第4章 第6讲 - 圆环或圆筒受均布压力

第4章 第6讲 - 圆环或圆筒受均布压力
第4章 第6讲 - 圆环或圆筒受均布压力

第四章平面问题的极坐标解答第6讲圆环或圆筒受均布压力

1

2

22(12ln (32l 20))2n C C A B A B

(ln 1)(13)2(1)s 1(1)in si 2(1n c )cos 4os B C K u I A

u B E I B H E

K

轴对称应力状态下位移的一般性解答(平面应力问题):

对于平面应变问题,只需

2

, 1.1E E

22(12ln (32l 20))2n C C A B A B

r 2R q 1r q 应力边界条件:

n os 4si c H B K E

u I

同一个点,只能有一个确定的位移

位移单值条件要求

B 2(12ln )2

C R B q …… ②

1(12ln )2C r B q …… ①…… ③

1

q ------

2

q ---压应力

---

7

思考题

2. 圆柱体受外压q 作用,试求其内应力分量。1. 圆筒受外压q 作用,而内边界固定,试求其内应力分量。q

R

O

q

R

r

O

提示:考虑坐标原点处应力应有界,即不能趋于无穷。

提示:考虑内边界的位移边界条件。

土压力计算方法.

第五章土压力计算 本章主要介绍土压力的形成过程,土压力的影响因素;朗肯土压力理论、库仑土压力理论、土压力计算的规范方法及常见情况的土压力计算;简要介绍重力式挡土墙的设计计算方法。 学习本章的目的:能根据实际工程中支挡结构的形式,土层分布特点,土层上的荷载分布情况,地下水情况等计算出作用在支挡结构上的土压力、水压力及总压力。 第一节土压力的类型 土体作用在挡土墙上的压力称为土压力。 一、土压力的分类 作用在挡土结构上的土压力,按挡土结构的位移方向、大小及土体所处的三种平衡状态,可分为静止土压力E o,主动土压力E a和被动土压力E p三种。 1.静止土压力 挡土墙静止不动时,土体由于墙的侧限作用而处于弹性平衡状态,此时墙后土体作用在墙背上的土压力称为静止土压力。 2.主动土压力 挡土墙在墙后土体的推力作用下,向前移动,墙后土体随之向前移动。土体内阻止移动的强度发挥作用,使作用在墙背上的土压力减小。当墙向前位移达主动极限平衡状态时,墙背上作用的土压力减至最小。此时作用在墙背上的最小土压力称为主动土压力。 3.被动土压力 挡土墙在较大的外力作用下,向后移动推向填土,则填土受墙的挤压,使作用在墙背上的土压力增大,当墙向后移动达到被动极限平衡状态时,墙背上作用的土压力增至最大。此时作用在墙背上的最大土压力称为被动土压力。 大部分情况下作用在挡土墙上的土压力值均介于上述三种状态下的土压力值之间。 二、影响土压力的因素 1.挡土墙的位移 挡土墙的位移(或转动)方向和位移 量的大小,是影响土压力大小的最主要的因 素,产生被动土压力的位移量大于产生主动 土压力的位移量。 2.挡土墙的形状 挡土墙剖面形状,包括墙背为竖直或是 倾斜,墙背为光滑或粗糙,不同的情况,土压力的计算公式不同,计算结果也不一样。 3.填土的性质 挡土墙后填土的性质,包括填土的松密程度,即重度、干湿程度等;土的强度指标内摩擦角和粘聚力的大小;以及填土的形状(水平、上斜或下斜)等,都

土力学第六章 土压力计算

第六章挡土结构物上的土压力 第一节概述 第五章已经讨论了土体中由于外荷引起的应力,本章将介绍土体作用在挡土结构物上的土压力,讨论土压力性质及土压力计算,包括土压力的大小、方向、分布和合力作用点,而土压力的大小及分布规律主要与土的性质及结构物位移的方向、大小等有关,亦和结构物的刚度、高度及形状等有关。 一、挡土结构类型对土压力分布的影响 定义:挡土结构是一种常见的岩土工程建筑物,它是为了防止边坡的坍塌失稳,保护边坡的稳定,人工完成的构筑物。 常用的支挡结构结构有重力式、悬臂式、扶臂式、锚杆式和加筋土式等类型。 挡土墙按其刚度和位移方式分为刚性挡土墙、柔性挡土墙和临时支撑三类。 1.刚性挡土墙 指用砖、石或混凝土所筑成的断面较大的挡土墙。 由于刚度大,墙体在侧向土压力作用下,仅能发身整体平移或转动的挠曲变形则可忽略。墙背受到的土压力呈三角形分布,最大压力强度发生在底部,类似于静水压力分布。2.柔性挡土墙 当墙身受土压力作用时发生挠曲变形。 3.临时支撑 边施工边支撑的临时性。 二、墙体位移与土压力类型 墙体位移是影响土压力诸多因素中最主要的。墙体位移的方向和位移量决定着所产生的土压力性质和土压力大小。 E) 1.静止土压力( 墙受侧向土压力后,墙身变形或位移很小,可认为墙不发生转动或位移,墙后土体没 E。 有破坏,处于弹性平衡状态,墙上承受土压力称为静止土压力 E) 2.主动土压力( a

挡土墙在填土压力作用下,向着背离填土方向移动或沿墙跟的转动,直至土体达到主动平衡状态,形成滑动面,此时的土压力称为主动土压力。 3.被动土压力(p E ) 挡土墙在外力作用下向着土体的方向移动或转动,土压力逐渐增大,直至土体达到被动极限平衡状态,形成滑动面。此时的土压力称为被动土压力p E 。 同样高度填土的挡土墙,作用有不同性质的土压力时,有如下的关系: p E >0E > a E 在工程中需定量地确定这些土压力值。 Terzaghi (1934)曾用砂土作为填土进行了挡土墙的模型试验,后来一些学者用不同土作为墙后填土进行了类似地实验。 实验表明:当墙体离开填土移动时,位移量很小,即发生主动土压力。该位移量对砂土约,(h 为墙高),对粘性土约。 当墙体从静止位置被外力推向土体时,只有当位移量大到相当值后,才达到稳定的被动土压力值p E ,该位移量对砂土约需,粘性土填土约需,而这样大小的位移量实际上对工程常是不容许的。本章主要介绍曲线上的三个特定点的土压力计算,即0E 、a E 和p E 。

(整理)土主动、被动土压力概念及计算公式

主动土压力 挡土墙向前移离填土,随着墙的位移量的逐渐增大,土体作用于墙上的土压力逐渐减小,当墙后土体达到主动极限平衡状态并出现滑动面时,这时作用于墙上的土压力减至最小,称为主动土压力P a 。 被动土压力 挡土墙在外力作用下移向填土,随着墙位移量的逐渐增大,土体作用于墙上的土压力逐渐增大,当墙后土体达到被动极限平衡状态并出现滑动面时,这时作用于墙上的土压力增至最大,称为被动土压力P p 。上述三种土压力的移动情况和它们在相同条件下的数值比较,可用图6-2来表示。由图可知P p >P o >P a 。 朗肯基本理论 朗肯土压力理论是英国学者朗肯(Rankin )1857年根据均质的半无限土体的应力状态和土处于极限平衡状态的应力条件提出的。在其理论推导中,首先作出以下基本假定。 (1)挡土墙是刚性的墙背垂直; (2)挡土墙的墙后填土表面水平; (3)挡土墙的墙背光滑,不考虑墙背与填土之间的摩擦力。 把土体当作半无限空间的弹性体,而墙背可假想为半无限土体内部的铅直平面,根据土体处于极限平衡状态的条件,求出挡土墙上的土压力。 如果挡土墙向填土方向移动压缩土体,σz 仍保持不变,但σx 将不断增大并超过σz 值,当土墙挤压土体使σx 增大到使土体达到被动极限平衡状态时,如图6-4的应力园O 3,σz 变为小主应力,σx 变为大主应力,即为朗肯被动土压力(p p )。土体中产生的两组破裂面与水平面的夹角为2 45?- ?。 朗肯主动土压力的计算 根据土的极限平衡条件方程式 σ1=σ3tg 2 (45°+2?)+2c ·tg(45°+2?) σ3=σ1tg 2(45°-?)-2c ·tg(45°-?)

第六章 土压力和挡土墙题解-1

第六章 土压力和挡土墙 一、名 词 释 义 1.挡土墙:用来支撑天然或人工土坡,防止土体滑坍的构筑物。 2.土压力:墙后填土的自重或填土表面上的荷载对墙产生的侧向压力。 3.刚性挡土墙:指用砖石或混凝土所筑成的断面较大、在土压力作用下仅能发生整体平移或转动、墙身挠曲变形可忽略不计的挡土墙。 4.柔性挡土墙:挡土结构物自身在土压力作用下发生挠曲变形,结构变形影响土压力的大小和分布,这种类型挡土结构物称为柔性挡土墙。 5. 重力式挡土墙:依靠墙本身重量维持其抗倾覆和抗滑移稳定性的刚性挡土墙。 6. 静止土压力:挡土墙在墙后填土的推力或其他外力作用下,不发生任何移动 或滑动,这时墙背上的土压力,称为静止土压力。 7. 主动土压力:挡土墙受到墙后填土的作用产生离开填土方向的移动,当移动 量足够大,墙后填土土体处于极限平衡状态时,墙背上的土压力称为主动土压力。 8.被动土压力:挡土墙受外力作用向着填土方向移动,挤压墙后填土使其处于极限平衡状态时,作用在墙背上的土压力称为被动土压力。 9.朗肯土压力理论:根据半空间的应力状态和土的极限平衡条件得出土压力的计算方法。 10.临界深度:对墙后填土为粘性土的挡土墙,若离填土面某一深度处的主动土压力等于零,该深度称为临界深度。 11. 库仑土压力理论:是根据墙后土体处于极限平衡状态并形成一滑动楔体时, 从楔体的静力平衡条件得出土压力的理论。 12.坦墙:墙后土体破坏时,滑动土楔不沿墙背滑动,而沿第二滑裂面滑动的墙背比较平缓的挡土墙。 二、填 空 题 1. 根据墙的位移情况和墙后土体所处的应力状态,土压力可分为 、 和被动土压力三种。 Δ,与产生被动土压力所需的墙身 2.在相同条件下,产生主动土压力所需的墙身位移量 a Δ。 位移量,的大小关系是 p 3.在挡土墙断面设计验算中考虑的主要外荷载是 。 4.挡土墙按其刚度及位移方式可分为 、 和临时支撑三类。 5.根据朗肯土压力理论,当墙后土体处于主动土压力状态时,表示墙后土体单元应力状 态的应力圆与土体抗剪强度包线的几何关系是 。 6. 根据朗肯土压力理论,当墙后土体处于被动土压力状态时,表示墙后土体单元应力 状态的应力圆与土体抗剪强度包线的几何关系是 。 7.挡土墙墙后土体处于朗肯主动土压力状态时,土体剪切破坏面与竖直面的夹角为 ;当墙后土体处于朗肯被动土压力状态时,土体剪切破坏面与水平面的夹角为 。 8. 若挡土墙墙后填土抗剪强度指标为c,?,则主动土压力系数等于 ,被动土 压力系数等于 。 9. 墙后为粘性填土时的主动土压力强度包括两部分:一部分是由土自重引起的土压 力,另一部分是由 引起的土压力。 10. 当挡土墙墙后填土面有均布荷载q作用时,若填土的重度为γ,则将均布荷载换算 成的当量上层厚度为 。

(完整版)土力学土压力计算

第六章 挡土结构物上的土压力 第一节 概述 第五章已经讨论了土体中由于外荷引起的应力,本章将介绍土体作用在挡土结构物上的土压力,讨论土压力性质及土压力计算,包括土压力的大小、方向、分布和合力作用点,而土压力的大小及分布规律主要与土的性质及结构物位移的方向、大小等有关,亦和结构物的刚度、高度及形状等有关。 一、挡土结构类型对土压力分布的影响 定义:挡土结构是一种常见的岩土工程建筑物,它是为了防止边坡的坍塌失稳,保护边坡的稳定,人工完成的构筑物。 常用的支挡结构结构有重力式、悬臂式、扶臂式、锚杆式和加筋土式等类型。 挡土墙按其刚度和位移方式分为刚性挡土墙、柔性挡土墙和临时支撑三类。 1.刚性挡土墙 指用砖、石或混凝土所筑成的断面较大的挡土墙。 由于刚度大,墙体在侧向土压力作用下,仅能发身整体平移或转动的挠曲变形则可忽略。墙背受到的土压力呈三角形分布,最大压力强度发生在底部,类似于静水压力分布。 2.柔性挡土墙 当墙身受土压力作用时发生挠曲变形。 3.临时支撑 边施工边支撑的临时性。 二、墙体位移与土压力类型 墙体位移是影响土压力诸多因素中最主要的。墙体位移的方向和位移量决定着所产生的土压力性质和土压力大小。 1.静止土压力(0E ) 墙受侧向土压力后,墙身变形或位移很小,可认为墙不发生转动或位移,墙后土体没有破坏,处于弹性平衡状态,墙上承受土压力称为静止土压力0E 。 2.主动土压力(a E ) 挡土墙在填土压力作用下,向着背离填土方向移动或沿墙跟的转动,直至土体达到主动平衡状态,形成滑动面,此时的土压力称为主动土压力。 3.被动土压力(p E ) 挡土墙在外力作用下向着土体的方向移动或转动,土压力逐渐增大,直至土体达到被动极限平衡状态,形成滑动面。此时的土压力称为被动土压力p E 。 同样高度填土的挡土墙,作用有不同性质的土压力时,有如下的关系: p E >0E > a E 在工程中需定量地确定这些土压力值。 Terzaghi (1934)曾用砂土作为填土进行了挡土墙的模型试验,后来一些学者用不同土作为墙后填土进行了类似地实验。 实验表明:当墙体离开填土移动时,位移量很小,即发生主动土压力。该位移量对砂土

土体主动、主动土压力概念及计算公式教学文稿

土体主动、主动土压力概念及计算公式

[指南]土体主动、主动土压力概念及计算公式主动土压力 挡土墙向前移离填土,随着墙的位移量的逐渐增大,土体作用于墙上的土压力逐渐减小,当墙后土体达到主动极限平衡状态并出现滑动面时,这时作用于墙上的土压力减至最小,称为主动土压力P。 a 被动土压力 挡土墙在外力作用下移向填土,随着墙位移量的逐渐增大,土体作用于墙上的土压力逐渐增大,当墙后土体达到被动极限平衡状态并出现滑动面时,这时作用于墙上的土压力增至最大,称为被动土压力P。上述三种土压力的移动情况和它们在相同条件下的数值比较,p 可用图6-2来表示。由图可知P,P,P。 poa 朗肯基本理论 朗肯土压力理论是英国学者朗肯(Rankin)1857年根据均质的半无限土体的应力状态和土处于极限平衡状态的应力条件提出的。在其理论推导中,首先作出以下基本假定。 (1)挡土墙是刚性的墙背垂直; (2)挡土墙的墙后填土表面水平; (3)挡土墙的墙背光滑,不考虑墙背与填土之间的摩擦力。 把土体当作半无限空间的弹性体,而墙背可假想为半无限土体内部的铅直平面,根据土体处于极限平衡状态的条件,求出挡土墙上的土压力。 如果挡土墙向填土方向移动压缩土体,ζ仍保持不变,但ζ将不断增大并超过ζ值,zxz当土墙挤压土体使ζ增大到使土体达到被动极限平衡状态时,如图6-4的应力园O,ζx3z变为小主应力,ζ变为大主应力,即为朗肯被动土压力(p)。土体中产生的两组破裂面与xp

,45:,水平面的夹角为。 2 朗肯主动土压力的计算 根据土的极限平衡条件方程式 ,,2ζ=ζtg(45?+)+2c?tg(45?+) 1322 ,,2ζ=ζtg(45?-)-2c?tg(45?-) 3122 土体处于主动极限平衡状态时,ζ=ζ=γz,ζ=ζ=p,代入上式得 1z3xa 1)填土为粘性土时 填土为粘性土时的朗肯主动土压力计算公式为 ,,2,ap=γztg(45?-)-2c?tg(45?-)=γzK-2c (6-3) aa22 由公式(6-3),可知,主动土压力p沿深度Z呈直线分布,如图6-5所示。a (一)Z 0 ZH-H30 HZPa-3 H γ2cHKa?Ka 图5,5粘性土主动土压力分布图 当z=H时p=γHK-2cK aaa 在图中,压力为零的深度z,可由p=0的条件代入式(6-3)求得 0a 2cz, (6-4) 0,Ka 在z深度范围内p为负值,但土与墙之间不可能产生拉应力,说明在z深度范围内,0a0 填土对挡土墙不产生土压力。墙背所受总主动土压力为P,其值为土压力分布图中的阴影部分面积,即a 1aaa0,,,,P(HK2cK)(Hz)2 (6-5) 212c2,,,,aaHK2cHK,2 2)填土为无粘性土(砂土)时 根据极限平衡条件关系方程式,主动土压力为

土体主动、主动土压力概念及计算公式

[指南]土体主动、主动土压力概念及计算公式主动土压力 挡土墙向前移离填土,随着墙的位移量的逐渐增大,土体作用于墙上的土压力逐渐减小,当墙后土体达到主动极限平衡状态并出现滑动面时,这时作用于墙上的土压力减至最小,称为主动土压力P。 a 被动土压力 挡土墙在外力作用下移向填土,随着墙位移量的逐渐增大,土体作用于墙上的土压力逐渐增大,当墙后土体达到被动极限平衡状态并出现滑动面时,这时作用于墙上的土压力增至最大,称为被动土压力P。上述三种土压力的移动情况和它们在相同条件下的数值比较,p 可用图6-2来表示。由图可知P,P,P。 poa 朗肯基本理论 朗肯土压力理论是英国学者朗肯(Rankin)1857年根据均质的半无限土体的应力状态和土处于极限平衡状态的应力条件提出的。在其理论推导中,首先作出以下基本假定。 (1)挡土墙是刚性的墙背垂直; (2)挡土墙的墙后填土表面水平; (3)挡土墙的墙背光滑,不考虑墙背与填土之间的摩擦力。 把土体当作半无限空间的弹性体,而墙背可假想为半无限土体内部的铅直平面,根据土体处于极限平衡状态的条件,求出挡土墙上的土压力。 如果挡土墙向填土方向移动压缩土体,ζ仍保持不变,但ζ将不断增大并超过ζ值,zxz当土墙挤压土体使ζ增大到使土体达到被动极限平衡状态时,如图

6-4的应力园O,ζx3z变为小主应力,ζ变为大主应力,即为朗肯被动土压力(p)。土体中产生的两组破裂面与xp

,45:,水平面的夹角为。 2 朗肯主动土压力的计算 根据土的极限平衡条件方程式 ,,2ζ=ζtg(45?+)+2c?tg(45?+) 1322 ,,2ζ=ζtg(45?-)-2c?tg(45?-) 3122 土体处于主动极限平衡状态时,ζ=ζ=γz,ζ=ζ=p,代入上式得 1z3xa 1)填土为粘性土时 填土为粘性土时的朗肯主动土压力计算公式为 ,,2,ap=γztg(45?-)-2c?tg(45?-)=γzK-2c (6-3) aa22 由公式(6-3),可知,主动土压力p沿深度Z呈直线分布,如图6-5所示。a (一)Z 0 ZH-H30 HZPa-3 H γ2cHKa?Ka 图5,5粘性土主动土压力分布图 当z=H时p=γHK-2cK aaa 在图中,压力为零的深度z,可由p=0的条件代入式(6-3)求得 0a 2cz, (6-4) 0,Ka 在z深度范围内p为负值,但土与墙之间不可能产生拉应力,说明在z深度范围内,0a0 填土对挡土墙不产生土压力。墙背所受总主动土压力为P,其值为土压力分布图中的阴影部分面积,即a 1aaa0,,,,P(HK2cK)(Hz)2 (6-5) 212c2,,,,aaHK2cHK,2

第八章 土压力与挡土墙

第八章土压力与挡土墙 主要内容 ?第一节概述 ?第二节静止土压力计算 ?第三节朗肯土压力理论 ?第四节库伦土压力理论 ?第五节挡土墙设计

第一节概述 土压力(earth pressure):土对挡土墙的侧向压力。 一、土压力分类 1、依据 ⑴挡土墙的位移:平移和转动 ⑵墙后填土的应力状态 2、分类 ⑴静止土压力E 0(earth pressure at rest):挡土墙位 移为0时的土压力。 ⑵主动土压力E a (active earth pressure):挡土墙离开土体位移,且墙后填土的应力达到极限平衡状态,此时的土压力称为主动土压力。

第一节概述 ⑶被动土压力E p (passive earth pressure ):挡土墙向土体方向位移,且墙后填土的应力达到极限平衡状态,此时的土压力称为被动土压力。 二、土压力与挡土墙位移的关系 若挡土墙的位移以墙挤压填土为正,离开填土为负,则土压力与挡土墙位移的关系可用图示曲线表示。可见,在土压力中,主 动土压力最小,被动土压力最 大。静止土压力、主动土压力 和被动土压力三者的关系为 p a E E E <<0

任意深度z 处竖向自重应力为γz ,则该点的静止土压力强度为 z K p γ00=μ μ-=10K ?' -=sin 1式中 γ:墙后填土的重度,kN/m 3; z :计算点到墙顶的距离,m ; K 0:静止土压力系数。 ?':土的有效内摩擦角。

静止土压力沿墙高为三角形分布,取单位墙长计算,作用于墙上的静止土压力为静止土压力分布图形的面积。 0202 1K H E γ=

土压力计算

本工程场地平坦,经过与类似工程的比较,土体上部底面超载20kPa;假定支护墙面垂直光滑,故采用郎肯土压力理论计算,计算土压力时首先要确定土压力系数,主动土压力系数和被土压力系数的计算分式分别如下[2]:

主动土压力系数: o 2a tan (45/2)K ?=- 被动土压力系数: 2p (tan 45/2)K ?=?+ 其中: a K ——主动土压力系数; p K ——被动土压力系数; ?——土的摩擦角。

()12210111011222222 218tan 45tan 450.756 2220 20.756202015.12 2200 1.50.75620 15.1210tan 45tan 450.704 222K kPa P K c kPa P K z c kPa K P K z c ?σσγ?γ???? ?=?-=?-= ? ???? ?==-=?-?==-=+??-?=???? ?=?-=?-= ? ????? =-()()()222 3223 331332 200.70421511.09 2200 1.5 00.60.704215 11.0921.5tan 45tan 450.463 222200 1.500.60.463211 5.722kPa P K z c kPa K P K z c kPa P K z γ?γγ+?-?=-=-=+?+??-?=-???? ?=?-=?-= ? ????? =-=+?+??-?-=-4224441442223.082118.09825tan 45tan 450.406 22249.850.406227.514.796288.610.406227.50.94c kPa K P K z c kPa P K z c kPa ?γγ=-?=???? ?=?-=?-= ? ????? =-=?-?=-=-=?-?=

库仑主动土压力计算

1.库仑主动土压力(1)库仑主动土压力计算 如图6-12(a)所示,设挡土墙高为h,墙背俯斜,与垂线的夹角为ε,墙后土体为无粘性土(c=0),土体表面与水平线夹角为β,墙背与土体的摩擦角为δ。挡土墙在土压力作用下将向远离主体的方向位移(平移或转动),最后土体处于极限平衡状态,墙后土体将形成一滑动土楔,其滑裂面为平面BC,滑裂面与水平面成θ角。 沿挡土墙长度方向取1m进行分析,并取滑动土楔ABC为隔离体,作用在滑动土楔上的力有土楔体的自重W,滑裂面BC上的反力R和墙背面对土楔的反力E(土体作用在墙背上的土压力与E大小相等方向相反)。滑动土楔在W,R,E的作用下处于平衡状态,因此三力必形成一个封闭的力矢三角形,如图6-12(b)所示。根据正弦定理并求出E的最大值即为墙背的库仑主动土压力: 图6-12库仑主动土压力计算 (a)挡土墙与滑动土楔(b)力矢三角形 公式推导(6-12) 库仑主动土压力计算公式推导 在图6-13(b)的力矢三角形中,由正弦定理可得:

(6-12a) 式中ψ=90o-ε-δ,其余符号如图6-13所示。 土楔自重为 在三角形ABC中,利用正弦定律可得: 由于 故 在三角形ADB中,由正弦定理可得: 于是土楔自重可进一步表示为 将其代入表达式(6-12a)即可得土压力E的如下表达式:

E的大小随θ角而变化,其最大值即为主动土压力E a。令 求得最危险滑裂面与水平面夹角θ0=45o+?/2,将θ0代入E的表达式即得主动土压力E a的如下计算公式: 这里 式中K a为库仑主动土压力系数,其值为: (6-13) 2.库仑被动土压力 库仑被动土压力计算公式的推导与库仑主动土压力的方法相似,计算简图如图6-14,计算公式为: (6-14)

土压力理论

王洪新[1](2011)工程实践表明,狭窄基坑有更好的稳定性。因此,其他条件相同时,狭窄基坑围护结构插入深度可以适当减小。目前常用的基坑稳定性分析方法基本不考虑基坑宽度的影响,造成狭窄基坑设计时插入深度过大,引起较大浪费。以宽度与插入深度之比为依据,把基坑宽度分成窄基坑、一般宽度基坑和宽基坑三类。基于经典土压力理论,推导考虑基坑宽度影响的抗倾覆稳定安全系数计算公式, 考虑被动区加固土体的无限侧抗压强度。分析表明,基坑越深,宽度越小,就越要考虑基坑宽度对稳定性的影响。提出的公式完全基于经典土压力理论,没有引入新的假设,较为科学,对狭窄基坑减小插入深度提供了理论依据,适合在基坑设计和施工中推广。 丁翠红、周玲[2](2009)支护结构内力和变形计算结果的合理性在很大程度上取决于作用在支护结构上的土压力,寻找更加符合基坑工程特点的土压力计算模型具有重要的现实意义和理论价值.但是现在沿用的朗肯土压力理论存在明显的弱点,随着深基坑支护结构的进一步发展复杂化,土压力理论已经不适用.根据国内外学者采用的不同研究方式,针对两种不同的支护结构分别讨论,对深基坑支护结构土压力分布规律及土压力计算方法研究进展进行综述,并分析其中存在问题及今后研究方向. 应宏伟,郑贝贝,谢新宇[3](2011)对于地铁车站、地下管道沟槽等狭窄基坑,其被动区土体宽度有限,不满足半无限体的假定,采用经典的库仑、朗肯土压力理论计算挡墙被动土压力是不合适的。首先建立了无黏性土中狭窄基坑刚性挡墙的有限元分析模型,研究了挡墙相对平移时不同宽度土体的被动滑裂面的分布规律;借鉴库仑平面土楔假定,建立了狭窄基坑刚性平动挡墙被动土压力的理论计算模型,推导了被动极限状态下滑裂面倾角及被动土压力系数的解析公式;再采用水平薄层单元法,得到了被动土压力分布、土压力合力作用点高度的理论公式。结合算例,深入研究了这种工程背景下挡墙被动滑裂面倾角的影响因素,以及被动土压力合力、土压力分布及合力作用点位置与经典库仑土压力理论的差别,与数值计算结果的对比验证了该理论方法的合理性。研究发现,当被动区土体宽度小于满足半无限体的临界值、且墙土摩擦角大于0时,被动滑裂面倾角大于传统库仑被动滑裂面倾角,被动土压力大于经典库仑解,合力作用点高度则小于库仑解,且基坑越窄,墙土摩擦角越大,其差别越大。 李峰,郭院[4](2008)成在深基坑工程中,拟开挖基坑距已有建筑物地下部分较近时,基坑支护体系承受的是有限土体的土压力,若根据Rankine理论计算,常导致计算土压力偏大,造成浪费。针对基坑工程中有限粘性土体的土压力计算问题,基于滑楔体平衡理论,本文推导了考虑土体变形情况的有限土体土压力计算模式,通过工程实例计算进行对比分析,提出了基坑工程中有限粘性土体土压力的计算方法,结果表明有限土体土压力分布模式及其量值与半无限土体土压力分布模式及其量值间存在显著差异,当有限土体宽度不大于坑深的0.75倍时,宜按有限土体土压力计算模式进行计算。 金亚兵,刘吉波[5](2009)基坑工程实践中,经常遇到相邻基坑土条土压力如何计算的问题,现行基坑规范尚没有计算方法。通过理论探索和工程实践,对前、后期的基坑支护型式进行了归类和组合,提出了相临基坑宽度的确定原则;提出了建立在库仑土压力理论基础之上的简化计算方法——叠加法,推导并给出了非黏性土和黏性土在不同坡率和地面分布有荷载条件下主动土压力系数和土压力的计算公式,并提出了临界宽度的概念和土条土压力折减系数的

土压力计算

地层参数按《岩土勘察报告》选取,由于岩土体中基本无水,所以水压力的 计算按水土合算考虑。选取可能出现的最不利受力情况埋深断面进行计算。根据 洞门的纵剖面图,及埋深不大,在确定盾构机拱顶处的均布围岩竖向压力 可直接取全部上覆土体自重作为上覆土地层压力 盾构机所受压力: Pe =W+ P0 P01= Pe + G/DL P 仁Pe x 入 P2=(P+Y D)入 式中:入为水平侧压力系数,入=0.47 h 为上覆土厚度,h=6.65m 丫为土容重,f=1.97 t/m3 G 为盾构机重,G=360 t D 为盾构机外径,D=6.45 m ; L 为盾构机长度,L=8.0m ; P0为地面 上置荷载,P0=2 t/m2; P01为盾构机底部的均布压力;P1为盾构机拱顶处的侧 向水土压力;P2为盾构机底部的侧向水土压力; Pe=1.97>6.65+2=15.1t/m2 P01=15.1+360/( 6.45>8.0) =22.1t/m2 P2 =(15.1+1.97^6.45) X).47=13.1t/m2 盾构的推力主要由以下五部分组成: F = F ! F 2 F 3 F 4 F 5 Pe 时, P1=15.1X).47=7.1t/m2 式中:F1为盾构外壳与土体之间的摩擦力 ;F2为刀盘上的水平推力引起

的推力

F3为切土所需要的推力;F4为盾尾与管片之间的摩阻力 F5为后方台车的阻力 1 F l (F e P01 P l P2)DL 心 4 式中:山土与钢之间的摩擦系数,计算时取J =0.3 1 F1(15.1 22.1 7.1 13.1) 6.45 8.0 0.3二=697.5t 4 F2 二二4(D2P d) P d ( h 十^) 式中:P d为水平土压力,2 D 6.45 h 6.65 9.875m 2 2 P d =0.47 1.97 9.875 =9.1t/m2 F24(6.452 9.1) = 297t F3 之/4( D2C) 式中:C为土的粘结力,C=4.5t/m2 兀 2 F3 (6.45 4.5)147t 4 F4 =W』c 式中:WC、卩C为两环管片的重量(计算时假定有两环管片的重量作用在 盾尾内,当管片容重为2.5t/m3,管片宽度按1.2m计时,每环管片的重量为19.3t), 两环管片的重量为38.6t考虑。卩C=0.3 F4 =38.6 0.3 =11.6t F5 = %Gh 式中:Gh为盾尾台车的重量,Gh F60t; ⑥为滚动摩阻,卩g=0.05 F5160 0.05 = 8.0t 盾构总推力:F =697.5 297 147 11.6 8.0 = 1161.1t

土力学第六章土压力计算学习资料

土力学第六章土压力 计算

第六章挡土结构物上的土压力 第一节概述 第五章已经讨论了土体中由于外荷引起的应力,本章将介绍土体作用在挡土结构物上的土压力,讨论土压力性质及土压力计算,包括土压力的大小、方向、分布和合力作用点,而土压力的大小及分布规律主要与土的性质及结构物位移的方向、大小等有关,亦和结构物的刚度、高度及形状等有关。 一、挡土结构类型对土压力分布的影响 定义:挡土结构是一种常见的岩土工程建筑物,它是为了防止边坡的坍塌失稳,保护边坡的稳定,人工完成的构筑物。 常用的支挡结构结构有重力式、悬臂式、扶臂式、锚杆式和加筋土式等类型。挡土墙按其刚度和位移方式分为刚性挡土墙、柔性挡土墙和临时支撑三类。 1刚性挡土墙 指用砖、石或混凝土所筑成的断面较大的挡土墙。 由于刚度大,墙体在侧向土压力作用下,仅能发身整体平移或转动的挠曲变形则可忽略。墙背受到的土压力呈三角形分布,最大压力强度发生在底部,类似于静水压力分布。 2.柔性挡土墙 当墙身受土压力作用时发生挠曲变形。 3.临时支撑 边施工边支撑的临时性。 二、墙体位移与土压力类型 墙体位移是影响土压力诸多因素中最主要的。墙体位移的方向和位移量决定着所产生的土压力性质和土压力大小。 1?静止土压力(E0) 墙受侧向土压力后,墙身变形或位移很小,可认为墙不发生转动或位移,墙后土体没有破坏,处于弹性平衡状态,墙上承受土压力称为静止土压力E0。 2?主动土压力(E a) 挡土墙在填土压力作用下,向着背离填土方向移动或沿墙跟的转动,直至土体达到主动平衡状态,形成滑动面,此时的土压力称为主动土压力。 3?被动土压力(E p) 挡土墙在外力作用下向着土体的方向移动或转动,土压力逐渐增大,直至土体达到被 动极限平衡状态,形成滑动面。此时的土压力称为被动土压力 E p。 同样高度填土的挡土墙,作用有不同性质的土压力时,有如下的关系: E p > E o > E a

土压力计算

土压力理论主要研究挡土结构(挡土墙、桥台、码头板桩墙、基坑护壁墙等)所受土体侧压力的大小和分布规律。在土与结构的相互作用下,挡土结构所受侧压力的总值,随着结构与土相对位移的方向和位移量而变化,侧压力的分布图形则随着结构的柔性变形和施工程序的不同而变化。因此,土压力必须针对各种挡土结构的不同特性而采用不同的计算方法(见路基挡土结构)。 经典的土压力解析方法远自 C.-A.de库仑于1776年和W.J.M.兰金于1857年开始,基于以刚塑性模型为前提的极限平衡理论,至今仍广泛应用。20世纪60年代以后,随着计算机和数值分析方法的发展,对土压力进行的分析探讨逐渐采用非线性模型和弹塑性模型,并考虑土与结构的共同作用,但至今仍处于研究阶段。 静止、主动和被动土压力天然土层中的竖直压应力等于其上覆地层的有效压应力σv =γz,式中σv为任何一点的竖直压应力;γ为容重;z为该点距地面的深度。土层内部在未受任何干扰时的水平压应力称为静止土压力σ0。静止土压力与竖直压应力的比值称为静止土压力系数K0=σ0/σv。正常固结土层的K0小于1,在砂土层中K0≈0.4,在粘土中K0介于0.4至0.8之间,在正常压密土层中可以用K0=1-sin嗞′(嗞′为土的有效内摩擦角)作为经验估算式。但在超固结土层和用机械压实的填土层中,静止土压力系数可能大于1,甚至达到2以上,须另作具体的试验研究。 如果土层表面为水平的,挡土结构的背面垂直光滑并向离开土体的方向移动,则土与结构之间的侧压力逐渐减小。当侧压力减至极限平衡状态时,土体开始剪裂,此时的侧压力为最小值,称为主动土压力σa。与此相反,如果挡土结构向土体推挤,则土与结构之间的侧压力逐渐增大。当侧压力增至极限平衡状态时,土体亦开始剪裂,此时的侧压力为最大值,称为被动土压力σp。 对于土中任一点的应力状态,其主动土压力、被动土压力和极限平衡条件的公式如下:主动土压力 (1) 被动土压力 (2) 极限平衡条件 (3) 式中σ1、σ3分别为最大和最小主应力;с、嗞分别为土的粘聚力和内摩擦角。公式(1)和(2)称为兰金应力状态的土应力。 刚性挡土墙的土压力用库仑土压理论计算。若墙背AB在土压力作用下向左方移动,则墙后产生滑动土楔体ABC,此时墙背受主动土压力E A的作用,如图1a。如果墙背向右推动,从而使墙后土体产生被动土压裂面,这个推力称被动土压力E P,如图1b。实际裂面是曲线形状的,但为了简化计算起见,库仑假设滑裂面BC为直线,从而推导求得刚性挡土墙的土压力计算公式如下:

第六章 土压力

课程辅导 >>> 第七章、土压力 第七章土压力 一、内容简介 土压力是指土体作用在支挡结构上的侧向压力。土压力的大小与支挡结构位移的方向和大小有密切的关系,其中静止土压力、主动土压力和被动土压力是实际工程中最常用到的三种土压力。静止土压力的计算方法由弹性半无限体的计算公式演变而来,而主动土压力和被动土压力所对应的都是土体处于破坏(或极限平衡)状态时的土压力,因此其计算公式的建立与土的强度理论密切相关。主动和被动土压力的常用计算方法主要是 Rankine 土压理论和 Coulomb 土压理论计算,前者由土中一点的极限平衡条件即 Mohr-Coulomb 准则建立计算公式,后者则利用滑动土楔的静力平衡条件推得,其中土体滑面上法向和切向力之间的关系所反映的实际就是 Coulomb 定律。 二、基本内容和要求 1 .基本内容 ( 1 )土压力的概念; ( 2 )土压力的分类及与挡土墙位移的关系; ( 3 )静止土压力的计算; ( 4 ) Rankine 土压力理论及计算; ( 5 ) Coulomb 土压力理论及计算。 2 .基本要求 ★ 概念及基本原理 【掌握】静止土压力;主动土压力;被动土压力;墙体位移与墙后土压分布的关系;静止土压理论基本假设; Rankine 土压理论基本假设; Coulomb 土压理论基本假设。 ★ 计算理论及计算方法 【掌握】静止土压计算公式及计算;墙背垂直、土面水平且作用有均匀满布荷载、墙后土由不同土层组成时 Rankine 土压计算公式及公式推导、计算;墙背及土面为平面时的 Coulomb 土压计算。 【理解】墙背及土面为平面时 Coulomb 土压力计算公式及推导过程。

挡土墙及土压力计算

第六章:挡土墙及土压力计算 挡土墙:为防止土体坍塌而修建的挡土结构。土压力:墙后土体对墙背的作用力称为土压力。 一、三种土压力——根据墙、土间可能的位移方向的不同,土压力可以分为三种类型: 1.主动土压力Ea ——在土压力作用下,挡土墙发生离开土体方向的位移,墙后填土达到极限平衡状态,此时墙背上的土压力称为主动土压力,记为Ea 。 2.被动土压力Ep ——在外力作用下,挡土墙发生挤向土体方向的位移,墙后填土达到极限平衡状态,此时墙背上的土压力称为被动土压力,记为Ep 。 3.静止土压力Eo ——墙土间无位移,墙后填土处于弹性平衡状态,此时墙背上的土压力称为静止土压力,记为Eo 。 二、三种土压力在数量上的关系 墙、土间无位移,墙后填土处于弹性平衡状态,与天然状态相同,此时的土压力为静止土压 力;在此基础上,墙发生离开土体方向的位移,墙、土间的接触作用减弱,墙、土间的接触压力减小,因此主动土压力在数值上将比静止土压力小;而被动土压力是在静止土压力的基础上墙挤向土体,随着墙、土间挤压位移量的增加,这种挤压作用越来越强,挤压应力越来 越大,因此被动土压力最大。即:Ea

土体主动、主动土压力概念及计算公式

[ 指南] 土体主动、主动土压力概念及计算公式主动土压力 挡土墙向前移离填土,随着墙的位移量的逐渐增大,土体作用于墙上的土压力逐渐减小,当墙后土体达到主动极限平衡状态并出现滑动面时,这时作用于墙上的土压力减至最小,称为主动土压力P。a 被动土压力 挡土墙在外力作用下移向填土,随着墙位移量的逐渐增大,土体作用于墙上的土压力逐渐增大,当墙后土体达到被动极限平衡状态并出现滑动面时,这时作用于墙上的土压力增至最大,称为被动土压力P。上述三种土压力的移动情况和它们在相同条件下的数值比较,p 可用图6-2 来表示。由图可知P,P,P。poa 朗肯基本理论 朗肯土压力理论是英国学者朗肯(Rankin)1857 年根据均质的半无限土体的应力 状态和土处于极限平衡状态的应力条件提出的。在其理论推导中, 首先作出以下基本假定。 (1) 挡土墙是刚性的墙背垂直; (2) 挡土墙的墙后填土表面水平; (3) 挡土墙的墙背光滑,不考虑墙背与填土之间的摩擦力。把土体当作半无限空 间的弹性体,而墙背可假想为半无限土体内部的铅直平 面,根据土体处于极限平衡状态的条件,求出挡土墙上的土压力。 如果挡土墙向填土方向移动压缩土体,ζ仍保持不变,但ζ将不断增大并超过Z 值,ZXZ当土墙挤压土体使Z增大到使土体达到被动极限平衡状态时,如图

6-4的应力园O, Z x3z变为小主应力,Z变为大主应力,即为朗肯被动土压力 (p) 。土体中产生的两组破裂面与xp ,45:, 水平面的夹角为。2 朗肯主动土压力的计算 根据土的极限平衡条件方程式 ,,2 Z =Z tg(45?+)+2c?tg(45?+) 1322 ,,2 Z =Z tg(45?-)-2c?tg(45?-) 3122 土体处于主动极限平衡状态时,Z = Z = Y Z, Z = Z =p,代入上式得1z3xa 1) 填土为粘性土时 填土为粘性土时的朗肯主动土压力计算公式为 ,,2,ap= γztg(45?-)-2c?tg(45?-)= γzK-2c (6-3) aa22 由公式(6-3) ,可知,主动土压力p 沿深度Z 呈直线分布,如图6-5 所示。a (一)Z 0 ZH-H30 HZPa-3 H γ2cHKa?Ka 图5,5 粘性土主动土压力分布图 当z=H 时p=γHK-2cK aaa 在图中,压力为零的深度Z,可由p=0的条件代入式(6-3)求得Oa 2cz, (6-4) 0,Ka 在z 深度范围内p 为负值,但土与墙之间不可能产生拉应力,说明在z 深度范围内,OaO 填土对挡土墙不产生土压力。墙背所受总主动土压力为P,其值为土压力分布图中的 ,aaHK2cHK,2

土力学教案 静止土压力计算

郑州交通技师学院 授课教案首页 课程:《土力学与地基基础》教师: 燕胜坤第15周课次22 授课班级授课日期节次缺课学生名单处室检查 (签字) 教务处抽查 授课题目§4-1静止土压力计算 教学目的 掌握静止土压力计算(包括两种情况) 及要求 重点:静止土压力计算(按土体侧限条件下的弹性平衡状态进行计算);重点难点 难点:无 教具 无 (实习设备、 工具等)

§4-2 静止土压力计算 一、复习 1、三种土压力的概念 2、影响挡土墙土压力的主要因素 二、引入: 上节课我们说过对于拱桥桥台应根据受力和填土的压实情况,采用静止土压力或静止土压力加土抗力(土抗力是指土体对结构的弹性抗力,与位移成正比)。但对于静止土压力的大小我们如何来确定呢?这节课我们就共同探讨静止土压力是如何计算的。 三、新课: 静止土压力计算 静止土压力只发生在挡土墙为刚体,墙体不发生任何位移的情况,实际工程中,作用在深基础侧墙或者U形桥台上土压力,可近似看作静止土压力。 1、按土体处于侧限条件下的弹性平衡状态进行计算。

静止土压力系数ξ 对于侧限应力状态: 静止土压力强度 p0 =σx =ξσz =ξγz, kP a ξ:静止土压力系数; p0:作用于墙背上的静止土压力强度,kP a;γ:强后填土的重度,kN/m3; z:计算点离填土表面的深度,m。 静止土压力系数,对正常固结土,ξ=1-sinφ′,对超固结土,ξ=(1-sinφ′)1/2,φ′为土的有效内摩擦角(o);缺乏资料时可取经验值;沙土ξ=0.34到0.45之间,黏性土ξ=0.5到0.7之间。 有上式可知,p0和z成正比,静止土压力强度分布沿墙高呈三角形分布。若墙高为H,则作用于单位长度墙上的总静止土压力E o为 =1/2(ξγH)H=1/2(ξγH2), kN/m E E 方向水平,作用线通过p0分布图形心,作用点应在墙高的1/3处。 o

土压力计算

第6章土压力计算 6.1概述 6.1.1土压力的产生及计算简述 在水利水电、铁路和公路桥梁及工民建等工程建设中,常采用挡土墙来支撑土坡或挡土以免滑塌。例如:支挡建筑物周围填土的挡土墙(图6-1a),房屋地下室的侧墙, (图6-1b),桥台,图(6-1c),水闸边墙,(图6-1d)等。这些结构物都会受到土压力的作用,土体作用在挡土墙上的压力称为土压力。作用于挡土墙背上的土压力是设计挡土墙要考虑的主要荷载。 挡土墙按结构型式可分为重力式、悬壁式、扶壁式等。可用块石、条石、砖、混凝土与钢筋混凝土等材料建筑。 挡土墙的设计,一般取单位长度按平面问题考虑。作用于挡土墙上的土压力的计算较为复杂,目前计算土压力的理论仍多采用古典的朗肯理论和库伦理论。大型及特殊构筑物土压力的计算常采用有限元数值分析计算。本章主演介绍静止土压力的计算、主动土压力及被动土压力计算的朗肯理论和库伦理论及一些特殊情况下的土压力的计算。对非极限土压力的计算请参阅有关书籍及参考文献。 6.1.2 土压力的类型 试验表明,土压力的大小主要与挡土墙的位移、挡土墙的形状、墙后填土的性质以及填土的刚度等因素有关,但起决定因素的是墙的位移。根据墙身位移的情况,作用在墙背上的土压力可分为静止土压力、主动土压力和被动土压力。 1) 静止土压力 当挡土墙静止不动时,即不能移动也不转动,这时土体作用在挡土墙的压力称为静止土压力p o。 2) 主动土压力 挡土墙向前移离填土,随着墙的位移量的逐渐增大,土体作用于墙上的土压力逐渐减小,当墙后土体达到主动极限平衡状态并出现滑动面时,这时作用于墙上的土压力减至最小,称为主动土压力P a。 3) 被动土压力 挡土墙在外力作用下移向填土,随着墙位移量的逐渐增大,土体作用于墙上的土压力逐渐增大,当墙后土体达到被动极限平衡状态并出现滑动面时,这时作用于墙上的土压力增至最大,称为被动土压力P p。上述三种土压力的移动情况和它们在相同条件下的数值比较,可用图6-2来表示。由图可知P p>P o>P a。 6.2 静止土压力的计算 当墙身不动时,这时墙后埴土处于弹性平衡状态。在填土表面以下任意深度Z处取一微小单元体,如图6-3所示,在微单元体的水平面上作用着竖向的自重应力γZ,该点的侧向应力即为静止土压力强度 pγ? = k z (5 -1)

相关文档
最新文档