

业务化检验标准的评价指标:人工观测土壤体积含水量值与器测土壤体积含水量之差的多次平均值的绝对误差σ小于等于5%。

N a

x i

i i

∑=-

=N 1

σ

式中:

i

x--仪器观测值;

i

a--人工观测值;

N--对比观测次数;

σ--人工对比观测土壤体积含水量多次平均值的绝对误差。

设备田间标定结束后,再连续人工对比观测1个月(不少于6次,遇0-10cm土壤冻结顺延)用于业务检验,由各省(区、市)气象局负责对所辖范围内的自动土壤水分观测仪统一组织进行检验。

如果地下水位比较高,在人工取土过程中,如发现某一层已渗水,则该层及以下层次不再对仪器观测数据与人工观测数据进行评估,在人工观测时注意观测和记录。

若仪器未通过检验,分析查找原因,排除仪器故障原因后,对建立的标定方程参数进行完善,补充对比观测1个月后再次进行检验;若仍达不到检验标准,必须对仪器进行更换。

对比观测时间应不少于6个月,田间标定与检验应在1年内完成。

第6章日常工作、维护与仪器检定

在仪器投入试运行以后,台站业务人员应做好日常使用和维护工作;待仪器通过

检验后,按相关要求定期进行检定。

6.1日常工作

⑴保持自动土壤水分观测设备处于正常连续的运行状态,每天9时和17时正点前10分钟要查看计算机显示的实时观测数据是否正常。

⑵根据业务需要,每周巡视观测场和自动土壤水分观测仪等设备1-2次。

⑶每天20时通过自动土壤水分观测仪计算机终端检查前一天采集数据是否完整、是否存在异常数据,如有缺失及时补收。出现异常数据,及时向省级信息技术保障中心报告。

⑷每天做好观测簿记录,通过业务传输软件完成规定气象报文上传,完成气象记录报表的编制或数据文件的制作。

⑸当发现仪器故障时,应记录值班日志(附录2),根据故障情况及时通知生产厂家进行必要的处理。

⑹在同人工观测对比期间,做好人工与自动观测数据的记录和分析。

6.2维护

⑴定期巡视观测场和仪器设备。

⑵每年至少一次对自动土壤水分观测仪的传感器、采集器和整机进行现场检查、校验。每年春季对防雷设施进行全面检查,对接地电阻进行复测。

⑶按气象部门制定的检定要求(本规范6.4规定)进行检定。

⑷无人值守的自动土壤水分观测仪由业务部门每月派技术人员到现场检查维护至少1次,检查、维护的情况应记入值班日志中。对观测数据有影响的还要摘入备注栏。

⑸备份器件、设备要有专人保管,存放地方要符合要求,传感器要完好,不要超检。

6.3值班日志填写

⑴每天记录仪器的运行、资料采集、传输和维护等情况。

⑵缺测记录:在自动土壤水分观测过程中,没有按照规定的时间或要求进行观测,或未将观测的结果记录下来,造成空缺的观测记录。

⑶不完整记录:有缺测记录存在的记录集合。

⑷疑误记录:某次记录不完全正确或有疑误时,应根据该记录前、后降水等要素的变化情况和历史资料极值记录进行判断,当某次记录不完全正确但基本可用时,应该按正常记录处理;当某次记录有明显错误且无使用价值时,按缺测处理(记“-”)。

6.4仪器检定

自动土壤水分观测仪器应每2年检定1次,不得使用未经检定、超过检定周期或检定不合格的仪器。土壤水分传感器以人工对比观测作为检定标准。

⑴检定期一般为2个月,至少经历干、湿两季,样本数量应覆盖不同土壤体积含

农田土壤环境质量监测技术规范

农田土壤环境质量监测技术规范 范围 本标准规定了农田土壤环境监测的布点采样、分析方法、质控措施、数理统计、成果表达与资料整编等技术内容。 本标准适用于农田土壤环境监测。 2 引用标准 下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。本标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。 GB 8170—1987 数值修约规则 GB/T 14550—1993 土壤质量六六六和滴滴涕的测定气相色谱法 GB 15618—1995 土壤环境质量标准 GB/T17134,—1997 土壤质量总砷的测定二乙基二硫代氨基甲酸银分光光度法 GB/T 17135—1997 土壤质量总砷的测定硼氢化钾—硝酸银分光光度法 GB/T 17136—1997 土壤质量总汞的测定冷原子吸收分光光度法 GB/T 17137—1997 土壤质量总铬的测定火焰原子吸收分光光度法 GB/T 17138—1997 土壤质量铜、锌的测定火焰原子吸收分光光度法 GB/T 17139—1997 土壤质量镍的测定火焰原子吸收分光光度法 GB/T 17140—1997 土壤质量铅、镉的测定 KI—MIBK萃取火焰原子吸收分光光度法 GB/T 17141—1997 土壤质量铅、镉的测定石墨炉原子吸收分光光度法 NY/T 52—1987 土壤水分测定法(原GB 7172—1987) NY/T 53—1987 土壤全氮测定法(半微量开氏法) (原GB 7173—1987) NY/T 85—1988 土壤有机质测定法(原GB 9834—1988) NY/T 88—1988 土壤全磷测定法(原GB 9837—1988) NY/T 148—1990 土壤有效硼测定方法(原GB 12298—1990) NY/T 149,一1990 石灰性土壤有效磷测定方法(原GB 12297一1990) 3 定义 本标准采用下列定义。 3.1 农田土壤 用于种植各种粮食作物、蔬菜、水果、纤维和糖料作物、油料作物及农区森林、花卉、药材、草料等作物的农业用地土壤。 3.2 区域土壤背景点 在调查区域内或附近,相对未受污染,而母质、土壤类型及农作历史与调查区域土壤相似的±壤样点。 3,3 农田土壤监测点 人类活动产生的污染物进入土壤并累积到一定程度引起或怀疑引起土壤环境质量恶化的±壤样点。 3.4 农田土壤剖面样品 按土壤发生学的主要特征,担整个剖面划分成不同的层次,在各层中部位多点取样,等量混均后的A、B、C层或A、C等层的土壤样品。 3.5 农田土壤混合样 在耕作层采样点的周围采集若干点的耕层土壤、经均匀混合后的土壤样品,组成混合样的分点数要在5~20个。 4 农田土壤环境质量监测采样技术 4.1 采样前现场调查与资料收集 4.1.1 区域自然环境特征:水文、气象、地形地貌、植被、自然灾害等。 4.1.2 农业生产土地利用状况:农作物种类、布局、面积、产量、耕作制度等。 4.1.3 区域土壤地力状况:成土母质、土壤类型、层次特点、质地、pH、Eh、代换量、盐基饱和度、±壤肥力等。 4.1.4 土壤环境污染状况:工业污染源种类及分布、污染物种类及排放途径和排放量、农灌水污染状况、大气污染状况、农业固体废弃物投入、农业化学物质投入情况、自然污染源情况等。 4.1.5 土壤生态环境状况:水土流失现状、土壤侵蚀类型、分布面积、侵蚀模数、沼泽化、潜育化、盐渍化、酸化等。 4.1.6 土壤环境背景资料:区域土壤元素背景值、农业土壤元素背景值。 4.1.7 其他相关资料和图件:土地利用总体规划、农业资源调查规划、行政区划图、土壤类型图、土壤环境质量图等。 4.2 监测单元的划分 农田土壤监测单元按土壤接纳污染物的途径划分为基本单元,结合参考土壤举型、农作物种类、耕作制度、商品生产基地、保护区类别、行政区划等要素,由当地农业环境监测部门根据实际情况进行划定。同一单元的差别应尽可能缩小。 4.2.1 大气污染型土壤监测单元

气象观测业务质量综合考核办法[精编版]

气象观测业务质量综合考核办法[精编 版] 气象观测业务质量综合考核办法 (征求意见稿)

第一条为适应气象观测业务改革发展,推进气象观测质量管理体系建设,全面、客观、准确考核观测业务质量,强化各级气象部门业务质量管理,制定本办法。 第二条本办法依据现行业务规范、行业标准和技术规定,根据当前气象观测业务工作实际,面向未来业务发展需求,对现行质量考核办法进行梳理、补充和完善而形成。 第三条气象观测业务质量综合考核对象为全国各观测业务台站、各省(区、市)气象局。 第四条气象观测业务质量综合考核业务种类包括新一代天气雷达观测业务、国家地面气象观测站观测业务、高空气象观测业务、区域气象观测站观测业务、风廓线雷达观测业务、雷电观测业务、自动土壤水分观测业务、GNSS/MET 观测业务、大气成分观测业务和气象卫星观测业务,共计10类。具体指标及解释见附件1-11。 第五条新一代天气雷达观测业务、国家地面气象观测站观测业务和高空气象观测业务考核数据质量、数据传输及时率、设备运行可用性、保障可靠性和探测环境保护五个方面;区域气象观测站观测业务、自动土壤水分观测业务和大气成分观测业务考核数据质量、数据传输及时率、设备运行可用性、保障可靠性四个方面;风廓线雷达观测业务和GNSS/MET观测业务考核数据质量、数据传输及时率、保障可靠性三个方面;雷电观测业务考核数据质量、设备运行可用性和保障可靠性三个方面

;气象卫星观测业务考核数据质量、数据传输及时率、保障可靠性和探测环境保护四个方面。 其中,数据质量、数据传输及时率和设备运行可用性通过考核相关业务上传的数据和状态文件实现,考核文件种类详见附件12;保障可靠性和探测环境保护通过考核相关业务的填报表单和上报文件实现。 第六条每项业务的考核总分为100分。各考核内容包含若干单项考核指标并分配相应的分值,各单项考核指标得分之和为综合考核得分。考核以月度、年度为周期。 第七条气象观测业务质量综合考核工作由综合观测司、预报与网络司共同组织,中国气象局气象探测中心、国家气象信息中心和国家卫星气象中心具体实施。 第八条考核结果由综合观测司、各省(区、市)气象局观测业务管理部门根据考核周期及时进行通报。 考核结果可作为省(区、市)气象局推荐和评选优秀集体和个人的重要依据,同时也可作为评价设备质量的依据。第九条本办法由中国气象局综合观测司负责解释。各省(区、市)气象局可在本办法基础上制定本省(区、市)的实施细则。 第十条本办法自2017年1月1日起执行,《地面气象观测质量考核办法(试行)》(气测函〔2013〕312号)、《地面高空气象观测业务综合质量考核办法(试行)》(气测函〔2014〕201号)同时废止。《综合气象观测系统仪器装备运行状况通报办法》

土壤墒情监测系统的操作方法及注意事项

土壤墒情监测系统的操作方法及注意事项 农业发展一直是我国的重点之一,如今农业发展的方向是现代化农业,现代化农业的主要特点是农业信息化,而农业信息化主要体现在农业物联网。 托普云农物联网推出的物联网技术全面打造土壤墒情监测系统,将最前沿的信息技术武装到了延续几千年的劳动生产上。 在系统应用过程中,大量的传感器节点构成了一张张功能各异的监控网络,通过各种传感器采集信息,可以帮助农民及时发现问题,并且准确地捕捉发生问题的位置。如此一来,农业逐渐地从以人力为中心、依赖于孤立机械的生产模式转向以信息和软件为中心的生产模式,从而大量使用各种自动化、智能化、远程控制的生产设备,促进了农业发展方式的转变。 相关数据显示,农业灌溉是我国的用水大户,长期以来,由于技术、管理水平落后,导致灌溉用水浪费十分严重,农业灌溉用水的利用率仅40%。如果根据监测土壤墒情信息,实时控制灌溉时机和水量,可以有效提高用水效率。而人工定时测量墒情,不但耗费大量人力,而且做不到实时监控。 托普云农物联网结合土壤墒情监测平台和物联网控制技术的应用,使农业种植中的监控管理不再受到时空局限,根据大棚或其他种植区微传感器采集的详实数据,点击手机屏幕便可以有针对性的遥控节水灌溉、施肥、二氧化碳、水泵、风机等田间设施。 总而言之,实现土壤墒情的连续在线监测,农田节水灌溉的自动化控制,既

提高灌溉用水利用率,缓解我国水资源日趋紧张的矛盾,也能为作物生长提供良好的生长环境。 根据规划,托普云农物联网应用中的管理平台分为墒情信息监测、苗情信息监测、气象数据分析、短信发布、灾情信息发布、图形预警几个部分。未来,围绕系统建立起来的"绿色产业链"将让现代农业朝着绿色可持续的方向迈进。 土壤墒情监测是实施农田有效管理措施的基础,为此,托普云农结合国内外同类产品的优势研发了一种土壤墒情监测系统,它可以实现农田土壤墒情的准确测定和管理,对农业展开合理的生产措施有重要的意义。 TZS-GPRS-I土壤墒情监测系统又可称为墒情与旱情信息管理系统,土壤墒情与旱情管理系统,无线墒情与旱情管理系统,土壤墒情实时监测系统。该系统拥有自己的数据平台(数据无须上传至国家系统)及监测网络,数据可直接发送到管理者的服务器,下级所有被管理站点均可查看。该土壤墒情与旱情监测系统用户可以根据需要选择网络GPRS模式或短信GSM模式两种通讯方式传输。 TZS-GPRS-I与TZS-GPRS的区别在于: TZS-GPRS-I是自有网络平台,即不上传到国家墒情监测网,自己有一套墒情监测网络,数据直接发送到管理者的服务器,下级所有被管理站点均可查看。 托普云农土壤墒情监测系统其他选配的气象要素: 空气温度、空气相对湿度、太阳辐射、风向、风速、降水量、大气压力、光照度、露点、直接辐射、日照、光合有效辐射、紫外辐射、蒸发、二氧化碳等传感器。

土壤水分的测定

土壤水分的测定 测定土壤水分是为了了解土壤水分状况,以作为土壤水分管理,如确定灌溉定额的依据。在分析工作中,由于分析结果一般是以烘干土为基础表示的,也需要测定湿土或风干土的水分含量,以便进行分析结果的换算。 一、测定方法 土壤水分的测定方法很多,实验室一般采用酒精烘烤法、酒精烧失法和烘干法。野外则可采用简易的排水称重法(定容称量法)。 (一)酒精烘烤法 1、原理:土壤加入酒精,在l05℃—110℃下烘烤时可以加速水分蒸发,大大缩短烘烤时间,又不致于因有机质的烧失而造成误差。 2、操作步骤 ①取已烘干的铝盒称重为W1(克)。 ②加土壤约5克平铺于盒底,称重为W2(克)。 ③用皮头吸管滴加酒精,便土样充分湿润,放入烘箱中,在105℃—110℃条件下烘烤30分钟,取出冷却称重为W3(克)。 3、结果计算 W2-W3 土壤水分含量(%)=—————×100 W3-W1 土壤分析一般以烘干土计重,但分析时又以湿土或风干土称重,故需进行换算,计算公式为:应称取的湿土或风干土样重=所需烘干土样重×(1+水分%) (二)酒精烧失速测法 1、原理:酒精可与水分互溶,并在燃烧时使水分蒸发。土壤烧后损失的重量即为土壤含水量。 2、操作步骤: ①取铝盒称重为W l(克)。 ②取湿土约10克(尽量避免混入根系和石砾等杂物)与铝盒一起称重为W2(克)。 ③加酒精于铝盒中,至土面全部浸没即可,稍加振摇,使土样与酒精混合,点燃酒精,待燃烧将尽,用小玻棒来回拨动土样,助其燃烧(但过早拨动土样会造成土样毛孔闭塞,降

低水分蒸发速度),熄火后再加酒精3毫升燃烧,如此进行2—3次,直至土样烧干为止。 ④冷却后称重为W3(克)。 3、结果计算同前 (三)烘干法 1、原理:将土样置于105℃±2℃的烘箱中烘至恒重,即可使其所含水分(包括吸湿水)全部蒸发殆尽以此求算土壤水分含量。在此温度下,有机质一般不致大量分解损失影响测定结果。 2、操作步骤 ①取干燥铝盒称重为W1(克)。 ②加土样约5克于铝盒中称重为W2(克)。 ③将铝盒放入烘箱,在105℃一110℃下烘烤6小时,一般可达恒重,取出放人干燥器内,冷却20分钟可称重。必要时,如前法再烘1小时,取出冷却后称重,两次称重之差不得超过0.05克,取最低一次计算。 注:质地较轻的土壤,烘烤时间可以缩短,即5—6小时。 3、结果计算同前 二、思考题 1、列出实验数据,计算土壤水分含量。 2、在烘干土样时,为什么温度不能超过110℃?含有机质多的土样为什么不能采用酒精烧失法?

土壤含水量的测定(烘干法)

土壤含水量的测定(烘干法) 进行土壤水分含量的测定有两个目的: 一是为了解田间土壤的实际含水状况,以便及时进行灌溉、保墒或排水,以保证作物的正常生长;或联系作物长相、长势及耕栽培措施,总结丰产的水肥条件;或联系苗情症状,为诊断提供依据。 二是风干土样水分的测定,为各项分析结果计算的基础。前一种田间土壤的实际含水量测定,目前测定的方法很多,所用仪器也不同,在土壤物理分析中有详细介绍,这里指的是风干土样水分的测定。 风干土中水分含量受大气中相对湿度的影响。它不是土壤的一种固定成分,在计算土壤各种成分时不包括水分。因此,一般不用风干土作为计算的基础,而用烘干土作为计算的基础。分析时一般都用风干土,计算时就必须根据水分含量换算成烘干土。 测定时把土样放在105~110℃的烘箱中烘至恒重,则失去的质量为水分质量,即可计算土壤水分百分数。在此温度下土壤吸着水被蒸发,而结构水不致破坏,土壤有机质也不致分解。下面引用国家标准《土壤水分测定法》。 2.3.1适用范围 本标准用于测定除石膏性土壤和有机土(含有机质20%以上的土壤)以外的各类土壤的水分含量。 2.3.2方法原理 土壤样品在105±2℃烘至恒重时的失重,即为土壤样品所含水分的质量。 2.3.3仪器设备 ①土钻;②土壤筛: xx1mm;③铝盒:

小型直径约40mm,高约20mm;大型直径约55mm,高约28mm;④分析天平: 感量为 0.001g和 0.01g;⑤小型电热恒温烘箱;⑥干燥器: xx变色硅胶或无水氯化钙。 2.3.4试样的选取和制备 2.3. 4.1风干土样选取有代表性的风干土壤样品,压碎,通过1mm筛,混合均匀后备用。 2.3. 4.2新鲜土样在田间用土钻取有代表性的新鲜土样,刮去土钻中的上部浮土,将土钻中部所需深度处的土壤约20g,捏碎后迅速装入已知准确质量的大型铝盒内,盖紧,装入木箱或其他容器,带回室内,将铝盒外表擦拭干净,立即称重,尽早测定水分。 2.3.5测定步骤 2.3. 5.1风干土样水分的测定将铝盒在105℃恒温箱中烘烤约2h,移入干燥器内冷却至室温,称重,准确到至 0.001g。用角勺将风干土样拌匀,舀取约5g,均匀地平铺在铝盒中,盖好,称重,准确至 0.001g。将铝盒盖揭开,放在盒底下,置于已预热至105±2℃的烘箱中烘烤6h。取出,盖好,移入干燥器内冷却至室温(约需20min),立即称重。风干土样水分的测定应做两份平行测定。

土壤墒情

土壤墒情 目录 1 概念 墒,指土壤的湿度。墒情,指土壤湿度的情况。土壤湿度是土壤的干湿程度,即土壤的实际含水量,可用土壤含水量占烘干土重的百分数表示:土壤含水量=水分重/烘干土重×100%。也可以土壤含水量相当于田间持水量的百分比,或相对于饱和水量的百分比等相对含水量表示。 土壤水是植物吸收水分的主要来源(水培植物除外),另外植物也可以直接吸收少量落在叶片上的水分。土壤水的主要来源是降水和灌溉水,参与岩石圈-生物圈-大气圈-圈-水圈的水分大循环。 2 存在形态 土壤水存在于土壤孔隙中,尤其是中小孔隙中,大孔隙常被空气所占据。穿插于土壤孔隙中的植物根系从含水土壤孔隙中吸取水分,用于蒸腾。土壤中的水气界面存在湿度梯度,温度升高,梯度加大,因此水会变成水蒸汽蒸发逸出土表。蒸腾和蒸发的水加起来叫做蒸散,是土壤水进入大气的两条途径。 表层的土壤水受到重力会向下渗漏,在地表有足够水量补充的情况下,土壤水可以一直入渗到地下水位,继而可能进入江、河、湖、海等地表水。 3 表示方法 [1]土壤中水分的多少有两种表示方法:一种是以土壤含水量表示,分重量含水量和容积含水量两种,二者之间的关系由土壤容重来换算。另一种是以土壤水势表示,土壤水势的负值是土壤水吸力。 4重要指标 土壤含水量有三个重要指标。一个是土壤饱和含水量,表明该土壤最多能含多少水,此时土壤水势为0。

第二是田间持水量,是土壤饱和含水量减去重力水后土壤所能保持的水分。重力水基本上不能被植物吸收利用,此时土壤水势为-0.3巴。 第三是萎蔫系数,是植物萎蔫时土壤仍能保持的水分。这部分水也不能被植物吸收利用,此时土壤水势为-15巴。 田间持水量与萎蔫系数之间的水称为土壤有效水是植物可以吸收利用的部分。当然,一般在田间持水量的60%时,即土壤水势-1巴左右就采取措施进行灌溉。 土壤水势可细分为重力势、基模势和溶质势。 土壤水分重力势以土壤水面与土表面相平时为0。水面高于土表面时为正值(此时也称为压力势)。水面低于土表面时为负值(土壤水吸力为正值)。 土壤基模势指土壤中矿质颗粒表面和有机质颗粒表面对水所产生的张力。它的值永远是负值,即总是将土壤表面的水分向土体内吸进来。 土壤水分溶质势与土壤溶液中所含溶质数量有关,溶质越多,溶质势越小(即越负)。点水源入渗时,水沿湿度梯度从高水势处向低水势处流动,逐渐形成一个干湿交界分明的椭球体形状,称为湿润球,球面各处土壤水势相等。该球面称为入渗锋,在水头固定不变时,入渗锋的前进速度随着时间的延长而减慢。 大部分植物养分都是溶于水后随水移动运输到植物根系被吸收的。无论根系以质流、扩散、截获哪种方式吸收植物养分都在土壤溶液中进行。 4土壤墒情监测站WXH-DTWS 一、产品特色:[1] 该仪器是符合《土壤墒情监测规范SL000-2005中华人民共和国水利行业标准》,根据土壤墒情监测规范要求设计,不仅可实时监测墒情的最主要参数——土壤水分,还可根据用户需求监测土壤温度等,配套的软件可根据用户需要灵活设定墒情参数的采样周期和存储周期、巡测和召测数据及分析数据等功能。系统进行不间断监测,对土壤墒情的发生、发展及变化进行实时的监视和分析,为开展排涝抗旱工作提供信息依据。 土壤水分传感器采用国际上最流行的现场测试土壤水分原理:频域反射原理(FDR),该技术最早应用于美国,即传感器发射一定频率的电磁波,电磁波沿探针传输,到达底部后返回,检测探头输出的电压,由于土壤介电常数的变化通常取决于土壤的含水量,由输出电压和水分的关系则可计算出土壤的含水量。水分是决定土壤介电常数的主要因素。测量土壤的介电常数,能直接稳定地反应各种土壤的真实水分含量。FDR土壤水分传感器可测量土壤水分的体积百分比,与土壤本身的机理无关,此原理是目前国际上最流行的土壤水分传感器测量方法。 二、应用范围: 广泛应用于农业、林业、地质等方面土壤温度测量及研究。 三、产品特点: 01、本机体积小,软件操作简单,性能可靠,记录间隔可根据要求从1分至24小时任意设置。 02、全程跟踪记录被测土壤中的温度数据,记录时间长,具有断电数据自动存储保护功能。 03、整机功耗小,整机功耗不大于2W。

土壤含水量测定方法小结

土壤含水量测定方法小结 1,烘干称重; 这个不多说了。准确度最高,但测定得到的是质量含 水量,与其他方法所得数据进行比较是注意换算。 2,中子仪; 技术比较成熟,准确性极高,是烘干法以外的第二标 准方法。 但是中子仪测定需要安装套管,理论上可达任何深度,设备昂贵,投入很大。中子射线对操作者身体有损害,严格来说需要相关证件才可以操作。无法测定表层土 壤。 3,电阻法; 一般使用石膏块作为介质埋设地下,石膏块中埋设两根导线,导线之间的石膏成分组成电阻,石膏块电阻与土壤含水量相关。石膏块制作简单,哪怕进口的成品成本也是非常低廉,可以作很多重复,可以不破坏土壤在田间连续自动监测。存在问题,石膏块滞后时间较长,所以不可能用来做移动式测定和自动灌溉系统。石膏块只适合用于非盐碱土壤中,同时石膏块不适合使用直流电(文献查得,表示怀疑,因为所有的石膏块读书表都是用干电池作为电源),测定受土壤类型影响很大,标定结果会随时间改变,达到一定年 限后,石膏会逐渐溶解到土壤中。 4,TDR(Time Domain Reflectometry) TDR有两种时域反射仪和时域延迟,两者均简称TDR。TDR技术是当前土壤水分测定装置的主流原理,可以连续、快速、准确测量。可以测量土壤表层含

水量。一般的TDR原理的设备响应时间约10-20秒,适合移动测量和定点监测。测定结果受盐度影响很小,TDR缺点是电路比较复杂,设备较昂贵。 5,FDR(Frequency Domain Reflectometry)几乎具有TDR的所有优点,探头形状非常灵活。比较夸张的甚至可以放在做成犁状放在拖拉机后面运动中 测量。FDR相对TDR需要更少的校正工作。 TDR和FDR同样有一个缺点,当探头附近的土壤有空洞或者水分含量非常不均匀时,会影响测定结果。 非常奇怪的是,基于FDR原理的往往是低端的仪器设备,根据笔者实际使用经验,FDR技术可能在精度上存在瓶颈,经常在5%的误差左右,写文章时候数据基本上不好用。

土壤环境监测技术规范方案

土壤环境监测技术规范 土壤环境监测技术规范包括土壤环境监测的布点采样、样品制备、分析方法、结果表征、资料统计和质量评价等技术内容。 一、准备工作 主要准备工具,器材,用具等。 二、布点采样 样品由随机采集的一些个体所组成,个体之间存在差异。为了达到采集的监测样品具有好的代表性,必须避免一切主观因素,使组成总体的个体有同样的机会被选入样品,即组成样品的个体应当是随机地取自总体。另一方面,在一组需要相互之间进行比较的样品应当有同样的个体组成,否则样本大的个体所组成的样品,其代表性会大于样本少的个体组成的样品。所以“随机”和“等量”是决定样品具有同等代表性的重要条件。 1.布点方法 1)简单随机 将监测单元分成网格,每个网格编上号码,决定采样点样品数后,随机抽取规定的样品数的样品,其样本号码对应的网格号,即为采样点。随机数 的获得可以利用掷骰子、抽签、查随机数表的方法。关于随机数骰子的使用 方法可见GB10111《利用随机数骰子进行随机抽样的办法》。简单随机布点 是一种完全不带主观限制条件的布点方法。 2)分块随机 根据收集的资料,如果监测区域内的土壤有明显的几种类型,则可将区域分成几块,每块内污染物较均匀,块间的差异较明显。将每块作为一个监 测单元,在每个监测单元内再随机布点。在正确分块的前提下,分块布点的 代表性比简单随机布点好,如果分块不正确,分块布点的效果可能会适得其 反。 3)系统随机 将监测区域分成面积相等的几部分(网格划分),每网格内布设一采样点,这种布点称为系统随机布点。如果区域内土壤污染物含量变化较大,系

统随机布点比简单随机布点所采样品的代表性要好。 2.基础样品数量 1)由均方差和绝对偏差计算样品数 用下列公式可计算所需的样品数: N=t2s2/D2 式中:N 为样品数; t 为选定置信水平(土壤环境监测一般选定为95%)一定自由度下的t 值(附录A); s2 为均方差,可从先前的其它研究或者从极差R(s2=(R/4)2)估计; D 为可接受的绝对偏差。 2)由变异系数和相对偏差计算样品数 N=t2s2/D2 可变为:N=t2CV2/m2 式中:N 为样品数; t 为选定置信水平(土壤环境监测一般选定为95%)一定自由度下的t 值(附录A); CV 为变异系数(%),可从先前的其它研究资料中估计; m 为可接受的相对偏差(%),土壤环境监测一般限定为20%~30% 。 没有历史资料的地区、土壤变异程度不太大的地区,一般CV 可用10%~30%粗略估计,有效磷和有效钾变异系数CV 可取50%。 3.布点数量 土壤监测的布点数量要满足样本容量的基本要求,即上述由均方差和绝对偏差、变异系数和相对偏差计算样品数是样品数的下限数值,实际工作中土壤布点数量还要根据调查目的、调查精度和调查区域环境状况等因素确定。 一般要求每个监测单元最少设3 个点。 区域土壤环境调查按调查的精度不同可从2.5km、5km、10km、20km、40km 中选择网距网格布点,区域内的网格结点数即为土壤采样点数量。

自动土壤水分观测数据传输格式及传输方案

自动土壤水分观测数据传输格式及传输方案

自动土壤水分观测数据传输格式及传输方案 中国气象局综合观测司预报网络司 2009.8

目录 1上传文件命名规则 (1) 1.1单站文件命名规则 (1) 1.2多站文件命名规则 (1) 1.3上传文件名说明 (2) 2 上传时间规定 (7) 2.1数据上传原则 (7) 2.2数据上传时间规定 (8) 3 上传数据格式 (9) 3.1 自动土壤水分观测站上传数据格式 (9) 3.2 省级打包上传格式 (14) 3.3 作物名称编码表 (15)

自动土壤水分观测数据传输格式及传输方案 为规范自动土壤水分观测和资料传输业务,确保自动土壤水分观测资料及时、高效地收集、共享和应用,制定本数据传输格式及传输方案。 1上传文件命名规则 自动土壤水分观测站上传文件是指自动土壤水分观测站上传至省级气象通信部门或国家气象信息中心的数据文件。 自动土壤水分观测站上传文件包括单站文件命名和多站文件命名两种规则。 1.1单站文件命名规则 单站自动土壤水分观测站上传文件命名方式为: Z_ AGME_I_IIiii_yyyymmddhhMMss_O_ASM-F TM[-CCx].txt 1.2多站文件命名规则 多站自动土壤水分观测站上传文件命名方式为(通过省级或国家级打包的文件):

Z_ AGME_C_CCCC_yyyymmddhhMMss_O_AS M-FTM.txt 1.3上传文件名说明 (1)文件名称各段说明 Z:固定代码,表示文件为国内交换的资料。 AGME:固定代码,表示农业气象资料。 I:固定代码,指示其后字段代码为测站区站号。 IIiii:测站区站号。区站号使用规则见1.3(2) C:固定代码,指示其后字段编码为编报台字母代号。 CCCC:编报台字母代号,详见1.3.3编报台站代码表。 yyyymmddhhMMss:文件生成时间“年月日时分秒”(UTC,国际时)。其中,yyyy为年,4位;mm为月,2位;dd为日,2位;hh为小时,2位;MM分钟,2位;ss为秒,2位。在年月日时分秒中,若位数不足时,高位补“0”。例如:

全国土壤墒情监测工作方案解析

全国土壤墒情监测工作方案 随着全球气候变化加剧,我国旱灾频发重发,干旱缺水问题日益突出。为做好土壤墒情监测工作,应对旱灾威胁,促进农业发展方式转变和农业可持续发展,特制定本方案。 一、总体要求 各级农业部门要进一步强化土壤墒情监测,大力推进监测站(点)建设,建立健全国家、省、县三级墒情监测网络体系,扩大覆盖土壤墒情监测规模和范围。要充分利用现代监测和信息设备,全面提升监测效率和服务能力。逐步完善主要农作物墒情评价指标体系,实现墒情评价规范化和科学化。强化现代高新技术应用,提高墒情监测的时效性、针对性和科学性,为指导农业生产、防灾减灾、领导决策提供依据。 土壤墒情监测要以服务农业生产为宗旨,以土壤和作物为对象,统筹规划、合理布局,覆盖全国粮食主产区和干旱易发区。通过采用自动化、信息化、网络化等现代高新技术手段,突出土壤墒情监测关键技术环节,实现定点、定期监测。分析汇总土壤墒情数据,评价作物需水情况,及时提出应对措施建议。建立墒情定期会商和报告制度,提高时效性和结果表达的可视化程度。 二、基本原则 (一)代表性。土壤墒情监测站(点)要充分考虑区域内主导作物、气候条件、灌排条件、土壤类型等因素合理布局,确保监测数据具有代表性。 (二)及时性。土壤墒情监测要做到及时、快速、准确,出现旱涝灾情,应加大监测频率,旱涝灾情不迟报、不漏报;关键农时季节,应及时汇总相关信息,重大农事活动前有信息;日常监测工作,坚持定期采样,快速分析、及时汇总、 按时上报。

(三)规范性。建立土壤墒情监测工作制度和责任制度,做到工作人员相对固定,设施设备配置齐全,监测工作制度化和规范化,确保监测数据可靠、调查内容详实、评价结论科学。 三、重点工作 (一)监测点布设 选择区域范围内代表性强,当地政府重视,土肥水工作基础好,技术力量强,能够长期坚持的县承担土壤墒情监测工作。 以县为基本单元,根据气候类型、地形地貌、作物布局、灌排条件、土壤类型、生产水平等因素,选择有代表性的农田,平均每10万亩耕地设立1个农田监测点(每个县不少于5个)。 农田监测点应设立在作物集中连片、种植模式相对一致的地块。采用统一编号,设立标志牌。开展基本情况调查,内容主要包括地理位置、气候条件、土壤类型、种植制度、灌排条件、地力等级、产量水平等;测定不同层次土壤质地、容重、田间持水量等指标;拍摄景观照片,建立监测点档案。 (二)数据采集 1、监测指标。一般按0~20 、20~40 、40~60 、60~100 四个层次监测土壤含水量,其中,0~20 、20~40 为必测层。播种出苗期时,加测0~10 土层。特殊作物根据其需水特性和根系分布深度确定监测层次和深度。同时调查观测气象、作物表象、干土层厚度、田面开裂、灌溉、农事操作等相关数据。水田淹水时监测淹水深度、排水状况等。 2、采集方法。固定监测:埋设固定式自动监测设备,传感器分别埋入土层 深度10 、30 、50 、80 处进行监测,采用无线通讯方式将监测数据实时上传到“全国土壤墒情监测系统”,并做好定期校正和维护保养。流动监测:配备便携式监测仪器和交通工具,在监测点地块,以仪定位点为中心,长方形地块采用“S ”

土壤含水量测量实验报告

土壤水分的测定实验 一、实验目的 1、了解土壤的实际含水情况,以便适时灌排,保证植物生长对水分的需求。 2、风干土样水分的测定,是各项分析结果计算的基础。土壤水分含量的多少,直接影响土壤的固、液、气三相比例,以及土壤的适耕性和植物的生长发育。 二、实验原理 土壤水分大致分为化学结合水、吸湿水和自由水三类。自由水是可供植物自由利用的有效水和多余水,可以通过土壤在空气中自然风干的方法从土壤中释放出来;吸湿水是土壤颗粒表面被分子张力所吸附的单分子水层,只有在105-110℃下才能摆脱土壤颗粒表面分子力的吸附,以气态的形式释放出来,由于土粒对水汽分子的这种吸附力高达成千上万个大气压,所以这层水分子是定向排列,而且排列紧密,水分不能自由移动,也没有溶解能力,属于无效水;而化学结合水因为参与了粘土矿物晶格的组成,所以是以OH-的形式存在的,要在600--700℃时才能脱离土粒的作用而释放出来。 土壤含水量的测定方法很多,如烘干法、酒精燃烧法和中子测量法等,其中烘干法是目前国际上土壤水分测定的标准方法,虽然需要采集土样,并且干燥时间较长但是因为它比较准确,且便于大批测定,故为常用的方法。 将土壤样品放在105℃±2℃的烘箱中烘至恒重,求出土壤失水重量占烘干重量的百分数。在此温度下,包括吸湿水(土粒表面从空气中吸取活动力强的水汽分子而成的一种水分)在内的所有水分烘掉,而一般土壤有机质不致分解。 三、实验器材 铝盒、烘箱、干燥器、天平、小铲子、小刀。 四、实验步骤 1、在室内将铝盒编号并称重,重量记为W0 。 2、用已知重量的铝盒在天平上称取欲测土样15—20克,称量铝盒与新鲜土壤样

自动土壤水分观测规范标准

.\ 自动土壤水分观测规范 (试行) 中国气象局综合观测司

前言 自动土壤水分观测规范分八个章节,包括:自动土壤水分观测的基本任务、观测方法、技术要求以及观测记录的处理方法,观测仪器的工作原理、安装、操作、维护与田间标定方法等内容。 本规范既对自动土壤水分观测仪器生产厂家的设备生产、安装、维护、标校等提出具体要求,又规范台站对仪器的使用方法、明确仪器在标校过程中进行人工对比观测取土的要求,目的是为了使安装在作物地段和固定地段的自动土壤水分观测仪能够顺利投入业务化运行,为农业气象干旱监测服务,发挥项目建设效益。 本规范适用于利用频域反射法(FDR:Frequancy Domain Reflection)原理来测定土壤体积含水量的自动土壤水分观测仪。 本规范由中国气象局综合观测司组织、中国气象局气象探测中心编写,国家气象中心、河南省气象局、湖北省气象局等单位参与了编写工作。

目录 前言 ................................................................... I 第1章总则 .. (1) 第2章观测的一般要求 (1) 2.1 观测场地 (1) 2.1.1观测地段 (1) 2.1.2选址 (1) 2.1.3场地建设 (2) 2.1.4仪器布设 (2) 2.1.5地段描述与记载 (2) 2.1.6土壤水文、物理特性的测定 (3) 2.2 时制、日界和对时 (3) 2.3 计算项目 (3) 2.4 仪器性能要求 (3) 2.4.1总体要求 (3) 2.4.2传感器性能要求 (3) 第3章观测仪器 (4) 3.1系统结构及工作原理 (4) 3.1.1系统结构 (4) 3.1.2工作原理 (4) 3.2硬件 (4) 3.2.1传感器 (4) 3.2.2数据采集器 (5) 3.2.3系统电源 (5) 3.2.4通信接口与通讯模块 (6) 3.2.5微机 (6) 3.3软件 (6) 3.3.1采集软件 (6) 3.3.2业务软件 (6) 3.4主要功能 (6) 3.4.1初始化功能 (6) 3.4.2数据采集功能 (6) 3.4.3数据处理功能 (6) 3.4.4数据存储功能 (7) 3.4.5数据传输功能 (7) 3.4.6系统管理功能 (7)

全国土壤墒情监测工作方案

全国土壤墒情监测 工作方案

全国土壤墒情监测工作方案 随着全球气候变化加剧,中国旱灾频发重发,干旱缺水问题日益突出。为做好土壤墒情监测工作,应对旱灾威胁,促进农业发展方式转变和农业可持续发展,特制定本方案。 一、总体要求 各级农业部门要进一步强化土壤墒情监测,大力推进监测站(点)建设,建立健全国家、省、县三级墒情监测网络体系,扩大覆盖土壤墒情监测规模和范围。要充分利用现代监测和信息设备,全面提升监测效率和服务能力。逐步完善主要农作物墒情评价指标体系,实现墒情评价规范化和科学化。强化现代高新技术应用,提高墒情监测的时效性、针对性和科学性,为指导农业生产、防灾减灾、领导决策提供依据。 土壤墒情监测要以服务农业生产为宗旨,以土壤和作物为对象,统筹规划、合理布局,覆盖全国粮食主产区和干旱易发区。经过采用自动化、信息化、网络化等现代高新技术手段,突出土壤墒情监测关键技术环节,实现定点、定期监测。分析汇总土壤墒情数据,评价作物需水情况,及时提出应对措施建议。建立墒情定期会商和报告制度,提高时效性和结果表示的可视化程度。 二、基本原则 (一)代表性。土壤墒情监测站(点)要充分考虑区域内主导作物、气候条件、灌排条件、土壤类型等因素合理布局,确保监测数据具有代表性。

(二)及时性。土壤墒情监测要做到及时、快速、准确,出现旱涝灾情,应加大监测频率,旱涝灾情不迟报、不漏报;关键农时季节,应及时汇总相关信息,重大农事活动前有信息;日常监测工作,坚持定期采样,快速分析、及时汇总、按时上报。 (三)规范性。建立土壤墒情监测工作制度和责任制度,做到工作人员相对固定,设施设备配置齐全,监测工作制度化和规范化,确保监测数据可靠、调查内容详实、评价结论科学。 三、重点工作 (一)监测点布设 选择区域范围内代表性强,当地政府重视,土肥水工作基础好,技术力量强,能够长期坚持的县承担土壤墒情监测工作。 以县为基本单元,根据气候类型、地形地貌、作物布局、灌排条件、土壤类型、生产水平等因素,选择有代表性的农田,平均每10万亩耕地设立1个农田监测点(每个县不少于5个)。 农田监测点应设立在作物集中连片、种植模式相对一致的地块。采用统一编号,设立标志牌。开展基本情况调查,内容主要包括地理位置、气候条件、土壤类型、种植制度、灌排条件、地力等级、产量水平等;测定不同层次土壤质地、容重、田间持水量等指标;拍摄景观照片,建立监测点档案。 (二)数据采集 1、监测指标。一般按0~20cm、20~40cm、40~60cm、60~100cm四个层次监测土壤含水量,其中,0~20cm、20~

11.王立忠5xiu---盆栽植物土壤水分监测及自动浇灌系统

盆栽植物土壤水分监测及自动浇灌系统设计 王立忠,蒋宁,程礼邦,段佳敏 (吉林师范大学 信息技术学院 吉林 四平 136000) 摘 要:基于单片机设计了一种能够根据土壤湿度进行自动控制,并带显示功能的盆栽植物浇灌系统。单片机根据土壤湿度传感器采集的信号对湿度进行自动控制。根据植物的需要设定湿度的下限和上限,在湿度高于上限值时不进行浇灌。若湿度低于下限值,通过传感器发出缺水信号,根据不同的情况来驱动水泵进行适当的浇水。浇水装置采用滴灌方法,有助于土壤对于水分的吸收和浇灌的均匀。通过定时器定时自动检测土壤湿度, 确保及时为植物提供充足的水分,从而为盆栽植物的生长提供一个良好的环境。 关键词:盆栽植物;自动灌溉;单片机;湿度传感器 中图分类号:TP342 文献标识码:A 0引言 目前,盆栽植物作为一种绿色、天然、健康的植物,就成了人们追求高品质生活的首选,但随着社会的高速发展和生活节奏的加快,人们的生活越来越忙碌,因加班、出差、早起及各种各样繁杂的事情经常会将“照顾”盆栽植物的事忘在脑后。该款装置将花土水分监测和浇灌实现自动化,提高了植物的科学浇灌的同时也减轻了人们的“负担”。克服了传统的人工给盆栽植物浇水带来的局限性[1-2]。装置不同于普通浇灌装置,根据不同植物对水分要求和灌溉时间的要求进行设定,可以在长时间“无人”情况下自动检测花土湿度,并根据花卉对湿度要求进行自动滴灌。盆栽植物土壤水分监测及自动浇灌系统基于单片机控制,再配合土壤湿度检测电路探测盆栽植物所在的土壤环境,由于传统的人工浇水具有不定时性和不均匀性,所以我们采用滴灌技术。本系统采用独立的节能电源设计,避免停电的问题。具有节水、节电、省时、环保等特点。 1系统方案设计 整个系统由土壤湿度传感器模块、单片机采集控制及信号输出电路模块(单片机、数据处理及显示模块)、水泵及供水模块、电源管理模块5个主要部分组成。系统构造框图如图1所示。 单片机模块 电源管理模块土壤湿度传感器模块 给水及灌溉 模块 数据处理及显示模块 图1系统框架图 系统的工作原理:土壤湿度检测模块来完成对盆栽植物土壤湿度的采集,单片机采集控 收稿日期:2014-10-10 基金项目:国家自然科学基金项目(61305082);吉林师范大学第十二批大学 科研基金项目(12234,12235) 第一作者简介:王立忠(1970-),男,吉林省四平市人,现为吉林师范大学信息技术学院副教授,硕士,硕士生导师。研究方向:电子技术.

环境监测制度

漳泽发电分公司 环境保护技术监测制度 1 目的 规范环境保护监测行为,确保环保设备的正常投运以及污染物排放达标。 2适用范围 本细则适用于漳泽发电分公司环境保护日常监测管理。 3职责 3.1 安全环保部职责 3.1.1 贯彻执行国家有关环境保护政策、法规,落实上级各项制度、措施和要求,组织制订环境保护技术监测制度。 3.1.2 接受政府有关部门监管和有关环境保护的行业管理、指导。 3.1.3 协调环境保护技术监督单位,依法开展环境保护相关的监测与检测。根据环保整改意见书的要求,及时制定相关措施并落实整改。 3.1.4 对重要的环保监测仪表,落实责任制,确保设备完好。 3.1.5 组织相关人员参加业务培训。 3.2环境监测站职责 3.3.1 认真贯彻国家、行业、地方的法规、制度和要求,执行《火电厂环境监测技术规范》(DL/T414-2004)和《火电行业环境监测技术规范管理规定》等。 3.3.2 按规定完成分公司废水排放口及各生产现场粉尘、噪声的监测,检查监督环保设施的运转情况。 3.3.3 统计、分析各项监测资料及填报各类环保统计报表。 3.3.4 做好环境监测仪器设备的保养和校验工作。 3.4 环保设施所在部门的职责 3.4.1 环保设施所在部门要认真负责环保设施的运行维护及管理工作,使其良好运转。 3.4.2 做好各种废水、废汽的处理,做好污染物的监测,做到达标回用或排放。 4 管理内容和程序 4.1 环保监测范围包括: 4.1.1 各种废水处理、废水回收设施及废水污染物的排放。 4.1.2烟气处理设施及气态污染物排放。 4.1.4 各种噪声、粉尘治理装置。

4.2 环保监测内容 4.2.1 环保设施 4.2.1.1 除尘器的监测 1)#6除尘器的考核指标为:电场投运率、除尘效率、除尘器在未改造前出口烟尘排放浓度<400mg/m3。改造后除尘器出口烟尘排放浓度<100mg/m3。 2)#3、#4、#5除尘器的考核指标为:投运率、除尘效率、除尘器出口烟尘排放浓度<100mg/m3。 3)除尘器每次A级检修或改造前后均应进行除尘效率、阻力、漏风率、烟尘排放浓度、烟尘排放量等指标的测试。 4.2.1.2 废水处理设施的监测 1)废水处理设施包括生活污水处理站、闭式循环、灰水浓缩池及其系统、含油废水处理设施、废水回收设施等。 2)废水处理设施的考核指标为:废水处理率、设备投运率、处理水量及运行情况。 3)应定期对废水处理设施的运行效果进行监督、监测,每月度上报一次运行与监测情况。 4.2.1.3 脱硫设施的监测 1)脱硫设施的考核指标为:投运率、脱硫效率、二氧化硫排放浓度、旁路门挡板开关状态、在线仪表投运率、在线监测历史数据保存情况。 2)应加强运行管理,严格工艺技术操作,定期校验烟气在线监测仪器,确保烟气脱硫效率达到规定值。应定期对脱硫设施的启停时间、脱硫效率、投运率、二氧化硫排放浓度、旁路门挡板开关状态、在线监测历史数据保存,每月度上报一次运行情况。 4.2.1.4生产用水、排水情况的监测 1)各辅机冷却水要根据季节温度变化,勤调冷却水量,在保证设备安全运行的前提下,最大限度地减少冷却水使用量。 2)各辅机冷却水要做到随机组检修、备用时及时关闭,以节约工业用水和减少工业排水。 4.2.1.5 噪声治理设施的监测 1)火电厂产生噪声的主要声源均要按有关规定设置噪声防治设施,保证达到有关标准的要求。 2)应定期对各种防噪装置进行检查、维护,保证其防噪效果。 4.2.2 燃煤监测

土壤环境监测技术规范考试题共8页

《土壤环境监测技术规范》(HJ/T 166-2004) 考试题 一、填空题 1.《土壤环境监测技术规范》(HJ/T 166-2004)中——是指用于种植各种粮食作蔬菜、水果、纤维和糖料作物、油料作物及农区森林、花卉、药材、草料等作物的农业用地土壤。 2.《土壤环境监测技术规范》(HJ/T166-2004)中规定在农田耕作层采集若干点的等量耕作层土壤并经混合均匀后的土壤样品,组成混合样的分点数要在——个。 3.《土壤环境监测技术规范》(HJ/T 166-2004)中规定了土壤采样工具主要包、、、、 以及适合特殊采样要求的工具等。 4.《土壤环境监测技术规范》( HJ/T 166-2004)中规定了土壤样品运输过程中严防样品的、、 、对光敏感的样品应有避光外包装。 5.《土壤环境监测技术规范》( HJ/T 166-2004)中规定土壤样品风干时采用、放置。 6.《土壤环境监测技术规范》( HJ/T 166-2004)中规定已制备合格土壤样品主要有、或三种包装容器,规格视量而定。 7.《土壤环境监测技术规范》(HJ/T 166-2004)中规定测试项目需要新鲜样品的土样,采集后用可密封的聚乙烯或玻璃容器在℃以下避光保存,样品要充满容器。 第 1 页

8.《土壤环境监测技术规范》(HJ/T166-2004)中规定每批 土壤样品每个项目分析时均须做平行样品;当个样品以下时,平行样不少于1个。 9.《土壤环境监测技术规范》( HJ/T166-2004)中规定 是直接用土壤样品或模拟土壤样品制得的一种固体物质。 10.《土壤环境监测技术规范> (HJ/T 166-2004)中土壤环境监测的误差由、、三部分组成。 二、判断题 1.《土壤环境监测技术规范》( HJ/T166-2004)适用于全国区域土壤背景、农田土壤环境、建设项目土壤环境评价等类型的监测,但不适用于土壤污染事故监测。( ) 答案:( ) 2.《土壤环境监测技术规范》(HJ/T 166—2004)规定在风干室将土样放置于风干盘中,摊成2~3cm的薄层,适时地压碎、翻动,拣出碎石、砂砾、植物残体。( ) 答案:( ) 3.《土壤环境监测技术规范》(HJ/T 166-2004)规定土壤制样工具每处理一份样后抹(洗)干净,严防交叉污染。( ) 答案:( ) 4. 《土壤环境监测技术规范》(HJ/T 166-2004) 规定土壤环境质量评价一般以单项污染指数主,指数小污染轻,指数大污染则重。( ) 答案:( ) 第 2 页

相关文档
最新文档