硫化锌及其掺杂量子点的制备、修饰及性能研究

硫化锌及其掺杂量子点的制备、修饰及性能研究
硫化锌及其掺杂量子点的制备、修饰及性能研究

量子点的制备及应用进展

龙源期刊网 https://www.360docs.net/doc/a36753149.html, 量子点的制备及应用进展 作者:于潇张雪萍王才富倪柳松等 来源:《科技视界》2013年第29期 【摘要】本文分别从量子点的概念、特性、制备方法、表面修饰等方面对量子点进行了 描述及讨论,在此基础上,对量子点在生物传感器方面的应用进行了,最后分析了量子点生物传感器的存在的问题,对其未来发展趋势进行了展望。 【关键词】量子点;光学;生物传感器 量子点主要是由Ⅱ-Ⅵ族和Ⅲ-Ⅴ族元素组成的均一或核壳结构纳米颗粒,又称半导体纳米晶体。由于发生结构和性质发生宏观到微观的转变,其拥有独特的光、电、声、磁、催化效应,因此成为一类比较特殊的纳米材料。国内外关于量子点传感器的研究非常广泛,例如在生命科学领域,可以用于基于荧光共振能量转移原理的荧光探针检测,可以用于荧光成像,生物芯片等;在半导体器件领域,量子点可以用于激光器,发光二极管、LED等。本文对量子点 的制备方法和应用领域及前景进行了初步讨论。 1 量子点的基本特性及其制备方法 1.1 量子点的特性及优势 量子点的基本特性有:量子尺寸效应、表面效应、量子限域效应、宏观量子隧道效应,除此之外,量子点具有一些独特的光学效应,这使得量子点较传统的荧光染料用来标记生物探针具有以下优势: (1)量子点具有宽的激发光谱范围,可以用波长短于发射光的光激发,产生窄而对称的发射光谱,避免了相邻探测通道之间的干扰。 (2)量子点可以“调色”,即通过调节同一组分粒径的大小或改变量子点的组成,使其荧光发射波长覆盖整个可见光区。尺寸越小,发射光的波长越小。 (3)量子点的稳定性好,抗漂白能力强,荧光强度强,具有较高的发光效率。半导体量子点的表面上包覆一层其他的无机材料,可以对核心进行保护和提高发光效率,从而进一步提高光稳定性。正是由于量子点具有以上特性使其在生物识别及检测中具有潜在的应用前景,有望成为一类新型的生化探针和传感器的能量供体,因此备受关注。 1.2 量子点的制备方法 根据原料的不同分为无机合成路线和金属-有机物合成路线,两种合成方法各有利弊。

量子点总结

1.前言 在最近的几十年里,量子点(QDs)即半导体纳米晶体(NCs)由于具有独特的电子和发光性质以及量子点在生物标记,发光二极管,激光和太阳能电池等领域的应用成为大家关注的焦点。量子点尺寸大约为1-10 纳米,它的尺寸和形状可以精确的通过反应时间、温度、配体来控制。当量子点尺寸小于它的波尔半径的时候,量子点的连续能级开始分离,它的值最终由它的尺寸决定。随着量子点的尺寸变小,它的能隙增加,导致发射峰位置蓝移。由于这种量子限域效应,我们称它为“量子点”。1998 年, Alivisatos和Nie 两个研究小组首次解决了量子点作为生物探针的生物相容性问题, 他们利用MPA 将量子点从氯仿转移到水溶液,标志着量子点的生物应用的时代的到来。目前,量子点最引人瞩目的的应用领域之一就是在生物体系中做荧光探针。 与传统的有机染料相比,量子点具有无法比拟的发光性能,比如尺寸可调的荧光发射,窄且对称的发射光谱宽且连续的吸收光谱,极好的光稳定性。通过调节不同的尺寸,可以获得不同发射波长的量子点。窄且对称的荧光发射使量子点成为一种理想的多色标记的材料。 由于宽且连续的吸收光谱,用一个激光源就可以同时激发一系列波长不同荧光量子点量子点良好的光稳定性使它能够很好的应用于组织成像等。量子点集中以上诸多优点是十分难得的,因此这就要求我们制备出宽吸收带,窄且对称的发射峰,高的量子产率稳定和良好生物兼容性的稳定量子点。 现在用作荧光探针的量子点主要有单核量子点(CdSe,CdTe,CdS)和核壳式量子点(CdSe/ZnS[39], CdSe/ZnSe[40])。量子点的制备方法主要分为在水相体系中合成和在有机相体系中合成。本文主要以制备量子点的结构及合成方法为主线分为两部分:第一部分综述了近十几年量子点在有机相中的制备方法的演变历程,重点包括前体的选择,操作条件和合成量子点结构。第二部分介绍了近十几年量子点在水相中制备方法的改进历程,重点包括保护剂的选择及水热法及微波辅助法合成方法。 2.在有机体系中制备在有机相中制备量子点主要采用有机金属法,有机金属法是在高沸点的有机溶剂中利用前躯体热解制备量子点的方法,即将有机金属前躯体溶液注射进250~300℃的配体溶液中,前躯体在高温条件下迅速热解并成核,晶核缓慢生长成为纳米晶粒。通过配体的吸附作用阻滞晶核生长,并稳定存在于溶剂中。配体所采用的前躯体主要为烷基金属(如二甲基隔)和烷基非金属(如二-三甲基硅烷基硒)化合物,主配体为三辛基氧化膦(TOPO),溶剂兼次配体为三辛基膦(TOP)。这种方法制备量子点,具有可制备量子点的种类多、改进纳米颗粒性能的方法多及所量子点的量子产率高等优点,其粒径分布可用多种手段控制,因而成为目前制备量子点的主要方法。 2.1 单核量子点的制备1993 年,Murray 等采用有机金属试剂作为反应前驱物,在高温有机溶剂中通过调节反应温度,合成了量子产率约为10%、单分散(±5%)的CdSe 量子点。他们采用TOPO 作为有机配位溶剂,用Cd(CH3)2 和TOP-Se 作为反应前驱物,依次将其注入到剧烈搅拌的350℃TOPO 溶液中,在短时间内生成大量的CdSe 纳米颗粒晶核,然后迅速降温至240℃以阻止CdSe 纳米颗粒继续成核,随后升温到260~280℃并维持一段时间,根据其吸收光谱监测晶体的生长,当晶体生长到所需要的尺寸时,将反应液冷却至60℃。加入丁醇防止TOPO 凝固,随后加入过量的甲醇,由于CdSe 纳米颗粒不溶于甲醇,通过离心便可得到CdSe 纳米颗粒。通过改变温度,可以将粒径控制在2.4~13nm 之间,且表面的TOPO 可以用吡啶、呋喃等代替。此后,Peng 等又通过进一步优化工艺条件,将两组体积不同,配比一定的Cd (CH3) 2、Se、TOP 的混合溶液先后快速注入高温TOPO 中的方法制得了棒状的CdSe量子点,从而扩展了该合成方法对量子点纳米晶粒形状的控制。利用这种

量子点光学传感器的研究进展.

量子点光学传感器的研究进展 * 来守军 (重庆三峡学院化学与环境工程学院,重庆404000 摘要分别从荧光转换传感器、荧光共振能量传感器、磷光转换传感器和定位传感器等方面综述了量子点光学传感器的发生机理及其在测定金属离子、阴离子、小分子、共振能量转移体系以及磷光材料、固态材料方面的应用。最后介绍了量子点光学传感器存在的问题和发展趋势。 关键词量子点光学传感器 Research Development of Opt ical Sensor Based on Q uant um Dots LAI Shoujun (Depa rtment of Chem istry and Env ir onmental Eng ineering,Cho ng qing T hr ee G or ge U niver sity,Cho ng qing 404000Abstract T he r esear ch dev elopment o f the o pt ical sensor based o n quantum do ts is rev iewed f rom four sect ions,which are fluo rescence -based transduction,fluorescence resonance energ y -tr ansfer -based senso rs,phospho rescence transduction,and immobilizatio n techniques,and it s applications are also rev iewed.T he exist ing pro blems and develo p -ments trend of the optical senso r based o n quantum do ts are intro duced. Key words quantum do ts,optical,senso r *重庆市教育委员会科学技术研究项目资助(KJ081102 来守军:男,1977年生,讲师,博士研究生,主要从事量子点传感器方面的研究 T el:023-******** E -mail:laishj04@https://www.360docs.net/doc/a36753149.html,

石墨烯量子点制备与应用

石墨烯量子点的概述 石墨烯量子点的性质 GQDs是准零维结构的纳米材料,由于其自身半径小于波尔激发半径,原子内部的电子在三维方向上的运动均受到限制,所以量子局域效应十分显着,因此具有许多独特的物理和化学性质。其与传统的半导体量子点(QDs)相比,GQDs 具有如下独特的性质:不含高毒性的金属元素如镉、铅等,属环保型量子点材料;自身结构稳定,耐强酸和强碱,耐光漂白;厚度可达到单个原子层,横向尺寸可达到几个互相联接的苯环大小,却能够保持高度的化学稳定性;带隙宽度范围可调,原则上可通过量子局域效应和边缘效应在0~5 eV 范围内调节,从而将波长范围从近红外区扩展到可见光区及深紫外区,从而满足了各种技术对材料能隙和特征波长的要求;容易实现表面功能化,可稳定分散于常用的化学试剂,满足材料低成本加工处理的需求。GQDs拥有的发光特性主要是通过光致发光和电化学发光产生,其中荧光性能是GQDs最突出的性能,GQDs的荧光性质主要包括:激发荧光稳定性高且具有抗光漂白性;荧光发射波长可以进行可控调节,有些GQDs还具有上转换荧光性质;激发光谱宽且连续,可以进行一元激发、多元发射。目前关于GQDs的光致发光机理主要有两个:(1)官能团效应,即在GQDs表面进行化学修饰,使得GQDs表面产生能量势阱,表面物理化学状态发生显着变化,导致其荧光量子产率提高;(2)尺寸效应,即GQDs的荧光性能取决于粒径尺寸的大小。GQDs还是优良的电子给体和电子受体,因此GQDs在能量存储、光电转化和电磁学领域具有重要的研究意义,同时在生物、医学、材料、新型半导体器件等领域具有重要潜在应用价值。 石墨烯量子点的制备 GQDs的合成方法可以分为两大类:自上而下法和自下而上法,如图1-1所示。自上而下法是通过简单的物理化学作用,进行热解和机械剥离块状石墨,得到尺寸较小的GQDs,是最常用的制备方法,比如改进的Hummers法,其使用的原料廉价,但是反应条件比较苛刻,制备周期比较长,通常需要经过强酸、强氧

量子点的制备及特性分析

班级:物理1201班 姓名:吴为伟 学号:20121800121 时间:2014年7月1日 ——量子点的制备及特性分析 大学物理实验报告

课题意义: 量子点是一种准零维半导体纳米晶体,其三个维度的尺寸都在几到几十纳米,外观恰似一极小的点状物,其内部电子在各方向的运动都受到限制,可以产生类似于原子的分立能级。量子点具有量子尺寸效应、量子限域效应以及表面效应等特殊效应。量子尺寸效应是指半导体量子点的带隙相对于体材料发生蓝移,并且随着量子点尺寸的减小,蓝移量增大,在光学性质方面引起吸收和发射光谱的蓝移现象:而且,相对于体材料,量子点还具有吸收和发光效率高的优点。量子点的这些有益光学特性使其在生物荧光标记、太阳能电池、发光二极管、激光器、探测器、量子计算机等新型光电子器件方面都具有非常重要的应用前景,成为各国科研人员研究的热点,并在多个学科中引起很大的反响。 实验目的: 本课题实验要求通过有机液相法制备CdS量子点、以及对其吸收和荧光光谱的测量,了解量子点的生长过程、吸收和荧光光谱基本原理和特点,以及量子尺寸效应的基础知识。 实验器材: 实验仪器:量子点制备设备一套、分析天平、离心机、吸收谱仪和荧光谱仪等。 化学试剂:硫粉(S)、氧化镉(CdO)、油酸(OA)、十八碳烯(ODE)、甲醇、正己烷、高纯氩气(Ar)等。 实验原理: 有机液相法 即以有机溶液为介质,以具有某些特殊性质的无机物和有机物作为反应原料,在适当的化学反应条件下合成纳米晶材料的方法。通常这些反应物、中间产物、生成物都是对水、空气敏感,在水溶液中不能稳定存在。最常用的方式是在无水无氧条件下的有机溶剂中进行的化学反应。通过改变反应温度、时间、反应物浓度、配体种类、含量等参数,可以制备出具有不同尺寸的纳米晶体。该方法制备的纳米晶体在尺寸和形貌上通常具有很好的单分散性,纳米晶质量高;而且,由于反应是在有机介质中进行,生成的纳米晶在有机溶剂中具有良好的分散性,非常有利于实际应用。 液相法生长纳米晶一般包括三个阶段:成核过程、生长过程和熟化过程。当溶质的量高于溶解度时,溶液过饱和,晶体就会从液体中析出,形成晶核,这就是成核过程。晶核的数量和成核速度是由溶液的过饱和度决定的。溶质从饱和溶液中运输到晶体表面,并按照晶体的结构重排,这就是生长过程。该过程主要是

量子点的性质、合成及其表面修饰研究

量子点的性质、合成及其表面修饰研究 【摘要】近年来,量子点作为一种重要材料在多个领域成为研究热点,本文分别从量子点的性质、合成及其表面修饰三个方面概括介绍了量子点。明确量子点具有荧光效率高,激发光谱宽,发射光谱窄、稳定性好等优点,是一种新型的纳米材料;通过有机相和无机相可制备不同的量子点,由于无机相制备过程能控制表面电荷,引入特殊官能团,故无机相制备应用更为广泛;通过对量子点的表面修饰,有效的改善量子点水溶性较差,不能与生物大分子直接作用的问题,使得量子点在生物方面的应用进一步加强。 【关键词】量子点;性质;合成;表面修饰 量子点主要是由Ⅱ-Ⅵ族和Ⅲ-Ⅴ族元素组成的均一或核壳结构纳米颗粒,又称半导体纳米晶体。由于发生结构和性质发生宏观到微观的转变,其拥有独特的光、电、声、磁、催化效应,因此成为一类比较特殊的纳米材料。自1990年7月美国召开第一届纳米会议[1],各国都在纳米技术方面给予巨大的投入,使得包括量子点技术在内的纳米技术飞速发展,其应用已突破原来的微电子和光电材料领域[2-3]。 1 量子点的基本特性 量子点的基本特性有:量子尺寸效应,表面效应,量子限域效应,宏观量子隧道效应,除此之外,量子点具有一些独特的光学效应[4],这使得量子点较传统的荧光染料用来标记生物探针具有以下优势: (1)量子点具有宽的激发光谱范围,可以用波长短于发射光的光激发,并产生窄而对称的发射光谱,避免了相邻探测通道之间的干扰。而有机染料荧光分子激光光谱较窄,每一种荧光分子必须用固定波长的光来激发,而且产生的荧光峰较宽,且不对称,有些拖尾,这给区分不同的探针分子带来了困难,故很难用有机染料分子同时检测多种组分。 (2)量子点还可以“调色”,即通过调节同一组分粒径的大小或改变量子点的组成,使其荧光发射波长覆盖整个可见光区。尺寸越小,发射光的波长越小。因此可用一个激发光源同时激发多个不同尺寸的量子点,使它们发出不同颜色的光进行多通道检测。这样可以同时使用不同光谱特征的量子点,而发射光谱不出现交叠或者只有很小程度的重叠,使标记生物分子的荧光光谱的区分、识别都会变得更加容易。 (3)量子点的稳定性好,抗漂白能力强,荧光强度强,具有较高的发光效率。半导体量子点的表面上包覆一层其他的无机材料,可以对核心进行保护和提高发光效率,从而进一步提高光稳定性。Chan和Nie通过实验证明ZnS包覆的CdSe比罗丹明6G分子要亮20倍和稳定100~200倍,可以经受多次激发而其光学特性没有显著变化,且标记后对生物大分子的生理活性影响很小,因此为研

量子点总结

量子点总结

1.前言 在最近的几十年里,量子点(QDs)即半导体纳米晶体(NCs)由于具有独特的电子和发光性质以及量子点在生物标记,发光二极管,激光和太阳能电池等领域的应用成为大家关注的焦点。量子点尺寸大约为1-10 纳米,它的尺寸和形状可以精确的通过反应时间、温度、配体来控制。当量子点尺寸小于它的波尔半径的时候,量子点的连续能级开始分离,它的值最终由它的尺寸决定。随着量子点的尺寸变小,它的能隙增加,导致发射峰位置蓝移。由于这种量子限域效应,我们称它为“量子点”。1998 年 , Alivisatos 和 Nie 两个研究小组首次解决了量子点作为生物探针的生物相容性问题, 他们利用MPA 将量子点从氯仿转移到水溶液,标志着量子点的生物应用的时代的到来。目前,量子点最引人瞩目的的应用领域之一就是在生物体系中做荧光探针。 与传统的有机染料相比,量子点具有无法比拟的发光性能,比如尺寸可调的荧光发射,窄且对称的发射光谱宽且连续的吸收光谱,极好的光稳定性。通过调节不同的尺寸,可以获得不同发

射波长的量子点。窄且对称的荧光发射使量子点成为一种理想的多色标记的材料。 由于宽且连续的吸收光谱,用一个激光源就可以同时激发一系列波长不同荧光量子点量子点良好的光稳定性使它能够很好的应用于组织成像等。量子点集中以上诸多优点是十分难得的,因此这就要求我们制备出宽吸收带,窄且对称的发射峰,高的量子产率稳定和良好生物兼容性的稳定量子点。 现在用作荧光探针的量子点主要有单核量子点(CdSe,CdTe,CdS)和核壳式量子点(CdSe/ZnS[39], CdSe/ZnSe[40])。量子点的制备方法主要分为在水相体系中合成和在有机相体系中合成。本文主要以制备量子点的结构及合成方法为主线分为两部分:第一部分综述了近十几年量子点在有机相中的制备方法的演变历程,重点包括前体的选择,操作条件和合成量子点结构。第二部分介绍了近十几年量子点在水相中制备方法的改进历程,重点包括保护剂的选择及水热法及微波辅助法合成方法。

半导体量子点及其应用概述_李世国答辩

科技信息2011年第29期 SCIENCE&TECHNOLOGY INFORMATION 0引言 近年来半导体材料科学主要朝两个方向发展:一方面是不断探索扩展新的半导体材料,即所谓材料工程;另一方面是逐步从高维到低维深入研究己知半导体材料体系,这就是能带工程。半导体量子点就是通过改变其尺寸实现能级的改变,达到应用的目的,这就是半导体量子点能带工程。半导体量子点是由少量原子组成的准零维纳米量子结构,原子数目通常在几个到几百个之间,三个维度的尺寸都小于100纳米。载流子在量子点的三个维度上运动受尺寸效应限制,量子效应非常显著。在量子点中,由于量子限制效应作用,其载流子的能级类似原子有不连续的能级结构,所以量子点又叫人造原子。由于特殊能级结构,使得量子点表现出独特的物理性质,如量子尺寸效应、量子遂穿效应、库仑阻塞效应、表面量子效应、量子干涉效应、多体相关和非线性光学效应等,它对于基础物理研究和新型电子和光电器件都有很重要的意义,量子点材料生长和器件应用研究一直是科学界的热点之一[1]。 1量子点制备方法 目前对量子点的制备有很多方法,主要有外延技术生长法、溶胶-凝胶法(Sol-gel 和化学腐蚀法等,下面简单介绍这几种制备方法: 1.1外延技术法 外延技术法制备半导体量子点,主要是利用当前先进的分子束外延(MBE、金属有机物分子束外延(MOCVD和化学束外延(CBE等技术通过自组装生长机理,在特定的生长条件下,在晶格失配的半导体衬底上通过异质外延来实现半导体量子点的生长,在异质外延外延中,当外延材料的生长达到一定厚度后,为了释放外延材料晶格失配产生的应力能,外延材料就会形成半导体量子点,其大小跟材料的晶格失配度、外延过程中的条件控制有很大的关系,外延技术这是目前获得高质量半导体量子点比较普遍的方法,缺点是对半导体量子点的生长都是在高真空或超高真空下进行,使得材料生长成本非常高。1.2胶体法

ZnS合成方法参考

本科毕业论文(设计)题 目 气相法合成ZnS纳米结构的研究 学 院 物理科学与技术学院 专 业 物理学 年 级 2006 学 号 222006315011019 姓 名 李 云 华 指 导 教 师 赵建伟 副教授 成 绩 2010 年4月30日

目录 摘要 (3) Abstract (3) 一、引言 1 纳米材料概述 (3) 2 ZnS的物相结构 (5) 3 ZnS的性质与应用 (5) 4 制备方法 (7) 二、实验过程 (8) 三、实验结果与分析 (10) 四、实验结论 (12) 五、参考文献 (12) 六、致谢 (14)

气相法合成ZnS纳米结构的研究 李云华 西南大学物理科学与技术学院 重庆 400715 摘要:本论文主要对化学气相沉积过程中ZnS一维纳米结构的生长进行了研究。具体过程是采用单晶Si片为衬底,以Au做催化剂,ZnS粉末为原料,利用气相沉积的方法,通过调控硫化锌的适宜的生长条件,在陶瓷舟中获得硫化锌纳米结构:硫化锌纳米线。在实验的基础上,合理解释了硫化锌纳米结构的生长机理。 关键词:气相沉积;ZnS纳米结构;纳米线 Synthesis of ZnS Nanostructures by Vapor Deposition Method LI Yunhua School of Physical Science and Technology,Southwest University, Chongqing 400715, China Abstract: I n this thesis, We mainly researched the growth of ZnS one-dimensional nanostructure in the chemical vapor deposition process. That is: single-crystal Si was used as substrate, with a Au film as catalyst, ZnS powder as source materials. The method of vapor deposition was used to synthesis ZnS nanostructures. Finally,ZnS one-dimension nanostructures were obtained. On the base of experiment, a reasonable explanation was given to show the growth mechanism of the ZnS nanostructure. Key word:Vapor deposition; ZnS nanostructures; nanowires 一、 引言 1、纳米材料概述 材料是人类生活和生产的物质基础,是人类认识自然和改造自然的工具。人类文明曾被划分为旧石器时代、新石器时代、青铜器时代、铁器时代等,由此可见材料的发展对人类社会的影响——没有材料就是没有发展。当今新材料的发展方向:高性能化、高功能化、高智能化、复合化、极限化、仿生化、环境友好化,发展新兴高性能的半导体材料是当前社会工业化进程的迫切需求。

InP ZnS核壳量子点光学性质研究

Material Sciences 材料科学, 2018, 8(3), 131-136 Published Online March 2018 in Hans. https://www.360docs.net/doc/a36753149.html,/journal/ms https://https://www.360docs.net/doc/a36753149.html,/10.12677/ms.2018.83016 Study on the Luminescence Properties of InP/ZnS Quantum Dot Bowen Zhang, Dengkui Wang*, Xuan Fang, Dan Fang, Xinwei Wang, Jilong Tang, Xiaohua Wang, Zhipeng Wei State Key Laboratory of High Power Semiconductor Laser, Changchun University of Science and Technology, Changchun Jilin Received: Feb. 21st, 2018; accepted: Mar. 6th, 2018; published: Mar. 13th, 2018 Abstract InP-based quantum dots are considered as the most promising candidate for Cd-based QDs. How-ever, the research on the fabricated and properties of InP quantum dots is far less than that of Cd-based QDs, especially their optical properties. In this paper, InP/ZnS quantum dots with good lattice quality and optical properties were prepared by one-pot method. The size of InP core was confirmed to be about 3 nm by TEM image. The lattice spacing was in agreement with that of InP(111). The results of power dependence photoluminescence and Raman spectra show that there are two luminescent sources in the InP/ZnS, the transition from the free energy exciton in the high energy end and the defects in the low energy end originating from the interface stress. Keywords Photoluminescence, InP/ZnS, TEM, Interface Stress InP/ZnS核壳量子点光学性质研究 张博文,王登魁*,方铉,房丹,王新伟,唐吉龙,王晓华,魏志鹏 长春理工大学高功率半导体激光国家重点实验室,吉林长春 收稿日期:2018年2月21日;录用日期:2018年3月6日;发布日期:2018年3月13日 摘要 InP量子点被认为是最有希望替代Cd基量子点的材料。然而对于InP量子点的制备和性质的研究远远小于*通讯作者。

量子点的制备方法综述及展望

量子点的制备方法综述及展望 1.前言 在最近的几十年里,量子点(QDs)即半导体纳米晶体(NCs)由于具有独特的电子和发光性质以及量子点在生物标记,发光二极管,激光和太阳能电池等领域的应用成为大家关注的焦点。英语论文。 量子点尺寸大约为1-10 纳米,它的尺寸和形状可以精确的通过反应时间、温度、配体来控制。当量子点尺寸小于它的波尔半径的时候,量子点的连续能级开始分离,它的值最终由它的尺寸决定。随着量子点的尺寸变小,它的能隙增加,导致发射峰位置蓝移。由于这种量子限域效应,我们称它为“量子点” 。1998 年 , Alivisatos和 Nie 两个研究小组首次解决了量子点作为生物探针的生物相容性问题, 他们利用MPA 将量子点从氯仿转移到水溶液,标志着量子点的生物应用的时代的到来。目前,量子点最引人瞩目的的应用领域之一就是在生物体系中做荧光探针。 与传统的有机染料相比,量子点具有无法比拟的发光性能,比如尺寸可调的荧光发射,窄且对称的发射光谱宽且连续的吸收光谱,极好的光稳定性。通过调节不同的尺寸,可以获得不同发射波长的量子点。窄且对称的荧光发射使量子点成为一种理想的多色标记的材料。 由于宽且连续的吸收光谱,用一个激光源就可以同时激发一系列波长不同荧光量子点量子点良好的光稳定性使它能够很好的应用于组织成像等。硕士网为你提供计算机硕士论文。 量子点集中以上诸多优点是十分难得的,因此这就要求我们制备出宽吸收带,窄且对称的发射峰,高的量子产率稳定和良好生物兼容性的稳定量子点。 现在用作荧光探针的量子点主要有单核量子点(CdSe,CdTe,CdS)和核壳式量子点(CdSe/ZnS[39], CdSe/ZnSe[40])。量子点的制备方法主要分为在水相体系中合成和在有机相体系中合成。 本文主要以制备量子点的结构及合成方法为主线分为两部分:第一部分综述了近十几年量子点在有机相中的制备方法的演变历程,重点包括前体的选择,操作条件和合成量子点结构。第二部分介绍了近十几年量子点在水相中制备方法的改进历程,重点包括保护剂的选择及水热法及微波辅助法合成方法。 2.在有机体系中制备在有机相中制备量子点主要采用有机金属法,有机金属法是在高沸点的有机溶剂中利用前躯体热解制备量子点的方法,即将有机金属前躯体溶液注射进250~300℃的配体溶液中,前躯体在高温条件下迅速热解并成核,晶核缓慢生长成为纳米晶粒。通过配体的吸附作用阻滞晶核生长,并稳定存在于溶剂中。配体所采用的前躯体主要为烷基金属(如二甲基隔)和烷基非金属(如二-三甲基硅烷基硒)化合物,主配体为三辛基氧化膦(TOPO),溶剂兼次配体为三辛基膦(TOP)。这种方法制备量子点,具有可制备量子点的种类多、改进纳米颗粒性能的方法多及所量子点的量子产率高等优点,其粒径分布可用多种手段控制,因而成为目前制备量子点的主要方法。 2.1 单核量子点的制备1993 年,Murray 等采用有机金属试剂作为反应前驱物,在高温有机溶剂中通过调节反应温度,合成了量子产率约为10%、单分散(± 5%)的CdSe 量子点。他们采用TOPO 作为有机配位溶剂,用Cd(CH3)2 和TOP-Se 作为反应前驱物,依次将其注入到剧烈搅拌 的350℃TOPO 溶液中,在短时间内生成大量的CdSe 纳米颗粒晶核,然后迅速降温至240℃以阻止CdSe 纳米颗粒继续成核,随后升温 到260~280℃并维持一段时间,根据其吸收光谱监测晶体的生长,当晶体生长到所需要的尺寸时,将反应液冷却至60℃。加入丁醇防止TOPO 凝固,随后加入过量的甲醇,由于CdSe 纳米颗粒不溶于甲醇,通过离心便可得到CdSe 纳米颗粒。通过改变温度,可以将粒径控制在2.4~13nm 之间,且表面的TOPO 可以用吡啶、呋喃等代替。此后,Peng 等又通过进一步优化工艺条件 ,将两组体积不同,配比一定的Cd (CH3) 2、 Se、TOP 的混合溶液先后快速注入高温 TOPO 中的方法制得了棒状的 CdSe量子点,从而扩展了该合成方法对量子点纳米晶粒形状的控制。利用这种方法合成的量子点受到杂质和晶格缺陷的影响,因此量子产率较低。由于Te 更容易被氧化,所以制备高质量的CdTe 要比制备CdSe,CdS 难得多。2001 年,Dmitri.V 等用DDA(十二胺)代替TOPO作反应溶剂合成高质量的CdTe 量子点,量子产率可达65%,且窄的发射光谱覆盖红色和绿色

MAA修饰ZnO量子点及其发光特性

中国科学: 化学 2010年第40卷第4期: 322 ~ 330 SCIENTIA SINICA Chimica https://www.360docs.net/doc/a36753149.html, https://www.360docs.net/doc/a36753149.html, 《中国科学》杂志社SCIENCE CHINA PRESS 论文 MAA修饰ZnO量子点及其发光特性 庄稼*, 刘猛, 刘汉斌 西南石油大学材料科学与工程学院, 成都 610500 *通讯作者, E-mail: zhuangjia@https://www.360docs.net/doc/a36753149.html, 收稿日期: 2009-02-23; 接受日期: 2009-04-16 摘要以ZnAc2·2H2O为原料, 在乙醇中通过70 ℃回流4 h, 得到ZnO前驱物, 与LiOH·H2O 反应, 制备出ZnO. 采用巯基乙酸(mercaptoacetic acid, MAA)对所合成的ZnO进行表面修饰, 修饰后的产物经SEM和XRD表征, 证明获得了物相单一、近似球状、粒径为4.6 nm的ZnO量子点. 借助紫外-可见和荧光分析, 研究了MAA对该量子点的修饰效果, 探讨了设置条件下ZnO 的发光机理和性质. 发现该实验体系之所以产生荧光表面缺陷发射峰消失和激子发射峰明显增加的光学现象, 是因为MAA有效地覆盖了ZnO的表面缺陷, 并稳定包裹住ZnO粒子. 同时还研究了MAA加量、温度、电解质对修饰产物发光性能的影响, 发现经MAA修饰后的ZnO量子点具有较强的荧光发光性能、良好的长期陈放稳定性, 以及一定的抗电解质影响能力. 研究结果对ZnO量子点应用于生物分析具有重要参考价值. 关键词ZnO量子点巯基乙酸表面修饰发光特性 1 引言 由于量子点在电子信息、生物分析等方面的应用价值提升, 近年来引起人们对其制备研究的高度重视[1~4], 目前报道较多的量子点研究主要有CdS, ZnS, CdSe、ZnTe、HgSe、CdS、CdTe、InAs、GaAs等[5~15].这些量子点具有激发光谱宽、可实现多种荧光光谱、较大的斯托克斯位移和较好的生物分析等特性. 但这些量子点从应用和环保角度来看, 在获得生物相容性好、无毒性影响,荧光亮度高、稳定不变、水溶性好的性能方面还有不少问题有待解决[16~18]. ZnO量子点具有优良的光学及电学性能, 对环境无害无毒, 能产生明显的量子限域效应等优点[19~22]. 但由于ZnO量子点在制备时具有大的比表面积, 高的表面活性, 很容易团聚在一起形成带有若干弱连接界面、尺寸较大的团聚体; 而且有关半导体纳米粒子表面形态的研究指出, 形貌不规则, 存在着许多缺陷, 这些问题都会影响ZnO量子点的发光性质. 为此本文在稳定剂的协同作用下, 采用巯基乙酸(MAA)对ZnO量子点表面进行修饰, 实现巯基与Zn2+离子间的强配位作用, 让MAA包覆在量子点表面, 这样做可实现: (1)粒子表面钝化, 避免量子点间的团聚; (2)消除表面缺陷, 使ZnO量子点表面的非辐射电子-空穴(e?/h+)复合尽量减小, 明显增强激子荧光发射, 改善和提高发光性能; (3)引入可以与生物分子反应的基团, 使ZnO量子点具有偶联生物分子的功能. 因此所制备的无毒性的ZnO量子点, 在水溶液中具有良好的稳定性及发光性能, 不随陈化时间的改变发生团聚, 而且ZnO量子的紫外激子发光性能明显增强, 表面缺陷态荧光发射几乎消失. 2 实验 2.1 试剂与仪器 ZnAc2·2H2O(分子量219.50)、无水乙醇(分子量46.07)、六偏磷酸钠(分子量611.76), 成都科龙化工试剂厂; 巯基乙酸(MAA, 分子量92.11), 重庆北碚化

硫化锌的性能与制备

N型自聚集ZnS薄膜的特征和制备我们已经在不同的PH值的条件下用乙酸锌和硫脲的方法合成了N型ZnS薄膜。通过X射线衍射测得的平均颗粒的大小在3-5nm之间。通过红外光谱频带的多声子吸收的观测已证实硫化锌的生成,红外光谱也证实了硫化锌络合剂的存在。使用自聚集的方法硫化锌薄膜也沉积在玻璃或者石英底衬上面,同事薄膜的折射率也得以确定。通过Tauc的推导来计算光学带隙,利用改变PH值的方法来发现光学带隙,对这些薄膜电导率的测量和活化能的计算已经完成。 关键词:: n-ZnS,纳米晶体,自聚集,光学带隙 1.简介 近年来,由于科学研究对纳米材料的涉及及其应用,人们对纳米材料也长生很大的兴趣。对于纳米尺寸的材料,量子表面效应产生重要影响,从而使物理量发生急剧的变化。由于半导体材料受到量子表面效应的影响而具有的新奇的电学和光学特性,使其备受关注。硫化锌是一种具有3.65eV带隙的II-VI族半导体,在光电器件中有非常广泛的应用,比如蓝光发光二极管,电致发光器件,光伏细胞等在显示器,传感器和激光器中广泛应用。近几年,由于其纳米级颗粒性质的与众不同,纳米晶体硫化锌备受关注,所以研究人员尽力控制晶体大小和形态以及晶带的多晶来改变它们的物理性质,因此,在制备半导体纳米颗粒和薄膜的技术方面越来越热门。湿化学合成法是一种简单且廉价的可以替代复杂的化学气相沉积技术和其他物理方法的制备方法。那些常应

用于制备纳米材料的一般的物理方法,通常都因为分辨率的限制而受到制约。另一方面,湿化学合成法提供了一种简单的方法来制备大小适合分布均匀的纳米材料。因此,作者决定通过改变沉积参数例如PH值等方案来制备N型硫化锌颗粒或薄膜。 2.实验过程 在不同的PH值(=7,10,12)的条件下使用络合剂合成硫化锌纳米晶体。将溶解在锌-醋酸的硫化锌水溶液,络合剂(柠檬酸三钠),硫脲混合在50ml的去离子水中,搅拌均匀之后升高温度。最后,固相隔离,通过过滤和热水浴,获得残留物,制取样品。固体成分就是硫化锌纳米晶体,薄膜已沉积在干净的玻璃或者石英底衬或者KBr底衬上面,用来测量它们的光学性质和电学性质及其结构。 现在晶体研究已经使用2Θ的范围内从100到700的CuKα的射线的菲利普斯PE-1610X射线衍射仪。红外光谱由Perkin-Elmer PE-Rx 1的红外分光分光计确定.通过实验可知该红外光谱仪的分辨率为1 cm-1。为了研究n型硫化锌薄膜的光学特性,对于所有的样品采用波长范围在300-1000nm的双记录光束UV/VIS/NIR 光谱仪。这些样品的电学性能测量在特殊设计的金属样品架中进行.通过这个仪器保持10-3mbar的真空条件。长为1.0厘米,电极间隙为8 × 10 - 2cm的薄膜平面形状用来测量其电学性能,厚电极作为电触点.薄膜厚度大约为615nm,由轮廓仪测量。电导率通过一个皮安表的示数来指出,准确度通常是1pa。

碳量子点及其性能研究进展_史燕妮_李敏_陈师_夏少旭_吴琪琳

10.14028/j .cnki.1003-3726.2016.01.006收稿:2015-03-19;修回:2015-05- 05;基金项目:上海市教育委员会重点创新项目(14zz069)、同济大学先进土木工程材料重点实验室开放基金(201301);作者简介:史燕妮(1991-),女,硕士,主要从事碳量子点的制备及其性能研究。E-mail:YanniShi@o utlook.com;*通讯联系人,E-mail:wq l@dhu.edu.cn.碳量子点及其性能研究进展 史燕妮1,2,李 敏2,陈 师2,夏少旭2,吴琪琳1, 2* (1.东华大学纤维材料改性国家重点实验室,上海 201620;2.东华大学材料科学与工程学院,上海 201620 ) 摘要:碳量子点(Carbon Quantum Dots,CQDs)是一种新型的碳纳米材料,因其强的量子限域效应和稳定的荧光性能等一系列优异性能,吸引了化学、物理、材料和生物等各领域科学家的广泛关注。相比传统半导体金属量子点,CQDs还具备优异的低毒性和生物相容性,更拓宽了其在生物领域内的研究前景。本文简要地介绍了CQDs的制备方法,主要包括自上而下和自下而上两个方向。除此之外,本文综述了CQDs突出的物理化学性质和性能,包括CQDs的荧光性能、生物相容性和上转换效应,并对CQDs在其在生物成像上的应用进行了归纳。 关键词: 碳量子点;荧光;低毒性;上转换效应;生物成像从上世纪90年代初日本科学家IIJIMA首次发现碳纳米管开始,到2010年两位俄罗斯科学家Andre Geim和Konstantin  Novoselov因在石墨烯材料研究上的卓越贡献获得诺贝尔物理学奖,科学家们对于碳纳米材料的研究热潮一直持续高涨[1,2] 。碳量子点(Carbon Quantum Dots,CQDs),通常定义为尺寸在20nm以下的新型碳材料, 由于量子限域效应表现出稳定的荧光性能,尤其是其生物相容性和低毒性大大突破了传统金属量子点材料在生物领域的应用限制[3~5] 。2004年JACs上首次报道了Scrivens等在分离碳纳米管时发现了具备荧光性能的碳纳米粒子,但是其荧光产率很低[6] 。2006年美国 克莱蒙森大学Ya-Ping Sun教授领导的科研小组报道了激光剥离碳源的方法制备的具备较好荧光性能的碳纳米粒子,通过有机分子聚乙二醇等表面修饰,荧光产率可达10%以上并首次称之为碳点。 作为一种新型的荧光材料,CQDs具备更宽而连续的激发光谱、稳定的荧光性能及其良好的生物相容性和低毒性,并且可通过化学修饰的手段实现功能化,在生物成像、标记和检测等领域有着良好的应用 前景[7~11] 。本文就三个研究热点进行了综述,包括碳量子点的制备方法、性能表征以及应用探索并针对 碳量子点在发展过程中存在的问题进行了讨论。 1 碳量子点的制备 从材料学的角度分析,碳量子点的制备方法目前主要探索了两大类:自下而上和自上而下。自下而上的方法具体是指以小分子作为前体通过一系列的化学反应制备碳量子点,尽管理论上可以实现形貌可控,对碳量子点表面边界结构的修饰也比较便捷,但步骤太繁琐,对设备的要求也比较高,例如微波 法[12]、溶液化学法[13] 等。自上而下的方法的主体思路是通过物理或化学的方法将大尺寸的二维碳网平 面结构切割成小尺寸的碳量子点。目前主要采用具有大尺寸的石墨烯薄片的原材料,激光刻蚀法、电化 学氧化法[14]、水热法[15] 都是自上而下的典型代表。其中激光刻蚀法是最早报道的用来制备碳量子点的 方法之一,通常产物尺寸比较大(30~50nm),荧光效应比较弱,有些甚至几乎检测不到,还需经过有机小分子的表面修饰后才表现出强荧光效应,而且对激光设备的要求也比较高。自上而下的方法可以通过调 节各自的反应参数达到对产物尺寸的调控,而对边界结构的控制通常是不容易实现的[ 16] 。研究者用电化学氧化法通过外加电势调节碳量子点尺寸的大小,制备了1~3nm大小的碳量子点, 并发现其荧光性· 93· 第1期 高 分 子 通 报

经修饰的环糊精与量子点作用

摘要 本发明一种羧基化法β-环糊精修饰的低毒性功能化量子点及其制备方法,属于特异性分子识别诊断试剂领域。本发明通过化学修饰方法在β-环糊精上连接功能基团羧基,得到羧基-β-环糊精;在1-乙基-3-(3-二甲基丙胺)碳二亚胺盐酸盐和N-羟基琥珀酰亚胺的作用下,叶酸经活化后先与双氨基聚乙二醇偶联,再与羧基-β-环糊精偶联,得到叶酸-β-环糊精;利用银,锌等低毒性元素作为原料,制备油溶性的近红外量子点,并用叶酸-β-环糊精对其进行水溶性的修饰,得到羧基化法β-环糊精修饰的低毒性功能化量子点。本发明制备的量子点具有良好的水溶性,低毒性,发射光谱在近红外区,并且由于偶联了叶酸,可以用于肿瘤的特异性荧光检测。 说明 一种羧基化法β-环糊精修饰的低毒性功能化量子点及其制备方法 技术领域 [0001] 一种羧基化法β-环糊精修饰的低毒性功能化量子点及其制备方法,制备的功能化量子点可以用于肿瘤标志物等的特异性荧光检测,属于特异性分子识别诊断试剂领域。 背景技术 [0002] 叶酸是细胞(尤其是增殖旺盛的细胞)所必需的维生素,它参与多种代谢途径的一碳转移反应。叶酸的细胞转运通过两种跨膜蛋白,即低亲和力的还原性叶酸载体和高亲和力的叶酸受体来完成。目前已证实叶酸受体在多种肿瘤细胞表面过度表达,如卵巢癌、宫颈癌、子宫内膜癌、乳腺癌、肺癌、脑瘤、室管膜细胞瘤等,而在多数正常组织中的表达仅限于一些难于进入血液循环的上皮细胞顶膜。叶酸含有α和Y两个羧基,易于修饰,同时具有低免疫原性、小体积、高化学稳定性和生物学稳定性,高肿瘤渗透性、易与药物结合,与有机或水性溶剂的相容性佳以及低成本等优点,故叶酸介导的肿瘤靶向研究得到了迅速发展。 [0003] 用于生物分子和细胞标记与识别的荧光探针包括有机分子荧光探针和无机分子荧光探针两类。有机分子荧光探针的种类尽管比较多,但存在着Stoke位移小,容易光漂白以及量子产率低等不足。无机分子突光探针主要是量子点(Quantum Dots,QDs)。QDs是指半径小于或接近于激子波尔半径的半导体纳米晶粒,粒径通常为Ι-lOnm,一般为由I1-VI族或II1-V族元素构成的化合物。量子点作为一种新型荧光染料,具有很多独特而优良的光学特性,包括(I)连续而宽的激发光谱,且荧光谱峰位置可通过改变QDs的粒径进行调控,这样仅用一种波长的激发光源便可激发多种不同颜色荧光的QDs,进行多元荧光检测。(2)发射光谱窄,可同时显现多种不同颜色而无重叠。(3)Stokes位移大,能够避免发射谱与激发谱重叠,从而允许在低信号强度的情况下进行光谱学检测。(4)抗光漂白能力强,而这种抗光漂白的高度光稳定性对于需要长时间成像的研究而言极为重要。(5)光稳定性高,便于获得无背景干扰的荧光信号等优良的光物理特性。 (6)荧光产率高,强度强,单一量子点表现出的荧光亮度是有机荧光染料的10-20倍。因此,量子点在多个研究领域显示出其独特的应用前景。 [0004] 根据合成量子点时所采用溶剂的不同,量子点合成方法可归结为两大类 一种方法是在高沸点的有机溶剂中利用前躯体热分解来合成,得到的产物荧光效率高、尺寸均匀、稳定性好。另一种是利用稳定剂在水溶液中直接合成,产物的尺寸分布宽,荧光效率较低。一般

相关文档
最新文档