高斯低通滤波器频域到空域的转换证明

高斯低通滤波器频域到空域的转换证明

MATLAB数字图像处理基本操作及空域滤波

实验一 MATLAB数字图像处理基本操作及空域滤波实验目的 1、了解有关数字图像处理的基本概念,熟悉Matlab软件中关于数字图像处理的基本命令,掌握利用Matlab软件进行数字图像处理的简单方法。 2、了解并掌握直方图统计方法以及分段线性拉伸、直方图均衡等亮度调整算法,通过观察对这些运算建立感性认识。 3、掌握空域滤波中常用的平滑和锐化滤波器。 实验内容 1. 观察各类图像的直方图;操作LUT灰度对照表,进行分段线性拉伸;采用直方图均衡方法对低对比度的图像进行对比度增强。 2.掌握图像模板卷积运算的实质,认识各种模板的处理效果; 3. 掌握邻域平均及中值滤波降噪方法的特点,认识其功能及适用场合; 4. 掌握拉普拉斯算子、Sobel算子、Prewitt算子和Isotropic算子的特点,认识其功能及适用场合。 实验原理 1、数字图像以一定的格式存放在计算机的存储器中(如磁盘),常见的格式有BMP,TIF,PCX等等,要进行数字图像处理,第一项工作就是把图像读到计算机的内存中,以便进行进一步的处理。在Matlab中,函数imread()完成此项工作。下面一小段Matlab语句即可实现将图像“rice.tif”显示在一个图像窗口的左边,将其轮廓图显示在该窗口的右边。 I=imread('rice.tif'); subplot(1,2,1); imshow(I) subplot(1,2,2); imcontour(I); 这里,imread(‘rice.tif’)将磁盘上的图像文件rice.tif读入内存变量I中,subplot(1,2,1)生成一个可以横向放置2幅图像的窗口,并设置下一显示位置在左边,imshow(I)显示图像I,subplot(1,2,2)准备下一图像的显示位置,imcontour(I)生成图像I 的轮廓并显示在窗口的右边。 数字图像一般可分为二值图、灰度图和真彩图等几类。

频域滤波

数字图像处理实验报告 班级:13计算机01班姓名:郭培甲 学号:20134440117 指导老师:蒋良卫 时间:2016-5-5

实验七 图像增强—频域滤波 一、 实验目的 1.掌握怎样利用傅立叶变换进行频域滤波 2.掌握频域滤波的概念及方法 3.熟练掌握频域空间的各类滤波器 4.利用MATLAB 程序进行频域滤波 二、 实验原理及知识点 频域滤波分为低通滤波和高通滤波两类,对应的滤波器分别为低通滤波器和高通滤波器。频域低通过滤的基本思想: G(u,v)=F(u,v)H(u,v) F(u,v)是需要钝化图像的傅立叶变换形式,H(u,v)是选取的一个低通过滤器变换函数,G(u,v)是通过H(u,v)减少F(u,v)的高频部分来得到的结果,运用傅立叶逆变换得到钝化后的图像。 理想地通滤波器(ILPF)具有传递函数: 001(,)(,)0(,)ifD u v D H u v ifD u v D ≤?=?>? 其中,0D 为指定的非负数,(,)D u v 为(u,v)到滤波器的中心的距离。0(,)D u v D =的点的轨迹为一个圆。 n 阶巴特沃兹低通滤波器(BLPF)(在距离原点0D 处出现截至频率)的传递函数为201 (,)1[(,)]n H u v D u v D =+ 与理想地通滤波器不同的是,巴特沃兹率通滤波器的传递函数并不是在

0D 处突然不连续。 高斯低通滤波器(GLPF)的传递函数为 2 22),(),(σv u D e v u H = 其中,σ为标准差。 相应的高通滤波器也包括:理想高通滤波器、n 阶巴特沃兹高通滤波器、高斯高通滤波器。给定一个低通滤波器的传递函数(,)lp H u v ,通过使用如下的简单关系,可以获得相应高通滤波器的传递函数:1(,)hp lp H H u v =- 利用MATLAB 实现频域滤波的程序 主程序: clc;clear all f=imread('room.tif'); F=fft2(f); %对图像进行傅里叶变换 %对变换后图像进行对数变换,并对其坐标进行平移,使其中心化 S=fftshift(log(1+abs(F))); S=gscale(S); %将图像频谱标度在0-255的范围内 subplot 121;imshow(f); title('原始图像') subplot 122;imshow(S) %显示频谱图像 title('原始图像的频谱') h=fspecial('sobel'); %产生空间‘sobel ’模板 freqz2(h) %查看相应频域滤波器的图像 PQ=paddedsize(size(f)); %产生滤波时所需大小的矩阵 H=freqz2(h,PQ(1),PQ(2)); %产生频域中的‘sobel ’滤波器 H1=ifftshift(H); %重拍数据序列,使得原点位于频率矩阵的左上角 figure subplot 121;imshow(abs(H),[]) %以图形形式显示滤波器 title('空间滤波器') subplot 122;imshow(abs(H1),[]) title('空间滤波器移位后的频谱') gs=imfilter(double(f),h); %用模板h 进行空域滤波 gf=dftfilt(f,H1); %用滤波器对图像进行频域滤波 subplot 221;imshow(gs,[]) title('用模板h 进行空域滤波后的图像')

(完整word版)高斯滤波器理解

高斯滤波器理解 先给出高斯函数的图形。 高斯滤波器是一类根据高斯函数的形状来选择权值的线性平滑滤波器。高斯平滑滤波器对于抑制服从正态分布的噪声非常有效。一维零均值高斯函数为: g(x)=exp( -x^2/(2 sigma^2) 其中,高斯分布参数Sigma决定了高斯函数的宽度。对于图像处理来说,常用二维零均值离散高斯函数作平滑滤波器。 高斯函数具有五个重要的性质,这些性质使得它在早期图像处理中特别有用.这些性质表明,高斯平滑滤波器无论在空间域还是在频率域都是十分有效的低通滤波器,且在实际图像处理中得到了工程人员的有效使用.高斯函数具有五个十分重要的性质,它们是: (1)二维高斯函数具有旋转对称性,即滤波器在各个方向上的平滑程度是相同的.一般来说,一幅图像的边缘方向是事先不知道的,因此,在滤波前是无法确定一个方向上比另一方向上需要更多的平滑.旋转对称性意味着高斯平滑滤波器在后续边缘检测中不会偏向任一方向. (2)高斯函数是单值函数.这表明,高斯滤波器用像素邻域的加权均值来代替该点的像素值,而每一邻域像素点权值是随该点与中心点的距离单调增减的.这一性质是很重要的,因为边缘是一种图像局部特征,如果平滑运算对离算子中心很远的像素点仍然有很大作用,则平滑运算会使图像失真. (3)高斯函数的傅立叶变换频谱是单瓣的.正如下面所示,这一性质是高斯函数付立叶变换等于高斯函数本身这一事实的直接推论.图像常被不希望的高频信号所污染(噪声和细纹理).而所希望的图像特征(如边

缘),既含有低频分量,又含有高频分量.高斯函数付立叶变换的单瓣意味着平滑图像不会被不需要的高频信号所污染,同时保留了大部分所需信号. (4)高斯滤波器宽度(决定着平滑程度)是由参数σ表征的,而且σ和平滑程度的关系是非常简单的.σ越大,高斯滤波器的频带就越宽,平滑程度就越好.通过调节平滑程度参数σ,可在图像特征过分模糊(过平滑)与平滑图像中由于噪声和细纹理所引起的过多的不希望突变量(欠平滑)之间取得折衷. (5)由于高斯函数的可分离性,较大尺寸的高斯滤波器可以得以有效地实现.二维高斯函数卷积可以分两步来进行,首先将图像与一维高斯函数进行卷积,然后将卷积结果与方向垂直的相同一维高斯函数卷积.因此,二维高斯滤波的计算量随滤波模板宽度成线性增长而不是成平方增长. ========================== 高斯函数在图像滤波中的应用 1函数的基本概念 所谓径向基函数(Radial Basis Function 简称RBF), 就是某种沿径向对称的标量函数。通常定义为空间中任一点x到某一中心xc之间欧氏距离的单调函数, 可记作k(||x-xc||), 其作用往往是局部的, 即当x远离xc时函数取值很小。最常用的径向基函数是高斯核函数,形式为k(||x-xc||)=exp{- ||x-xc||^2/(2*σ)^2) } 其中xc为核函数中心,σ为函数的宽度参数, 控制了函数的径向作用范围。 2函数的表达式和图形 matlab绘图的代码 alf=3; n=7;%定义模板大小 n1=floor((n+1)/2);%确定中心 for i=1:n a(i)= exp(-((i-n1).^2)/(2*alf^2)); for j=1:n b(i,j) =exp(-((i-n1)^2+(j-n1)^2)/(4*alf))/(4*pi*alf); end end subplot(121),plot(a),title('一维高斯函数' ) subplot(122),surf(b),title('二维高斯函数' )

数字图像处理(频域增强)

数字图像处理(频域增强)

数字图像处理图像频域增强方法的研究 姓名: 班级: 学号:

目录一.频域增强的原理 二.频域增强的定义及步骤三.高通滤波 四. MATLAB程序实现 五.程序代码 六.小结

一.频域图像的原理 在进行图像处理的过程中,获取原始图像后,首先需要对图像进行预处理,因为在获取图像的过程中,往往会发生图像失真,使所得图像与原图像有某种程度上的差别。在许多情况下,人们难以确切了解引起图像降质的具体物理过程及 其数学模型,但却能估计出使图像降质的一些可能原因,针对这些原因采取简单易行的方法,改善图像质量。图像增强一般不能增加原图像信息,只能针对一些成像条件,把弱信号突出出来,使一些信息更容易分辨。图像增强的方法分为频域法和空域法,空域法主要是对图像中的各像素点进行操作;而频域法是在图像的某个变换域内,修改变换后的系数,例如傅立叶变换、DCT 变换等的系数,对 图像进行操作,然后再进行反变换得到处理后的图像。 MATLAB矩阵实验室(Matrix Laboratory)的简称,具有方便的数据可视化功能,可用于科学计算和工程绘图。它不仅在一般数据可视化软件都具有的功能方面更加完善,而且对于一些其他软件所没有的功能(例如图形的光照处理、色度处理以及四维数据的表现等),MATLAB同样表现了出色的处理能力。它具有功能丰富的工具箱,不但能够进行信号处理、语音处理、数值运算,而且能够完成各种图像处理功能。本文利用MATLAB工具来研究图像频域增强技术。图像增强是为了获得更好质量的图像,通过各种方法对图像进行处理,例如图像边缘检测、分割以及特征提取等技术。图像增强的方法有频域处理法与空域处理法,本文主要研究了频域处理方法中的滤波技术。从低通滤波、高通滤波、同态滤波三个方面比较了图像增强的效果。文章首先分析了它们的原理,然后通过MATLAB软件分别用这三种方法对图像进行处理,处理后使图像的对比度得到了明显的改善,增强了图像的视觉效果。

微带滤波器的设计复习过程

微带滤波器的设计

解析微带滤波器的设计 微波滤波器是用来分离不同频率微波信号的一种器件。它的主要作用是抑制不需要的信号,使其不能通过滤波器,只让需要的信号通过。在微波电路系统中,滤波器的性能对电路的性能指标有很大的影响,因此如何设计出一个具有高性能的滤波器,对设计微波电路系统具有很重要的意义。微带电路具有体积小,重量轻、频带宽等诸多优点,近年来在微波电路系统应用广泛,其中用微带做滤波器是其主要应用之一,因此本节将重点研究如何设计并优化微带滤波器。 滤波器(filter),是一种用来消除干扰杂讯的器件,将输入或输出经过过滤而得到纯净的直流电。对特定频率的频点或该频点以外的频率进行有效滤除的电路,就是滤波器,其功能就是得到一个特定频率或消除一个特定频率。 1 微带滤波器的原理 微带滤波器当中最基本的滤波器是微带低通滤波器,而其它类型的滤波器可以通过低通滤波器的原型转化过来。最大平坦滤波器和切比雪夫滤波器是两种常用的低通滤波器的原型。微带滤波器中最简单的滤波器就是用开路并联短截线或是短路串联短截线来代替集总元器件的电容或是电感来实现滤波的功能。这类滤波器的带宽较窄,虽然不能满足所有的应用场合,但是由于它设计简单,因此在某些地方还是值得应用的。 微带滤波器是在印刷电路板上,根据电路的要求以及频率的分布参数印刷在电路板上的各种不同的线条形成的LC分布参数的滤波器。 2 滤波器的分类 最普通的滤波器的分类方法通常可分为低通、高通、带通及带阻四种类型。图12.1给出了这四种滤波器的特性曲线。

低通滤波器:它允许信号中的低频或直流分量通过,抑制高频分量或干扰和噪声。 高通滤波器:它允许信号中的高频分量通过,抑制低频或直流分量。 带通滤波器:它允许一定频段的信号通过,抑制低于或高于该频段的信号、干扰和噪声。 带阻滤波器:它抑制一定频段内的信号,允许该频段以外的信号通过。 按滤波器的频率响应来划分,常见的有巴特沃斯型、切比雪夫Ⅰ型、切比雪夫Ⅱ型及等;按滤波器的构成元件来划分,则可分为有源型及无源型两类;按滤波器的制作方法和材料可分为波导滤波器、同轴线滤波器、带状线滤波器、微带滤波器。 巴特沃斯滤波器是电子滤波器的一种。巴特沃斯滤波器的特点是通频带的频率响应曲线最平滑。这种滤波器最先由英国工程师斯替芬·巴特沃斯(Stephen Butterworth)在1930年发表在英国《无线电工程》期刊的一篇论文中提出的。 切比雪夫滤波器,又名"车比雪夫滤波器",是在通带或阻带上频率响应幅度等波纹波动的滤波器。切比雪夫滤波器来自切比雪夫分布,以"切比雪夫"命名,是用以纪念俄罗斯数学家巴夫尼提·列波维其·切比雪夫(ПафнутийЛьвовичЧебышёв)。 3 微带滤波器的设计指标 微带滤波器的设计指标主要包括: 1绝对衰减(Absolute attenuation):阻带中最大衰减(dB)。 2带宽(band width):通带的3dB带宽(flow-fhigh)。

图像的傅立叶变换与频域滤波

实验四 图像的傅立叶变换与频域滤波 一、 实验目的 1了解图像变换的意义和手段; 2熟悉傅里叶变换的基本性质; 3熟练掌握FFT 方法的应用; 4通过实验了解二维频谱的分布特点; 5通过本实验掌握利用MATLAB 编程实现数字图像的傅立叶变换。 6、掌握怎样利用傅立叶变换进行频域滤波 7、掌握频域滤波的概念及方法 8、熟练掌握频域空间的各类滤波器 9、利用MATLAB 程序进行频域滤波 二、 实验原理 1应用傅立叶变换进行图像处理 傅里叶变换是线性系统分析的一个有力工具,它能够定量地分析诸如数字化系统、采样点、电子放大器、卷积滤波器、噪音和显示点等的作用。通过实验培养这项技能,将有助于解决大多数图像处理问题。对任何想在工作中有效应用数字图像处理技术的人来说,把时间用在学习和掌握博里叶变换上是很有必要的。 2傅立叶(Fourier )变换的定义 对于二维信号,二维Fourier 变换定义为 : ??∞ ∞ -+-==dxdy e y x f v u F y x f F vy ux j )(2),(),()},({π

二维离散傅立叶变换为: ∑ ∑-=+--==10)(21 01 ),(),(N y N y u M x u j M x MN e y x f v u F π 图像的傅立叶变换与一维信号的傅立叶变换变换一样,有快速算法,具体参见参考书目,有关傅立叶变换的快速算法的程序不难找到。实际上,现在有实现傅立叶变换的芯片,可以实时实现傅立叶变换。 3利用MATLAB 软件实现数字图像傅立叶变换的程序: I=imread(‘原图像名.gif’); %读入原图像文件 imshow(I); %显示原图像 fftI=fft2(I); %二维离散傅立叶变换 sfftI=fftshift(fftI); %直流分量移到频谱中心 RR=real(sfftI); %取傅立叶变换的实部 II=imag(sfftI); %取傅立叶变换的虚部 A=sqrt(RR.^2+II.^2);%计算频谱幅值 A=(A-min(min(A)))/(max(max(A))-min(min(A)))*225; %归一化 figure; %设定窗口 imshow(A); %显示原图像的频谱 域滤波分为低通滤波和高通滤波两类,对应的滤波器分别为低通滤波器和 高通滤波器。频域低通过滤的基本思想: G(u,v)=F(u,v)H(u,v) F(u,v)是需要钝化图像的傅立叶变换形式,H(u,v)是选取的一个低通过滤

三种不同平滑滤波器对比

燕山大学 课程设计说明书 题目:几种平滑滤波器的作用与对比试验设计 学院(系):电气工程学院 年级专业: 学号: 学生姓名: 指导教师: 教师职称:

目录 第一章平滑滤波器 (1) 第二章处理程序和处理结果 (3) 第三章比较差异 (7) 第四章总结 (9) 参考文献 (9)

第一章平滑滤波器 滤波的本义是指信号有各种频率的成分,滤掉不想要的成分,即为滤掉常说 的噪声,留下想要的成分,这即是滤波的过程。 所谓目的:一是抽出对象的特征作为图像识别的特征模式;另一个是为适应图像处理的要求,消除图像数字化时所混入的噪声。 各类图像处理系统在图像的采集、获取、传送和转换(如成像、复制扫描、传输以及显示等)过程中,均处在复杂的环境中,光照、电磁多变,所有的图像均不同程度地被可见或不可见的噪声干扰。噪声源包括电子噪声、光子噪声、斑点噪声和量化噪声。如果信噪比低于一定的水平,噪声逐渐变成可见的颗粒形状,导致图像质量的下降。除了视觉上质量下降,噪声同样可能掩盖重要的图像细节,在对采集到的原始图像做进一步的分割处理时,我们发现有一些分布不规律的椒盐噪声,为此采取相应的对策就是对图像进行必要的滤波降噪处理。图像的噪声滤波器有很多种,常用的有线性滤波器,非线性滤波器。采用线性滤波如邻域平滑滤波,对受到噪声污染而退化的图像复原,在很多情况下是有效的。但大多数线性滤波器具有低通特性,去除噪声的同时也使图像的边缘变模糊了。而另一种非线性滤波器如中值滤波,在一定程度上可以克服线性滤波器所带来的图像模糊问题,在滤除噪声的同时,较好地保留了图像的边缘信息。这些滤波都是通过平滑滤波器来实现的。 平滑滤波是低频增强的空间域滤波技术。它的目的有两类:一类是模糊;另一类是消除噪音。所谓平滑滤波是指对一些不平滑的信号做处理,使它变平滑。那什么是不平滑呢,就是在示波器上看起伏不平的信号,最典型的就是交流整流后的脉动信号。这些随时间起伏不平变化的信号成分在频率上代表一些高频率的成分,上升下降越快,则表示频率越高。平滑滤波就是要把它们弄平,把它们弄得不再随时间变化,或者是变化很小,这种不随时间再变化,或者随时间变化很小的信号就是频率非常低的信号,使它们成为低频信号,在整流滤波上,就基本上直流信号,其中只含有非常少的成分随时间变化。所以平滑滤波与低通滤波说法差别不大,平滑滤波大多用在整流滤波上,一般可以理解成一个概念的不同描述方法。 图像在传递过程中,由于噪声主要集中在高频部分,为去除噪声改善图像质量,滤波器采用低通滤波器H(u ,v)来抑制高频成分,通过低频成分,然后再进行逆傅立叶变换获得滤波图像,就可达到平滑图像的目的 根据任务要求在此选择研究理想低通滤波器、Butterworth 低通滤波器、高斯低通滤波器三种滤波器来实现要求。 1.理想低通滤波器 设傅立叶平面上理想低通滤波器离开原点的截止频率为D0,则理想低通滤波器的传递函数: 1 (,)(,)0 (,)D u v D H u v D u v D ≤?=?>?

新型谐波抑制微带低通滤波器的设计

新型谐波抑制微带低通滤波器的设计 摘要—一种新型的谐波抑制微带低通滤波器(LPF)被提出,这种新型滤波器由地面缺陷结构(DGS),一系列并联阶梯阻抗存根以及在通带中的分流元件组成。通过两种谐振器的衰减极,结果发现不仅谐波响应被有效抑制,而且阻带中的抑制也很大。此外,由于两种谐振器有慢波特性,提出的低通滤波器能被紧凑实施。 I. 引言 最近,在许多通信系统中,非常需要一个谐波抑制低通滤波器(LPF)来消除由功率放大器、混频器和振荡器引起的杂散响应。为此,一个集总元件如晶片电容器[1]或电阻片[2]已经被包含在在分布式线电路中,以便打破其周期与频率。另一种方法是采用定期带隙(PBG)的结构[3]或地面缺陷结构(DGS)[4]。特别是,由于DGS有一个简单的等效电路模型,并产生了一个具有宽阻带低通特性,许多研究活动已经完成为了以便将它应用到低通滤波器的设计[4]- [7]。然而,他们大多并没有关注谐波的抑制,或者他们的设计程序太依赖全波电磁(EM)的优化,以至于很难适用传统的低通滤波器的设计方法。本文中,提出了一种新型的谐波抑制微带低通滤波器以及其设计程序。传统的哑铃型DGS和阶梯并联阻抗存根(SISS)是分别作为低通滤波器串联和并联分子使用。据悉,他们有简单的双彼此等效电路并且他们都提供低通滤波器的阻带衰减极点。通过适当的调整器共振频率,不影响原来正常的低通特性,提出的结构被证明是能够有效抑制谐波响应并提供深且宽的阻带。由于两种谐振器的慢波影响,提出的低通滤波器比传统的物理长度较短,但对于紧凑的设计,这是很有帮助的。 II.程序设计 如图1所示,一个单位的分散型发电和单位SISS的等效电路分别被一个串联并联左旋C和一个并联连接系列L- C的谐振器所呈现[4], [8]。注意到,单位SISS通过将两个长方形贴片电容分成较小的两个之后由两个相同的臂组成。在此图中,一个DGS单位的平行L-C谐振器就像一个简单的串联电感,并且在低频区域一个SISS的串联L - C谐振器就像是一个简单的并联电容,因此,他们可以被当做低通滤波器的一个元器件来使用。根据[4]提出的处理方法,他们的电路值与通过在截止频率对原始值的频率匹配以及阻抗频率缩放获得的相应的元素值相等。然后,很容易就可以获得所需的低通响应。[4]中,一旦在低于截止频率时它的长度足够短,两个相邻元素之间的微带线截面作用被忽略。然而,在我们的研究领域里,这种SISS和DGS之间的线截面应是被考虑的,因为它虽然是短,但我们发现它在通带特性和截止频率是有显著影响。为此,该线截面被建模为一个L形的网络,该网络由如图1所示串联L和一个分流C组成。通常,一件T-或∏-网络模型用于其完全等效二端口网络。但是,下列近似的ABCD参数显示短线截面可

空域和频域图像处理增强

实验目的: 1.熟悉Matlab处理图像的基本原理,并熟练地运用进行一些基本的图像操作; 2.能够用Matlab来进行亮度变换,直方图处理以及一些简单的空间滤波; 实验内容: 去噪,灰度变换,直方图处理,空域和频域平滑锐化,同态滤波;结果分析: 1.直方图处理: ⑴显示原图直方图以及原图: 代码: >> imread(''); >> imshow(f); >> imhist(f); 原图以及原图直方图为:

⑵直方图均衡化: 代码: >> f=imread(''); >> n=imnoise(f); >> imwrite(n,''); >> [thr,sorh,keepapp] = ddencmp('den','wv',im2double(n)); >> r=wdencmp('gbl',im2double(Noise),'sym2',2,thr,sorh,keepapp); >> r=wdencmp('gbl',im2double(n),'sym2',2,thr,sorh,keepapp); >> imwrite(r,''); >> imshow(f); 现在的图片以及直方图为: 结论: 直方图均衡化是图像处理领域中利用图像直方图对对比度进行调整的方法。这种方法通常用来增加许多图像的局部对比度,尤其是当图像的有用数据的对比度相当接近的时候。通过这种方法,亮度可以更好地在直方图上分布。这样就可以用于增强局部的对比度而不影响整体的对比度,直方图均衡化通过有效

地扩展常用的亮度来实现这种功能。 2.灰度变换: 代码: >> f=imread(''); >> n=imnoise(f); >> imwrite(n,''); >> [thr,sorh,keepapp] = ddencmp('den','wv',im2double(n)); >> r=wdencmp('gbl',im2double(Noise),'sym2',2,thr,sorh,keepapp); >> r=wdencmp('gbl',im2double(n),'sym2',2,thr,sorh,keepapp); >> imwrite(r,''); >> imshow(f); 变换的图像(f为图a,a1为图b,a2为图c,a3为图d): (图a)(图b)

高斯滤波

高斯滤波器是一类根据高斯函数的形状来选择权值的线性平滑滤波器。高斯平滑滤波器对于抑制服从正态分布的噪声非常有效。一维零均值高斯函数为: g(x)=exp( -x^2/(2 sigma^2) 其中,高斯分布参数Sigma决定了高斯函数的宽度。对于图像处理来说,常用二维零均值离散高斯函数作平滑滤波器。 高斯函数具有五个重要的性质,这些性质使得它在早期图像处理中特别有用.这些性质表明,高斯平滑滤波器无论在空间域还是在频率域都是十分有效的低通滤波器,且在实际图像处理中得到了工程人员的有效使用.高斯函数具有五个十分重要的性质,它们是: (1)二维高斯函数具有旋转对称性,即滤波器在各个方向上的平滑程度是相同的.一般来说,一幅图像的边缘方向是事先不知道的,因此,在滤波前是无法确定一个方向上比另一方向上需要更多的平滑.旋转对称性意味着高斯平滑滤波器在后续边缘检测中不会偏向任一方向. (2)高斯函数是单值函数.这表明,高斯滤波器用像素邻域的加权均值来代替该点的像素值,而每一邻域像素点权值是随该点与中心点的距离单调增减的.这一性质是很重要的,因为边缘是一种图像局部特征,如果平滑运算对离算子中心很远的像素点仍然有很大作用,则平滑运算会使图像失真. (3)高斯函数的傅立叶变换频谱是单瓣的.正如下面所示,这一性质是高斯函数付立叶变换等于高斯函数本身这一事实的直接推论.图像常被不希望的高频信号所污染(噪声和细纹理).而所希望的图像特征(如边缘),既含有低频分量,又含有高频分量.高斯函数付立叶变换的单瓣意味着平滑图像不会被不需要的高频信号所污染,同时保留了大部分所需信号.(4)高斯滤波器宽度(决定着平滑程度)是由参数σ表征的,而且σ和平滑程度的关系是非常简单的.σ越大,高斯滤波器的频带就越宽,平滑程度就越好.通过调节平滑程度参数σ,可在图像特征过分模糊(过平滑)与平滑图像中由于噪声和细纹理所引起的过多的不希望突变量(欠平滑)之间取得折衷. (5)由于高斯函数的可分离性,较大尺寸的高斯滤波器可以得以有效地实现.二维高斯函数卷积可以分两步来进行,首先将图像与一维高斯函数进行卷积,然后将卷积结果与方向垂直的相同一维高斯函数卷积.因此,二维高斯滤波的计算量随滤波模板宽度成线性增长而不是成平方增长. ========================== 高斯函数在图像滤波中的应用 1函数的基本概念 所谓径向基函数(Radial Basis Function 简称RBF), 就是某种沿径向对称的标量函数。通常定义为空间中任一点x到某一中心xc之间欧氏距离的单调函数, 可记作k(||x-xc||), 其作用往往是局部的, 即当x远离xc时函数取值很小。最常用的径向基函数是高斯核函数,形式为k(||x-xc||)=exp{- ||x-xc||^2/(2*σ)^2) } 其中xc为核函数中心,σ为函数的宽度参数, 控制了函数的径向作用范围。 2函数的表达式和图形 matlab绘图的代码 alf=3; n=7;%定义模板大小 n1=floor((n+1)/2);%确定中心 for i=1:n a(i)= exp(-((i-n1).^2)/(2*alf^2));

微带低通滤波器的设计

微带低通滤波器的设计 朱晶晶 摘要:本文通过对国内外文献的查看和整理,对课题的研究意义及滤波器目前的发展现状做了阐述,然后介绍了微带线的基本理论,以及滤波器的基本结构,归纳了微带滤波器的作用和特点。之后对一个七阶微带低通滤波器进行了详细的研究,最后利用三维电磁场仿真软件ANSYS HFSS 进行仿真验证,经过反复调试,结果显示满足预期的性能指标。 关键字:微带线;低通滤波器;HFSS Abstract:View and finishing this article through to the domestic and foreign literature, the research significance and the filter to the current development status of, and then introduces the basic theory of microstrip line, and the basic structure of the filter, summarizes the function and characteristics of microstrip filter.After a seven step microstrip low-pass filter has carried on the detailed research, the use of 3 d electromagnetic field simulation software ANSYS HFSS simulation verification, after repeated testing, the results show that meet the expected performance index. Key word: microstrip line; low-pass filter; HFSS 1.引言 随着无线通信技术的快速发展,微波滤波器已经被广泛应用于各种通信系统,如卫星通信、微波中继通信、军事电子对抗、毫米波通信、以及微波导航等多种领域,并对微波滤波器的要求也越来越高。滤波器是一种重要的微波通信器件,它具有划分信道、筛选信号的功能,是一种二端口网络。整个通信系统的性能指标直接受它的性能优劣的影响[1]。主要技术指标要求有高阻带抑制、低通带插损、高功率、宽频带和带内平坦群时延等。同时,体积、成本、设计时间也是用户较为关心的话题。滤波器已经成为许多设计问题的关键,微带滤波器的设计技术是无线通信系统中的关键技术。传统方法设计出来的滤波器结构尺寸都比较大,在性能指标上也存在一定程度上的局限性,往往不能够满足现代无线通信系统的要求。目前,微带低通滤波器具有高性能、尺寸较小、易于集成、易于加工等优点因而得到了广泛的应用。 本论文以切比雪夫低通滤波器的研究作为实例,设计出一款七阶的微带低通滤波器,要求符合现代个人移动通信系统多需求的射频产品,覆盖一定的通信频率范围,使之掌握工程开发的相关步骤以及当前技术发展与需求。 2. 微带线的基本理论与参数 ε和导线厚度t、基板的介质损耗角正切函数,接地板和导线所用的金属 (1) 基板参数[2]:基板高度h、基板相对介电常数 r 通常为铜、银、铝。 (2) 电特性参数:特性阻抗、工作频率和波长、波导波长和电长度。 (3) 微带线参数:宽度W、长度L 和微带线单位长度衰减的量AdB。微带线的基本结构如1所示。 (a)结构示意图(b)横截面示意图 图1 微带线结构图 微带滤波器的参数: (1) 带宽 带宽指信号所占据的频带宽度,在被用来描述信道时,带宽是指能够有最大频带宽度。带宽在信息论、无线电、通信、信号处理和波谱学等领域都是一个核心概念。 (2) 带外衰减 由于要抑制无用信号,因此越大的带外衰减特性就越好,此项指标一般取通带外与截止频率为一定比值的某点频率的衰减值[3]。 (3) 通带插损 由于网络端口和元件自身损耗的不良匹配会造成一些能量损耗,造成在通带内引入的噪声过高以至于有用信号通过系统后产生信号失真,为了解决通信系统的这方面问题,就用插损IL 来表示滤波器的损耗特性。 (4) 带内驻波 滤波器的输入端口和输出端口与外加阻抗匹配的程度由带内驻波表示。驻波越小则说明匹配越好,反过来,则不然。 3. 运用HFSS 软件进行设计模拟仿真 3.1 微带低通滤波器的设计参数 滤波器工作频段:f1 =10MHz—f2=2500MHz =0.1dB 滤波器通带衰减:L Ar 滤波器带外抑制:在3500~5000MHz 的频率之间有35dB 的衰减 滤波器输入、输出端微带线特性阻抗:Z0=50 ε=3.66mm,h=0.508mm,t=0.004 所选介质基板指标为: r 可以计算得到7 阶切比雪夫低通滤波电路各微带传输线的结构参数[4-5]得到各尺寸如表1所示:

频域滤波

一、频域滤波(低通滤波、高通滤波) (一)频域低通滤波器 1.实验目的:通过低通滤波器函数模板来处理图像,牺牲图像 清晰度为代价来减少干扰效果的修饰过程。 2.实验内容:用不同的低通滤波器对原始图像进行处理并比 较。 3.实验原理: 1)理想低通滤波器 最容易想到的衰减高频成分方法是在一个称为‘截止频 率’的位置截断所有的高频成分,将图像频谱中所有高 于这一截止的频谱成分设为0,低于截止频率的成分 设为保持不变。能够达到这种效果的滤波器我们称之为 理想低通滤波器。 其中,D0表示通带的半径。滤波器的频率域原点在频 谱图像的中心处,在以截止频率为半径的圆形区域之 内的滤镜元素值全部为1,而该圆之外的滤镜元素值 全部为0.理想低通滤波器的频率特性在截止频率处十

分陡峭,无法用硬件实现,这也是我们称之为理想的 原因,但其软件编程的模拟实现较为简单。 2)巴特沃斯低通滤波器 同样的,D0表示通带的半径,n表示的是巴特沃斯滤 波器的次数。 3)高斯低通滤波器 D0表示通带的半径。 4.过程与结果: 1)对一幅图像用理想低通滤波器结果如图: 原图及其频谱图

D0=60时理想低通滤波器转移函数的平面图及剖面图 D0=160时理想低通滤波器转移函数的平面图及剖面图

D0=60时理想低通滤波器的处理结果

2) 对一幅图像用巴特沃斯低通滤波器处理,结果如图: D0=100, n=1时理想低通滤波器转移函数的平面图及剖面图 D0=100,n=3时理想低通滤波器转移函数的平面图 及剖面图

D0=100,n=1时理想低通滤波器转移函数的频谱图及结果

最后确认的低通滤波器

椭圆低通滤波器

线性平滑滤波器 1.3 指数型低通滤波器(ELPF) I1=imread('eight.tif'); %读取图像 I2=im2double(I1); I3=imnoise(I2,'gaussian',0.01); I4=imnoise(I3,'salt & pepper',0.01); figure,subplot(1,3,1); imshow(I2) %显示灰度图像 title('原始图像'); %为图像添加标题 subplot(1,3,2); imshow(I4) %加入混合躁声后显示图像

title('加噪后的图像'); s=fftshift(fft2(I4));%将灰度图像的二维不连续Fourier 变换的零频率成分 移到频谱的中心 [M,N]=size(s); %分别返回s的行数到M中,列数到N中n1=floor(M/2); %对M/2进行取整 n2=floor(N/2); %对N/2进行取整 d0=40; for i=1:M for j=1:N d=sqrt((i-n1)^2+(j-n2)^2); %点(i,j)到傅立叶变换中心的距离 h=exp(log(1/sqrt(2))*(d/d0)^2); s(i,j)=h*s(i,j); %ILPF滤波后的频域表示 end end s=ifftshift(s); %对s进行反FFT移动 s=im2uint8(real(ifft2(s))); %对s进行二维反离散的Fourier变换后,取 复数的实部转化为无符号8位整数 subplot(1,3,3); %创建图形图像对象 imshow(s); %显示ILPF滤波后的图像 title('ELPF滤波后的图像(d=40)'); 运行结果: 1.4 梯形低通滤波器(TLPF) I1=imread('eight.tif'); %读取图像 I2=im2double(I1); I3=imnoise(I2,'gaussian',0.01);

空域和频域图像处理增强

空域和频域图像处理增强 实验目的: 1.熟悉Matlab处理图像的基本原理,并熟练地运用进行一些基本的图像操作; 2.能够用Matlab来进行亮度变换,直方图处理以及一些简单的空间滤波; 实验内容: 去噪,灰度变换,直方图处理,空域和频域平滑锐化,同态滤波;结果分析: 1.直方图处理: ⑴显示原图直方图以及原图: 代码: >> imread('hui.jpg'); >> imshow(f); >> imhist(f); 原图以及原图直方图为:

⑵直方图均衡化: 代码: >> f=imread('test2.jpg'); >> n=imnoise(f); >> imwrite(n,'n.tif'); >> [thr,sorh,keepapp] = ddencmp('den','wv',im2double(n)); >> r=wdencmp('gbl',im2double(Noise),'sym2',2,thr,sorh,keepapp); >> r=wdencmp('gbl',im2double(n),'sym2',2,thr,sorh,keepapp); >> imwrite(r,'r.tif'); >> imshow(f); 现在的图片以及直方图为: 结论: 直方图均衡化是图像处理领域中利用图像直方图对对比度进行调整的方法。这种方法通常用来增加许多图像的局部对比度,尤其是当图像的有用数据的对比度相当接近的时候。通过这种方法,亮度可以更好地在直方图上分布。这样就可以用于增强局部的对比度而不影响整体的对比度,直方图均衡化通过有效

地扩展常用的亮度来实现这种功能。 2.灰度变换: 代码: >> f=imread('test2.jpg'); >> n=imnoise(f); >> imwrite(n,'n.tif'); >> [thr,sorh,keepapp] = ddencmp('den','wv',im2double(n)); >> r=wdencmp('gbl',im2double(Noise),'sym2',2,thr,sorh,keepapp); >> r=wdencmp('gbl',im2double(n),'sym2',2,thr,sorh,keepapp); >> imwrite(r,'r.tif'); >> imshow(f); 变换的图像(f为图a,a1为图b,a2为图c,a3为图d): (图a)(图b)

微波实验报告_微带短截线低通滤波器的设计、仿真与测试

综合课程设计实验报告 课程名称:微波方向综合课程设计 实验名称:微带短截线低通滤波器的设计、仿真与测试院(系):信息科学与工程学院 专业班级: 姓名: 学号: 指导教师: 2011年12月22日

一、实验目的和要求 1、目的: 通过这次课程设计,进一步理解微波工程的相关内容,熟练运用Microwave Office和Protel等软件,通过这学期学习、练习的积累,选择一个微波器件,依据MWO的仿真结果,使用protel99se将其绘制成电路版图(PCB)。最后在老师的帮助下制成实物并与仿真结果对比分析,在实践中加强自己对微波工程的体会与理解。 2、要求: 从以下题目中选择一个微波器件,依据MWO的仿真结果,使用protel99se 将其绘制成电路版图(PCB)。(器件的工作频率和学号相关) 1)3dB微带功率分配器; 2)微带短截线滤波器 3)3dB微带定向耦合器 PCB板采用介电常数为4.5,厚度为1mm的FR4基片; 电路尺寸必须按照自己相应的MWO设计结果绘制; 电路外轮廓为矩形,尺寸必须为:50mm*40mm或40mm*20mm; 每个电路端口必须在电路板的侧面,并使用至少5mm长度的50ohm微带线连接。 二、实验内容和原理 1、内容: 在介电常数为4.5,厚度为1mm的FR4基片上(T取0.036mm,Loss tangent取0.02),设计一个3阶、最大平坦型微带短截线低通滤波器,其截止频率为f(2.2GHz),阻抗是50欧姆。 2、原理:

(1)Richards 变换: 集总元件构成的滤波器通常工作频率较低,在微波频段,我们常常采用微带结构实现较好的滤波性能。在设计得到滤波器原型之后,为了实现电路设计从集总参数到分布参数的变换,Richards 提出了一种变换方法,这种变换可以将集总元件变换成传输线段。如图1所示,电感L 可等效为长为λ/8,特性阻抗为L 的短路线;电容C 可等效为长为λ/8,特性阻抗为1/C 的开路线。 图1 (2)Kuroda 规则: 采用Richards 变换后,串联元件将变换为串联微带短截线,并联元件将变换为并联短截线。由于串联微带短截线是不可实现的,所以需要将其转变为其它可实现的形式。为了方便各种传输线结构之间的相互变换,Kuroda 提出了四个规则,如图2所示。其中,2211/n Z Z =+;U.E.是单位元件,即电长度为λ/8、特性阻抗为UE Z 的传输线。选用合适的Kuroda 规则,可以将串联短截线变换为容易实现的并联短截线。

实验三 图像空域平滑和频域平滑

实验三图像空域平滑和频域平滑 一、实验目的 1)掌握图像典型噪声的基本特点; 2)掌握图像空域高斯平滑的基本方法; 3)掌握图像空域中值滤波的基本方法; 4)掌握图像频域高斯平滑的基本方法; 5)掌握根据图像特点进行平滑滤波的基本原理和方法。 6)通过编程,上机调试程序,进一步提高编程能力及使用计算机解决问题 的能力。 二、实验原理 1. 图像的典型噪声 噪声可理解为影响传感器对所接收图像源信息进行理解或分析的各种因素。噪声一般是不可预测的随机信号,只能用概率统计的方法去认识。噪声对图像的输入、采集和处理的各种环节,以及输出结果的全过程均有影响。因此,去噪己经成为图像处理中极其重要的手段,也是图像处理领域研究的一个重点。本节对典型噪声的来源和性质进行简要介绍。 对图像信号而言,灰度图像可视为二维亮度分布,噪声可看作是对亮 度的干扰,用表示。噪声具有随机性,因而需要用随机过程来描述,即要 求知道其分布函数和密度函数。在许多情况下,这些函数很难测定和描述,甚至无法得到,所以常用均值、方差、相关函数等统计特征来描述噪声,如噪声的总功率描述为;噪声的交流功率可由方差描 述;噪声的直流功率可用均值的平方表示。 图像噪声的描述与建模方式主要有以下几种: (1)白噪声(White Noise):它具有常量的功率谱。白噪声的一个特例是高斯噪声(Gaussian Noise),其直方图曲线服从一维高斯型分布: (1) 其中为均值与标准差。MATLAB产生函数为J = IMNOISE(I,'gaussian',M,V), M,V为均值与方差,高斯噪声示例如图1所示。

图1 高斯噪声示例 (2)椒盐噪声(Pepper & Salt Noise):一种在图像中产生黑色、白色点的脉冲噪声。该噪声在图像中显现较为明显,对图像分割、边缘检测、特征提取等后续处理具有严重破坏作用。MATLAB产生函数为J = IMNOISE(I, ‘salt & pepper’, D),D为噪声密度。椒盐噪声示例如图2所示。 图2 椒盐噪声示例 (3)乘性噪声(Multiplicative Noise):乘性噪声与加性噪声对应,加性噪声一般指热噪声、散弹噪声等,它们与信号的关系是相加,不管有没有信号,噪声都存在。而乘性噪声一般由信道不理想引起,它们与信号的关系是相乘,依附于信号而存在。一般图像处理中把加性随机性噪声看成是系统的背景噪声;而乘性随机性噪声看成系统的时变性(如衰落或多普勒)或非线性所造成的。具体而言乘性噪声是指一幅图像被斑点噪声像素破坏,而且这些像素的亮度与其邻域的亮度显著不同,公式可表达为。MATLAB产生函数为J = IMNOISE(I,'speckle',V),其中V为噪声方差。乘性噪声示例如图3所示。

相关文档
最新文档