对我国粮食产量影响因素的计量分析

《计量经济学》课程论文

对我国粮食产量影响因素

的计量分析

院系:经济与管理学院经济学系

班级:经济学09-1班

成员:

对我国粮食产量影响因素的计量分析

摘要:通过计量经济学方法创建我国粮食生产函数,我们会发现粮食作物播种面积、化肥施用量、有效灌溉面积是影响粮食生产的三大因素,其中粮食播种面积的影响最大。

关键词: 粮食产量,粮食作物播种面积,化肥施用量,有效灌溉面积

一、问题的提出

粮食是人类最基本的生活消费品,一个国家的粮食问题是关系到本国的国计民生的头等大事。人们都知道,农业是国民经济发展的基础,粮食是基础的基础,因此粮食生产是关系到一个国家生产与发展的一个永恒的主题。我国是世界上人口最多的国家,但人均耕地面积远远少于世界平均水平,如何在有限的土地上养活这么多的人口,解决粮食问题无疑是重中之重。从历史数据来看,我国粮食总产量在1998年达到高峰,为5.12亿吨,此后,粮食生产呈现持续下滑的局面,一直持续到2003年。2003年以后,中央加大了对“三农”的关注力度,每年出台的中央一号文件都是针对解决“三农”问题的。由于中央对农业生产的高度重视,以及连续出台的多项惠农政策,极大的调动了农民的生产积极性。从2004年以来的5年里,我国粮食产量连续5年增产,在2009年粮食产量更是达到53082.1万吨。但是我国粮食生产仍存在着许多问题,因此,有必要对我国粮食产量影响因素进行实证研究,以此寻找我国粮食稳定增产的有效途径。

二、模型的设定

影响粮食生产的因素很多,有劳动力、物质投入、土地、生产方式、技术进步、生产结构、制度因素、气候变化和自然灾害等等因素都影响着粮食产量。为了基本涵盖这些基本因素,本文选择了以粮食作物播种面积、化肥施用量、有效灌溉面积为解释变量,以粮食产量为被解释变量。为此设定如下形式的计量经济模型:

Yt=β1+β2X2t+β3X3t+β4X4t+μt

其中Yt 为第t年的粮食产量,X2为粮食作物播种面积(千公顷),X3为化肥施用量(万吨),X4为有效灌溉面积(千公顷),μt为随机扰动项。

三、数据的收集

为估计模型参数,收集粮食产量及其相关影响因素1990—2009年的统计数据,如下表所示:

表1:中国1990—2009年的粮食产量及其相关影响因素统计表

四、模型估计及调整

利用Eeviews软件,生成Y、X2、X3、X4等的数据,采用这些数据对模型进行OLS回归,结果如下表所示:

表2:估计结果

根据表2中的数据,模型估计的结果为:

Yt=-25046.26 + 0.6297X2 +6.0609X3- 0.3862X4

Se=(11686.14)(0.0584)(1.1065)(0.2552)

t= (-2.1432) (10.7844) (5.4775) (-1.5136) 2

R2R

(一)、模型检验

1.经济意义检验

模型估计结果说明,在假定其他变量不变的情况下,当年的粮食作物种植面积每增长1%,平均来说粮食产量将增长0.6297%;在假定其他变量不变的情况下,当年的化肥施用量每增长1%,平均来说粮食产量将增长6.0609%;在假定其他变量不变的情况下,当年的有效灌溉面积每增长1%,平均来说粮食产量将减少0.3862%。这与理论分析和经验判断并非一致,可能存在问题。 2.统计检验

1)拟合优度:由表2中数据可以得到 =0.9352,修正的可决系数 =0.9231,说明模型对样本的拟合较好。

2)F 检验:针对H0:β1 =β2=β3=β4=0,给定显著性水平α=0.05,在F 分

布表中查出自由度为k-1=3和n-k=16的临界值 (3,16)=3.24。由表2中得到F=77.0265,由于F=77.0265> (3,16)=3.24,所以应拒绝原假设Ho :β

1 =β2=β3=β4=0,说明回归方程显著,即“粮食作物种植面积”、“化肥施用量”、“有效灌溉面积”等变量联合起来确实对“粮食产量”有显著影响。

3)t 检验:分别针对Ho :βj=0(j=1、2、3、4),给定显著性水平α=0.05,查

t 分布表的自由度为n-k=16的临界值 =2.120。由表中数据可得,与β1、β2、β3、β4对应的t 统计量分别是-2.1432、10.7844、5.4775、-1.5136,其绝对值并非都大于

= 2.120。这说明,当在其他解释变量不变的情况下,解释变量X2、X3、X4并非都对被解释变量Y 有显著的影响。

(二)、多重共线性检验

1、相关系数检验

由上述回归结果可见,该模型 =0.9352、 =0.9231可决系数较高,F 检验值为77.0265,明显显著。但是当α=0.05时,

=2.120,对X4系数

的t 检验不仅不显著,而且X4的系数与预期相反,这表明很可能存在严重的多重共线性。

计算各解释变量的相关系数,选择X2、X3、X4数据,得相关系数矩阵,结果如表4所示:

表3:相关系数矩阵

2

R 2

R .3)15,2(05.0=F .3)15,2(05.0=F )(2k n t -α)

(2k n t -α2

R 2

R )(2k n t -α

由矩阵可以看出,各解释变量相互之间的相关系数较高,证实确实存在严重多重共线性。 2、多重共线性的修正

采用逐步回归的方法,检验和解决多重共线性问题,分别作Y 对X2、X3、X4的一元回归,结果如表4所示:

表4:一元回归估计结果

其中X3的方程 最大,以X3为基础,顺次加入其它变量逐步回归。结果如表5所示:

表5:加入新变量的回归结果:

经比较,加入X2的方程的修正可决系数改进较大,且其参数的t 检验均显著,但加入X3后的修正可决系数不仅没有得到修正,而且各参数的t 检验均不显著,所以选择保留X2,剔除X4。

最后修正严重多重共线性影响后的回归结果为:

2R

Yt=-39084.74 + 0.6322X2 + 4.4484X3 Se=(7373.885)(0.0605) (0.3101) t= (-5.3004) (10.4427) ( 14.3450)

=0.9260 =0.9173 F=106.3211 df= 20 DW=1.8627 (二)异方差检验

1、相关图形检验法

方差描述的是随机变量取值的离散程度,因为被解释变量Y 与U 有相同的方差,所以利用分析Y 与X 的相关图形,可以粗略地看到U 的离散程度与X 之间是否有相关关系(如下图)。

由上图可看出,随着X 的增加,Y 的离散程度很均匀,似乎并不存在异方差,但这种判断比较粗糙,需要进一步进行验证。 2、残差图形检验法

绘制e 2对X2、 X3的散点图如下所示:

2R 2

R

由上图可看出,残差平方e2不随解释变量X2、X3的变化而变化,很可能不存在异方差,是否存在异方差还应通过更近一步的检验。

3、Goldfeld-Quanadt 检验

(1)、用OLS结果求出如下结果:

样本容量n=20,删除中间1/4 的观测值,余下部分平分成两个区间:1—8和13—20,它们的样本个数均为8个,即n1=n2=8

样本区间为1—8的回归估计结果

样本区间为13—20的回归估计结果

由以上两表可得到残差平方和 =3984566.0、 =3302640.0,根据Goldfeld-Quanadt 检验,F 统计量为:

=3302640.0/3984566.0=0.8286 (2)、判断

在α=0.05下,上式分子、分母自由度均为5,查F 分布表的临界值 (5、5)=5.05,由F=0.8286< (5,5),所以不拒绝原假设,表明模型确实不存

21=144958.9i e ∑22=734355.8i e ∑2221734355.8 5.066144958.9

i i

e

F e

=

==∑∑0.05(6,6) 4.28

F =0.05(6,6) 4.28F =

在异方差。 4、White 检验

由White 检验构造如下辅助函数:

经估计出现White 检验结果:

表6 White 检验结果

从表6中可以看出,n =3.2655,

由White 检验知,在α=0.05下,查 分布表,得临界 (5)=11.0705,比较计算的 统计量与临界值,n =3.2655<

(5)=11.0705,所以不拒绝原假设,表明模型确实不存在异方差。 (三)、自相关检验

利用Eviews 软件得出:

222320122333452t t t t

t t t t X X X v X X X σαααααα=++++++2R 2

χ.5)2(2

05.0=χ2

χ2

R .5)2(205

.0=χ

对样本量为20,两个解释变量的模型、5%显著水平,查DW 统计表可知,d l =1.100,d u =1.537,模型中d u

又该回归方程修正的可决系数较高,回归系数均显著,即本文模型估计的最终结果为:

Yt=-39084.74 + 0.6322X2 + 4.4484X3 Se=(7373.885)(0.0605) (0.3101) t= (-5.3004) (10.4427) ( 14.3450)

=0.9260 =0.9173 F=106.3211 df= 20 DW=1.8627 模型最终结果说明,在其他解释变量不变的情况下,粮食作物种植面积每增长1%,平均来说粮食产量将增长0.6322%;在其他解释变量不变的情况下,化肥施用量每增长1%,平均来说粮食产量将增长4.4484%。

五、本文的结论

1)粮食作物种植面积对粮食产量的增长确实有显著性影响,因此加大耕地的保护力度,对确保粮食产量有重要意义。

2)化肥施用量的增加使得粮食产量增加很显著,但在实际中,有限的土地上只能施用有限的化肥。因此,在耕地不足,为减少污染而将减少化肥施用量的情况下,粮食产量将更多的依赖于技术进步。

3)有效灌溉虽然对粮食产量的增长没有显著性影响,但在实践中,有效灌溉是

2R 2

R

影响粮食产量增长的重要因素。

六、参考文献

【1】.庞皓.计量经济学【M】.科学出版社.2009年

【1】.金玉国.计量经济学【M】.经济科学出版社.2006年

【1】.[美]古扎拉第DN.计量经济学第三版【M】.中国人民大学出版社.1999年

相关文档
最新文档