基于optistruct的望远镜主框架拓扑优化设计

基于optistruct的望远镜主框架拓扑优化设计
基于optistruct的望远镜主框架拓扑优化设计

基于OptiStruct的望远镜主框架拓扑优化设计

Topologic Optimization Design of Telescope Main Frame Based on Optistruct

马肇材1,2,陈华1,2,刘伟1

MA Zhao-cai1,2, CHEN Hua1,2, LIU Wei1

(1.中国科学院长春光学精密机械与物理研究所,吉林长春 130033;2.中国科学院

研究生院,北京 100039)

(1.Changchun Institute of Optics,Fine Mechanics and Physics,Chinese Academy of Sciences,Changchun 130033,China;2.Graduate School of the Chinese Academy of Sciences,Beijing

100039,China)

摘要:针对某航空望远镜主结构的重量过高的问题,提出了对航空相机望远镜主框架进行拓扑优化设计的方法。基于拓扑优化理论,在重力过载的工况下对望远镜主框架拓扑优化,以整个框架作为设计变量,以框架的体积分数和固有频率作为约束条件,选结构的柔度最小化为目标函数,建立拓扑优化模型。采用MSC.PATRAN/NASTRAN软件对航空望远镜拓扑优化结果进行仿真,分析结果表明,结构的重量减少了77%,结构静态刚度提高,动态刚度符合要求,温度变化环境下光学成像条件改善。

关键词:拓扑优化;刚度;航空望远镜

中图分类号:V447.3 (V-航空航天) 文献标识码:A

Abstract: In order to reduce the weight of an aerial telescope main structure, a topologic optimization design method of the aerial telescope main frame was presented. The telescope main frame with overloaded gravity was optimized based on topologic theory. The topologic optimization model takes the whole frame as variation, takes volume fraction and natural frequency as computing constrains, takes the maximal structure stiffness as the objective function. The resulted model was analyzed with MSC.PATRAN/NASTRAN software. The result indicated that the structure’s total weight was reduced 77%, the structure’s static stiffness increased, the dynamic stiffness was suitable and the optical imaging condition was improved.

Key words: topologic optimization; stiffness; aerial telescope

1 引言

在航空相机概念设计阶段,为了保证航空相机能适应机载平台上复杂的工作环境(如冲击、振动、高低温变化、低气压等),有良好的成像质量,因此需要相机具有良好的结构刚度的同时也要保证相机反射镜具有良好的热稳定性[1]。航空相机在概念设计阶段以保证相机的结构刚度及热稳定性为主,而对重量这一重要因素考虑的相对较少。以往的设计大多是根据设计经验和试验在初期的设计基础上进行小范围的改进,效率低、效果不好。本文在保证相机具有足够的静态刚度、动态刚度和强度及热稳定性的前提下,采用变密度法和变厚度法对望远镜框架进行了拓扑优化,成功获得相机的最佳的拓扑结构形式,重量大幅减少。

2 拓扑优化理论基础

结构优化设计一般存在三个层次,即拓扑优化、形状优化和尺寸优化,分别对应产品的概念设计、基本设计和详细设计三个阶段[2]。拓扑优化的目的是在设计空间寻求结构刚度的最佳分布形式,或者结构最佳传力途经,以优化结构的某些性能或者减轻结构的重量[3]。拓扑优化包括刚性构件的拓扑优化和柔性构件的拓扑优化。刚性结构的拓扑优化是求解在已知外力作用下设计区产生位移最小或材料最省的结构形式。柔性结构的拓扑优化是求解结构通过部分或全部柔性构件的变形而产生相应位移的拓扑构成形式。本文属于刚性结构的拓扑优化范畴。

2.1 连续体结构的拓扑优化模型

拓扑优化中的拓扑描述方式和材料插值模型非常重要,是一切后续优化方法的基础。拓扑优化中常用的拓扑表达形式和材料插值模型有:均匀化方法(Homogenization method)、

密度法(如各向正交惩罚材料密度法,即SIMP (Solid isotropic material with penalization model )方法)、变厚度法[4]和拓扑函数描述方法等,其中密度法和变厚度法是OptiStruct 中设计区是壳单元的模型常用的两种主要的材料插值方法。

变厚度法是较早采用的拓扑优化方法,属几何描述方式,其基本思想是以基结构中单元厚度为拓扑设计变量,将连续体拓扑优化问题转化为广义尺寸优化问题,通过删除厚度为尺寸下限的单元实现结构拓扑的变更。该方法突出的特点是简单,适用于平面结构(如膜、板、壳等)。

变密度法是连续体拓扑优化的常用方法,属于材料描述方式。其基本思想是引入一种假想的密度,即0~1的可变材料,指定每个有限单元的密度相同,并以每个单元的相对密度为设计变量。当单元相对密度e x =0时,表示该单元无材料,单元应删除;当单元相对密度e x =1时,表示该单元有材料,保留或增加该单元。变密度法直接假定相对密度与材料弹性模量之间的非线性对应关系。

变密度法中常用的插值模型主要有:固体各向同性惩罚微结构模型(Solid Isotropic Microstructure with Penalization ,简称SIMP),其材料模型为[5]

ρ(x) = e x 0ρ(1)

E(x) = p e x 0E (2)

式中: e x 为每个单元的相对密度;ρ(x)为拓扑优化设计变量; 0ρ为设计区域每个单元的固有密度;E(x)为优化后的弹性模量;0E 为初始弹性模量;p为惩罚因子。

在结构设计中常以设计结构整体的体积约束作为优化的约束条件,以刚度最大化作为优化的目标函数,在给定载荷和位移边界条件下,基于变密度法拓扑优化数学模型[6]为:

min :()T C x U KU =

1

min 0..:01j N

j j j V x V S t x x =??≤???<≤≤?

∑(3) j V 为结构优化后的结构体积,j x 为单元设计变量,min x 为单元设计变量的最小值。

2.2 拓扑优化求解的数值算法

在建立可靠的优化模型后,还需要选择收敛速度快且计算不是很复杂的优化算法。目前连续体结构拓扑优化研究的主要方法是数值解法。一般都是将拓扑优化问题转化为参数优化问题,再借鉴目前较为成熟的参数优化方法求解。主要的数值方法有优化准则法、数学规划法、渐进优化法和遗传算法等,本文采用优化准则法。

优化准则法 (optimality criteria ,OC)是根据物理条件及工程要求,来建立结构在一系列约束条件下(应力、位移、频率等)需满足的最佳准则,从可行的设计中找出最佳的设计方案,以充分发挥材料的强度、刚度和稳定性的潜力,找出最佳传力路径。优化准则法最突出的特点是迭代次数少,且迭代次数对设计变量的增加不敏感,因而具有很高的计算效率。 3 拓扑优化模型建立与优化结果

航空相机望远镜的顶部四点与相机支座固定连接置于吊舱内,下部面向大地。在Hypermesh 软件中建立望远镜的有限元模型,其顶点四点全约束固定。望远镜框架全部采用壳单元,单元尺寸[7]参考总体模型设计区域的大小设为4mm ,在初始设计中用于固定连接相机支座和反射镜支撑的部分才用8mm 的壳单元,其余全面为6mm 。反射镜及其支撑结构采用六面体单元。望远镜框架质量为,拓扑优化设计区为整个望远镜框架,反射镜及其支撑结构为非设计区。

在选择相机材料遵循材料线膨胀系数相一致的原则,由于镜体采用的是微晶玻璃,镜支撑采用的是4J32,框架采用的是TC4钛合金材料,因此温度对成像质量条件的影响是最主要的因素。航空相机材料性能见表1。

表1 航空相机材料性能表

材料密度ρ

(3

/g cm)弹性模量

E(Gpa)

线胀系数α

(6

10/

?℃)

泊松比

μ

铁镍合金(4J32) 8.1 141 0.24 0.25

钛合金(TC4) 4.44 109 9.1 0.34

微晶玻璃 2.53 90.3 0.05 0.24 拓扑优化的目的是在保证性能下获得合理的结构拓扑形式,在拓扑优化中材料的过度去除会导致动态刚度的下降,而拓扑优化的目标是保证结构刚度下的轻量化。因此,对望远镜框架的拓扑优化选择整个望远镜框架作为设计区,以优化设计区的体积分数和一阶模态的响应作为约束条件,以结构的最小柔度即结构刚度最大化为目标函数,在Hypermesh中建立拓扑优化模型,其中体积分数的上限为75%下限为20%,频率响应以一阶模态以200Hz作为下限,防止当结构材料去除过多时结构的动态刚度不符合设计要求。最后使用Hyperworks 中的OptiStruct优化软件求解得到基于变密度法和变厚度法的拓扑优化的两种结果。从拓扑优化的迭代曲线(图1)可以看出结构的目标函数——柔度大幅减少,刚度提高但结构的体积并不是最小,一阶频率在约束范围以上达到设计的要求,结构的性能提高。从拓扑优化的结果图(图2,3)中可以看出基于上述两种方法得到的拓扑结构形式是基本一致的,证明了望远镜框架拓扑优化的最优拓扑形式的唯一性和结果的可信性。

图1 目标函数与约束响应迭代曲线图图2 单元密度与厚度的拓扑优化结果图

图3 密度为0.5和厚度为3mm图图4 最终有限元模型图

4 优化模型的有限元分析

结合拓扑优化的密度拓扑结果和厚度拓扑结果,根据实际设计中防杂光的需要,对望远镜框架去除材料部分采取最小壁厚原则设计为1mm,与次镜支撑相连接的部分最后的优化结果为6mm,顶部连接支座部分厚度为8mm,其余3mm。重新建立有限元模型如图4,航空相机在线胀系数一致的原则下的选取的材料线胀系数存在差异,因此温度变化对光学成像条件的影响比恒加速度、振动等其他工况对光学成像条件的影响大很多。考虑热源和望远镜

系统在吊舱中的位置,在概念设计阶段以稳态最大温升30℃利用MSC.PATRAN/NASTRAN 软件进行热变形分析[8]。把优化前后的有限元模型先后提交MSC.Patran/Nastran软件进行分析和结果的后处理。输出次镜的镜面变形数据,经计算得到优化前后的面形PV值和RMS 值,PV值由优化前的10.427nm降到优化后的5.355nm,RMS值由1.811nm降到1.000nm,轴向平均刚体位移变小,最后进行模态分析验证了最小的一阶模态频率为253.46H,优化后结构刚度提高、动态刚度符合要求,框架质量由原来的3.549Kg减少为0.804Kg。

5 结论

本文阐述了OptiStruct优化软件的拓扑优化理论中的变密度法和变厚度法,在航空相机望远镜主框架概念设计阶段遇到的结构性能与结构轻量化的课题,提出了采用OptiStruct优化软件对望远镜框架进行拓扑优化的方法。基于变密度法和变厚度法理论的拓扑优化得到一致的拓扑结构形式,证明结果的唯一性,创新性地结合两种拓扑结果得到最后的有限元模型。最终的模型重量降低了77%,面形值得到很大改善,热变形结构刚度提高。拓扑优化后的结构满足系统动态刚度的要求和热变形的要求。基于OptiStruct的拓扑优化缩短了设计周期,有效地降低了结构的重量,提高了结构的性能,满足了光学成像条件设计要求。

本文作者的创新点:本文结合两种拓扑优化的模型结果得到重量大幅减轻的拓扑优化结构,应用拓扑优化方法解决了光学性能与结构重量的课题。

参考文献

[1] 丁亚林.空间遥感相机光学镜头尺寸稳定性设计[J].光学精密工程,1998,6(6)增刊:51-56.

[2] 郭中泽,张卫红,陈裕泽.结构拓扑优化设计综述[J].机械设计,2007,8(8) :1-6.

[3] 罗震,陈立平,黄玉盈,等.连续体结构的拓扑优化设计[J].力学进展,2004,11(4):463-476.

[4] 王健,程耿东.应力约束下薄板结构的拓扑优化.固体力学学报,1997,18(4):317-322.

[5] 李延伟,杨洪波,耿麒先,等.大口径主反射镜轻量化结构拓扑优化设计方法[J].光学技术,

2008,3(2):236-238.

[6] 关英俊,辛宏伟,赵贵军,等.空间相机主支撑结构拓扑优化设计[J].光学精密工程,

2007,8(8):1157-1163.

[7] 沈满德,陈良益等. 基于优化设计的单元尺寸确定方法[J].微计算机信息.2007,12-1:

239-241.

[8] 周顺生,范晋伟,岳中军,等.有限元分析在数控铣床热变形方面的研究[J].微计算机信息,

2005,08(21):58-59.

作者简介:马肇材(1982.12-),男,汉族,山东临沂人,中国科学院长春光学精密机械与物理研究所硕士。主要研究所方向是光学机械。

刘伟(1967.12-),男,汉族,山东沂水人,中国科学院长春光学精密机械与物理研究所,高级工程师,博士,一直从事光学精密机械研究。

Biography: MA Zhao-cai (1982.12— ), male, Linyi, Shandong province. The postgraduate student of Changchun Institute of Optics,Fine Mechanics and Physics,Chinese Academy of Sciences, the main direction of research is optical machine.

LIU Wei (1967.12-), male, Yishui, Shandong province. the doctor and senior engineer of Changchun Institute of Optics,Fine Mechanics and Physics,Chinese Academy of Sciences. Now the main job is doing optics,Fine Mechanics research.

拓扑排序课程设计报告

数据结构课程设计 设计题目:有向图拓扑排序 专业:信息与计算科学 学号:021240616 姓名:黄秋实 指导教师:文军 2013年11月28日

数据结构课程设计 ----拓扑排序 一需求分析 1.问题描述 本次课程设计题目是:用邻接表构造图然后进行拓扑排序,输出拓扑排序序列 拓扑排序的基本思想为: 1).从有向图中选一个无前驱的顶点输出;2).将此顶点和以它为起点的弧删除;3). 重复1),2)直到不存在无前驱的顶点;4). 若此时输出的顶点数小于有向图中的顶点数,则说明有向图中存在回路,否则输出的顶点的顺序即为一个拓扑序列。 2.拓扑排序有向图拓朴排序算法的基本步骤如下:①从图中选择一个入度为0的顶点,输出该顶点;②从图中删除该顶点及其相关联的弧,调整被删弧的弧头结点的入度(入度-1);③重复执行①、②直到所有顶点均被输出,拓朴排序完成或者图中再也没有入度为0的顶点(此种情况说明原有向图含有环)。 3基本要求 (1) 输入的形式和输入值的范围; 首先是输入要排序的顶点数和弧数,都为整型,中间用分隔符隔开;再输入各顶点的值,为正型,中间用分隔符隔开;然后输入各条弧的两个顶点值,先输入弧头,再输入弧尾,中间用分隔符隔开,输入的值只能是开始输入的顶点值否则系统会提示输入的值的顶点值不正确,请重新输入,只要继续输入正确的值就行。 (2) 输出的形式; 首先输出建立的邻接表,然后是最终各顶点的出度数,再是拓扑排序的序列,并且每输出一个顶点,就会输出一次各顶点的入度数。 (3) 程序所能达到的功能; 因为该程序是求拓扑排序,所以算法的功能就是要输出拓扑排序的序列,在一个有向图中,若用顶点表示活动,有向边就表示活动间先后顺序,那么输出的拓扑序列就表示各顶点间的关系为反映出各点的存储结构,以邻接表存储并输出各顶点的入度。 二概要设计 1. 算法中用到的所有各种数据类型的定义 在该程序中用邻接表作为图的存储结构。首先,定义表结点和头结点的结构类型,然后定义图的结构类型。创建图用邻接表存储的函数,其中根据要求输入图的顶点和边数,并根据要求设定每条边的起始位置,构建邻接表依次将顶点插入到邻接表中。 拓扑排序的函数在该函数中首先要对各顶点求入度,其中要用到求入度的函数,为了避免重复检测入度为零的顶点,设置一个辅助栈,因此要定义顺序栈类型,以及栈的函数:入栈,出栈,判断栈是否为空。 2.各程序模块之间的层次调用关系 第一部分,void ALGraph *G函数构建图,用邻接表存储。这个函数没有调

施密特-卡塞格林系统的优化设计

施密特-卡塞格林系统的优化设计 本次实验将使用到:polynomial aspheric surface, obscurations,apertures, solves, optimization, layouts, MTF plots。 本次实验是完成Schmidt-Cassegrain 及polynomial aspheric corrector plate。 这个设计是要在可见光谱中使用,需要一个10 inches的aperture 和10 inches 的back focus。 开始,先把primary corrector, System, General, 在aperture value 中键入10。

同在一个screen 把unit “Millimeters”改为“Inches”。 再把Wavelength 设为3个,分别为0.486,0.587,0.656,且0.587定为主波长。

也可以在wavelength 的screen 中按底部的select 键,选默认波长。默认的field angle value,其值为0。

依序键入如下LED 表的相关数据,此时the primary corrector为MIRROR 球镜片。 2D图如下:

现在加入第二个corrector,并且决定imagine plane 的位置。 输入如下的LDE,注意到primary corrector 的thickness 变为-18,比原先的-30小,这是因为要放second corrector 并考虑到其size 大小的因素。 在surface4 的radius 设定为variable,通过optimization, Zemax

结构拓扑优化的组合准则及应用

结构拓扑优化的组合准则及应用 丁繁繁* 郭兴文 (河海大学工程力学系,江苏,南京,210098) 摘要:本文研究了拓扑相关荷载作用下连续体结构拓扑优化设计问题,探讨了ESO 方法中单独应用最大拉应变准则或主应力准则来删除单元的问题,提出了基于主压应力删除准则与最大拉应变删除准则的组合优化删除准则,给出了组合准则的迭代步骤.依据所提准则与迭代步骤, 应用Ansys 分析软件对一受拓扑相关径向均布荷载作用的连续体进行了拓扑优化设计,获得了相应的最优拓扑结构,算例表明,本文提出的组合优化法可以消除单一应力删除准则在优化过程中出现的迭代波动问题,能加快拓扑优化的收敛速度. 关键词:拓扑优化, 拓扑相关荷载, 主应力准则, 最大拉应变准则,组合准则 1.前言 结构拓扑优化设计是目前结构优化设计领域最赋有挑战性的研究课题,近十几年来,随着科学技术的进步, 结构拓扑优化设计得到了迅速的发展. 有关结构拓扑优化设计的最新发展,文献以综述的形式作了详细的叙述.连续体结构拓扑优化方法主要有均匀化法、两相法、内力法、变厚度法、变密度法、人工材料、渐进结构优化法及线性规划法等。其中渐进结构优化法(简称ESO)是通过一定的删除准则,将无效或低效的材料逐步去掉,结构将逐渐趋于优化。该方法可采用已有的有限元分析软件,通过迭代过程在计算机上实现,该法的通用性很好。 ESO 法最早是由澳大利亚华裔学者谢忆民于1993年提出来的。随后得到了荣见华等人的发展,成功应用于包含应力、位移(刚度)、临界应力和动力学约束的众多结构拓扑优化领域。基于主应力的ESO 法考虑了实际材料在拉、压应力方面的特性差异,特别适用于一些拉压性质明显的建筑类型,例如桥梁工程,从而改进了ESO 法的工程适用性。 ]4~1[]5[目前,连续体结构拓扑优化研究主要集中在荷载作用位置及作用方向不变情况下的结构拓扑优化问题,而对于荷载作用位置变动情况下的连续体结构拓扑优化研究刚刚起步. ]6[本文研究了荷载位置随拓扑变化而变化作用下的连续体结构拓扑优化问题,该连续体结构是一混凝土受压结构。优化过程中在进行尝试使用不同删除准则的基础上,提出了基于主压应力删除准则与最大拉应变删除准则的组合优化删除准则.依据提出的组合优化删除准则, 应用Ansys 分析软件对一受径向均布荷载作用简支的矩形初始构型进行了拓扑优化设计, 获得了相应的最优拓扑结构,算例表明,本文提出的组合优化法可以消除单一应力删除准则https://www.360docs.net/doc/a29131351.html,

教学计划安排检验程序(拓扑排序)报告书

设计题目: 示例数据:输入:学期数:5,课程数:12,课程间的先后关系数:16,课程的代表值:v1,v2,v3,v4,v5,v6,v7,v8,v9,v10,v11,v12。课程间两两间的先后关系:v1 v2,v1 v3, v1 v4,v1 v12,v2 v3,v3 v5,v3 v7,v3 v8,v4 v5, v5 v7,v6 v8,v9 v10, v9 v11 , v9 v12,v10 v12,v11 v6 输出:第1学期应学的课程:v1 v9 第2学期应学的课程:v2 v4 v10 v11 第3学期应学的课程:v3 v6 v12 第4学期应学的课程:v5 v8 第5学期应学的课程:v7

一需求分析 1.1 引言 通常,这样的线性序列称为满足拓扑次序(Topological Order)的序列,简称拓扑序列。简单的说,由某个集合上的一个偏序得到该集合上的一个全序,这个操作称之为拓扑排序。离散数学中关于偏序和全序的定义: 若集合X上的关系是R,且R是自反的、反对称的和传递的,则称R是集合X上的偏序关系。 设R是集合X上的偏序(Partial Order),如果对每个x,y属于X必有xRy 或 yRx,则称R是集合X上的全序关系。 比较简单的理解:偏序是指集合中只有部分成员可以比较,全序是指集合中所有的成员之间均可以比较。 一般应用:拓扑排序常用来确定一个依赖关系集中,事物发生的顺序。例如,在日常工作中,可能会将项目拆分成A、B、C、D四个子部分来完成,但A依赖于B和D,C依赖于D。为了计算这个项目进行的顺序,可对这个关系集进行拓扑排序,得出一个线性的序列,则排在前面的任务就是需要先完成的任务。 1.2 拓扑排序的了解 ①.问题的描述 在AOV网中为了更好地完成工程,必须满足活动之间先后关系,需要将各活动排一个先后次序即为拓扑排序。拓扑排序可以应用于教学计划的安排,根据课程之

升降辊床连杆摇臂结构拓扑优化设计

升降辊床连杆摇臂结构拓扑优化设计 升降辊床作为一种新型输送设备,具有高速、稳定、易于维护等优点,在各汽车焊装车间得到了广泛应用。文章对辊床连杆摇臂结构进行动力学分析,在此基础上针对摇臂结构进行结构拓扑优化,改善机构应力应变并提升疲劳寿命。 标签:升降辊床;摇臂结构;有限元;拓扑优化;疲劳寿命 引言 “冲压、焊装、油漆和总装”被称为当代汽车制造的四大工艺[1],在上汽大众仪征工厂焊装车间,焊接工艺种类多达8至10种,用来转运车身的工艺生产线多达12条,拥有德国KUKA自动化机械臂800多台,工艺过程极其复杂,工位数量繁多。基于曲柄连杆摇臂结构的Siemens高速输送升降辊床的大量应用,极大地提高了生产节拍,使生产线实现了柔性生产,产能得到大幅度提高[2]。 1 辊床结构及动力学分析 本文以西门子公司11-0908-1200系列升降辊床为研究对象,主要参数如表1所示。升降辊床主要由底座、升降机構、水平输送辊床和控制系统四大部分组成,实现其升降功能的是一个典型的多连杆机构,并可拆分为两个四杆机构,即前半部分为曲柄连杆摇臂机构[3-4],后半部分为平行四杆机构,因此,在运动学分析计算中可以忽略后半部分的平行四杆机构,仅分析前半部分的曲柄连杆摇臂机构[5](图1)。 为了解曲柄连杆摇臂机构在其运动周期内各构件的受力情况,在Adams软件中创建升降辊床曲柄连杆摇臂动力学仿真模型,施加辊床框架及雪橇、车身的重力负载为13000N,直接作用在前后摇臂上,受力方向始终竖直向下,经求解,后摇臂受到来自连杆的峰值拉力为17588N,在升降辊床从低位向高位运行过程中,摇臂克服负载力并将其向上举升,拉力从峰值开始逐渐降低为0N。 2 辊床有限元仿真分析 对辊床连杆结构进行有限元分析。摇臂的制造原材料为Q235B,建立摇臂模型并导入到ANSYS软件中,网格划分后共得到47478个节点、19295个单元。连杆与后摇臂相连的铰接转动副-单孔摇臂关节轴承处,其转动副处最大受力为17588N,选取此瞬态时刻,对后摇臂进行静力学分析,施加负载、约束后进行计算,得到其应力、应变分析结果情况如图2所示。 通过分析发现,在主轴中部轴颈与曲柄连接处是应力集中最严重的部位,从有限元分析结果可以看出,最大应力为91.36MPa,虽然小于摇臂材料的屈服强度235MPa,但这些应力集中部位极易出现疲劳裂纹,直至机械失效损坏,该分析结果与摇臂在实际生产作业中发生的断裂故障一致。

数据结构课程设计报告

《数据结构课程设计》报告 题目:课程设计题目2教学计划编制 班级:700 学号:09070026 姓名:尹煜 完成日期:2011年11月7日

一.需求分析 本课设的任务是根据课程之间的先后的顺序,利用拓扑排序算法,设计出教学计划,在七个学期中合理安排所需修的所有课程。 (一)输入形式:文件 文件中存储课程信息,包括课程名称、课程属性、课程学分以及课程之间先修关系。 格式:第一行给出课程数量。大于等于0的整形,无上限。 之后每行按如下格式“高等数学公共基础必修6.0”将每门课程的具体信息存入文件。 课程基本信息存储完毕后,接着给出各门课程之间的关系,把每门课程看成顶点,则关系即为边。 先给出边的数量。大于等于0的整形。 默认课程编号从0开始依次增加。之后每行按如下格式“1 3”存储。此例即为编号为1的课程与编号为3的课程之间有一条边,而1为3的前驱,即修完1课程才能修3课程。 例: (二)输出形式:1.以图形方式显示有向无环图

2.以文本文件形式存储课程安排 (三)课设的功能 1.根据文本文件中存储的课程信息(课程名称、课程属性、课程学分、课程之间关系) 以图形方式输出课程的有向无环图。 拓展:其显示的有向无环图可进行拖拽、拉伸、修改课程名称等操作。 2.对课程进行拓扑排序。 3.根据拓扑排序结果以及课程的学分安排七个学期的课程。 4.安排好的教学计划可以按图形方式显示也可存储在文本文件里供用户查看。 5.点击信息菜单项可显示本人的学好及姓名“09070026 尹煜” (四)测试数据(见六测设结果)

二.概要设计 数据类型的定义: 1.Class Graph即图类采用邻接矩阵的存储结构。类中定义两个二维数组int[][] matrix 和Object[][] adjMat。第一个用来标记两个顶点之间是否有边,为画图服务。第二个 是为了实现核心算法拓扑排序。 2.ArrayList list用来存储课程信息。DrawInfo类是一个辅助画图的类,其中 包括成员变量num、name、shuxing、xuefen分别代表课程的编号、名称、属性、 学分。ArrayList是一个DrawInfo类型的数组,主要用来在ReadFile、DrawG、DrawC、SaveFile、Window这些类之间辅助参数传递,传递课程信息。 3.Class DrawInfo, 包括int num;String name;String shuxing;float xuefen;四个成员变量。 4.Class Edge包括int from;int to;double weight;三个成员变量。 5.Class Vertex包括int value一个成员变量。 主要程序的流程图: //ReadFile.java

牛顿式反射望远镜光轴的校准(精选.)

牛顿式反射望远镜光轴的校准 很多爱好者在使用反射式望远镜,特别是近年来越来越多的爱好者开始使用大口径、短焦距的抛物面牛顿式反射望远镜。说到望远镜的光学质量,人们比较关心的是主镜的口径及表面精度,而对于是否将反射镜的整个光学系统调整到最佳状态,似乎并没有给予足够的重视。我根据最近的一些实践经验,参考了网上的一些相关文章,把自己的体会写成此文。 反射望远镜光轴校准的重要性: 如果你拥有了一架反射望远镜,并且主镜是抛物面的,当你满怀希望投入观测,却发现像质平平,甚至恒星都不能聚成一个点,这个时候先别急着换镜子,你拥有的可能是一架很不错的望远镜,问题仅仅出在镜片装配上,经过对光轴的重新调整,望远镜里展现出的可能是完全不同的景象。 抛物面反射镜的成像有个特点,在光轴上成像很完美,没有像差,但离开光轴就会有明显的彗差(星点带了小尾巴)。在光轴上,使用一般视场的目镜,视场中心的星点是很锐利的,实际上视场边缘的像差也不易察觉。而如果在光轴外,整个视场中的星点可能都不实,而且离光轴越远这一点越严重。 怎样才算调好光轴了? 反射镜的光学系统中有两个光轴:主镜(物镜)光轴平行于主镜筒的轴线,经过副镜(小平面镜);目镜光轴垂直于主镜筒轴线,也经过副镜。当两个光轴都经过副镜上的同一点,且被副镜反射后二者完全重合,也就是成了一个光轴,那么光轴就算调好了。 在缺乏检验手段时,可以通过实际观测来判断光轴是否调好。找一个大气宁静度较好的晴夜,用望远镜的最高倍率(用毫米表示的主镜的直径数)看一颗恒星(如果没有赤道仪则可以看北极星)。把星点放在目镜视场中心(以减少目镜带来的像差),仔细调整焦距,从焦点外调到焦点,然后调到焦点内。如果光轴调整没有问题,可以看到如下图所示的从左到右一系列图象(图中的圆环是光的衍射引起的,散焦后实际上还会看到副镜及其支架的影子,图中没有画出)。 在焦点上星像是否凝结得很实、很细、很锐利,散焦后衍射环是否是同心圆,这些都反映了望远镜的像质。如果散焦后可以看到几圈衍射环,但不象上图中那样完美,四周均匀地带有一些“毛刺”,这说明反射镜面的精度稍差,但光轴调整的还是好的。如果散焦后星点变成了一个小的扇形,而且在目镜视场中移动星象,扇形的发散方向不变,这说明望远镜的光轴需要调整了。 光轴调整步骤及辅助工具 光轴调整可按如下步骤进行: 调节目镜调焦筒使之垂直于主镜筒轴线

数据结构课程设计——拓扑排序备课讲稿

数据结构课程设计——拓扑排序

课程设计任务书 学生姓名:专业班级: 指导教师:工作单位:计算机科学系 题目: 拓扑排序 初始条件: (1)采用邻接表作为有向图的存储结构; (2)给出所有可能的拓扑序列。 (3)测试用例见严蔚敏《数据结构习题集(C语言版)》p48题7.9图 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) 课程设计报告按学校规定格式用A4纸打印(书写),并应包含如下内容: 1. 问题描述 简述题目要解决的问题是什么。 2. 设计 存储结构设计、主要算法设计(用类C/C++语言或用框图描述)、测试用例设计; 3. 调试报告 调试过程中遇到的问题是如何解决的;对设计和编码的讨论和分析。 4. 经验和体会(包括对算法改进的设想) 5. 附源程序清单和运行结果。源程序要加注释。如果题目规定了测试数据,则运行结果要包含这些测试数据和运行输出。 说明: 1. 设计报告、程序不得相互抄袭和拷贝;若有雷同,则所有雷同者成绩均为0分。 2. 凡拷贝往年任务书或课程设计充数者,成绩一律无效,以0分记。 时间安排: 1.第17周完成,验收时间由指导教师指定 2.验收地点:实验中心 3.验收内容:可执行程序与源代码、课程设计报告书。 指导教师签名: 2013年6月14日

系主任(或责任教师)签名:年月日 拓扑排序 目录 1问题描述 2具体设计 2.1存储结构设计 2.2主要算法设计 2.2.1拓扑排序的算法总体设计 2.2.2将有向图表示为邻接表 2.2.3拓扑排序函数的设计 2.2.4顺序表的运算设计 2.3测试用例设计 3调试报告 3.1设计和编码的分析 3.2调试过程问题及解决 4经验与体会 5用户使用说明 6参考文献

结构拓扑优化设计的三角网格进化法

第19卷 第3期应用力学学报Vol.19 No.3 2002年9月CHINESE JOURNAL OF APPL IE D MECHANICS Sep.2002 文章编号:100024939(2002)0320050204 结构拓扑优化设计的三角网格进化法Ξ 罗 鹰 段宝岩 (西安电子科技大学 西安 710072) 摘要:针对进化式拓扑优化方法的不足,提出了一种基于遗传算法的新型进化式拓扑优化方法—三角网格进化法,该方法不仅能够同时进行拓扑、形状与截面变量优化设计,而且在优化过程中实现了退化和进化的统一,提高了优化效率。另外本文还首次对结构类型变量进行了优化计算,取得了有益的结果。最后几个数值算例证明了本方法的可行性和有效性。 关键词:拓扑优化;进化法;类型优化;遗传算法 中图分类号:039TB121 文献标识码: A 1 引 言 工程结构拓扑优化方法可分为两类:退化法和进化法。退化法又可进一步分为基结构方法(ground structural approach)[1]和均匀化方法(ho2 mogenization method)[2],退化法的基本思想是在优化前将结构所有可能杆单元(对基结构方法而言)或所有材料(对均匀化方法而言)都加上,然后构造适当的优化模型,通过一定的优化方法逐步删减那些不必要的结构元素(杆单元及节点)或材料,直至最终得到一个最优化的拓扑结构形式。当然,在删减的同时也可能伴随着少量结构元素的再加入。进化法[3~6]正好与退化法相反,它是从另一个途径考虑问题。根据给定的固定节点与载荷,首先给出简单拓扑结构形式,然后通过一定的优化策略不断增加结构元素,直到获得最优的拓扑结构。K irsch[5,6]曾对此类方法进行过分析与展望,并且由William在1995年提出了自然生长方法[3],Mc Keown在1998年又提出了节点增加方法[4]。它们的不足之处在于,优化过程中,只有结构元素(包括杆单元和节点)的增加而不能够删减。另外,根据目前所掌握的文献看,结构类型变量优化还未被问津。本文利用遗传算法(G A)将结构类型也作为一类设计变量,对它进行了数学优化计算的尝试。 2 优化模型 本文讨论的是结构的整体优化问题,设计目标是使结构整体重量最轻(或体积最小),而约束条件包括应力约束以及各节点坐标位移约束。设计变量包括结构类型、拓扑、可动节点坐标以及单元截面积四种参数。由于遗传算法(G A)[5,7,8,9]不能直接处理结构优化中各设计变量,而必须将它们转换成遗传空间中由基因个体排列组成的染色体或个体。为此,引入以下几组参数: 211 结构类型参数αi 杆系结构的类型不仅有桁架、刚架(梁)结构,还有杆、梁组合结构(即结构中既有杆单元又有梁单元)。为此引入参数αi(i=1,2,…,N)分别代表结构中各单元的类型。其中,N表示结构单元数。其数学表达式为: α i = 0 单元i为杆单元 1 单元i为梁单元  (i=1,2,…,N) (1)结构的总刚度方程为: Ξ基金项目:国家自然科学基金项目(95635150) 来稿日期:2001202220 修回日期:2002202227第一作者简介:罗鹰,男,1970年生,西安电子科技大学机电工程学院博士生;研究方向:面向工程的广义优化1

基于Zemax的牛顿望远镜的设计

基于Zemax的牛顿望远镜的设计 基于Zemax的牛顿望远镜的设计 (1) 1、简介 (1) 2、优缺点 (3) 2.1优点: (3) 2.2不足: (3) 3、Zemax设计 (4) 3.1 设计要求 (4) 3.2 设计过程 (4) 4、参考与鸣谢 (8) 5、附录:望远镜的性能简介 (9) 5.1 物镜的光学特性: (9) 5.2 物镜的结构样式: (10) 5.3 系统的整体性能: (11) 1、简介 1670年,牛顿制备了第一个反射式望远镜。他使用凹面镜(球面)将光线反射到一个焦点,如图1,2。这种方法比当时望远镜的放大倍数高出数倍。 图1,2 老牛本准备用非球面(抛物面),研磨工艺所限,迫使其采用球面反射镜做主镜:将直径2.5厘米的金属磨制成一个凹面反射镜,并在主镜的焦点前放了一个与主镜成45°的反射镜,使经主镜反射后的会聚光经反射镜后以90°反射出镜筒后到达目镜。如图3,4。

球面镜虽然会产生一定的象差,但用反射镜代替折射镜却是一个巨大的成功。所有的巨型望远镜大多属于反射望远镜,牛顿望远镜为反射望远镜的发展辅平了道路。从牛顿制作出第一架反射望远镜到今天,300多年过去了,人们在其中加入了其他的设计,产生了许多的变形。例如,在牛顿式望远镜中加入一组透镜,就产生了施密特-牛顿式,除此之外,还有许多的变形,但他们的基本结构都是牛顿式的。 图3,4 在今天,世界上一些最为著名的望远镜都是采用牛顿式的结构。例如,位于巴乐马山天文台的Hale天文望远镜,其主镜的尺寸为5米;W.M. 凯克天文台的Keck天文望远镜,其主镜由36块六角形的镜面拼接,组合成直径10米的主镜;还有哈勃太空望远镜,也是牛顿式望远镜。 牛顿反射望远镜采用抛物面镜作为主镜,光进入镜筒的底端,然后折回开口处的第二反射镜(平面的对角反射镜),再次改变方向进入目镜焦平面。目镜为便于观察,被安置靠近望远镜镜筒顶部的侧方。 牛顿反射望远镜用平面镜替换昂贵笨重的透镜收集和聚焦光线,结构较简单。另外,焦距可长达1000mm而仍然保持相对紧凑,可以便携使用。不过,由于主镜被暴露在空气和尘土中,需要更多维护与保养。

课程设计报告

扬州大学 《数据结构》 课程设计报告 课题名称自来水管架设问题姓名××× 学院广陵学院 系科班级软件812 指导老师陈宏建 日期

一、课程设计的题目 自来水管理架设问题 【问题描述】 若要在扬州大学的八个居民区(A区、B区、C区、D区、E区、F区、G区、H区)之间架设自来水管道,如何以最低的经济代价架设这个自来水管道。 【基本要求】 (1)利用二种方法(Prim算法和克鲁斯卡尔(Kruskual)算法生成自来水管道的架设方案 (2)将八个居民区设计成一个有向图,输出一个拓扑排序序列. (3)求出A区到其它各区的最短距离。 (4)写出课程设计报告。 【测试数据】 分别对每种方法选定三组测试数据进行测试,验证程序的正确性。 二、课程设计的目的 课程设计的目的是培养学生综合程序设计的能力,训练学生灵活应用所学数据结构知识,独立完成问题分析、总体设计、详细设计和编程实现等软件开发全过程的综合实践能力。巩固、深化学生的理论知识,提高编程水平,并在此过程中培养他们严谨的科学态度和良好的学习作风。为今后学习其他计算机课程打下基础。 课程设计为学生提供了一个既动手又动脑,独立实践的机会,将书本上的理论知识和工作、生产实际有机地结合起来,从而锻炼学生分析问题、解决实际问题的能力,提高学生的编程序能力和创新意识。 三、概要设计 1、抽象数据类型定义 ADT Graph{ 数据对象V:V是具有相同特性的数据元素的集合,成为顶点集。

数据关系R: R={VR} VR={(v,w)|v,w∈V,(v,w)表示v和w之间存在路径} 基本操作P: CreateMGraph1(MGragh &G) 操作结果:建立自来水管道图G的邻接矩阵存储。 CreateALGraph2(ALGraph *&H) 操作结果:建立自来水管道有向图H的邻接表存储。 prim(MGragh &G) 初始条件:图G存在。 操作结果:用Prim算法建立经济代价最低的自来水管道架设方案。 Sort(MGragh G,TreeEdge edge[]) 初始条件:图G存在。 操作结果:在G中选择经济代价最低的自来水管道。 Kruskal(TreeEdge edge[],TreeEdge tree[],int n) 初始条件:图G存在。 操作结果:用克鲁斯卡尔(Kruskual)算法求经济代价最低的自来水管道架设方案。 TopoSort(ALGraph *H) 初始条件:有向图H存在。 操作结果:求拓扑排序序列。 ShortPath(int path[],int I,int v0) 初始条件:有向图H存在。 操作结果:将源点设为v0。 Distance(MGragh G,int v0) 初始条件:有向图H存在。 操作结果:求出A区(v0)到其它各区的最短距离。 }ADT Graph 2、程序包含模块 1)主程序模块,其中主函数为 main() {初始化图形界面; 读入用户选择信息; 根据用户选择执行相应模块; 关闭文件及图形界面; }; 2)创建模块——实现将八个居民区设计成无向图G和有向图H的创建; 3)普里姆模块——实现图G的经济代价最低的自来水管道的架设方案; 4)克鲁斯卡尔模块——实现图G的经济代价最低的自来水管道的架设方案; 5)拓扑排序模块——实现图H的拓扑排序; 6)最短距离模块——实现有向网H从A区(v0)到其它各区的最短距离。 3、模块功能框图

牛顿望远镜实验报告

实验一、牛顿望远镜 1.实验目的 学习运用ZEMAX综合性的光学仿真软件,将实际光学系统的设计概念、优化、分析、公差以及报表整合在一起。 通过ZEMAX软件的仿真应用,对牛顿望远镜的原理进行深层次的了解,并加深对牛顿望远镜使用的熟练度。 2.基本原理 ZEMAX光学设计程序是一个完整的光学设计软件,是将实际光学系统的设计概念,优化,分析,公差以及报表集成在一起的一套综合性的光学设计仿真软件。包括光学设计需要的所有功能,可以在实践中对所有光学系统进行设计,优化,分析,并具有容差能力,所有这些强大的功能都直观的呈现于用户界面中。ZEMAX功能强大,速度快,灵活方便,是一个很好的综合性程序。ZEMAX能够模拟连续和非连续成像系统及非成像系统。 牛顿反射望远镜采用抛物面镜作为主镜,光进入镜筒的底端,然后折回开口处的第二反射镜(平面的对角反射镜),再次改变方向进入目镜焦平面。目镜为便于观察,被安置靠近望远镜镜筒顶部的侧方。

由于光学系统的原理,牛顿望远镜的成像是一个倒像,倒像并不影响天文观测,因此牛顿反射望远镜是天文学使用的最佳选择。通过正像镜等附加镜头,可以将图像校正过来,但会降低成像质量。 3.系统结构 一个1000mm F/5的望远镜,这暗指需要一个曲率半径为2000mm的镜面,和一个200mm的孔径。光阑面的曲率半径列Radius,输入

-2000.0,负号表示为凹面。现在在同一个面上输入厚度值Thickness-1000,这个负号表示通过镜面折射后,光线将往“后方”传递.“Glass”列输入“MIRROR”,输入一个200的孔径值. ZEMAX使用的缺省值是波长550,视场角0.光源为无穷远处。

结构优化设计的综述与发展

结构优化设计的综述与发展 摘要:结构优化设计,就是在计算机技术等高科技手段的支持下,为了提升机械产品的性能、工作效率,延长机械产品的工作寿命,对机械产品的尺寸、形状、拓扑结构和动态性能进行优化的过程。这是机械行业发展的必然要求,也是信息时代的必然要求。结构优化设计,必须在保证机械产品满足工作需要的前提下,通过科学的计算来实行。文章将简单对结构优化设计的发展状况进行介绍,列举几种优化设计方法,以及讨论未来优化的发展情况。 关键词:结构优化设计发展优化设计方法 1 结构优化设计 结构优化简单来说就是在满足一定的约束条件下,通过改变结构的设计参数,以达到节约原材料或提高结构性能的目的。结构优化设计通常是指在给定结构外形,给定结构各元件的材料和相关载荷及整个结构的强度、刚度、工艺等要求的条件下,对结构进行整体和元件优化设计。结构优化设计一般由设计变量、约束条件和目标函数三要素组成。评价设计优、劣的标准,在优化设计中称为目标函数;结构设计中以变量形式参与的称为设计变量;设计时应遵守的几何、刚度、强度、稳定性等条件称为约束条件,而设计变量、约束函数与目标函数一起构成了优化设计的数学模型。结构优化的目的是让设计的结构利用材料更经济、受力分布更合理。 结构优化设计根据设计变量选取的不同可以分为截面(尺寸)优化、形状优化、拓扑优化三个层次。尺寸优化是选取结构元件的几何尺寸作为设计变量,例如,杆元截面积、板元的厚度等等[1]。而形状优化是选取结构的内部形状或者是节点位置作为设计变量。拓扑优化就是选取结构元件的有无作为设计变量,为0-1型逻辑型设计变量。 2 结构优化设计研究概况与现状 结构优化设计最早可以追溯到17世纪,伽利略和伯努利对弯曲梁的研究从而引发了变截面粱形状优化的问题。后来Maxwell和Michell提出了单载荷仅有应力约束条件下最小重量桁架结构布局的基本理论,为系统地分析结构优化理论作出了重大的贡献。然而长期以来,由于缺乏高速可靠的计算手段和理论,结构优化设计一直无法获取较大发展。 到上世纪六十年代,有限元技术借助于计算机技术,得到了极大的发展。1960年Schmit在求解多种载荷情况下弹性结构的最小重量问题时,首次在结构优化中引入入数学规划理论,并与有限元方法结合应用,形成了全新的结构优化思想,标志着现代结构优化技术的开始[2]。 1973年Zienkiewicz和Campbell[3]在解决水坝的形状优化问题时,首次以节点坐标作为设计变量,在结构分析方面使用了等参元,在优化方法上使用了序列线性规划的方法。其后,众多的学者在此基础上,逐渐发展形成了使用边界形状参数化方法描述连续

数据结构课程设计:拓扑排序和关键路径

1 ABSTRACT 1.1图和栈的结构定义 struct SqStack////栈部分 { SElemType *base;//栈底指针 SElemType *top;//栈顶指针 int stacksize;//栈的大小 int element_count;//栈中元素个素 }; /////////AOE网的存储结构 struct ArcNode //表结点 { int lastcompletetime;//活动最晚开始时间 int adjvex; //点结点位置 int info; //所对应的弧的权值 struct ArcNode *next;//指向下一个表结点指针 }; struct VNode //点结点 { VertexType data; //结点标志 int indegree; //该结点入度数 int ve; //记录结点的最早开始时间 int vl; //记录结点的最晚开始时间 struct ArcNode *first_out_arc; //存储下一个出度的表结点 struct ArcNode *first_in_arc;//存储下一个入度的表结点}; struct ALGraph { VNode *vertices; //结点数组 int vexnum; //结点数 int arcnum; //弧数 int kind; //该图的类型 };

2系统总分析 2.1关键路径概念分析 2.1.1什么是关键路径 关键路径法(Critical Path Method, CPM)最早出现于20世纪50年代,它是通过分析项目过程中哪个活动序列进度安排的总时差最少来预测项目工期的网络分析。这种方法产生的背景是,在当时出现了许多庞大而复杂的科研和工程项目,这些项目常常需要运用大量的人力、物力和财力,因此如何合理而有效地对这些项目进行组织,在有限资源下以最短的时间和最低的成本费用下完成整个项目就成为一个突出的问题,这样CPM就应运而生了。对于一个项目而言,只有项目网络中最长的或耗时最多的活动完成之后,项目才能结束,这条最长的活动路线就叫关键路径(Critical Path),组成关键路径的活动称为关键活动。 2.1.2关键路径特点 关键路径上的活动持续时间决定了项目的工期,关键路径上所有活动的持续时间总和就是项目的工期。 关键路径上的任何一个活动都是关键活动,其中任何一个活动的延迟都会导致整个项目完工时间的延迟。 关键路径上的耗时是可以完工的最短时间量,若缩短关键路径的总耗时,会缩短项目工期;反之,则会延长整个项目的总工期。但是如果缩短非关键路径上的各个活动所需要的时间,也不至于影响工程的完工时间。 关键路径上活动是总时差最小的活动,改变其中某个活动的耗时,可能使关键路径发生变化。可以存在多条关键路径,它们各自的时间总量肯定相等,即可完工的总工期。 关键路径是相对的,也可以是变化的。在采取一定的技术组织措施之后,关键路径有可能变为非关键路径,而非关键路径也有可能变为关键路径。 2.2关键路径实现过程 2.2.1结构选取 首先要选取建图的一种算法建立图,有邻接矩阵,邻接表,十字链表,邻接多重表等多种方法,要选取一种适当的方法建立图,才能提高算法效率,降低时间复杂度和空间复杂度。两个相邻顶点与它们之间的边表示活动,边上的数字表示活动延续的时间。对于给出的事件AOE网络,要求求出从起点到终点的所有路径,经分析、比较后找出长读最大的路径,从而得出求关键路径的算法,并给出计算机上机实现的源程序。完成不同路径的活动所需的时间虽然不同,但只有各

拓扑排序课程设计报告

沈阳航空航天大学 课程设计报告 课程设计名称:数据结构课程设计 课程设计题目:拓扑排序算法 院(系):计算机学院 专业:计算机科学与技术(嵌入式系统方向) 班级:14010105班 学号:2011040101221 姓名:王芃然 指导教师:丁一军

目录 1 课程设计介绍 (1) 1.1课程设计内容 (1) 1.2课程设计要求 (1) 2 课程设计原理 (2) 2.1课设题目粗略分析 (2) 2.2原理图介绍 (2) 2.2.1 功能模块图 (2) 2.2.2 流程图分析 (3) 3 数据结构分析 (7) 3.1存储结构 (7) 3.2算法描述 (7) 4 调试与分析 (12) 4.1调试过程 (12) 4.2程序执行过程 (12) 参考文献 (14) 附录(关键部分程序清单) (15)

1 课程设计介绍 1.1 课程设计内容 由某个集合上的一个偏序得到该集合上的一个全序,这个操作称之为拓扑排序。若在图一的有向图上人为的加一个表示V2<=V3的弧(“<=”表示V2领先于V3)则图一表示的亦为全序且这个全序称为拓扑有序,而由偏序定义得到拓扑有序的操作便是拓扑排序。在AOV网中为了更好地完成工程,必须满足活动之间先后关系,需要将各活动排一个先后次序即为拓扑排序。编写算法建立有向无环图,主要功能如下: 1.能够求解该有向无环图的拓扑排序并输出出来; 2.拓扑排序应该能处理出现环的情况; 3.顶点信息要有几种情况可以选择。 1.2 课程设计要求 1.输出拓扑排序数据外,还要输出邻接表数据; 2.参考相应的资料,独立完成课程设计任务; 3.交规范课程设计报告和软件代码。

拓扑优化

拓扑优化研究方法综述 结构拓扑优化是近20年来从结构优化研究中派生出来的新分支,它在计算 结构力学中已经被认为是最富挑战性的一类研究工作。目前有关结构拓扑优化 的工程应用研究还很不成熟,在国外处在发展的初期,尤其在国内尚属于起步 阶段。1904年Michell在桁架理论中首次提出了拓扑优化的概念。自1964年Dorn等人提出基结构法,将数值方法引入拓扑优化领域,拓扑优化研究开始活跃。20世纪80年代初,程耿东和N.Olhoff在弹性板的最优厚度分布研究中首 次将最优拓扑问题转化为尺寸优化问题,他们开创性的工作引起了众多学者的 研究兴趣。1988年Bendsoe和Kikuchi发表的基于均匀化理论的结构拓扑优化 设计,开创了连续体结构拓扑优化设计研究的新局面。1993年XieYM和StevenGP提出了渐进结构优化法。1999年Bendsoe和Sigmund证实了变密度法物理意义的存在性。2002年罗鹰等提出三角网格进化法,该方法在优化过程中 实现了退化和进化的统一,提高了优化效率。 通常把结构优化按设计变量的类型划分成三个层次:结构尺寸优化、形状优化和拓扑优化。尺寸优化和形状优化已得到充分的发展,但它们存 在着不能变更结构拓扑的缺陷。在这样的背景下,人们开始研究拓扑优化。拓 扑优化的基本思想是将寻求结构的最优拓扑问题转化为在给定的设计区域内寻 求最优材料的分布问题。寻求一个最佳的拓扑结构形式有两种基本的原理:一 种是退化原理,另一种是进化原理。退化原理的基本思想是在优化前将结构所 有可能杆单元或所有材料都加上,然后构造适当的优化模型,通过一定的优化 方法逐步删减那些不必要的结构元素,直至最终得到一个最优化的拓扑结构形式。进化原理的基本思想是把适者生存的生物进化论思想引入结构拓扑优化, 它通过模拟适者生存、物竞天择、优胜劣汰等自然机理来获得最优的拓扑结构。 退化法即传统的拓扑优化方法,一般通过求目标函数导数的零点或一 系列迭代计算过程求最优的拓扑结构。目前常用于拓扑优化的退化法有基结构 方法、均匀化方法、变密度法、变厚度法等。 进化法是一类全局寻优方法,目前常用于拓扑优化的进化法主要有遗 传算法、模拟退火算法和渐进结构优化法等。 什么是拓扑优化? 拓扑优化是指形状优化,有时也称为外型优化。拓扑优化的目标是寻找承 受单载荷或多载荷的物体的最佳材料分配方案。这种方案在拓扑优化中表现为“最大刚度”设计。 与传统的优化设计不同的是,拓扑优化不需要给出参数和优化变量的定义。目标函数、状态变量和设计变量(参见“优化设计”一章)都是预定义好的。用 户只需要给出结构的参数(材料特性、模型、载荷等)和要省去的材料百分比。 拓扑优化的目标——目标函数——是在满足结构的约束(V)情况下减少 结构的变形能。减小结构的变形能相当于提高结构的刚度。 下面是从振动论坛的回帖,有帮助的: ========================================================= =============== 求助:结构动力学优化设计(拓扑优化) veasha 发表于: 2009-2-27 11:44 来源: 振动资讯

柔顺机构课程论文——陈举聪

柔顺机构课程论文——陈举聪 研究生课程实验报告 (2010-2011学年第二学期) 拓扑优化方法在柔顺机构设计中的应用 研究生:陈举聪 提交日期: 2011年9月13日研究生签名: 学号 201020100026 学院机械与汽车工程学院课程编号 S0802057 课程名称精密柔顺机构的分析与设计学位类别硕士任课教师张宪民王念峰教师评语: 成绩评定: 分任课教师签名: 年月日 拓扑优化方法在柔顺机构设计中的应用 陈举聪 摘要 本文由柔性机构的分析、设计相比相应的刚性机构的复杂性,引出了已经成功地被用来确定柔性结构的类型和尺寸拓扑优化方法。介绍了结构设计尺寸优化、形状优化和拓扑优化的三个层次,然后着重介绍了常用于柔顺机构设计的拓扑优化方法,如基础结构法、均匀化方法、变密度法、渐进结构优化法、水平集法等,最后指出机构拓扑优化设计的发展动态和应重点研究的内容。关键字:柔顺机构; 结构设计; 拓扑优化 精密柔顺机构的分析与设计 一、引言 柔顺机构是指能通过其部分或全部构件自身的弹性变形来完成运动和力的传递与转换的机械机构。一个柔顺机构能够传递或传输运动、力和能量。与刚体连接机

构不同, 柔顺机构不仅可以从铰链的运动来获得可运动性, 还可以从柔性部件的变形获得它们的可运动性。 相对于传统的刚性结构设计,柔性机构的设计是一个新兴的研究领域。利用柔顺机构传递运动具有以下优点:1、零件少,甚至只有一件,便于制造,免装配;2、无需铰链或轴承等运动副,运动和力的传递是利用组成它的某些或全部构件的弹性变形来实现;3、无摩擦、磨损及传动间隙,无效行程小,不需润滑,可实现高精度运动,避免污染,提高寿命;4、可存储弹性能,自身具有回程反力。 拓扑优化是通过有限元分析和优化方法相结合求解,是在一个给定的设计空间区域内,依据已知的外载荷或支撑等约束条件,解决材料的分布问题,从而使结构刚度最大化或输出位移、内部应力达到设计要求的一种结构设计方法。 拓扑优化是结构优化领域的研究热点,柔性机构拓扑优化是一个重要研究方向。拓扑优化方法的有如下特点:1、与形状优化和尺寸优化两种方法比起来,能够实现结构的轻量化;2、优化的构件中多有孔状结构,可能在制造上有些困难;3、设计过程中设计方案修改灵活。下面主要介绍了常用于柔顺机构设计中的拓扑优化方法。 二、结构的优化与设计 结构的优化与设计过程大体上可以分为尺寸优化、形状优化和拓扑优化三个层次,分别对应于不同的三个设计阶段,即详细设计、基本设计和概念设计 1 精密柔顺机构的分析与设计 三个阶段,具体如图1所示。 尺寸优化详细设计阶 段 结构优化形状优化基本设计阶

牛顿对光学的研究

牛顿对光学的研究 英国物理学家牛顿(I.Newton,1642-1727) 1.色散现象的早期研究 色散也是一个古老的课题,最引人注目的是彩虹现象。早在13世纪,科学家就对彩虹的成因进行了探讨。 德国有一位传教士叫西奥多里克(Theodoric),曾在实验中模仿天上的彩虹。他利用阳光照射装满水的大玻璃球壳,观察到了和空中一样的彩虹,以此说明彩虹是由于空气中水珠反射和折射阳光造成的现象。不过,他进一步解释没有摆脱亚里斯多德的教义,继续认为各种颜色的产生是由于光受到不同阻滞所引起。光的四种颜色:红、黄、绿、蓝,处于白与黑之间,红色接近白色,比较明亮,蓝色接近黑色,比较昏暗。阳光进入媒质(例如水),从表面区域折射回来的是红色或黄色,从深部折射回来的是绿色或蓝色。雨后天空中充满水珠,阳光进入水珠再折射回来,人们就看到色彩缤纷的景象。 笛卡儿对彩虹现象也有兴趣,他用实验检验西奥多里克的认述。 在他的《方法论》(1637)中还有一篇附录,专门讨论彩虹,并且介绍了他自己做过的棱镜实验,如图所示。他用三棱镜将阳光折射后投在屏上,发现彩色的产生并不是由于进入媒质深浅不同所造成。因为不论光照在棱镜的那一部位,折射后屏上的图象都是一样的。遗憾的是,笛卡儿的屏离棱镜太近(大概只有几厘米),他没有看到色散后的整个光谱,只注意到光带的两侧分别呈现蓝色和红色。 1648年,布拉格的马尔西用三棱镜演示色散成功。不过他解释错了。他认为红色是浓缩了的光,蓝色是稀释了的光;之所以会出现五颜六色,是由于光受物质的不同作用,因而呈现各种不同的颜色。 17世纪正当望远镜、显微镜问世,伽利略运用望远镜观察天体星辰,胡克用显微镜观察小物体,激起了广大科学界的兴趣。然而,当放大倍数增大时,这些仪器不可避免地都会出现象差和色差,使人们深感迷惑。 人们不理解,为什么在图象的边缘总会出现颜色?这和彩虹有没有共同之处?这类现象有什么规律性?怎样才能消除? 这时,牛顿正在英国剑桥大学学习。他的老师中有一位数学教授名叫巴罗(Isaac Barrow,1630-1677),对光学很有研究。牛顿听过他讲光学,还邦他写《光学讲义》。牛顿很喜欢做光学实验,还亲自动手磨制透镜,想按自己的设计装配出差的显微镜和望远镜。这个愿望激励他对光的颜色的本性进行深入的探讨。 2.牛顿对色散现象的思考 牛顿从笛卡儿等人的著作中得到许多启示。例如笛卡儿说过:“运动慢的光线比运动快的光线折射得更厉害,”胡克描述过肥皂泡的颜色变化,认为不同的颜色是光脉冲对视网膜留下的不同印象。红色和蓝色是原色,其它颜色都是由这两种颜色合成和冲淡而成。牛顿注意到这些说法的合理成分,同时也提出许多疑问。 在牛顿留下的手稿中,记录了许多当年的疑问微压测高计思考, 例如,他问道:如果光是脉冲,为什么不像声音那样在传播中偏离直线? 为什么弱的脉冲比强的脉冲运动快? 为什么水比水蒸汽更清晰? 为什么煤是黑的,煤烧成的灰反而是白的? 牛顿不满意前人(包括他的老师)对光现象的解释,就自己动手做起了一系列的实验。 3.牛顿的色散实验 牛顿从笛卡儿的棱镜实验得到启发,又借鉴于胡克和玻意耳的分光实验。胡克用了一只充满水的烧瓶代替棱镜,屏距折射位置大约60厘米,玻意耳把棱镜散射的光投到1米多高的天花板上,而牛顿则将距离扩展为6-7米,从室外由洞口进入的阳光经过三棱镜后直接投射到对面的墙上。这样,他就获得了展开的光谱,而前面的几位实验者只看到两侧带颜色的光斑。

相关文档
最新文档