弱光逆境对植物光合特性的影响

姓名:@@@

学号:#########

学院:生命科学学院

专业:应用生物教育

班级:11级A班

综述名称:弱光逆境对植物光合特性的影响云南师范大学教务处编印

弱光逆境对植物光合特性的影响

¥¥¥¥¥

(云南师范大学生命科学学院应用生物教育***班)

摘要:弱光环境属于逆境的一种,虽然不是植物基本生存的限制因素,但弱光对植株光合作用、光合产物的运输和分配、营养元素的吸收、内源激素水平和抗氧化酶系活性等植物的生理代谢及形态建成有影响。弱光影响植物的光合特性,是目前影响设施生产的重要不利环境因素之一。研究弱光逆境适应性的调控及改善措施,付诸于生产实践。

关键词:弱光、光合特性、生长发育、调控。

Low Light Stress on Plant Photosynthesis Characteristics

************

(College of Life Sciences, Yunnan Normal University, Applied Biosystems##

education classes)

Abstract: In the face of adversity is a low light environment, though not the limiting factor in plant basic survival, but light on plant photosynthesis, transport and distribution of photosynthetic products, nutrient absorption, endogenous hormone levels and activity of antioxidant enzymes and other plant physiological metabolism and morphogenesis affected. Low light affect plant photosynthetic characteristics, is an important production facility currently affecting adverse environmental factors. The regulation of light stress adaptation and improvement measures put into production practices. Keywords: low light, photosynthesis, growth and development, the regulation.

引言:对于植物本身来说,已有阴生植物和阳生之物之分,而绝大多数植物属于阳生植物。大部分植物在弱光环境中都会产生生长不良的现象,植物在弱光环境中,会出现叶片变大变薄,夜色变淡,根系生长受到抑制,总生物量严重下降,开花期则会造成大量落花落果,生殖能力下降,果实品质降低及成熟延迟等现象。随着我国农业生产的不断发展,新型的生产方式如间作、套作等栽培模式的出现,在很大程度上改善了农业生产,但也出现了一些问题。再加上冬春季节经常出现雨、雪、连阴天等不良气候条件,造成植物的弱光环境,严重影响植物的生长和发育,使园业及农业生产的产量和品质严重下降。解除弱光限制,就得培育耐弱光植物,必须对其形态、弱光信号传递及转导、生理生化、酶活性的调控、基因表达等进行有针对性的研究。

植物的光合特性生态作用是由光照强度、日照长度、光谱成分的作用、CO2的需求特性、温度和相对湿度等共同构成的,它们各有其空间和时间的变化关系。

不同的植物在生长过程中对光照强度的需求不同。虽然因遗传及生长环境的差异,不同植物对弱光照的反应不同,其所谓的弱光逆境也不同[1]。关于弱光的概念,植物生理学上还没有严格的定义,对于不同植物所需的光照环境本身就存在差异,有人认为弱光逆境指环境光强持久或短时间显著低于植物光饱和点,但不低于限制其生存的最低光照强度时的光环境[1] 。研究弱光逆境对植物光合特性的影响,对园艺生产、农业生产等方面的提高,具有指导意义,并且对植物学、分子生物学、遗传学等学科的发展也有重要意义。

一、弱光对植物生长发育的表观

Ⅰ.弱光抑制植物的组织和器官的分化

弱光抑制细胞分裂及生长,对植物的生长有抑制作用,组织和器官的分化减慢,对枝叶和根的生长也有限制作用。光照不足的树木,干高、纤细,枝叶稀疏。光照不足时,常常使植物个体变小,植株叶片变大变薄、叶色变淡、角度平展、叶面积增加,茎长增加,根冠比减少等。有研究表明,在遮阳情况下,葡萄植株出现黄化现象,酸樱桃枝梢变长变细,节间变短,叶面积和侧枝数量增加,植株总干重降低,而恢复正常光照后可消除这一影响;攀援植物绞股蓝的比茎长和株高随光照减弱而增加[2]。这些研究结果一方面表明植物不同器官在形态发生方面对光的敏感性不同,另一方面也表明植物具有主动适应其生长环境光照条件的能力[1]。

Ⅱ.弱光影响植物光合作用合成物质在根与茎之间的分配

弱光影响植物光合作用合成物质在根与茎之间的分配,植物的纵向生长和径向生长之间的投入。在植物的弱光照下,植物幼苗有时增加高生长,是以减少根和茎的直径生长为代价的,其茎/根比较大。

Ⅲ.弱光影响植物叶片的生长发育

弱光对叶片的排列方式、形态结构和生理性状有明显的影响,影响叶片数量、叶柄长度、叶片大小及角质层厚度、气孔数目和叶脉数量。

Ⅳ. 弱光影响植物的开花

光照强度不仅对植物花芽分化,而且对开花、授粉、坐果及果实发育等都有明显的影响[1]。通常植物被遮光后,花芽的数量减少,已经形成的花芽也会由于养分供应不足而发育不良或早期死亡。结实性如遇到弱光,会引起落果或果实发育不良、种子不饱满等。

Ⅴ.弱光影响植物的果实

弱光对果实中糖分的形成和积累、花青素的含量也有影响。强光条件下,果实中糖分积累丰富,花青素含量高。因此,在光照充足条件下生长的苹果、梨、桃等,果实甘甜、色彩艳丽,品质好。对甜樱桃枝条遮荫发现,遮荫枝条与对照相比,果实着色差,可溶性固形物含量下降,果实硬度也有下降,且果实成熟延迟[3]。弱光对果实影响的主要原因是枝梢叶片生长量小且光照强度小,从而降

低了光合作用而使叶子供给果实的同化物减少。在苹果生长初期进行遮阳处理,其茎的生长没有受到弱光的影响,表明在果实生长季节初期光照强度很弱时,存在同化产物竞争,茎的生长优先于果实的生长。从以上可以看出,弱光可以引起植物的不良生长,并且对于不同的植物来说,其生长对光强度的需求也不同,有明显的差异。

二、弱光对植物生理生化的光合特性的影响

Ⅰ、弱光影响植物的叶绿素的合成

叶绿体是高等绿色植物进行能量转换的细胞器,是其进行光合作用的主要结构。影响叶绿体形成的环境因子有光照、水分、温度、氧气及矿质营养等,其中光照是影响叶绿体形成的主要因子。叶绿体的发育受光的调控,弱光下叶绿体个体变小,数目变少;且叶片内叶绿体的分布也随光强的改变而改变,强光下叶绿体垂周分布,而在弱光下叶绿体则平周分布,以利于吸收更多的有效光,增加光合速率[4]。沈文云等研究发现不耐弱光的黄瓜品种(津研3号)在弱光处理后叶片组织细胞叶绿体排列紊乱,方向不规则,海绵组织叶绿体及基粒发育不正常,基粒片层膨胀解体,叶绿体外被膜受到破坏[5]。有报道表明,耐弱光生态型黄瓜在弱光(20~90μE·m-2·s-1)处理后叶片叶绿体内基粒数增多,基粒的类囊体排列紧密,从而有利于弱光环境下光能的有效利用[6]。弱光环境对叶绿体超微结构有显著的影响,研究郁金香时发现遮光率超过50%时,不耐遮阴的夜皇后部分叶绿体呈不规则椭圆形,而耐阴的牛津则叶绿体超微结构变化较小[7] 。

植物光合作用中光能的吸收、传递和调节以及原初的光能转化都是在结构和功能上不同的各种叶绿素蛋白质复合物上进行的,所以叶绿素的合成离不开光的参与。在植物叶绿体中,叶绿素a和叶绿素b含量及色素蛋白质复合体数量的多少和活性的大小对光合作用有着直接的影响。光照强度的大小对叶绿素及其色素蛋白质复合体的形成、含量和分布均产生较大影响[8]。不同程度的遮光处理能够显著增加白栎的叶绿素含量[9],而强光照射则会使得菠菜叶片中的叶绿素含量明显下降[7] ,也有研究显示遮光处理对叶绿素含量没有显著影响[10]。所以,弱光对不同植物的叶绿体含量的影响不同。

此外,叶绿素的合成还与光质有关。车生泉等人[11]以小苍兰为实验材料,用不同光照射其幼苗,发现蓝光下叶绿素含量最高,其次是白光和红光,黑暗和绿光上最低。不同光质下的Chlb/ Chla 的比例均有差别,Chlb/ Chla 比例以黄光和蓝光下最高,而以红光更有利于Chla 的形成。而储种稀等人[12]以黄瓜为实验材料,发现红光处理的叶片与白光和蓝光处理的相比,有较低的Chla/ Chlb 比值,而生长在蓝光下的叶片其中Chl含量低于白光和红光下的含量,但它的

Chla/ Chlb比值最高,这与大多数的研究报道相一致,即蓝光培养的植株一般具有阳生植物的特性,而红光培养的植株与阴生植物相似。

Ⅱ、弱光对植物净光合速率、光补偿点和光饱和点的影响

弱光逆境下,植物的功能叶片外部形态和内部结构均发生了变化,必然对光合作用产生影响。光补偿点、光饱和点和净光合速率是直接反映植物光合作用能力大小的3项指标。关于弱光对植物净光合速率的影响,目前结论比一致,即随着光照强度的减弱,净光合速率降低,下降幅度受诸如温度、CO2浓度、相对湿

度等因素的影响,还同作物品种间的耐弱光能力有很大关系,耐弱光能力强的品种光合速率降低幅度较小。在矮樱桃上的研究发现,光饱和点的降低幅度大于光补偿点的降低幅度,使光合作用有效辐射范围缩短[13]。但是,光饱和点和光补偿点常随外界环境条件的变化而发生波动,可比性较差。

在弱光环境中影响植物的光合速率下降的一个重要因素就是植物的耐弱光能力。不同的植物或者同一植物的不同品种的耐弱光能力不同,在弱光环境中生长时光合速率下降的幅度也有很大的差异,耐弱光的植物或品种即使在弱光条件下光合速率的下降幅度很小。植物的耐弱光能力具有遗传特性,其在弱光环境中的生存能力与它在弱光下获得的光合速率的大小相关,在弱光下能够更多的吸收和捕获光能遗传特性决定其耐弱光的能力更强。

作物的光饱和点和补偿点可以代表作物自身对光能的要求及利用能力,是反映作物光合作用特性的重要特征值。通常情况下,光补偿点较低的植物耐弱光能力越强,弱光环境中植物往往降低光饱和点和光饱和时的光合速率。有试验研究表明,樱桃的光饱和点和补偿点随着光照强度的改变发生了变化,这是樱桃自身对不良光环境的一种适应性表现[13]。阴生植物可以利用弱光,在光照弱的条件下都能生长,所以光补偿点低,因为植物在光照大于光补偿点时,可以生长。阴生植物叶片的输导组织比阳生植物的稀疏,当光照强度增大时,水分对叶片的供给不足,阴生植物便不再增加光合速率,其光饱和点较低。阳生植物需要强光,所以光补偿点相应提高。

1883年德国J.赖因克首先发现植物的光饱和现象,并指出:光饱和点取决于所研究的对象。喜阴植物(深水藻或阴生叶片)在海平面全光照的十分之一或更低时即达光饱和;喜阳植物,尤其是荒漠植物或高山植物,在中午直射光下还未达到光饱和。对于水稻、小麦等C3植物,光饱和点为3~8万勒克斯。C4植物的光饱和点一般比C3植物高,有的C4植物在自然光强下甚至测不到光饱和点(如玉米的嫩叶)。作物群体的光饱和点较单叶为高,小麦单叶光饱和点为2~3万勒克斯,而群体在10万勒克斯下尚未达到饱和。这因为光照度增加时,群体的上层叶片虽已饱和,但下层叶片的光合强度仍随光照度的增加而提高,所以群体的总光合强度还在上升。

Ⅲ、弱光对营养元素吸收的影响

植物体内N代谢对光照环境的变化非常敏感。弱光导致番茄叶片内硝酸还原酶活性降低。根部硝酸还原酶活性下降幅度更大,使植株对硝态氮还原作用下降,影响硝态氮的吸收利用。弱光条件下对铵态氮的吸收量增多,为满足植株体对氮素的需求,弱光下应施铵态氮肥。由于氮素同化还原过程需要光合作用产生的碳作骨架,并与暗反应碳还原竞争同化力ATP和NADH/NADPH,使植株体内碳水化合物合成和积累受阻,含量下降,碳氮比降低,这可能是果菜类植株在弱光下生长发育失调的1个主要原因[15]。

植物的营养元素的吸收,随着光照条件的变化而不同。在水稻上的研究发现,不同时期遮荫处理均造成干物重、N、P、K含量下降,但N、P、K含量下降与对照的百分比明显小于干物重含量下降与对照的百分比,因此使得植株体内养分含量上升L2[16]。杨延杰等认为植株吸收过多的营养元素未参加正常的生理代谢,而贮藏在细胞液泡中,进行代偿性积累[15]。总之,弱光逆境主要是通过影响作物的光合作用、营养元素吸收、激素合成和信号物质的表达等生理生化代谢过程来影响正常的生长发育的。在营养生长方面,弱光逆境主要导致植株茎杆变细、叶

片变薄变大、叶面积增加、相对生长速率降低;在生殖生长方面。则导致化芽分化延迟、化芽发育变劣、座果率下降、产品器官发育缓慢、产量品质下降。

Ⅳ、弱光对光合产物运输和分配的影响

光照不仅直接影响光合作用,还间接影响光合产物在植物各器官间的运输和分配。别之龙用14C同位素标记法研究弱光对辣椒的影响时发现,弱光处理不仅降低了光合速率,也减慢了光合产物运输速度[2]。葡萄幼苗在弱光下生物量分配较多地流向叶片和支持结构(包括茎和叶柄),向根的分配减少并最终导致根冠比减少。王兴银发现弱光下黄瓜光合产物向瓜中的分配明显减少[14],向茎中分配增多,使茎保持一定的生长速度,以减少叶片之间的相互遮荫,有利于获取光能。

有关弱光逆境对光合作用影响已有许多研究,目前已经从光合速率、光合色素、光合细胞器结构的变化,扩展到研究与光合作用有关酶活性及光合同化产物运输和分配的规律。比较弱光下植物地上部分与地下部分生物量分配格局,则发现植物会有牺牲地下部分补偿地上部分的倾向,集中表现在向地上部分(叶和支持结构)的生物量分配,而向根的分配减少,根冠比显著降低。在弱冠环境下植物会将更多的光合产物首先用于自身的建造,对支持结构的分配比例增加,而对生长点及生殖器官的物质分配则显著降低,以此有利于植物自身争夺更多的光源,是植物对弱光环境的一种适应性的表现。

弱光不但降低源叶中同化物输出的比例和速度[14],还影响同化物的流向,弱光下同化物向茎和叶中的分配比率增加,而向花、果实中的分配比率减少。弱光下源叶净光合速率下降,使源叶自身合成和所能输出的同化物水平降低,同时也导致ATP可获性降低,不能及时满足同化物输出所需的能量,从而限制了源叶中同化物输出的数量和速度。另一方面,弱光下源叶韧皮组织运输能力下降也可能是弱光限制同化物运输的原因。

三、弱光对植物基因表达(酶活性及调控)的光合特性的影响Ⅰ、弱光逆境对植物光合酶基因表达与活性的影响

叶绿体是植物进行光合作用的主要场所,叶绿体ATP合酶存在于叶绿体类囊体膜上, 是植物体内进行生理活动的一个关键酶, 能将光能转变为化能,并形成ATP供给多种生命活动需要。由于弱光对叶绿体类囊体结构的破坏,类囊体膜上附着的一些酶类的活性必然也要受到影响。Rubisco是光合碳循环中的关键酶,该酶活性大小对CO2的同化速率起着重要的作用。在弱光下Rubi—SCO的含量下降,但耐弱光的植物Rubisco酶活性比喜光植物的高[1]。

在逆境光照条件下,植物的生理生化特性会发生相应的变化,如对自由基有清除作用的超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)的活性,代表细胞膜受伤害程度的膜脂过氧化产物丙二醛(MDA)的含量以及叶绿素的含量等都会发生变化,这些变化又会进一步影响植物的光合作用。种培芳在甜瓜上的研究发现,弱光下甜瓜叶片MDA含量、POD、CAT活性均增加,且在中度弱光胁迫下,耐弱光品种的POD、CAT增幅更大,减轻了对自由基对叶片细胞膜的伤害,但SOD活性的变化比较复杂[17]。在黄瓜、辣椒上的研究也得到了类似的结果,而且马德华还发现弱光处理前后,黄瓜幼苗叶片POD同功酶谱不同,说明黄瓜耐弱光能力不仅受遗传特性决定,而且转录水平和翻译水平上的生物化学变化会造成

酶分子结构和功能的变异,对植物耐弱光能力产生影响。

弱光条件下,植物细胞抗氧化酶系活性、同功酶酶谱的变化说明保护酶系不仅受遗传特性决定,而且在转录水平和翻译水平上还受弱光胁迫强度和胁迫时间的影响,构成复杂的多酶调控系统,目前对这一系统运作的详细机制还不清楚。

Ⅱ、弱光对植物光合特性的信号转导的影响

弱光对植物生长发育的影响, 或者说植物对弱光的响应是有其特定的信号传导途径的。首先光敏素作为光受体, 在弱光调节植物的光形态建成过程中起着重要的作用。在通过光敏素进行的信号转导途径中包含异源三聚体G-蛋白、钙和钙调素等信号物质的作用,但这些过程主要与光质的变化有关。弱光对植物生长发育的信号调控, 更多的是与光强有关, 如光系统Ⅱ的结合蛋白-D1蛋白的脱磷酸化与光强有关, 且在叶绿素所吸收的可见光谱下进行LHCⅡ多肤的最大磷酸化发生在弱光下。除直接的作用外, 光强还可能通过光合产物的多少和类型来传达某种信息, 从而完成对资源的分配和植物生长发育的调控。

尽管光受体的结构和功能目前已研究得比较清楚,但对于光受体接受光信号后是如何转导的还不清楚。人们发现在光敏色素的活化到基因表达受到调控之间存在着一系列的信号转导中间体,其中包括G-蛋白、CGMP、磷脂酶、三磷酸肌醇、Ca2+、钙结合蛋白等[18]。

Ⅲ、弱光对植物光合特性基因表达的调控

弱光信号通过传递, 最终要通过基因表达来完成调控。目前已发现光可调节至少100个基因的转录, 许多编码参与光合作用的蛋白, 大多数照光后转录

增加, 但也有些是随光照降低而减少。被光促进转泉表达的蛋白酶有CAB,RBCS, FEDA,PETE, PETH,PSAF,RCA, GAPA以及硝酸还原酶等, 被光抑制表达的基因有PHYA和NPR基因。光信号可被两类光受体所感知, 蓝光受体抑制COP9的表达, 从而抑制由蓝光诱导的光形态建成, 对这个基因的克隆揭示COP9编码由197个氨基酸残基组成的新蛋白, 受光的调节是在翻译后水平上进行的。COP8和COP11对COP9的形成和稳定性起作用, 因此COP9与COP8和COP11, 一起受光的调节, 对植物生长发育起作用[19]。

四、如何提高植物弱光逆境对光合特性的适应性

Ⅰ、培育和应用耐弱光品种

若要提高植物弱光逆境对光合特性的适应性,培育和应用耐弱光品种是重要的步骤。目前对阴生植物等耐弱光性植物虽然有较多的研究,对弱光影响植物的光合特性的现象、生理及机理等的研究有一定的进展,但任然还不能满足生产实践及科研等方面的需求。今后应从分子、细胞、组织、个体、群体水平上分别加强研究,同时加强弱光鉴定指标筛选,耐弱光基因定位、表达和调控的研究,为培育耐弱光品种,进行弱光条件下的化学调控和科学施肥提供理论支持[15]。

Ⅱ、增光及弱光补偿管理

在农业生产等过程中,定植时可在棚室内地面覆盖白色薄膜,后墙张挂镀铝反光幕,有增加植株下部和棚室后部光照的作用,一般可增加植株中下部叶片的

光照。合理密植,实行大、小行距栽培法,或高矮蔬菜问作套种;加强植株调整。及时整枝打权、摘除老叶、病叶及挡光严重的叶片。以改善功能叶片的受光状态。对黄瓜、番茄等蔬菜改搭架绑蔓为吊蔓,以减少遮荫。同时温室内的墙壁、立柱等表面涂白,可增加反射光;草苫早揭晚盖也可延长光照时间。还可用荧光灯、高压水银灯、金属卤化物灯和氙灯等进行人工补光,但由于其成本较高,不宜大面积推广,可作为改善棚室内光照条件的应急措施。

如果采取增光措施后,棚室内光照条件仍无法达到适宜水平,特别是日光温室冬季生产果菜类蔬菜,无论怎样增光,室内的光照条件仍无法满足黄瓜、番茄等对光照的要求,这时可采取弱光补偿管理措施。所谓弱光补偿管理,是指弱光条件下所采取的以温度(特别是夜间温度)偏低管理为主的综合管理措施。

弱光条件下进行偏低的温度管理,植株生长相对缓慢,应适当控制肥水,特别是灌水。若灌水过多,土壤和空气湿度过大,土壤温度难以回升,对作物生长不利,且易诱发病害,轻者减产,重者导致生产失败。如不特别干旱,一般不浇水,若确需灌水,应在晴天上午进行。弱光条件下,应适当增施磷钾肥、少施氮肥,尤其是氨态氮肥,否则在相对密闭而又少浇水的棚室内易发生氨气和二氧化氮气体危害,且氮肥要深施。加强施用氨基酸类、芸苔素内酯类叶面肥,以增加植株叶绿素,提高光合效率,促根壮苗,增强植株抗逆能力。同时增施CO2可补偿弱光减产,但浓度要适当,以防止CO2中毒。

在弱光条件下,作物的光合作用受到光照强度的限制,光合产物减少,这时应通过降低温度来抑制呼吸,减少呼吸消耗。促进光合产物积累。白天叶片进行光合作用,温度可控制在适宜范围或比适宜范围稍低,夜间要将温度控制在较低水平。应特别注意阴天时温度管理,尤其是连阴天情况下棚室要适当降温,但不能低于5 ℃。

Ⅲ、采用植物生长调节剂

植物生长调节剂对植物光合作用、光合产物的运输和分配、营养元素的吸收等生理过程具有调控作用。施用外源激素可模拟光的作用调控植物生长发育,暗示激素可能作为光信号传递链中的第2信使发挥作用。因此,通过植物生长调节剂来改善作物对弱光逆境的适应性,提高作物产量、品质将是一条行之有效的途径。

参考文献:

[1] 战吉宬,黄卫东,王利军。植物弱光逆境生理研究综述[J]。植物学通报,2003,20(1):43~50;

[2] 何维明,钟章成。攀缘植物绞股蓝幼苗对光照强度的形态和生长反应[J]。植物生态学报,2000,24(3):375~378;

[3] 吴兰坤,黄卫东,战吉成。遮阳对大樱桃坐果及果实品质的影响[J]。中国农业大学学报,2002,7(3):69~74;

[4] 王明,蒋卫杰,余宏军。弱光逆境对植株生理特性的影响及其调控措施[J]。内蒙古农业大学学报,2007,28(3):198~203;

[5] 沈文云,马德华,侯锋等,弱光处理对黄瓜叶绿体超微结构的影响[J]。园艺学报,1995,22(4):397~398;

[6] 甑伟,张福墁。弱光对黄瓜功能叶片光合特性及超微结构的影响[J]。园艺学报,2000,27(4):290~292;

[7] 唐焕伟,曲彦婷,张兴。遮光对郁金香叶片叶绿素含量及叶绿体超微结构的影响[J]。东北农业大学学报,2011,42(4):77~82;

[8] 许春辉,赵福洪,王可玢等。光逆境对叶绿体叶绿素蛋白质复合物的影响[J]。植物学通报,1991,11(4):8~11;

[9] 石玉波,卓丽环,辛雅芬等。不同遮光处理对白栎光合生理特性的影响[J]。安徽农业科学,2010,38(2):956~958;

[10] 康龙泉,连张飞,黄珺梅等。不同遮光处理对对猫须草生长及光合特性的影响[J]。亚热带植物科学,2009,38(4):31~33;

[11] 车生泉。光质对小苍兰茎尖试管培养的影响[J]。园艺学报,1997,24(3) :269 ~ 273;

[12] 储钟稀,童哲,冯丽洁等。不同光质对黄瓜叶片光合特性的影响[J]。植物学报,1999,41(8):867 ~870;

[13] 黄卫东,吴兰坤,战吉成。中国矮樱桃叶片生长和光合作用对弱光环境的适应性调节[J]。中国农业科学,2004,37(12):1981~1985;

[14] 王兴银,张福墁。弱光对日光温室黄瓜光合产物分配的影响[J]。中国农业大学学报,2005,5(5):36~41;

[15] 杨延杰,李天来,林多等。弱光逆境对主要果菜生长发育影响的研究进展[J]。辽宁农业科学,2004,6(2):26~29;

[16] 蔡昆争,骆世明。不同生育期遮光对水稻生长发育和产量形成的影响[J]。应用生态学报,1999,10(2):193~196;

[17] 种培芳。弱光胁迫对甜瓜光合特性及生长发育的影响[D]。2003:20—22;[18] 顾雪松,陈章良,朱玉贤。光敏色素和光调控[J]。植物学报,1997,39(7):675—681;

[19] 王秀芹,战吉成,黄卫东。植物对弱光逆境的响应[A]。中国园艺学会第五辑:832~838。

实验五逆境对植物组织的伤害

实验五逆境对植物组织的伤害 —电导率法检测植物细胞质膜透性和愈创木酚法测定过氧化物酶活性 一、实验目的:1.了解研究植物抗逆生理的实验方法,学会使用DDS-11A型电导率仪,掌握绝对电导率和相对电导率的概念;2.熟悉植物组织过氧化物酶活性的测定方法,学会分光光度计的“动力学”测量程序 二、实验原理:(P78和P97) 三、实验材料:绿豆幼苗 四、实验步骤: 1.材料处理:10株幼苗为一组分别置于45℃(纯水最好预热至该温度)和室温中(在上课之前请先处理好材料,以课堂小组为单位)。 2.电导率的测定:2h后小心取出幼苗,冷却至室温后测定浸出液和纯水的电导率。(不必测材料煮沸后的电导率) 3.过氧化物酶(POD)活性测定P97 3.1POD的提取:材料1g,加入KH2PO4冰浴研磨成匀浆,低温4000rpm离心15min,收集上清液,定容至25mL,低温保存 3.2POD的测定:先在分光光度计的“动力学”或“时间扫描”程序上设置好参数取比色杯2个,1个将对照液放入参比杯按照程序调零,另一个比色杯拉出加入20μL酶液,再加入1mL KH2PO4 ,最后加入3mL反应混合液,立即测量。 ?723G型分光光度计“动力学”测定 ?【3 按“ 按“

按“ENT”后,出现: 测量出图谱后,按“ESC”返回到界面: 按“3”进入活性测量功能,出现如下界面: 按“SET”进行具体设置,按“ENT”可得出相应值。 按“4”进入图谱处理功能,出现如下界面: 其中按“1”可见原始图谱,按“2”可进行峰谷检测,按“3”通过横纵坐标的缩 放可达到图谱缩放功能,方便观察图谱。按“4”具有具体的实验查询功能。 思考题 1.电导率的测定主要有哪些影响因素? 2.相对电导率和绝对电导率的概念? 3.请说出电导率和电导度的概念区别。 4.温度和CO2会影响电导度的测定结果吗?在操作中应注意什么? 5.影响酶提取、纯化和活性测定的因素有哪些? 6.测定时酶活性的测定应当定在什么时间范围内?测定植物组织过氧化物酶活性的意义与用途。 7.请分析比较两种处理下绿豆幼苗的膜透性及过氧化物酶活性。

植物的光合作用教学设计

植物的光合作用教学设计 一、教学目标: 学习目标:学生能够通过对光合作用发现过程的学习,分析并掌握其原料、条件、产物、场所和理解光合作用的过程。 重点:掌握光合作用的原料、条件、产物、场所 难点:理解光合作用的过程 二、教学过程 导入: 师:出示 1、生态系统中,人们把植物称为什么?为什么? 2、从柳苗生长之谜说起 生:结合所学知识思考并回答问题1,阅读资料思考柳苗生长之谜中的问题。 新课推进: 一、探究光在植物生长中的作用 师;出示 (一)思考题 1、实验前为什么要对实验材料进行黑暗处理? 2、实验选用的叶片,一部分被遮光,一部分不遮光,这两部分在实验中各有什么时候作用? 3、你怎样解释在酒精溶液的绿叶脱色而使酒精溶液变绿的实验现象?

4、用碘液染色后的叶片颜色发生怎样的变化,这种实验结果说明什么? (二)模拟实验动画:“探究光在植物生长中的作用” 生:结合查阅教材内容和观看实验过程的动画,独立思考和解决上述问题。 师:出示问题答案并纠正学生的误区。 (三)分析实验现象和结果 师:结合视屏过程引导生分析实验现象和结果。 生:完成P54表格。 二、植物光合作用及其场所 (一)、探究光合作用的场所 师:绿色植物是有机物的生产者,植物的绿色和光合作用有什么关系的?有机物的“加工厂”主要分布在植物体的哪一器官? 生:阅读教材P55德国科学家恩吉尔曼利用水绵探究植物光合作用场所实验过程,思考光合作用的产物和场所。 师:出示恩吉尔曼实验过程图片并讲解并补充讲解光合作用的原料为二氧化碳和水。 生:理解光合作用的场所在叶绿体并完成对P56胡萝卜、仙人掌、银边春藤可以进行光合作用的部位的辨别。 (二)观察叶片和叶绿体的结构 师:出示叶片结构和叶绿体结构图。 生:通过观察图片感受叶片和叶绿体结构。

逆境胁迫对植物质膜透性的影响

逆境胁迫对植物质膜透性的影响(电导率法) 【实验目的】 1.学习电导仪法测定膜相对透性的方法。 2.理解逆境对植物膜透性的影响。 【实验原理】 植物细胞膜对维持细胞的微环境和正常的代谢起着重要的作用。在正常情况下,细胞膜对物质具有选择透性能力。 当植物受到逆境影响时,如高温或低温,干旱、盐渍、病原菌侵染后,细胞膜遭到破坏,膜透性增大,从而使细胞内的电解质外渗,电导率增大。 膜透性增大的程度与逆境胁迫强度有关,也与植物抗逆性的强弱有关。 这样,比较不同作物或同一作物不同品种在相同胁迫温度下膜透性的增大程度,即可比较作物间或品种间的抗逆性强弱。 因此,电导法目前已成为作物抗性栽培、育种上鉴定植物抗逆性强弱的一个精确而实用的方法。 相对电导率根据公式计算得出:Relative ion leakage = (C1 - C0) / (C2 - C0) ×100%(注C0为双蒸水的电导率) 【实验材料及仪器】 材料:小麦幼苗:对照、100mM NaCl处理、100mM NaCl处理、5%PEG-6000处理、15%PEG-6000处理 仪器设备:电导仪、温箱、水浴锅 【实验步骤】 1.取0.1g对照和盐或PEG6000处理的小麦叶片,切成约1cm小段,每种处理做两个平行; 2.用双蒸水冲洗3 遍以除去表面粘附的电解质; 3.加10 ml双蒸水,25℃振荡温育1小时,期间经常摇动,测定此时的电导率为C1;

4.将盛有根的试管100℃煮沸15 min,冷却到室温后,测定此时的电导率为C2; 5.相对电导率根据公式计算得出:Relative ion leakage = (C1 - C0) / (C2 - C0) ×100%(注C0为双蒸水的电导率) 【数据记录及结果处理】 双蒸水的电导率C0=1.6 根据公式Relative ion leakage = (C1 - C0) / (C2 - C0) ×100%,计算各根尖的相对电导率 对照:①Relative ion leakage = 6.72% ②Relative ion leakage = 8.33%平均=7.53% 100mM NaCl处理:①Relative ion leakage = 13.16% ②Relative ion leakage = 10.22%平均=11.68% 200mM NaCl处理:①Relative ion leakage = 29.93% ②Relative ion leakage = 29.10%平均=29.51% 5%PEG-6000处理:①Relative ion leakage = 6.69% ②Relative ion leakage = 6.95%平均=6.82%

逆境对植物细胞膜透性的影响

逆境对植物细胞膜透性的影响 实验六 逆境对植物细胞膜透性的影响 (电导法) 一、实验原理: 植物细胞膜对维持细胞的微环境和正常的代谢起着重要的作用。 在正常情况下,细胞膜对物质具有选择透性能力。 用电导仪测定可以比较植物组织中的外渗电解质的含量,从而间接了解细胞透性的大小。电导仪的原理: 电导率是物质传送电流的能力,是电阻率的倒数。在液体中常以电阻的倒数――电导来衡量其导电能力的大小。电导率--电阻率的倒数即称之为电导率L。电导L的计算式如下式所示: L=l/R=S/l 电导的单位用姆欧又称西门子。用S表示, 由于S单位太大。常采用毫西门子,微西门子单位1S=103mS=106μS。一般用当量电导来表示电导率。电导率L的单位是(μS/cm) 二、实验材料与设备: 植物叶片:女贞叶片 实验器具:电导仪;温箱;恒温水浴锅;小烧杯,量筒 三、实验步骤: 1.选取低温(高温)处理的女贞叶片5片,先用纱布拭净,再用打孔器打取20片小圆叶,放入小烧杯中,加入20ml 蒸馏水作为处理组。再用相同的方法打取20片未经处理的小叶放入小烧杯中,加入20ml 蒸馏水作为对照组。 2.将小烧杯放入35℃水浴锅中静置20min,期间用玻棒轻轻搅动叶片,到时间后用,电导仪测定溶液电导率。 3. 测过电导率之后,再放入100℃沸水浴中10min,以杀死植物组织,取出放入自来水冷却,测其煮沸电导率。 [ 注意事项 ] 1. 整个过程中,叶片接触的用具必须绝对洁净(全部器皿要洗净),也不要用手直接接触叶片,以免污染。 2. 测定后电极要清洗干净。

四、实验结果 按下式计算相对电导度: 相对电导度(L)=(S1-空白电导率)/(S2-空白电导率) S1:煮前的电导率 S2:煮后的电导率 空白电导率:蒸馏水的电导率 相对电导度的大小表示细胞膜受伤害的程度 由于室温对照也有少量电解质外渗,故可按下式计算由于低温或高温胁迫而产生的外渗,称为伤害度(或伤害性外渗)。伤害度(%)= 式中 Lt—处理叶片的相对电导度; Lck—对照叶片的相对电导度 Lt LCK 100 1LCK 四.实验结果 五、实验反思 1.比较不同处理的叶片细胞透性的变化情况,并加解释。 答:经过低温处理的叶片细胞膜的透性增大,未经处理的叶片细胞膜透性不变。在正常情况下,细胞膜对物质具有选择透性能力。而经过低温处理后,细胞膜遭到了破环,选择性能力变差,导致透性增大。 2.植物在逆境情况下细胞膜的透性会怎样变化?答:在逆境下细胞膜的透性会增大 3.植物抗逆性与细胞膜透性有何关系 ? 答:植物的抗逆性越强,细胞膜透性越差

逆境对植物细胞膜透性的影响

逆境对植物细胞膜透性的影响(电导法) 实验目的:能比较不同处理的叶片细胞透性的变化情况,并加解释。 了解植物在逆境情况下细胞膜的透性变化 掌握植物抗逆性与细胞膜透性的关系 实验原理: 植物细胞膜对维持细胞的微环境和正常的代谢起着重要的作用。在正常情况下,细胞膜对物质具有选择透性能力。如高温或低温,干旱、盐渍、病原菌侵染后,细胞膜遭到破坏,膜透性增大,从而使细胞内的电解质外渗,以致植物细胞浸提液的电导率增大。膜透性增大的程度与逆境胁迫强度有关,也与植物抗逆性的强弱有关。比较不同植物或同一植物不同品种在相同胁迫温度下膜透性的增大程度,即可比较植物间或品种间的抗逆性强弱。用电导仪测定可以比较植物组织中的外渗电解质的含量,从而间接了解细胞透性的大小。 实验材料:女贞叶片(20片左右); 实验器具:电导仪,打孔器,恒温水浴锅,2个小烧杯,量筒,玻璃棒,蒸馏水 实验步骤: 1.选取低温(高温)处理的女贞叶片8片,先用纱布拭净,再用打孔器打取20 片小圆叶(避开叶脉),放入小烧杯中,加入20ml 蒸馏水作为处理组。再用相同的方法打取20片未经处理的小叶放入小烧杯中,加入20ml 蒸馏水作为对照组。 2.将小烧杯放入35℃水浴锅中静置25min,期间用玻棒轻轻搅动叶片,到时间 后用,电导仪测定溶液电导率。 3.测过电导率之后,再放入100℃沸水浴中10min,以杀死植物组织,取出放入 自来水冷却,测其煮沸电导率。 4.计算: 按下式计算相对电导度: 相对电导度(L)=(S1-空白电导率)/(S2-空白电导率) S1:煮前的电导率 S2:煮后的电导率 空白电导率:蒸馏水的电导率 相对电导度的大小表示细胞膜受伤害的程度 由于室温对照也有少量电解质外渗,故可按下式计算由于低温或高温胁迫而产生的外渗,称为伤害度(或伤害性外渗)。 伤害度(%)= 100 1 ? - - CK CK t L L L 式中 L t —处理叶片的相对电导度; L ck —对照叶片的相对电导度。 注意事项 1. 整个过程中,叶片接触的用具必须绝对洁净(全部器皿要洗净),也不要 用手直接接触叶片,以免污染。

逆境胁迫对植物生理生化代谢的影响

逆境胁迫对植物生理生化代谢的影响 20093391 魏晓明农学0901 摘要:对植物产生伤害的环境称为逆境,又称胁迫。常见的逆境有寒冷、干旱、高温、盐渍等。逆境会伤害植物,严重时会导致植物死亡。逆境对植物的伤害主要表现在细胞脱水、膜系统受破坏,酶活性受影响,从而导致细胞代谢紊乱。有些植物在长期的适应过程中形成了各种各样抵抗或适应逆境的本领,在生理上,以形成胁迫蛋白、增加渗透调节物质(如脯氨酸含量)、提高保护酶活性等方式提高细胞对各种逆境的抵抗能力。 关键词:逆境胁迫,抗逆性,相对电导率,脯氨酸,丙二醛,样品,细胞膜透性,过氧化物酶活性,叶绿素,可溶性糖。 前言:植物细胞膜起调节控制细胞内外物质交换的作用,它的选择透性是其最重要的功能之一。当植物遭受逆境伤害时,细胞膜受到不同程度的破坏,膜的透性增加,选择透性丧失,细胞内部分电解质外渗。膜结构破坏的程度与逆境的强度、持续的时间、作物品种的抗性等因素有关。因此,质膜透性的测定常可作为逆境伤害的一个生理指标,广泛应用在植物抗性生理研究中。 当质膜的选择透性被破坏时细胞内电解质外渗,其中包括盐类、有机酸等,这些物质进入环境介质中,如果环境介质是蒸馏水,那么这些物质的外渗会使蒸馏水的导电性增加,表现在电导

率的增加上。植物受伤害愈严重,外渗的物质越多,介质导电性也就越强,测得的电导率就越高(不同抗性品种就会显示出抗性上的差异)。 在植物胁迫处理过程中,叶绿素含量会下降,可以把叶绿素含量下降看作是胁迫发展中由功能性影响到器质性伤害的一个中间过程。 过氧化物酶是植物体内普遍存在的、活性较高的一种酶,他与呼吸作用、光合作用及生长素的氧化等都有密切关系,在植物生长发育过程中,他的活性不断变化,因此测量这种酶,可以反映某一时期植物体内代谢的变化。 植物体内的碳素营养状况以及农产品的品质性状,常以糖含量作为重要指标。植物为了适应逆境条件,如干旱、低温,也会主动积累一些可溶性糖,降低渗透势和冰点,以适应外界环境条件的变化。 植物器官衰老时,或在逆境条件下,往往发生膜脂过氧化作用,丙二醛(MDA)是其产物之一,通常利用它作为脂质过氧化指标,表示细胞膜脂过氧化程度和植物对逆境条件反应的强弱。 植物细胞膜对维持细胞的微环境和正常的代谢起着重要作用。在正常情况下,细胞膜对物质具有选择透性能力。当植物受到逆境影响时,如高温、干旱、盐渍、病原菌侵染后,细胞膜遭到破坏,膜透性增大,从而使细胞内的电解质外渗,以至于植物细胞侵提液的电导率增大。膜透性增大的程度与逆境胁迫强度有

第十一章 植物的逆境生理 复习参考 植物生理学复习题(推荐文档)

第十一章植物的逆境生理 一、名词解释 1.CaM 2.渗透调节与逆境蛋白 3.耐逆性与御逆性 4.植物对逆境的耐性与御性 5.逆境蛋白 6.活性氧清除系统 7.膜脂相变 8.热激反应与热激蛋白 9.活性氧 10.交叉适应 二、填空 1.用来解释干旱伤害机理的假说主要是__________和_________。 2.根据所含金属元素的不同,SOD可以分三种类型:______、______和____。 3.干旱条件下,植物为了维持体内水分平衡,一方面要________,另一方面要_______。 4.干旱条件下,植物体内大量积累的氨基酸是________,大量产生的激素是______;低温锻炼后,植物体内________脂肪酸和_______水的含量增

多。 5.植物体活性氧清除系统包括________和________两种系统。 6.植物受到干旱等逆境胁迫时,渗透调节能力增强,细胞主动合成的有机溶剂是_________、________和__________。 7.在逆境下,植物体内主要有_______、_______、_______、_____等渗透调节物质。 8.经过抗寒锻炼的植物会发生的变化有: A 双硫键增加 B 自由水增加 C 膜脂双键增加 三、选择题 1.冬季植物体内可溶性糖的含量()。 A.增多 B. 减少 C.变化不大 D. 不确定 2.干旱条件下,植物体内哪一种氨基酸显著增加?() A. 丙氨酸 B.脯氨酸 C. 天冬氨酸 D. 甘氨酸 3.植物细胞中属于相容性物质的是: A、Ca B、ABA C、Pro 4. 植物抗盐的SOS途径中,与Na+外排和区域化实现不直接相关的是: A. Ca+-CaM B. Na+/H+ symporter C. Na+/H+ antiporter 三、问答 1.水稻幼苗经过0.1mol/L NaCI预处理24h后,再转移到8~10℃环境中,能表现出良好的抗冷性。试分析其原因。

逆境胁迫对植物生理生化指标的影响

本科学生综合性实验报告 学号姓名 学院专业、班级 实验课程名称植物生理学实验 教师及职称 开课学期2012 至2013 学年上学期 填报时间2012 年12 月15 日

云南师范大学教务处编印 逆境胁迫对植物生理生化指标的影响 作者: (,云南昆明650092) 摘要:对植物产生危害的环境称为逆境,又称胁迫。干旱是制约植物生长的主要逆境因素,以小麦幼苗在模拟干旱胁迫下,植株体内的生理生化指标会发生变化。实验采用PEG处理小麦幼苗,对抗氧化酶;脯氨酸;谷胱甘肽;过氧化氢;可溶性糖;丙二醛在植物体内的含量变化进行了研究,实验通过分光光度计分别在不同的波长中测出吸光率,间接计算出其含量,而通过对正常条件下的和逆境胁迫下一定量小麦体内以上各种物质含量的对比,从而了解小麦体内生理生化指标发生的变化。 关键词:小麦(Triticum aestivumLinn);干旱胁迫;生理生化 1 引言 干旱是自然界常见的逆境胁迫因素,而且干旱也是植物最容易受到的胁迫之一。干旱不仅制约植物的生长发育与产量,也会引起植被结构与功能的时空变化。因此植物对干旱胁迫的适应及机制一直是植物逆境适应策略研究的一个热点【1-3】作物抗旱性的研究方法有多种,适应能力进行了研究:植物对干旱胁迫的适应过程和受伤害程度与干旱胁迫的强度以及植物自身的抗性紧密联系,并从生化代

谢、生理功能、形态适应、生长发育以及生物生产力等多种形式表现出来【1-5】。土壤有效水分状况与植物之间的关系一直是植物生理生态学研究领域的热点问题。大多数植物在短期或轻度土壤缺水情况下叶片水势下降,气孔关闭。限制CO2 摄取和光合作用速率:长期严重干旱条件下可限制植物生长,引起形态结构发生变化。甚至导致植物死亡【6】。大多实验是在人工控制的干旱或人工模拟干旱条件下进行。其主要方法是室外盆栽控制水分,苗期室内水培或砂培采用PEG 渗透胁迫、人工控制的温室、气候室和培养箱等。其中,PEG渗透胁迫法简单易行、条件容易控制、重复性好、试验周期短。本试验采PEG溶液模拟干旱胁迫的方法,研究干旱胁迫对小麦幼苗发芽率、抗氧化酶、脯氨酸、谷胱甘肽、过氧化氢、可溶性糖、丙二醛等生理生化指标含量的变化,并初步探讨小麦的抗逆机理,期望能够应用于农业生产实践中,为干旱农业生产提供理论依据。 2、材料与方法 2.1、实验材料 小麦种子:购于西山种子公司,供实验备用。(适宜条件下,选购的小麦种子发芽率较高的,所选购的实验材料较理想的,有利于用作实验材 料。) 培养条件:室温,充足水分、充足阳光供给,PEG干旱处理。 用水:自来水。 2.2、种子生命力(发芽率)的快速测定 将待测种子在适宜水中浸种,以增强种胚的呼吸强度。使显色迅速。 2.3、其它实验种子处理一致如下; 小麦种子→用0.1% HgCl2消毒10 min后→用蒸馏水漂洗干净→用蒸馏水于26℃下吸涨12 h →播于垫有6层湿润滤纸的带盖白磁盘(24cm×

植物的光合作用

植物的光合作用 第一节光合作用的意义、特点与度量 一.光合作用的概念与意义 二.光合作用的过程与特点 1.过程:光反应(直接需光阶段) 暗反应(不直接需光阶段). 2.特点:氧化还原反应。H2O被氧化,CO2被还原,还原所需能量来源于阳光。 第二节叶绿体与光合色素 一.叶绿体 1.形态: 2.构造: 外:双层膜; 内:水溶性基质,基粒片层和基质片层: 3.叶绿体的成分 二.光合色素 (一)光合色素种类及其作用、地位 1.种类及含量:2类4种 叶绿素类(75%):叶绿素a:叶绿素b=3:1 类胡萝卜素(25%):叶黄素:胡萝卜素= 2:1 2.不同色素在光合作用中的地位: (1)反应中心色素: 不但能够吸收光能,而且能进行光化学反应(能量转化)的色素。是少量的以特殊状态存在的叶绿素a。 (2)聚光色素(天线色素.辅助色素): 只能够吸收光能,但不能进行光化学反应的色素。吸收的光能要传给中心色素才能完成能量转化。 种类: (二)叶绿素的特点 1. 叶绿素的分子结构特点: 由Mg卟啉头部和叶绿醇尾部构成;头和尾不在一个平面上,呈90度。 卟啉头部亲水,叶醇尾部亲脂,决定了在类囊体膜上的排列。 2.化学特性: (1) 能发生皂化反应 (2)能发生Mg的取代反应:形成H代(去镁)或铜代叶绿素。 (3)溶解性: 3.光学特性: (1)有选择性吸收光谱:吸收红光和蓝紫光。 (2)有荧光现象:离体叶绿素,透射光呈绿色,反射光呈暗红色; (3)有磷光现象:中断光源后,用光学仪器可观察到微弱的发光现象。 (三)类胡萝卜素 1.结构特点:不饱和碳氢化合物. 2.吸光特性:吸收蓝紫光. 3.生理作用:

植物光合作用

植物生理学光合作用12 共40个单选题,答对37个 一、单选题(每题2分,共40题) 1.Rubisco是双功能酶,在CO2/O2比值相对较高时,主要发生( C )反应。正确 A.加氧反应大于羧化反应A B.加氧反应B C.羧化反应C 2.温室效应的主要成因是大气( D )含量增多造成的。正确 A.O3+ CO2 A B.CO2+SO2 B C.HF+CH4 C D.CO2+CH4 D 3.光呼吸的底物是( C )。正确 A.丝氨酸A B.甘氨酸B C.乙醇酸C D.乙醛酸D 4.CAM途径中最先固定CO2的产物是( B )。正确 A.Mal A B.OAA B

C.Asp C D.Glu D 5.夜间,CAM植物的液泡内积量大量的( C )。正确 A.氨基酸A B.糖类B C.有机酸C D.CO2 D 6.CAM植物PEPCAse固定CO2在( B )中。正确 A.叶肉细胞的叶绿体间质A B.叶肉细胞的细胞质B C.维管束鞘细胞的叶绿体间质C D.维管束鞘细胞的细胞质D 7.C4植物光合过程中,OAA还原为Mal在( B )中。错误正确答案:A A.叶肉细胞的叶绿体间质A B.叶肉细胞的细胞质B C.维管束鞘细胞的叶绿体间质C D.维管束鞘细胞的细胞质D 8.玉米的PEPCase固定CO2在( B )中。正确 A.叶肉细胞的叶绿体间质A B.叶肉细胞的细胞质B C.维管束鞘细胞的叶绿体间质C

D.维管束鞘细胞的细胞质D 9.C4植物叶肉细胞中固定CO2的受体是( A )。正确 A.PEP A B.PGA B C.Ru5P C D.RuBP D 10.光合碳循环中最先形成的C6糖是磷酸( D )。正确 A.核酮糖A B.赤藓糖B C.葡萄糖C D.果糖D 11.C3途径固定CO2的酶是( C )。正确 A.PEP羧化酶A B.PEP羧激酶B C.RuBP羧化酶C D.Ru5Pp激酶D 12.光合碳循环(C3途径)中的CO2受体是( D )。正确 A.PEP A B.PGA B C.Ru5P C D.RuBP D

植物的逆境生理复习题参考答案

植物的逆境生理复习题参考答案 一、名词解释 1、逆境(environmental stress):又称胁迫(stress)。系指对植物生存和生长不利的各种环境因素的总称。如低温、高温、干旱、涝害、病虫害、有毒气体等。 2、抗逆性(stress resistance):植物对逆境的抵抗和忍耐能力,简称为抗性。抗性是植物对环境的一种适应性反应,是在长期进化过程中形成的。 3、抗性锻炼(hardiness hardening):在生活周期中,植物的抗逆遗传特性需要特定环境因子的诱导才能表现出来,这种诱导过程称为抗性锻炼,例如抗寒锻炼、抗旱锻炼。 4、抗寒锻炼(cold resistance hardening):植物在冬季来临之前,随着气温的降低,体内发生了一系列适应低温的生理生化变化,抗寒能力逐渐增强,这种抗寒能力逐渐提高的过程称为抗寒锻炼。 5、抗旱锻炼(drought resistance hardening ):在种子萌发期或幼苗期进行适度的干旱处理,使植物的生理代谢上发生相应的变化,从而增强对干旱的抵抗能力,这个过程称为抗旱锻炼。 6、交叉适应(cross adaptation):植物经历了某种逆境后,能提高对另一些逆境的抵抗能力,这种对不同逆境间的相互适应作用,称为交叉适应。 7、避逆性(stress avoidance):植物通过设置物理屏障或某些特殊的代谢反应和生长发育变化,从而避免或减小逆境对植物组织施加的影响,使其仍保持较正常的生理活动,这种抵抗称为避逆性。 8、耐逆性(stress tolerance):又称逆境忍耐。植物组织虽然经受逆境的影响,但可通过代谢反应阻止、降低或者修复由逆境造成的损伤,从而保持其生存能力,这种抵抗称为耐逆性。 9、逆境逃避(stress escape):指植物通过生育期的调整避开逆境,例如沙漠中的一些植物在雨季里快速生长,完成生活史,自身并不经历逆境。 10、渗透调节(osmotic adjustment.) :植物细胞通过主动增加溶质降低渗透势,增强吸水和保水能力,以维持正常细胞膨压的作用。 11、寒害(cold injury):低温导致的植物受伤或死亡。 12、冻害(feezing injury):温度下降到零度以下,植物体内发生冰冻,因而

植物的光合作用

1.通过演示实验和对实验,。果的分析,使学生掌握光合 作用的概念。 2.通过对光合作用的概念和光合作用的公式的分析,使 学生理解光合作用的实质。 植物的光合作用 绵阳普明中学校胡亭 I、课前分析: 一、教材分析: 光合作用是绿色植物重要的生理功能之一,是本章教材的重点内容。教材通过演示实验分别介绍了光合作用的产物、原料和条件,并在此基础上概括总结出光合作用的概念、实质和意义。因此,在教学过程中,要努力做好演示实验,并积极引导学生对演示实验的结果进行科学的分析,逐步深入认识绿色植物的光合作用。 二、学情分析: II、教学目的: 1.通过演示实验和对实验,。果的分析,使学生掌握光合 作用的概念。 2.通过对光合作用的概念和光合作用的公式的分析,使 学生理解光合作用的实质。 3.使学生了解光合作用的意义和应用。 Ⅲ、教学重点: 1.光合作用所需原料、条件和产物的演示实验。 2.光合作用的概念和实质。 Ⅳ、教学难点: 光合作用的实质。 Ⅴ、教学方法: 演示实验和讲述相结合。安排二课时。

Ⅵ、教学准备: 1.光合作用需要氧气的实验装置。(放在各班教室向阳的窗台上,让学生观察产生和收集氧气的过程。) 2.光合作用吸收二氧化碳的实验装置和实验结果。 3.说明光合作用需要叶绿素的实验结果。(经酒精脱色和碘液处理的银边天竺葵叶片。) Ⅶ、教学过程: (第一课时) 引言:我们已经了解了叶的形态和结构,知道绿叶在光下能制造淀粉。绿叶 在光下制造有机物(主要是淀粉)的生理活动,我们称为光合作用。光合作用需 要什么原料、条件,有什么产物,这些问题还需要我们进矿步探索研究。(引出 课题:第三节有机物的制造一一光合作用) 一、光合作用的产物(板书) 教师指出:绿叶在光下制造淀粉的实验,证明光合作用的产物有淀粉。(板 书) 启发思考:光合作用是否还有其他产物? 教师把光合作用产生氧气的实验装置由教室的窗台移到讲台桌上。并加以简 单介绍。 问:根据平时的观察,看到金鱼藻在光照下有什么现象发生?(学生回答: 有气泡产生)。 启发思考:光照下金鱼藻产生的气体会是什么气体? 教师指出:我们可以来检验收集到的气体。教师进行气体检验示范之后,问: 将要熄灭的小木棍遇到该气体时有什么现象发生?(学生回答:重新燃烧)问:这种现象说明产生的是什么气体? 结论:氧气。(板书) 启发思考:绿叶在光下制造淀粉产生氧气都需要什么原料呢? 二、光合作用的原料(板书) 教师出示并简单介绍光合作用吸收二氧化碳的实验装置。指出实验中氢氧化 钠溶液的作用,以及实验的简单过程。

逆境胁迫对植物生理生化代谢的影响

逆境胁迫对植物生理生化代谢的影响 摘要:干旱、盐碱和低温是强烈限制作物产量的三大非生物因素,其中干旱造成的损失最大, 其损失超过其他逆境造成损失的总和。对植物产生伤害的环境称为逆境,又称胁迫。常见的逆境有寒冷、干旱、高温、盐渍等。逆境会伤害植物,严重时会导致植物死亡。逆境对植物的伤害主要表现在细胞脱水、膜系统受破坏,酶活性受影响,从而导致细胞代谢紊乱。有些植物在长期的适应过程中形成了各种各样抵抗或适应逆境的本领,在生理上,以形成胁迫蛋白、增加渗透调节物质(如脯氨酸含量)、提高保护酶活性等方式提高细胞对各种逆境的抵抗能力。以小麦幼苗为材料,设置对照组,探究了干旱胁迫下脯氨酸(pro)、谷胱甘肽(GSG)、丙二醛(MDA)、H2O2的含量变化以及抗氧化酶(POD、PPO)活性的变化。结果表明:在干旱胁迫下,脯氨酸(pro)、谷胱甘肽(GSG)、丙二醛(MDA)、H2O2的含量相对于对照组均有较明显的上升趋势,POD和PPO活性也表现出较大水平的提高。 关键词:干旱胁迫,抗逆性,脯氨酸,丙二醛,样品,细胞膜透性,过氧化物酶活性,叶绿素,可溶性糖。谷胱甘肽;抗氧化酶;H2O2 引言:干旱是我国农业可持续发展面临的主要问题之一,【1】干旱胁迫对植物的 影响是一个复杂的生理生化过程,涉及到许多生物大分子和小分子植物细胞膜起调节控制细胞内外物质交换的作用,它的选择透性是其最重要的功能之一。【2】研究表明,游离的脯氨酸在植物细胞抵抗非生物胁迫过程中扮演着越来越重要的角色,许多新的生理功能也逐渐被发现,近几年来有关脯氨酸的研究倍受科学工作者的关注【9-13】。干旱是一种最常见的胁迫,遇此逆境作物除进行气孔调节外,渗透词节也不夹为一种有效方法。原理是通过加强合成代谢,增加细胞内渗透物质浓度,降低渗透势,维持膨压和细胞正常生理功能。脯氨酸作为水溶性最大的氮基酸(162.3g· (100g)。H 2 O,25 o C)具有较强水合能力,是理想的渗透介质。作物遇旱时它的大量积累有助于细胞或组织持水,防止脱水,故可视为作物对干早环境的一种保护性适应。已经证明了在逆境条件下脯氨酸的积累来抵抗植物对非生物胁迫的伤害,植物体内的抗氧化酶系统也能将伤害细胞的活性氧控制在可忍耐水平内,通过各种过氧化酶的协同作用,可以把细胞内产生的具有很强氧化 活性的活性氧如O2-、H 2O 2 、OH-等直接或间接地清除,防止了活性氧放大级联作 用,保证了细胞内生命活动的正常进行。丙二醛(MDA)是由于植物官衰老或在逆境条件下受伤害,其组织或器官膜脂质发生过氧化反应而产生的,对干旱也具有抵抗作用。GSH作为生物体内主要的还原态硫之一,在生物体抵抗各种胁迫(冷害、干旱、重金属、真菌等)的过程中起着重要的作用,其含量水平的高低与植物对各种环境胁迫的忍耐程度密切相关。近些年来,它在高等植物代谢过程中的生理作用,尤其是在植物抵御活性氧伤害过程中的作用及其与植物抗逆性关系的研究进展很快。前人研究进展植物在正常生长情况下, 活性氧的产生和清除处于

植物的光合作用

植物的光合作用、蒸腾作用和呼吸作用中考试题汇编 山东省费县教研室徐波 1.(2010·深圳市)2010上海世博会主题馆拥有世界最大的5000平方米生态绿墙,栽种上海本地的绿色植物,成为世博园里“绿色的明珠”。生态绿墙不仅能够美化环境,还能够帮助吸收园区内二氧化碳,降低夏季温度,这一功能是由植物的哪些生命活动来实现的 A.光合作用和呼吸作用 B.光合作用和蒸腾作用 C.呼吸作用和蒸腾作用 D.气体扩散和蒸腾作用 2.(2010·深圳市)在观察了叶片的结构后,晓东将刚摘下的叶片放人70度的热水中,很快发现叶片表面产生许多的小气泡,并且下表皮的气泡比上表皮的气泡多,这种现象说明 A.叶片下表面的光照弱 B.叶片上表面含叶绿体比下表面的多 C.叶片下表面产生的氧气多 D.叶片下表面的气孔多 3.(2010·景德镇)我们行进在公园里时,经常发现草坪上有爱心提示牌:“请勿践踏,爱护我”。这是因为经常践踏草坪会造成土壤板结,从而影响草的生长。其中的科学道理是 A.植物缺少无机盐,影响生长 B.植物缺少水,影响光合作用 C.土壤缺少氧气,影响根的呼吸 D.气孔关闭,影响蒸腾作用 4.(2010·承德市)图4表示一昼夜中二氧化碳、氧进出植物叶片的情况,你认为哪幅图所示的现象发生在夜间 5.(2010·宿州)绿色植物在生物圈水循环中有重要作用,主要是因为它的 A.光合作用 B.呼吸作用 C.蒸腾作用 D.吸收作用 6.(2010·内江市)当踏入山林时,会感到空气特别地清新和湿润,这主要是由于 A.植物的光合作用和呼吸作用 B.植物的分泌物有杀菌作用

C.植物的光合作用和蒸滕作用 D.茂盛的林木遮住了大部分太阳光 7.(2010·威海市)绿色植物蒸腾作用的意义不包括 A.降低叶片的温度 B.促进植物对水分的吸收 C.增加空气湿度,增加降水量 D.有利于植物进行呼吸作用 8.(2010·威海市)呼吸作用是生物的共同特征,其根本原因在于 A.生命活动每时每刻都需要氧 B.生命活动都需要能量作为动力 C.呼吸作用产生的水是生命活动所必需的 D.呼吸作用产生的二氧化碳必须及时排出 9.(2010·乐山市)下列有关光合作用的叙述中,不正确的是 A.光合作用的条件之一是必须要有光照 B.光合作用是一切生物生存的根本保障 C.光合作用的场所是叶绿体 D.绿色植物所有的器官都能进行光合作 10.(2010·乐山市)为了提高温室中的蔬菜产量,应将温度控制为 A.白天比晚上高 B.晚上比白天高 C.晚上和白天都高 D.晚上和白天都低 11.(2010·乐山市)绿色植物在光下能进行的生命活动是 ①光合作用②呼吸作用③蒸腾作用④吸收水和无机盐 A.① B.①② C.①②③ D.①②③④ 12.(2010·苏州市)一株生理功能正常的绿色植物,在下图所示的五种不同条件下都能持续进行的生理活动是

水生植物的光合作用

水生植物的光合作用 水生植物是水域生态系统和湿地生态系统中重要的组成部分,但是水环境具有流动性,温度变化平稳,光照时间弱,含氧量少,有机物积累量少,那么要想在水中生存,水生植物就一定有一套特殊的机制来满足光合作用的需要。 水生植物对水环境的形态适应性 1、根 主要起固定植物体的作用。水生植物在长期演化过程中,根在形态、结构、功能上 都发生了退化,有的甚至无根,根的分支减少,无根毛,表皮细胞都具有吸收作用, 内部维管束发生退化。 2、茎 水生植物形态与陆生植物相比也发生了很大的改变。气孔减少,但在茎中存在气室 供呼吸,茎幼嫩纤细,有叶绿体。茎基本上由薄壁细胞组成,细胞间隙发达,利于 漂浮和气体交换,内部维管束主要集中在茎中央,有利于抵抗外部损伤。 3、叶 挺水叶与陆生植物有相同的构造。浮水叶为背腹异面叶,背部海绵组织发达,有很 多气囊便于浮在水面上,同时还含有很多晶体,便于抵抗外界环境的压力。沉水叶 的叶型常为裂叶或异叶型,表皮层薄,叶表皮含有大量的叶绿体, 机械组织不发达, 细胞间隙大。 光照对水生植物的影响 光合作用是沉水植物最重要的代谢活动。光照是沉水植物生长的限制性因子,而且决定了沉水植物在水下分布的最大深度.在水中, 由于水体溶解物、悬浮颗粒以 及水深的影响,光照不足的现象在水体中最易发生, 水体光强是沉水植物生长的必需环境因子。另外, 光在水中的衰减依赖于波长、光强和光质, 它们均随水体深度而变化。 为了适应水体中迅速衰减的光照条件, 沉水植物在形态学及生理机制上发生大量变化以最大限度地吸收光辐射。从形态上看, 沉水植物的叶片通常仅几层细胞厚(2或3层), 很多种类的叶片分裂纤细, 以增大单位生物量的叶面积, 从而有利于其对有限资源如光和无机碳等的利用。大多数沉水植物叶片的表皮细胞中含有叶绿体, 这是与陆生植物最显著的区别。陆生植物的叶绿体一般仅局限于叶肉细胞, 除了在保卫细胞中外, 很少在表皮细胞中出现。从生理上看, 所有的沉水植物都是阴生植物, 叶片的光合作用在全日照的很小一部分时即达到饱和, 沉水植物的光饱和点及光补偿点比陆生阳生植物低很多。较低的光补偿点对沉水植物实现碳的净获得具有十分重要的意义, 因为入射辐射光强必须在光补偿点以上, 植物才能生长。而低光补偿点的植物在一天中的较长时间内

逆境胁迫对植物生理生化代谢的影响

逆境胁迫对植物生理生化代的影响 摘要:干旱、盐碱和低温是强烈限制作物产量的三大非生物因素,其中干旱造成的损失最大, 其损失超过其他逆境造成损失的总和。对植物产生伤害的环境称为逆境,又称胁迫。常见的逆境有寒冷、干旱、高温、盐渍等。逆境会伤害植物,严重时会导致植物死亡。逆境对植物的伤害主要表现在细胞脱水、膜系统受破坏,酶活性受影响,从而导致细胞代紊乱。有些植物在长期的适应过程中形成了各种各样抵抗或适应逆境的本领,在生理上,以形成胁迫蛋白、增加渗透调节物质(如脯氨酸含量)、提高保护酶活性等方式提高细胞对各种逆境的抵抗能力。以小麦幼苗为材料,设置对照组,探究了干旱胁迫下脯氨酸(pro)、谷胱甘肽(GSG)、丙二醛(MDA)、H2O2的含量变化以及抗氧化酶(POD、PPO)活性的变化。结果表明:在干旱胁迫下,脯氨酸(pro)、谷胱甘肽(GSG)、丙二醛(MDA)、H2O2的含量相对于对照组均有较明显的上升趋势,POD和PPO活性也表现出较大水平的提高。 关键词:干旱胁迫,抗逆性,脯氨酸,丙二醛,样品,细胞膜透性,过氧化物酶活性,叶绿素,可溶性糖。谷胱甘肽;抗氧化酶;H2O2 引言:干旱是我国农业可持续发展面临的主要问题之一,【1】干旱胁迫对植物的影响是一个复杂的生理生化过程,涉及到许多生物大分子和小分子植物细胞膜起

调节控制细胞外物质交换的作用,它的选择透性是其最重要的功能之一。【2】研究表明,游离的脯氨酸在植物细胞抵抗非生物胁迫过程中扮演着越来越重要的角色,许多新的生理功能也逐渐被发现,近几年来有关脯氨酸的研究倍受科学工作者的关注【9-13】。干旱是一种最常见的胁迫,遇此逆境作物除进行气孔调节外,渗透词节也不夹为一种有效方法。原理是通过加强合成代,增加细胞渗透物质浓度,降低渗透势,维持膨压和细胞正常生理功能。脯氨酸作为水溶性最大的氮基酸(162.3g·(100g)。H 2O,25 o C)具有较强水合能力,是理想的渗透介质。作物遇旱时它的大量积累有助于细胞或组织持水,防止脱水,故可视为作物对干早环境的一种保护性适应。已经证明了在逆境条件下脯氨酸的积累来抵抗植物对非生物胁迫的伤害,植物体的抗氧化酶系统也能将伤害细胞的活性氧控制在可忍耐水平,通过各种过氧化酶的协同作用,可以把细胞产生的具有很强氧化活性的活性氧如O2-、H2O2、OH-等直接或间接地清除,防止了活性氧放大级联作用,保证了细胞生命活动的正常进行。丙二醛(MDA)是由于植物官衰老或在逆境条件下受伤害,其组织或器官膜脂质发生过氧化反应而产生的,对干旱也具有抵抗作用。GSH作为生物体主要的还原态硫之一,在生物体抵抗各种胁迫(冷害、干旱、重金属、真菌等)的过程中起着重要的作用,其含量水平的高低与植物对各种环境胁迫的忍耐程度密切相关。近些年来,它在高等植物代过程中的生理作用,尤其是在植物抵御活性氧伤害过程中的作用及其与植物抗逆性关系的研究进展很快。前人研究进展植物在正常生长情况下, 活性氧的产生和清除处于动态平衡状态。当植物在逆境条件下( 如干旱胁迫) 生长时, 这种平衡被打破, 体负责清除活性氧的抗氧化系统能力下降, 从而造成活性氧的大量积累, 并引发或加剧膜脂过氧化作用, 导致生物膜系统受损。过氧化物酶( POD) 、多酚氧化酶(PPO)、

植物的逆境生理

第十章植物的抗逆生理 (单元自测题) 一、填空 1.常见的有机渗透调节物质有:、和等。(脯氨酸,甜菜碱,可溶性糖) 2.在逆境下脯氨酸累积的原因主要有三:一是脯氨酸加强。二是脯氨 酸作用受抑,三是合成减弱。(合成,氧化,蛋白质) 3.冻害主要是的伤害。植物组织结冰可分为两种方式:结冰与结冰。(冰晶,胞外,胞内) 4.胞间结冰引起植物受害的主要原因是:(1) 过度脱水,(2) 对细胞的机械损伤。(3)解冻过快对的损伤。胞内结冰对细胞的危害更为直接,形成以及融化时对质膜与细胞器以及整个细胞质产生破坏作用。胞内结冰常给植物带来致命的损伤。(原生质,冰晶体,细胞,冰晶) 二、选择题 1.在植物受旱情况下,细胞中的含量显著提高。C. A.天冬氨酸 B.精氨酸 C.脯氨酸 D.谷氨酸 2.以下哪种蛋白质不是逆境蛋白?D. A.热击蛋白 B.冷响应蛋白 C.盐逆境蛋白 D.叶绿蛋白 3.植物对冰点以上低温的适应能力叫。B. A.抗寒性 B.抗冷性 C.抗冻性 D.耐寒性 4.膜脂中不饱和脂肪酸的比例高,相变温度。B. A.高 B.低 C.不受影响 5.植物受到干旱胁迫时,光合速率会。B. A.上升 B.下降 C.变化不大 6.经过低温锻炼后,植物组织内降低。B. A.可溶性糖含量 B.自由水/束缚水的比值 C.脯氨酸含量 D.不饱和脂肪酸的含量 7.作物越冬时体内可溶性糖的含量。A. A.增多 B.减少 C.变化不大 8.干旱伤害植物的根本原因是。A. A.原生质脱水 B.机械损伤 C.代谢紊乱 D.膜透性改变 9.涝害的根源是细胞。B. A.乙烯含量增加高 B.缺氧 C.无氧呼吸 D.营养失调 10植物组织受伤害时,受伤处往往迅速呈褐色,其主要原因是 A.A.醌类化合物的聚合作用 B.产生褐色素 C.细胞死亡 D.光的照射三、缩写符号 Pro:脯氨酸 MDA:丙二醛 UFAI:不饱和脂肪酸指数

植物逆境胁迫中活性氧和钙信号的关系

Issu es and C ou nterm easu re on the S ub stain able Developm en of Vegetab le Ind u stry in S hou guan g XU E Q i qin,LI Mei qin,PEI Hua li,Q IAO Ning,M IAO Jin shan (Wei fang U niversity of Science and Technolog y ,Shouguang,Shandong 262700) A bstract:By making a deep investigationg and research through various links in the production chain,the result showed that there were five restrictive factors for vegetable industry s developmen:High quality and high end vegetable products were relatively insufficien;The agroecological environment worsens day by day along with the growth of vegetables planting agelimit;The vegetables commercial and intensive processing had lagged behind;The level of mechanization for vegetables planting was low;The excellent varieties of intellectual property rights were insufficient;The peasantry quality was relatively low.Based on these restrictive factors,some strategies on how to carry out the sustainable development were offered.Suggestions contain carrying out the new soil management system;Expanding the organic vegetables production and enhancing the intensive processing;Using the experience of other countries for reference and enhancing mechanization and automation for vegetables industry.Strengthening cooperation with research institutions and raising widely the level of domestic vegetables seed;Reinforcing training to improve the peasantry quality.Key words:vegetable industry;substainable developmen;issues and countermeasure 第一作者简介:王海波(1981 ),男,博士,讲师,研究方向为农产品贮藏与加工。 通讯作者:张昭其(1965 ),男,博士,教授,研究方向为农产品贮藏与加工。E mail:zqzhang@https://www.360docs.net/doc/9214630974.html, 。 基金项目:国家自然科学基金资助项目(30471219,30771515);广东省联合基金重点资助项目(U0631004);广东省自然科学基金团队资助项目(06200670)。收稿日期:2010-08-23 植物逆境胁迫中活性氧和钙信号的关系 王海波1,2 ,黄雪梅2 ,张昭其 2 (1.广东食品药品职业学院,广东广州510520;2.华南农业大学园艺学院,广东广州510642) 摘 要:钙信号参与植物对逆境的应答反应已被广泛证实,但近年来许多研究发现,活性氧信号也参与了植物对逆境胁迫的应答反应。现介绍植物中活性氧和钙信号的产生机制、活性氧和钙信号对植物逆境胁迫的应答机制,探讨了植物逆境胁迫中活性氧与钙信号之间的相互关系。 关键词:逆境;活性氧信号;钙信号 中图分类号:Q 948.12+ 2.4 文献标识码:A 文章编号:1001-0009(2010)22-0189-06 植物处于不断变化的环境条件中,不适宜的环境条件限制了作物的生长范围,导致作物品质下降、产量降低。然而,植物在长期演化过程中也形成了对各种生物或非生物逆境的适应性,即抗逆性。钙离子作为重要的胞内第二信使,参与了植物对环境信号的应答反应。各种生物或非生物逆境包括病原菌侵染、干旱、盐害、冷害、热害等均能诱导植物细胞质Ca 2+浓度提高,从而将信号通过钙结合蛋白如钙调素、依赖钙的蛋白激酶、依 赖钙的磷酸化酶等转导放大[1] 。此外,逆境胁迫还导致 植物细胞内活性氧(Reactive Oxygen Species)的动态平 衡破坏,引起超氧化物阴离子自由基(O - 2)、羟自由基( OH)、过氧化氢(H 2O 2)等活性氧的迅速累积。活性氧过去一直被认为是植物代谢过程中的毒副产品,然而,近年来越来越多的证据表明,活性氧也是细胞信号转导和调控的重要组成部分[2 4]。细胞质内Ca 2+浓度(钙信号)取决于质膜Ca 2+通道活性或开放程度、质膜Ca 2+ 泵的激活程度等,而活性氧对上述调节因素都表现 出一定的调控作用[5]。反过来,Ca 2+ 也可激活NADPH 氧化酶,诱导活性氧的产生,随后诱导一个更大的胞质Ca 2+内流(钙信号)[6]。可见,植物体内钙信号和活性氧信号是密不可分的。该文综述了近年来在植物逆境信号转导过程中活性氧与钙信号关系方面的研究进展。 189

相关文档
最新文档