二甲醚燃料和二甲醚燃料汽车

二甲醚燃料和二甲醚燃料汽车
二甲醚燃料和二甲醚燃料汽车

二甲醚燃料和二甲醚燃料汽车

随着地球上传统的能源——煤、石油、天然气不断的减少,能源问题越来越被人们所关注。能源的来源和清洁能源成为能源领域两大重要课题。能源危机一直威胁着人类,我国虽然是产油大国,但也是石油进口大国,国内石油开发和生产不能适应经济和社会发展的需要,供需矛盾日益突出;另一方面,我国又是煤炭和天然气资源的大国,充分利用这类能源是我们的根本。

二甲醚能从煤、煤层气、天然气、生物质等多种资源制取。二甲醚作为一种新型二次能源具有巨大的发展潜力和市场前景,它能实现高效清洁燃烧,可广泛用于汽车、燃气轮机、锅炉、小型热电冷联供、发动机热泵、燃料电池及家庭灶具、热水器等。我国煤炭储量丰富,是世界第一煤炭生产与消费国。我们可以构想,在未来,将污染严重的煤炭,转化为洁净的二甲醚,供给本地的能源消费,来改善西部地区环境,保护生态;同时用油罐车运输二甲醚到资源匮乏的东部地区,形成一个新的二甲醚能源经济(DME Economy)。二甲醚有望成为替代石油,解决我国油品短缺矛盾和能源安全问题。

一、二甲醚运用的优势

1.1 环保优势

二甲醚(DME)与液化石油气(LPG)的物理性质很相似。是一种无色气体,具有轻微的醚香味,室温下蒸气压力约为0.5MPa。常压下致冷到-25℃或在常温下加压到0.5~0.6MPa,即被液化。二甲醚具有惰性、无腐蚀性、无致癌性、几乎无毒。与二乙醚不同,二甲醚在。

空气中长期曝露不会形成过氧化物。二甲醚的饱和蒸气压低于液化气,储存运输比液化石油气更安全,并且燃烧性能好,热效率高,燃烧过程中无残渣、无黑烟,CO、NO排量低。

1.2二甲醚理化特性优势

(1)二甲醚还可掺入石油液化气、煤气或天然气混烧并能提高热量。纯度高于95%的二甲醚可替代液化气用作燃料。总之,二甲醚比柴油干净,比氢方便,比天然气安全,可以作为燃料被广泛应用。

(2)二甲醚可溶于水,并具有卓越的溶解能力,这些特点使其成为在全球都广受欢迎的气雾剂、抛射剂,尤其是在杀虫剂、发泡剂等方面的应用。

(3)二甲醚具有较高的十六烷值,可直接用作汽车燃料替代柴油.据试验了解二甲醚的燃油性能和机械能更好。爆发力大。能满足并提高发动机的热效率和功率。

1.3二甲醚的经济优势

随着近年来石油价格的不断上涨,从2002年的26美元/桶上升至目前的67美元/桶左右,二甲醚的成本优势不断凸现。二甲醚最大的需求市场是在燃料行业及动力行业。要推动二甲醚的需求市场必须在这一个市场打开缺口,因此,其经济成本就显得尤为重要。据行业人士分析,二甲醚的广泛运用必须满足两大条件:(1)在燃料领域,二甲醚的生产成本必须小于LPG的市场价格。(2)在替代柴油市场,二甲醚的生产成本必须小于柴油的市场价格。而LPG与柴油的石油的市场价格完全受制于石油价格的波动。据测算,当石油的市场价格

稳定在45美元/桶以上。即已经满足了上述两大条件。按现在石油价格来讲,二甲醚的广泛运用时代已经来临。

二、二甲醚的生产工艺及产量规模

2.1 二甲醚的生产工艺方法

二甲醚生产工艺主要包括一步法和二步法以及联产法网。

(1)甲醇气相脱水法:其基本原理是在固定床催化反应器中将甲醇蒸汽通过固体酸性催化剂(氧化铝或结晶硅酸铝),发生非均相反应,甲醇脱水生成二甲醚,脱水后的混合物再进行分离、提纯,便能得到燃料级或气雾剂级的二甲醚。

(2)甲醇液相脱水法:该法是以甲醇为原料,在浓硫酸的催化作用下,生成硫酸氢甲酯,硫酸氢甲酯再与甲醇反应生成二甲醚,同时生成CO、CO2、H2、CH2、C2H2等副产物。

(3)合成气气相一步法合成二甲醚:该法是把合成甲醇和甲醇脱水两个反应合在一个反应器内进行,其关键在于选择高活性及高选择性的双功能催化剂。中国科学院大连化学物理研究所研制出了用于合成气一步法合成二甲醚的性能良好的双功能催化剂,并在此基础上开发了固定床合成气一步法合成二甲醚新工艺。

(4)合成气液相一步法合成二甲醚:浆态床一步法合成二甲醚技术,是目前最新开发的技术。它可直接利用CO含量高的煤基合成气,还可在线装卸催化剂。其突破是甲醇合成过程中热力学平衡的限制,具有较高的CO单程转化率和二甲醚产率,使二甲醚在成本上更具优势。

(5)CO2加氢合成法:CO2加氢制二甲醚打破了CO2加氢制甲醇热力学的限制,使CO2转化率得以提高,而且还能抑制逆水气变换反应的进行。目前,世界上许多国家都在进行CO2加氢制二甲醚催化剂及工艺研究,但大多处于探索阶段,CO2的转化率及二醚的选择性均较低。

2.2二甲醚的产量规模

据中国化工网相关资料统计,2008年,我国二甲醚产能继续大幅增长,全年共有8个二甲醚新建项目投产,合计年产能147.5万t。截至2008年底,国内二甲醚产能已达409.65万t,同比增长56%。据不完全统计,国内原计划2009~2010年投产的二甲醚项共有17个,合计年产能428万t。其中,自配甲醇的项目有8个,合计年产能135万t;需要外购甲醇的项目有9个,合计年产能293万t。预计到2010年,国内二甲醚产能将至少达到837.65万t。根据国家《煤化工产业中长期发展规划(征求意见稿)》,到2020年我国将形成黄河中下游、内蒙古东、黑东、苏鲁豫皖、中原、云贵和新疆7大煤化工产业区,二甲醚产能将达到2000万t。中国化工网分析师表示,即使按照20%的掺烧比例计算,2010年的二甲醚需求量不过390~520万t。

3、国内外二甲醚汽车发展动向

由于二甲醚燃料可作为柴油机的洁净代用燃料,实现压燃式发动机超低排放,近年来欧美、日韩等发达国家十分关注二甲醚燃料汽车的市场前景和环保效益,纷纷开展二甲醚燃料发动机的研发。上世纪90年代,丹麦技术大学、Haldor Top—soe A/S、Navistar、A VL、

AMOCO公司等开展将二甲醚用作柴油机燃料的研究。研究结果表明,燃用二甲醚燃料的柴油机,在保持原柴油机高热效率前提下,碳烟排放为零,氮氧化物和微粒有害排放有较大幅度降低,显示了二甲醚燃料可作为柴油机的洁净代用燃料,实现压燃式发动机超低排放的前景。欧洲VOLVO汽车公司研制燃用二甲醚燃料的大客车样车和卡车,到目前为止,已进入第三轮,开始扩大范围的应用试验。日本通产省、JFE公司、五十铃汽车公司和交通公害研究所等分别研制了二甲醚燃料卡车、集装箱车、小型巴士和城市大客车,目前处于试验运营阶段。韩国、俄罗斯等也研制出各自的二甲醚汽车。

在我国,二甲醚燃料的环保性和作为能源多元化的途径之一,已经引起有关部门的重视。国家科技部、教育部、国家自然科学基金委、中科院和有关部委先后启动了一批煤基二甲醚制备和二甲醚发动机、汽车研发项目。我国陕西、内蒙古、宁夏、四川、山东、新疆和上海将建设一批规模不等的二甲醚生产基地。预计在2010年,我国将形成年产二甲醚约1 000万t的生产能力。上汽集团按照上海市政府关于开发二甲醚车的要求,从2005年就着手二甲醚车的研制工作,目前已完成了三轮开发,达到小批量生产阶段,现有10辆二甲醚车上线进行示范运行,见下图。

西安交通大学从1997年起,承担美国F0rd一中国研究与发展基金项目,研究二甲醚发动机的性能,从单缸机研究开始,并逐步完成了将技术向多缸机的转移取得了一些重要的研究结论。自2000年9月成功开发了国内第一辆超低排放二甲醚汽车以来,经过近4年的努力,二甲醚汽车的性能得到不断的提高,目前已稳定运行近3000km,起动、爬坡、加速、高速等性能优于原柴油机动力。

(1)使用二甲醚为燃料时,起动容易。

(2)在全部工况范围内消除了气阻,换挡自如。

(3)二甲醚汽车的爬坡、加速性能好,最高车速已超过柴油机,达到130km/h(柴油机时120km/h)。

(4)无论是起动、加速,还是全速行驶,二甲醚汽车排气无烟。

4、二甲醚城市客车的安全措施

二甲醚需要在一定的压力下储存,而在常温、常压下是一种可燃

气体。因此,在安全方面有特殊的要求,需要在燃油客车的基础上,增加一定的安全措施。

4.1二甲醚的储存

采用的汽车用液化二甲醚钢瓶以车用LPG钢瓶为基础改进设计。尽管在相同温度下二甲醚的饱和蒸汽压比LPG低约0.3 MPa,但钢瓶的材料和钢板的厚度不变,其安全性比车用LPG钢瓶更高。钢瓶的公称工作压力为2 MPa,水压试验压力为3 MPa,大于钢瓶内实际压力0.264~1.45MPa。钢瓶设进液单向阀(防止加注后倒流)、安全阀(压力过高时泄放)及限过充装置(瓶内留约20%容积的气相区,为二甲醚升温留出膨胀空间)。钢瓶的型式试验采用LPG钢瓶的规范,包括:爆破试验、气密性试验、耐压试验、振动试验、火烧试验、爆炸冲击试验和循环疲劳试验。

4.2二甲醚的输送

输送管路分刚性管路和柔性管路。刚性管路采用奥氏体不锈钢无缝钢管和双卡套接头,与工作压力为20 MPa的CNG汽车管路相同。奥氏体不锈钢无缝钢管可耐二甲醚中可能存在的甲醇对管道的腐蚀,也便于安装卡套。双卡套接头则密封性可靠,可多次拆卸。出入发动机的柔性管路采用不锈钢波纹管。管路的安装技术要求采用QC/T 247《液化石油气汽车专用装置和安装要求》的有关规定。

4.3输送管路的截止

在车用液化二甲醚钢瓶出口,除设置手动截止阀外,还设置常闭电磁截止阀。开关接通后,电磁阀开启,燃料方能从钢瓶进入粗滤器

和输送泵。发动机熄火或未启动,电磁阀关闭,燃料输送管路截断。在需要紧急截断燃料供应时,也可通过切断电源的方法,将电磁阀关闭。

4.4泄漏报警

车辆设泄漏报警装置,仪表台设报警器,在加注口、钢瓶安装区、压力控制总成和发动机喷射泵附近各设一个传感器。当传感器周围二甲醚气体浓度大于1.2%(着火浓度下限的1/3)时,报警器通过声、光信号报警。光信号可指示泄漏的部位。

4.5 灭火装置

除车厢内安装的2只灭火器外,发动机舱内设置自动灭火器。当发动机舱内温度高于190℃时,灭火器将自动工作。

4.6导除静电装置

燃料加注口面板处设接地线连接桩,可与燃料加注机的接地线连接,以导除燃料加注时可能产生的静电。

5、车用二甲醚燃料应用存在的问题

我国车用二甲醚燃料的应用还处于起步阶段,大规模推广仍面临着加压配送体系建立、二甲醚汽车改造、二甲醚车用燃料的规范和标准等问题的解决。

(1)生产工艺有待优化。虽然我国已掌握二甲醚生产技术,并建成多套生产装置,但当前在我国建立以二甲醚为中心的能源系统,所面临的最大挑战仍是开发高效、低耗、环保的二甲醚生产技术,所以还需要进一步加强高效催化剂的研发和合成反应器优化设计两个环

节。

(2)物流配送有待发展。在现有的几种运输方式中,由于目前全国尚未建成一条醇醚输送管道,醇醚产品不可能通过最廉价的管道实现运输。按照铁路部门的规定,二甲醚尚不能通过铁路装罐运输。目前

建成、在建和规划中的大型醇醚项目80%以上聚集于煤炭资源丰富却远离水运便利的北方地区。因此,绝大多数醇醚企业根本享受不到水运的便利。这就决定了当前乃至今后很长一个时期,二甲醚企业不得不通过成本最高的公路物流完成产品的运输与销售。目前二甲醚还没有较安全成熟的社会供气站,专门的运输车,现一般使用液化石油气槽车进行运输。所以需要国家统一部署加强二甲醚物流配送体系建设,进一步发展二甲醚加气站及运输配送车辆的研究和应用。

(3)标准缺失影响发展。二甲醚相关标准的缺失也是影响其发展的重要因素。据介绍,二甲醚的质量标准目前有两个:一是2007年4月13日国家发改委发布的二甲醚行业产品标准;二是2007年8月21日原建设部颁布的《城镇燃气用户二甲醚标准》,但这只是行业标准,并没有明确的产品名称和针对液化气掺烧二甲醚的标准。现在行业非常需要一个国家标准以规范市场。到目前为止,我国在二甲醚生产、储运、应用方面己开展了部分研发工作,并取得一定成果。但总体来看,二甲醚的研发主要是企业和科研单位的孤立行动,缺乏国家总体部署和统一指导,以及系统的、扎实的研究与应用基础,需要国家相关部门、大型汽车制造厂商、二甲醚生产企业以及科研机构的共

同努力,以尽早实现二甲醚汽车的产业化。

参考文献:

[1]孙岩,许慎勇,周广梅。二甲醚的生产技术进展[J]。中氮肥,2004,(6):1~4。

[2]王继元,曾崇余。促进的合成二甲醚催化剂的制备[J]。石油炼

制与化工,2004,35(12):13—17。

[3]黄震。超低排放二甲醚燃料发动机及其研究动态[J]。上海汽车,1998(7)。

[4]汤洪,许建平。关于二甲醚替代能源的思考[EB/OL]。中国二甲醚网,2009—05—15。

[5]谢振华,胡红。二甲醚燃料汽车的研究和应用进展口[J]。化肥设计,2007,45(1)。

[6]袁方恩。二甲醚柴油混合燃料发动机燃烧模拟研究[D]。成都:西华大学,2009。

[7]彭祖赠,模糊数学及其应用[M]。武汉:武汉大学出版社,2002。

二甲醚的生产工艺

二甲醚及生产工艺 摘要:综述了二甲醚的性质、用途、生产方法及使用二甲醚时候的注意事项。 关键词:二甲醚化工产品合成气一步法甲醇液相法甲醇气相法 一、产品说明 1、二甲醚的基本概况 二甲醚别名:甲醚 英文名称:methyl ether;dimethyl ether;DME CAS编号:115-10-6 分子式:C2H6O 结构式:CH3—O—CH3 二甲醚又称甲醚,简称DME。二甲醚在常压下是一种无色气体或压缩液体,具有轻微醚香味。相对密度(20℃)0.666,熔点-14 1.5℃,沸点-24.9℃,室温下蒸气压约为0.5MPa,与石油液化气(LPG)相似。溶于水及醇、乙醚、丙酮、氯仿等多种有机溶剂。易燃,在燃烧时火焰略带光亮,燃烧热(气态)为1455kJ/mol。常温下DME具有惰性,不易自动氧化,无腐蚀、无致癌性,但在辐射或加热条件下可分解成甲烷、乙烷、甲醛等。 二甲醚是醚的同系物,但与用作麻醉剂的乙醚不一样,毒性极低;能溶解各种化学物质;由于其具有易压缩、冷凝、气化及与许多极性或非极性溶剂互溶特性,广泛用于气雾制品喷射

剂、氟利昂替代制冷剂、溶剂等,另外也可用于化学品合成,用途比较广泛。 2 生产原理 2.1 生产方法简介 目前国外二甲醚生产方法主要有合成气一步法和甲醇法。甲醇法又分为甲醇气相法和甲醇液相法。合成气一步法的工业化技术尚未成熟,理由是: ①现有的技术未经装置检验; ②即使按现有技术,其生产成本也高于甲醇气相法 2.2 反应方程式 合成气一步法以合成气(CO + H2 )为原料,合 成甲醇反应和甲醇脱水反应在一个反应器中完成, 同时伴随CO的变换反应。其反应式如下。 2CO + 4H2 = 2CH3OH CO +H2O =CO2 +H2 2CH3OH =CH3OCH3 +H2O 总反应: 3CO + 3H2 =H3COCH3 +CO2 甲醇液相法: 甲醇脱水反应在液相、常压或微正压、130 ~130 ℃下进行。其化学反应式如下: 2CH3OH =H3COCH3 +H2O 甲醇气相法:

二甲醚-液化石油气混合燃料

二甲醚/液化石油气混合燃料 火花点火发动机的燃烧和排放性能研究(发动机的研究团队,绿色生态机械研究室,韩国机械与材料研究所,171, Jang-Dong, Yuseong-gu, Taejon 305-343,韩国) 摘要 这项研究中,电火花点火的发动机工作在二甲醚和液化石油气混合条件下被以实验的方式研究。在个别项目,性能,排放特性(包括碳氢化合物,CO,和NOx排放),以及汽油机在DME和LPG燃料掺混燃烧工作在1800~3600rpm时的燃烧稳定性。 结果表明通过混合20%的DME燃料对于较宽范围负荷的发动机达到稳定的工况是可能的。而且,我们证明,达到10%的DME,发动机输出功率与纯LPG 是可相比的。废气排放检测表明,在较低发动机转速下,使用混合燃料时,CH 和NOx排放有所增加。然而,随着混合燃料的使用,发动机的功率输出是减少的,而且制动燃油消耗率会严重恶化,因为DME的能量含量与LPG相比非常低。此外,由于DME较高的十六烷值,爆震会随DME而显著增加。 考虑到发动机功率输出和废气排放的结果,通过混合上升到10%的DME混合燃料可用来和LPG相替换,并且DME掺混LPG燃料预期有扩大DME市场的潜力。 关键词 二甲醚液化石油气混合燃料电火花点火代用燃料 1.引言 最近,许多研究实施在可替换燃料上,由于对较低的燃油消耗率和废气排放要求的增加。DME混合燃料产品的潜力被证实,而且作为一种燃料是有前途的。作为一种能源,DME在21世纪吸引了非常大的注意,出于它是多元化能源,而且有很好的物理、化学及存储性能。在亚洲,家庭和运输的能源需求迅速增加,作为一种可替代燃料,使用DME是非常有前途的。 DME的毒性很低,和LPG等同,它是通过光化学反应生成臭氧的。基于它

代用燃料

对清洁代用燃料汽车发动机技术论述 摘要:在人类即将跨入21世纪的时候,世界范围的环保呼声越来越高,针对 环境和能源形势的日趋恶化,汽车作为污染环境和消耗能源的大户,备受人们的关注,在车用能源供应短缺与大气环境保护的双重压力下,人们一直在寻求内燃机新型清洁代用燃料。开发环境污染小且具有一定发展前景的“绿色汽车发动机”,已成为世界各汽车公司竞争相开发的热点。由于各国资源分布、科技实力不同,因而,开发“绿色汽车发动机”也型式各异。 关键词:汽车,发动机,能源危机,清洁,污染,新能源。 引言:随着我国经济快速发展,能源消费逐年增长,石油对外依存度不断递增, 石油安全已成为我国亟待解决的重大问题。同时,能源利用过程中产生的环境污染问题也困扰着我国的经济发展, 尤其汽车能源需求与环境保护的面临双重巨大压力。汽车行驶的主要燃料是从石油中提炼出来的柴油和汽油,据世界能源大会数据表明,我国的能源资源,煤的保有储量约占世界的30%,可采年数达数百年,石油的保有储量仅占世界的2.4%。1993年起我国已成为石油纯进口国,2000年我国石油总需求的33%已从国外进口,预测2010年我国石油总需求的47%需进口,我国石油的供应将严重不足。 在另一方面,我国的汽车排放已成为城市大气环境的一个主要污染源。据统计,近年来上海城区内机动车排放的CO、HC和NOx已分别占总排污负荷的86%、90%和56%,北京在非采暖期,城区内机动车排放的CO、HC和NOx已分别占总排污负荷的60%、86.8%和54.7%。城市机动车排放污染日趋严重。 针对我国自然条件和能源资源特色,逐步改变汽车能源结构,发展汽车清洁代用燃料,在发动机上实现高效、低污染的燃烧,控制汽车发动机有害排放对我国城市大气质量带来的日趋严重的影响,已成为我国能源与环境研究中的一个十分重大和紧迫的研究课题。 1、天燃气发动机 以天然气作燃料的发动机已有50多年的历史了。可以说人类开发天然气发动机的技术是相当成熟的。天然气是天然资源,产自油气田和气田。在地球上的贮量很大。天然气发动机最大的优点是排污染低:CO排入量是汽油机的1/15, HC排放量是汽油机的1/5,SO 2排放量是汽油机的1/10,CO 2 的排放量是汽油机的 4/5,另外,天然气发动机不会造成成润滑油稀释,可延长发动机寿命,同是还可降低汽车噪声等。 天然气的主要成份是甲烷(一般为83%~99%)及少量其他烃类和CO2等。天然气具有较高的辛烷值,抗爆性能好,与汽油相比,燃烧更完全。据美国EPA 报告,天然气汽车可以降低40%的HC排放,50%的CO排放,无碳烟排放,其中HC排放的90%为甲烷类物质,光化学反应低,采用缸内直喷和稀薄燃烧技术可进

国内外汽车节能发展现状

国内外汽车节油概况随着能源的日渐紧张和对环境保护的日益迫切,汽车节油工作受到了世界各国的普遍重视,许多国家都把节能作为一项国策。美国是全球最大的石油消费国,汽车用油在石油消费总量中占有相当大的比重,在汽车节油方面积累了丰富的经验。为了研究降低汽车油耗的技术,美国各大汽车公司均拔出大量研究经费。美国汽车制造厂在减轻汽车重量、改善空气阻力、提高传动效率、减少附件功率损耗,发展小排量汽车、汽车柴油机化,发展电动汽车,开发醇类燃料等方面取得较大发展。与此同时,美国国家还对建设公路和养路进行了大量投资,以期降低油耗。 欧盟国家非常重视汽车节油政策的调节作用,制定和实施了一整套积极有效的燃油税收政策,同时比较注重生物燃料的研发。英国政府仅在1980年就提供了600万英镑作为研究节能问题的资金,其中400万英镑用于研制发动机、变速器与微机处理器,200万英镑用于研制电动汽车及蓄电池。法国政府于1974年就成立了国家能源机构。1975年由中央计划委员会制定了法国的“能源政策”。1991年,法国政府投资2.3亿法郎给标志-雪铁龙联合公司和雷诺公司共同生产电动轿车。 日本是没有石油的国家,所需石油全部依靠进口,这就迫使日本自20世纪60年代起就高度重视发展节能型汽车。日本汽车保有量逐年大幅度增目前节能引起我国社会各界的广泛关注, 中央政府把节能减排列为国家经济工作的八大任务之一和考核政府领导的重要指标,以此来推动全社会节能降耗,缓解能源瓶颈制约。随着我国进入“汽车社会”,汽车耗能在能源消耗中所占的比例日益增大,并成为我国石油对外依存度增加的主要原因。 我国在传统内燃机节油方面还有很大的潜力,国外研究的复合火花点火技术、缸内直喷技术、增压技术、低压缩高膨胀循环、可变气门相位及升程、可变压缩比、可变排量、减速时部分汽缸休眠、双火花塞顺序点火以及集成的起动发电机等技术在我国均有所发展。清华大学承担国家"973"重点项目“新一代内燃机燃烧理论与石油替代的基础研究”,在发动机新型燃烧机理的研究上取得了进展;天津大学开展稀薄燃烧技术的研究,燃油消耗率可降低15%;吉林大学、湖南大学、长安大学等一批高校都在开展汽车动力系统优化节油的研究。 第1章 2.汽车轻量化节油 不锈钢与强度较高的碳钢相比,表现出不少优点。一汽轿车、奇瑞汽车公司在轿车车身上进行了高强度钢板的初步应用实验;上海交大、湖南大学、重庆大学、清华大学等高校在镁合金的强韧化、耐蚀性、阻燃性和抗高温蠕变性等方面开展了较深入的研究。在轻量化结构设计方面,结构优化和零部件的模块化设计水平不断提高,如采用前轮驱动、高刚性结构和超轻悬架结构等来达到轻量化的目的,计算机辅助集成技术和结构分析等技术也有所发展。湖南大学与上汽通用五菱在薄板冲压工艺与模具设计理论方面开展了较深入的研究;北京航空航天大学开发了CAD系统CAXA,并已经开展了客车轻量化技术的研究,利用有限元法和优化设计方法进行结构分析和结构优化设计,以减少车身骨架、发动机和车身蒙皮的重量等替代燃料节油是解决我国目前严峻石油能源形势的一种有效途径。我国的替代能源发展已纳入“十一五”发展规划,按照“节约优先、立足国内、煤为基础、多元发展”的能源方针,实行直接替代(以发展车用替代燃料为主)与间接替代(以节能、替代工业原料与燃料用油为主)一起抓。 针对我国“富煤少油缺气”的国情和现有技术基础,适宜我国目前发展的替代能源主要为:煤基替代燃料、生物质替代燃料、天然气替代燃料和氢能。煤基替代燃料中,M15比例甲醇汽

耐二甲醚橡胶现状

金银岛:《耐二甲醚橡胶密封材料》实施或可推动二甲醚纯烧 ?字号 ? ? ? 评论邮件纠错 2014-10-17 08:50:30来源:金银岛 金银岛讯(市场分析师:常丛丛): 心的检测,其耐二甲醚性能居国内同行业前列。其中,耐二甲醚橡胶密封材料根据使用功能和使用环境的不同,分为A类和B类,A类适合于长期或完全接触二甲醚的情况下使用,B 类适合于间歇或部分接触二甲醚的情况下使用。 此项标准的公布,将有利于二甲醚钢瓶的制作,加快解决了二甲醚充装上的问题。二甲醚具有一定的腐蚀性,长时间使用,会腐蚀液化气钢瓶中的橡胶圈,但二甲醚发展多年以来,并未有专门的钢瓶进行充装,造就了安全隐患。现在,业内人士正在积极发展二甲醚纯烧,与液化气、天然气形成“三足鼎立”,目前,已有部分地区进行二甲醚纯烧,耐二甲醚橡胶密封材料解决了传统的橡胶密封材料带来的安全隐患,或将加快推广二甲醚纯烧的脚步。 此外,因二甲醚与液化石油气存在价格优势,近几年来,民用罐装液化气中掺有二甲醚已是司空见惯之事,但二甲醚的腐蚀性仍存在,或造成液化气泄漏,发生爆炸。橡胶密封材料标准中,有提及B类胶圈可适用于部分接触二甲醚的情况,有业内人士认为,此项标准的出台或可加快二甲醚与石油液化气混掺标准的出台。但就金银岛此前了解,混掺比例标准暂无出台可能。 云南煤化工应用技术研究院承担的两个科研项目顺利通过验收 发布时间:2015-12-22 已被浏览:0次

作者:伍小平 云南煤化工应用技术研究院承担的省级科研项目“浇注型聚氨酯矿用单轨吊车实心轮产品开发”及国家创新基金项目“耐液化石油气二甲醚混合燃气特种橡胶材料及制品的研究开发” 分别于2015年9月23日和12月14日通过云南省科技厅组织的专家验收。专家组认真听取了项目专题汇报,从项目技术指标、经济指标、投资建设、人才培养和知识产权等方面进行了认真审核,对研究院的科研工作给予了肯定,两个项目最终验收结果均评为优秀。

二甲醚的用途及需求

二甲醚生产技术及应用 4、二甲醚的用途及需求 二甲醚简称DME,是一种无毒醚类化合物,它从煤、天然气等多种资源中制取。二甲醚是重要的化工原料,可用于许多精细化学品的合成,如制备低碳稀烃、二甲醚还可羰基化、烃基化、氧化生成一系列有机化工产品;同时在制药、燃料、农药等工业中有许多独特的用途,可以用作气雾剂的抛射剂、发泡剂等,代替氟利昂作为致冷剂。由于二甲醚有优良的燃烧性能,能实现高效清洁燃烧,在交通运输、发电、民用、燃气等领域有着十分美好的应用前景。 二甲醚含氧量为34.8%,组分单一,碳链短,燃烧性能良好,热效率高,燃烧过程中无残液,无黑烟,是一种优质、清洁的燃料。二甲醚可用作汽车燃料、民用燃气。二甲醚有很高的十六烷值可作为汽车燃料使用,尾气排放能够达到欧Ш排放标准,替代柴油时十六烷值比柴油高10%,发动机爆发力大,性能好。二甲醚作为民用燃料可具备燃烧充分、无残液、不析碳的优点。DME目前主要应用于气雾剂、发泡剂、化学中间体和燃料,其中目前民用燃料的用量最大,我国用于民用燃气的DME约占总产量的80%以上。 表4.1 二甲醚物性参数

中国的资源概况是缺油少气,煤炭丰富。按公布的数据证实,中国煤炭储量为1145亿吨,占全球的11.6%,至少可开采116年。而中

国石油储量为33亿吨,占全球的2.2%,可开采年仅为20.2年。目前在中国已探明的一次能源总量中煤炭占了96%。2005年中国能源生产总量为222,468万吨标准煤,一次能源生产总量206,324万吨标准煤,发电量24,146亿千瓦小时,均居世界第二位。当年新增发电装机容量达7000万千瓦。在能源消费结构中,煤品燃料占68.7%,油品燃料占21.2%,天然气占2.8%,水电、核电和风电占7.3%。以煤为主的能源结构是支撑中国发展的主要条件。世界及中国主要一次能源概况见表: 表4.2 世界及中国主要一次能源概况 4.1、二甲醚替代柴油 国内外研究表明,目前二甲醚是仅此于氢燃料的清洁燃料,有望成为主要石油代替产品。二甲醚常温、常压下是气态,加压到5~6个大气压可以变为液体,物理性质类似于液化石油气。二甲醚十六烷值大于55,高于柴油,可作为理想的柴油替代品。二甲醚低毒、低腐蚀性,燃烧时有害气体排放量明显低于汽、柴油,能显著缓解城市汽车尾气污染。 二甲醚作为车用燃料,涉及到方方面面的工作,如发动机的改造,供应站的建立,环保政策等等,这些除了企业的努力外,更需要国家

年产20万吨甲醇制二甲醚生产工艺初步设计

太原理工大学化学化工学院 《化工设计》课程设计讲明书 年产20万吨甲醇制二甲醚生产工艺初步设计

学生学号:2009002273 学生姓名:武晓佩 专业班级:化工工艺0904 指导教师:郑家军 起止日期: 2012.11.26~2012.12.21

化工设计课程设计任务书

摘要 作为LPG和石油类的替代燃料,目前二甲醚(DME)倍受注目。DME 是具有与LPG的物理性质相类似的化学品,在燃烧时可不能产生破坏环境的气体,能廉价而大量地生产。与甲烷一样,被期望成为21世纪的能源之一。目前生产的二甲醚差不多上由甲醇脱水制得,即先合成甲醇,然后经甲醇脱水制成二甲醚。甲醇脱水制二甲醚分为液相法和气相法两种工艺,本设计采纳气相法制备二甲醚工艺。将甲醇加热蒸发,甲醇蒸气通过γ-AL2O3催化剂床层,气相甲醇脱水制得二甲醚。气相法的工艺过程要紧由甲醇加热、蒸发、甲醇脱水、二甲醚冷凝及精馏等组成。要紧完成以下工作: 1)精馏用到的二甲醚分离塔和甲醇回收塔的塔高、塔径、塔板布置等的设计; 2)所需换热器、泵的计算及选型; 关键词:二甲醚,甲醇,工艺设计。

Abstract: As LPG and oil alternative fuel, DME has drawn attentions at present. Physical properties of DME is similar for LPG, and don’t produce combustion gas to damage the environment, so, It can be produced largely. Like methane, DME is expected to become 21st century energy resources., DME is prepared by methanol dehydration, namely, synthetic methanol first and then methanol dehydration to dimethyl etherby methanol dehydration. Methanol dehydration to DME is divided into two kinds of liquid phase and gas-phase process. This design uses a process gas of dimethyl ether prepared by dimethyl. Heating methanol to evaporation, methanol vapor through the γ-AL2O3catalyst bed, vapor methanol dehydration to dimethyl etherby. This process is made of methanol process heating, evaporation, dehydration of methanol, dimethyl ether condensation and distillation etc. Completed for the following work: 1) Distillation tower used in separation of dimethyl ether and methanol recovery , column height of tower ,diameter, arrangement of column plate etc; 2) The calculation and selection of heat exchanger, pump;

发动机代用燃料的发展

发动机代用燃料的发展 目前, 汽油机和柴油机依然是车用发动机的主要机种。而汽油和柴油都是不可再生 资源。随着汽车工业的迅猛发展,对石油的需求量越来越大。我国从 1993 年起,已由石油输出国成为石油进口国,到2000 年,进口石油已达 6 300 万 t,可以预计,随着国家经济的发展,石油进口量还会增加。据美国能源部和世界能源理事会预测,全球的石油产量在 2010~ 2025 年间将达到最大值。全球矿物燃料资源的预测生命期,石油为40 年,天然气为60 年,煤为220 年。日趋严重的能源危机对发动机的常规燃料提出了新的挑战。同时,由于世界汽车保有量的增加和各国对环保的重视,车用发动机面临着既要继续提高现有性能,又要降低排放的双重压力。而发动机的排放成分除与发动机的燃烧过程组织有关外,还与发动机的燃料有直接的关系。汽油和柴油在改善废气的有害排放方面可做的工作已经相当有限,许多国家目前已把研究的目光转向寻求污染较小的代用燃料,这一方面可有效地减少废气的排放,另一方面也可保存原油产品和保护能源。所谓代用燃料,是指能够取代或部分取代目前内燃机传统燃油 (汽油、柴油、煤油)的燃料。良好的代用燃料应能满足下列要求: 资源丰富、价格适宜;燃料的热值尤其是混合气热值能满足发动机动力性能的要求;能满足车辆起动性能、行驶性能以及加速性能等方面的要求;能量密度较高、储存运输方便;发动机的结构变动较小、技术上可行; 现有的燃料储运分配系统能用得上;对人类健康、环境保护以及安全防火等无有害的影响; 对发动机的寿命以及可靠性没有不良影响。已开发的代用燃料有气态烃 (压缩天然气(C N G)、液化天然气(L N G)、液化石油气 ( LPG ) )、醇燃料、二甲醚、生物柴油、氢、燃料电池等。下面足以介绍一下每种代用燃料的发展状况。 天然气: 天然气(Na t u r a l Ga s ,简称 NG) 是一种无色、无味的气体,9 0 %以上成分为 甲烷( C H 4 )。由于天然气拥有资源丰富、污染很小、经济和安全上的优势,从而得到了大力地推广,它是一种很好的清洁燃料。天然气具有如下比较突出的优点:( 1 )着火极限宽。 ( 2 )抗爆燃性能好。 ( 3 )排放污染小。 ( 4 )发动机寿命延长 ( 5 )燃料经济性好,使用费较低。 ( 6 )安全性高。正是由于天然气汽车具有上述优点,在世界日益重视环境保护、车辆安全性能和经济性能的背景下,天然气汽车的发展前景越来越广阔。作为车用燃料的替代品,天然气根据其存在形式不同, 分为压缩天然气( C o mp r e s s e d Na t u r a l G a s,NG ) 液化天然气( L i q u e f i e d Na t u r a l G a s,简称 L NG) 。压缩天然气是将天然气经过脱水、 脱硫净化处理后,经多级压缩至20Mpa左右存贮在气瓶中,使用时经减压器减压后供给发动机燃烧即可。现在天然气汽车中运用最为广泛的就是CNG,它的技术要求较LNG要低,但也存在一些问题,如续驶里程小等缺点。液化天然气是将天然气经过一定工艺,使其在162℃左右变为液态,存贮在高压气瓶中。由于液化天然气对贮存技术要求较高,使得贮存容器的成本高,这从一定程度上限制了液化天然气汽车的发展。但由于液化天然气在贮存能量密度、汽车续驶里程、贮存容器压力等方面均优于压缩天然气,能解决压缩天然气汽车存在的一些问题,所以液化天然气作为天然气的使用方式之一,是今

新能源汽车的现状与发展趋势

新能源汽车的现状与发展趋势 摘要:在能源危机和环境污染问题的压力下,寻找替代石油的新能源车成了必然的选择。本文对新能源汽车包括混合动力汽车、纯电动汽车、燃料电池汽车等定义、分类及特点进行了总结,综述了各类新能源汽车最新技术进展及其性能,通过分析新能源汽车应用现状,指出纯电动汽车和燃料电池汽车推广应用需解决的问题,对各类新能源汽车的发展前景进行了展望。 关键词:混合动力汽车,纯电动汽车,燃料电池,技术,现状,应用前景。 1 前言 1.1寻求新动力源的背景 随着世界能源危机和环保问题日益突出,汽车工业面临着严峻的挑战。一方面,石油资源短缺,汽车是油耗大户,且目前内燃机的热效率较低,燃料燃烧产生的热能大约只有35%—40%用于实际汽车行驶,节节攀升的汽车保有量加剧了这一矛盾;另一方面,汽车的大量使用加剧了环境污染,城市大气中CO的82%、NOx的48%、HC 加剧了温室效应,汽车的58%和微粒的8%来自汽车尾气,此外,汽车排放的大量CO 2 噪声是环境噪声污染的主要内容之一。我国作为石油进口国和第二大石油消费大国,污染严重,世行认定的20个污染最严重的城市有16个在中国。国内汽车产品水平与国外差距很大,平均油耗高出10%—30%,排放约为15—20倍,汽车工业面临的压力更大。 《新能源汽车生产企业及产品准入管理规则》已于2009年7月1日正式实施,《规则》强调说明:新能源汽车是指采用非常规的车用燃料作为动力来源(或使用常规的车用燃料、采用新型车载动力装置),综合车辆的动力控制和驱动方面的先进技术,形成的技术原理先进、具有新技术、新结构的汽车。新能源汽车包括混合动力汽车、纯电动汽车(BEV,包括太阳能汽车)、燃料电池电动汽车(FCEV)、氢发动机汽车、其他新能源(如高效储能器、二甲醚)汽车等各类别产品。 1.2我国发展新能源汽车的重要意义 (1)发展新能源汽车是国民经济可持续发展的需要 我国用于汽车能源的石油资源是有限的,在几十年后必然会出现枯竭,要大量依赖从

甲醇制二甲醚

甲醇制二甲醚的生产工艺及催化剂的研究摘要:二甲醚应用广泛,主要用于气雾剂、溶剂和燃料。作为氟里昂的替代产品,对大气臭氧层没有破坏,还可作为冷冻剂、萃取剂等。可作为民用燃料代替天然气、液化石油气、人工煤气。作为车用燃料可以解决我国石油紧张和汽车尾气排放带来的环境污染问题。二甲醚碳烟排放和微粒排放几乎为零,没有加速烟尘,一氧化碳和醛类有害物质排放都低于世界上最严格的美国加州排放标准。以至于甲醇制二甲醚的生产工艺及催化剂的研究成为了工业发展的要求。 关键词:甲醇二甲醚气相脱水法催化剂 目前,世界上主要有4个致力于研究二甲醚特性及应用的组织,分别是国际二甲醚协会(IDA)、日本二甲醚论坛(JDF)、韩国二甲醚论坛(KDF)、中国二甲醚协会(CDA)。2006年,日本二甲醚论坛首度发行了二甲醚使用手册,详细介绍了二甲醚的相关知识和发展历程。 2010年9月2日,国家质量监督检验检疫总局、国家标准化管理委员会联合批准发布国家标准GB 25035—2010《城镇燃气用二甲醚》,并自2011年7月1日起实施。该标准严格规定了二甲醚的质量,使得二甲醚的应用有章可循。国家标准《液化二甲醚气瓶》、国家标准《液化二甲醚气瓶阀》、国家标准《家用二甲醚燃气灶具》、行业标准《耐二甲醚密封材料》、行业标准《瓶装液化二甲醚调压器》等也正在编制中。相关标准规范的不断完善,对推广二甲醚作为城镇燃气发挥了重要作用。[1] 1 生产工艺研究 甲醇气相脱水法,是目前国内外使用最多的生产二甲醚工业方法,化学反应如下: 主要副反应: 2CH 3OH=H 3 COCH 3 +H 2 O CH 3OH=CO+2H 2 H 3COCH 3 =CH 4 +H 2 +CO CO+H 2O=CO 2 +H 2 2CH 3OH=C 2 H 6 +2H 2 O

二甲醚生产流程

二甲醚的生产方法最早是由高压甲醇生产中的副产品 精馏后制得,随着低压合成甲醇技术的广泛应用,副反应大大减少,二甲醚的工业生产技术很快发展到甲醇脱水或合成气直接合成工艺。甲醇脱水法包括液相甲醇法和气相甲醇法,前者的反应在液相中进行,甲醇经浓硫酸脱水而制得,但因该法存在装置规模小、设备易腐蚀、环境污染、操作条件恶劣等问题,逐步被淘汰。近年来,二甲醚的需求量增长较大,各国又相继开发投资省、操作条件好、无污染的新工艺,主要包括二步法和一步法。 二步法先由合成气制取甲醇,然后将甲醇在催化剂下脱水制取二甲醚。以前主要采用硫酸作催化剂,现在大多采用由γ-Al2O3/SiO2制成的ZSM-5分子筛作催化剂,性能优良,选择性好,故能制备出高纯的二甲醚,还能避免污染。 一步法由合成气直接制取二甲醚,包括合成气进入反应器内同时完成甲醇合成与甲醇脱水两个反应和水-煤气变换反应,产物为甲醇与二甲醚的混合物,混合物经蒸馏分离得二甲醚,未反应的甲醇返回反应器。一步法多采用双功能催化剂,一般由两类催化剂混合而成,其中一类为合成甲醇催化剂,另一类为甲醇脱水催化剂。合成甲醇催化剂包括Cu-Zn-Al (O)基催化剂,如BASF、S3-85和I-CI-512等。甲醇脱水催化剂有氧化铝、多孔SiO2-Al2O3、Y型分子筛、ZSM-5分子筛、丝光沸石等。一步法根据反应器类型分为固定床和浆

态床两种。 一步法制二甲醚的反应可分为以下几步: CO+H2—>CH3OH -ΔH=90.7kJ/mol (1) 2CH3OH—>CH3OCH3+H2O -ΔH=23.5kJ/mol (2) CO+H2O—>CO2+H2 -ΔH=41.2kJ/mol (3) 总反应式:3CO+3H2—>CH3OCH3+CO2 -ΔH=246.1kJ/mo l (4) 一步法与二步法相比较,各有优势。一步法中CO的转化率远高于二步法,但在一步法中,由于三个反应必须同时发生,且三个反应均为放热反应,这就要求所用的催化剂有很好的耐热性,在高温下具有高选择性。一步法生产的二甲醚一般用作醇醚燃料,若想生产高纯度,还需进一步分离提纯。二步法的转化率虽然不如一步法高,但是它具有生产工艺成熟,装置适应性广,后处理简单等特点,既可直接建在甲醇生产厂,也可建在其它公用设施好的非甲醇生产厂。与一步法相比,二步法合成流程稍长,但两类催化剂装在不同反应器,互不干扰。从目前的技术发展趋势来看,一步法具有流程短、设备效率高、操作压力低和CO单程转化率高等特点,使得设备投资费用和操作费用大大减少,合成二甲醚的生产成本较两步法大幅度降低。因此,一步法经济上更加合理,市场上更具竞争力,总体上来说更具技术优势。 根据反应过程的相态和工艺特点来分,合成气一步法制二甲

新型抛射剂二甲醚之替代性及实用性

抛射剂二甲醚的应用前景及其他 一、抛射剂种类及演进 1.压缩气体Compressed Gases 压缩气体用的比液态气体更早,远在1869年即已被采用,比较常用者有:CO2二氧化碳、N2O氧化氮、及N2氮气,然而因其压力太高,例如:在21.1℃时,其压力为:CO2-837 PSIG,N2O-720 PSIG,N2-477 PSIG,除此之外,这些气体时常会与罐内的组成份互溶,所有的抛射的动力便消失。后来有了氟氯碳化物CFCS的大量生产,此压缩气体日渐减少为业者所采用,到了1950年以后就难得见到大量的压缩气体式产品了。 2.氟氯碳化合物Chlorofluorocarbons-CFCS(氟里昂Freons) 在二次世界大战前,氟氯碳化物只在冷冻及冷气空调方面使用,二次大战期间,因野战军人之需要,杜邦公司等以CFCS发展在杀虫剂之抛射剂上。使用氟里昂Freons 12,因为它具有不燃性等多项优点,得到快速发展,自此以后,因为压力的要求或配方的需要,及各类产品的增产,逐渐发展氟里昂Freons 11、12、21、31、32、113、114、115、123、124、125等,后因市场的大量需求,除了杜邦公司外,美国的Allied chemical Corp.、Kaiser Chemical,英国Imperial Chemical、ISC Co. ,日本的Mitsui、Daiker、Asahi、Showa等约50家厂商争先恐后设厂,其名称除杜邦的Freons,如有Genetron、Kaiser、Isotron、Arcton,日本的Daiflon、Asahiflon、Flon-showa等不一,琳琅满目,而且产品项目除了各类杀虫剂外也扩展到了化妆品、家庭用品、食品、工业用品等,仅在美国,1974年就生产了430万罐到1973年达到30亿罐。世界总产量1982年为59万吨,1983年63万吨、1984年90万吨、1986年105万吨,因为大量的耗用CFCS,却造成了难以弥补的灾难。 1974年美国加州大学F.S.Rowland教授及M.J.Molina 博士发表“环境中的氟氯甲烷”,指责CFCS是破坏地球外表平流层臭氧的元凶。美国气相卫星观测资料1978年到1984年大气层中臭氧减少3%,严重的是臭氧层每减少1%,地球紫外线就增强2%,人类皮肤病患率提

二甲醚现场处置方案

二甲醚安全事故现场处置方案 我厂二甲醚生产装置年生产能力20万吨,罐区容量1万方,构成重大危险源。二甲醚易燃、易爆、有毒,在设备失效、泄漏、操作失控或自然灾害情况下,存在发生火灾、爆炸、人员中毒等严重事故的潜在危险。为防止二甲醚在由于各种原因造成火灾、爆炸及其它危害时,能及时控制危害源,抢救受伤人员,扑灭火灾,制定现场处置方案。 1、事故特征与成因 1.1、生产设备串气至二甲醚球罐发生爆炸着火。 1.2、二甲醚装置、球罐发生泄漏、溢流或被引燃着火。 1.3、操作人员责任心差,未按照相关规程操作或超出指标要求。1.4、界区内违章动火作业造成事故。 1.5、雷击、静电等原因造成着火、爆炸事故。 1.6、装置区内设备腐蚀、老化造成设备本身存在缺陷。 1.7、由于电气、仪表本身质量问题或存在缺陷造成工艺事故。 1.8、由于灌装操作不当或外来人员违章行为造成事故。 2、应急组织与职责 2.1、应急组织 二甲醚车间成立事故应急自救小组,作为事故初期救援及处理的机构。 组长:二甲醚车间主任 副组长:二甲醚车间副主任、当班值班长 成员:中控室操作、罐区、灌装现场及巡检人员。

紧急电话:6070(二甲醚车间办公室电话) 2.2、应急自救小组职责 2.2.1、分析存在的危险有害因素,制定二甲醚事故预防及应急处置措施。2.2.2、告知从业人员作业场所和工作岗位存在的危险有害因素、防范措施和事故应急处置措施,督促各单位对干部职工进行应急处置措施贯彻学习和演练,提高应急救援能力。 2.2.3、发生事故后立即组织自救,防止事故扩大,将事故危害降到最低。2.2.4、根据事故情况及应急自救程度,对抢险救灾方案进行决策指挥,确定相应报警级别和应急救援级别,对应急救援工作中发生的争议问题进行裁决和紧急处理。 2.2.5、指挥、调度我厂医疗抢救,后勤支援等工作,调度解决抢险救灾所需资金和救灾物资。 2.2.6、督察应急处置人员的行动,保护现场抢救和现场以外其他人员的安全。 2.2.7、对事故秩序维护、事故调查、事故善后处理、恢复生产等工作进行检查和督促落实 2.2.8、宣布应急恢复、应急结束。 2.3、应急处置自救小组成员的职责 2.3.1、组长是处理灾害事故的全权指挥者,在副组长的协助下,制定事故的处置计划。

二甲醚汽车发展趋势

二甲醚汽车发展趋势 二甲醚优良的理化特性,广泛的来源使其成为非常合适的车用燃料替代品。介绍了二甲醚汽车的理化特性,我国二甲醚汽车研究发展现状,提出了一些未来发展二甲醚汽车所要克服的问题。 标签:车用燃料;二甲醚 能源是国家经济发展的基础,近年来我国能源消耗逐年递增,伴随着传统化石能源的日益枯竭,不断加重的环境污染问题,人们迫切需要寻找新的清洁能源来代替化石燃料,新的清洁能源必须符合我国能源资源条件,能够减轻环境污染,技术可行,并且经济上合理。 二甲醚既可以改变我国现阶段柴油供应量不足的现状,又能够满足机动车尾气排放环保方面的要求,因此推广二甲醚发动机汽车意义非常重大二甲醚车用新能源对发展具有中国资源特色的汽车代用燃料,保证我国能源安全及环境保护具有重大战略意义。 1.二甲醚的理化特性 二甲醚(DME),是一种无色无味的气体,具有优良的燃烧性能,清洁、十六烷值高、动力性能好、污染少,稍加压即变为液体,非常适合作为压燃式发动机的代用能源。二甲醚相比于柴油机作为发动机主要有以下优点: ①二甲醚没有C-C键,只有C-0键和C-H键,且含有34%的氧,因此燃烧后生成的CO、CH和微粒少,发动机能够承受较高的排气再循环率可以减低的生成与排放。 ②二甲醚理论混合气热值为3066.7KJ/Kg,二柴油理论混合气热值为2911KJ/Kg。因此二甲醚发动机的升功率不仅不会降低,反而会升高。 ③二甲醚的汽化潜热为柴油的1.6 4倍,如果按等放热量计算,二甲醚的汽化潜热为柴油的253倍,因此会大幅降低柴油机的最高燃烧温度,改善NOx排放。 2.二甲醚在汽车上的应用方式 鉴于二甲醚的理化特性,一般将二甲醚作为柴油机发动机的替代燃料,在汽油机上一般作为汽油助燃剂或者以复合燃料方式应用于点燃式发动机。其应用主要有以下几种方式: (1)纯液态二甲醚缸内直喷压燃式,由于二甲醚的十六烷值高,适用于压燃式发动机的燃料,尤其是纯烧二甲醚可以获得相当优良的综合性能。

甲醚生产工艺

二甲醚及生产工艺 1、二甲醚的基本概况 二甲醚别名:甲醚 英文名称:methyl ether;dimethyl ether;DME CAS编号:115-10-6 分子式:C2H6O 结构式:CH3—O—CH3 二甲醚又称甲醚,简称DME。二甲醚在常压下是一种无色气体或压缩液体,具有轻微醚香味。相对密度(20℃)0.666,熔点 -141.5℃,沸点-24.9℃,室温下蒸气压约为0.5MPa,与石油液化气(LPG)相似。溶于水及醇、乙醚、丙酮、氯仿等多种有机溶剂。易燃,在燃烧时火焰略带光亮,燃烧热(气态)为1455kJ/mol。常温下DME具有惰性,不易自动氧化,无腐蚀、无致癌性,但在辐射或加热条件下可分解成甲烷、乙烷、甲醛等。 二甲醚是醚的同系物,但与用作麻醉剂的乙醚不一样,毒性极低;能溶解各种化学物质;由于其具有易压缩、冷凝、气化及与许多极性或非极性溶剂互溶特性,广泛用于气雾制品喷射剂、氟利昂替代制冷剂、溶剂等,另外也可用于化学品合成,用途比较广泛。 2 生产原理 生产方法简介

目前国内外二甲醚生产方法主要有合成气一步法和甲醇法。甲醇法又分为甲醇气相法和甲醇液相法。合成气一步法的工业化技术尚未成熟,理由是: ①现有的技术未经装置检验; ②即使按现有技术,其生产成本也高于甲醇气相法 反应方程式 合成气一步法以合成气(CO + H2 )为原料,合 成甲醇反应和甲醇脱水反应在一个反应器中完成, 同时伴随CO的变换反应。其反应式如下。 2CO + 4H2 = 2CH3OH CO +H2O =CO2 +H2 2CH3OH =CH3OCH3 +H2O 总反应: 3CO + 3H2 =H3COCH3 +CO2 甲醇液相法: 甲醇脱水反应在液相、常压或微正压、130 ~130 ℃下进行。其化学反应式如下: 2CH3OH =H3COCH3 +H2O 甲醇气相法: 催化剂为ZSM分子筛、磷酸铝或γ2Al2O3。 甲醇脱水反应的化学反应式如下。 主反应: 2CH3OH =H3COCH3 +H2O

新能源汽车发展现状调查报告

新能源汽车发展现状调查报 告 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

新能源汽车发展现状调查报告 调查背景:新能源汽车是指采用非常规的车用燃料作为动力来源,或者使用常规的车用燃料、采用新型车载动力装置,综合车辆的动力控制和驱动方面的先进技术,形成的技术原理先进、具有新技术、新结构的汽车。其尾气排放小甚至是零排放的优点,能有效降低CO2的排放量,起到了保护环境的作用,对可持续发展具有重要意义。新能源汽车包括混合动力汽车、纯电动汽车(太阳能汽车)、燃料电池电动汽车、氢发动机汽车、其他新能源(如高效储能器、二甲醚)汽车等各类别产品。 目前汽车业是我国经济发展的重要支柱,但我国的石油资源却仅占世界石油资源的2%,人口数量却占世界总量的22%。汽车业发展给我国环境保护带来了很大的压力,废气、噪音时刻影响着城市的环境。近年来全球石油资源日趋紧张、价格屡创新高,以及严重的大气污染和地球温室效应的加剧,新的能源来代替对传统石油资源的依赖,特别是科技和电力驱动技术得到不断发展完善下,新能源汽车将作为未来汽车的主要发展方向。 基于汽车新能源市场的发展,以及对传统能源的改进,促进了环境的可持续发展,同时节省能量源资源,有利于汽车新能源的进一步优化升级和产业结构的革新。未来将会实现新能源的广泛普及利用,而汽车是所有人都特别关注的焦点产业,大学生们也将会是未来使用新能源汽车的潜在大势群体,所以很有必要对他们进行关于新能源汽车的问卷调查。 调查目的:了解新能源汽车的未来发展趋势,对未来新能源汽车发展的建议和汽车产业结构优化升级的科学意义。 对象一一大学生:调查方法:问卷针对性地调查在读大学生。 调查地点:在附近区域内的三所大学进行调查。 调查数据分析: 1.调查对象的性别构成:

二甲醚的生产方法有多种

二甲醚的生产方法有多种,工业装置以甲醇法为主。甲醇法分为气相催化脱水法和液相催化脱水法。其代表分别为西南院和山东久泰。合成气一步法直接合成二甲醚的生产技术尚不完善。 最近有两套10万吨/年二甲醚装置刚刚投产,分别是湖北天茂和河北中捷石化,设计单位分别是西南院和东华工程公司(大连化物所技术),都是甲醇气相法。 总体来讲,甲醇气相脱水法是用的比较广的一项技术。 二甲醚的生产方法主要有硫酸法、甲醇气相催化脱水法、合成气一步法直接合成二甲醚法。硫酸法虽然反应条件温和,甲醇单程转化率高(>85%),可间歇或连续生产,但设备腐蚀严重,残液及废水对环境污染严重,操作条件苛刻,产品难以脱除微量杂质,有异味,产品质量差,属淘汰工艺;而以合成气(H2+CO)直接法合成二甲醚的生产技术目前尚不成熟。二甲醚国内外现有大型工业生产装置主要采用成熟的甲醇气相催化脱水法。 表4-6 二甲醚生产工艺技术比较 对比项目甲醇气相催化脱水法合成气一步成法甲醇液相催化脱水法备注 [wiki]催化剂[/wiki] 固体酸催化剂(γ-Al2O3) 多功能催化剂以硫酸为主的复合催化剂(含磷酸) 原料精甲醇、粗甲醇富CO的合成气, 理想合成气组份H2/CO=1 精甲 醇气相法以粗甲醇为原料,成本大幅降低 技术成熟程度成熟技术有待完善成熟 流程长短流程略长,二甲醚的分离和精馏简单流程略短,二甲醚的分离和精馏较复杂流程长 甲醇单程转化率 78~88% 88~95% 反应温度,℃ 230~360 250~300 160~200 反应压力,MPa 0.1~0.5 2.5~6.0 0.04~0.15 反应系统材质碳钢或普通不锈钢石墨等耐酸腐蚀材料 甲醇消耗 1.40~1.43/tDME 1.41~1.45/tDME 电力消耗≤10kw.h≥100kw.h液相法电耗太高 水蒸汽 消耗 1.45t/tDME 1.44 t/tDME 投资比较低,投资系数100%(基准) 软件费及专利设备费高,总体投资较高/105%(按现有资料估算)高,投资系数/30~300% 液相投资高 产品质量≥99.9 ~99 ~99 工程放大简单,反应系统单系列在缺乏足够试验数据情况下,建设大规模装置,工程风险很大难度大,反应器需多套并联 毒性除甲醇外无其他有毒介质甲醇、一氧化碳等磷酸、磷酸盐毒性大、中间产物硫酸氢甲酯为极度危害介质 废酸处理无废酸处理问题无废酸处理问题需处理硫酸、磷酸等废酸 环境保护无“三废”有废水处理投资、能耗高

国内外二甲醚场和生产工艺分析

国内外二甲醚市场和生产工艺分析 国内外二甲醚市场和生产工艺分析 目前二甲醚组成的合资公司将在澳大利亚建设140-240万吨/年的大规模二甲醚装置,定于2006年投产。 目前二甲醚的主要消费领域是作溶剂和气雾剂的推动剂,其它方面的消费不多。2002年

相关文档
最新文档