ASTM D412-1998橡胶拉伸

ASTM D412-1998橡胶拉伸
ASTM D412-1998橡胶拉伸

Specimens may be in the shape of dumbbells,rings or straight pieces of uniform cross-sectional area.

4.2Measurements for tensile stress,tensile stress at a given elongation,tensile strength,yield point,and ultimate elonga-tion are made on specimens that have not been prestressed. Tensile stress,yield point,and tensile strength are based on the original cross-sectional area of a uniform cross-section of the specimen.

4.3Measurement of tensile set is made after a previously unstressed specimen has been extended and allowed to retract by a prescribed procedure.Measurement of“set after break”is also described.

5.Signi?cance and Use

5.1All materials and products covered by these test meth-ods must withstand tensile forces for adequate performance in certain applications.These test methods allow for the measure-ment of such tensile properties.However,tensile properties alone may not directly relate to the total end use performance of the product because of the wide range of potential perfor-mance requirements in actual use.

5.2Tensile properties depend both on the material and the conditions of test(extension rate,temperature,humidity,speci-men geometry,pretest conditioning,etc.);therefore materials should be compared only when tested under the same condi-tions.

5.3Temperature and rate of extension may have substantial effects on tensile properties and therefore should be controlled. These effects will vary depending on the type of material being tested.

5.4Tensile set represents residual deformation which is partly permanent and partly recoverable after stretching and retraction.For this reason,the periods of extension and recovery(and other conditions of test)must be controlled to obtain comparable results.

6.Apparatus

6.1Testing Machine—Tension tests shall be made on a power driven machine equipped to produce a uniform rate of grip separation of500650mm/min(2062in./min)for a distance of at least750mm(30in.)(see Note1).The testing machine shall have both a suitable dynamometer and an indicating or recording system for measuring the applied force within62%.If the capacity range cannot be changed for a test (as in the case of pendulum dynamometers)the applied force at break shall be measured within62%of the full scale value, and the smallest tensile force measured shall be accurate to within10%.If the dynamometer is of the compensating type for measuring tensile stress directly,means shall be provided to adjust for the cross-sectional area of the specimen.The response of the recorder shall be sufficiently rapid that the applied force is measured with the requisite accuracy during the extension of the specimen to rupture.If the testing machine is not equipped with a recorder,a device shall be provided that indicates,after rupture,the maximum force applied during extension.Testing machine systems shall be capable of mea-suring elongation of the test specimen in minimum increments of10%.may be used and notation of the speed made in the report.In case of dispute,the test shall be repeated and the rate of elongation shall be at500 650mm/min(2062in./min).

6.2Test Chamber for Elevated and Low Temperatures—The test chamber shall conform with the following requirements: 6.2.1Air shall be circulated through the chamber at a velocity of1to2m/s(3.3to6.6ft/s)at the location of the grips or spindles and specimens maintained within2°C(3.6°F)of the speci?ed temperature.

6.2.2A calibrated sensing device shall be located near the grips or spindles for measuring the actual temperature.

6.2.3The chamber shall be vented to an exhaust system or to the outside atmosphere to remove fumes liberated at high temperatures.

6.2.4Provisions shall be made for suspending specimens vertically near the grips or spindles for conditioning prior to test.The specimens shall not touch each other or the sides of the chamber except for momentary contact when agitated by the circulating air.

6.2.5Fast acting grips suitable for manipulation at high or low temperatures may be provided to permit placing dumbbells or straight specimens in the grips in the shortest time possible to minimize any change in temperature of the chamber.

6.2.6The dynamometer shall be suitable for use at the temperature of test or it shall be thermally insulated from the chamber.

6.2.7Provision shall be made for measuring the elongation of specimens in the chamber.If a scale is used to measure the extension between the bench-marks,the scale shall be located parallel and close to the grip path during specimen extension and shall be controlled from outside the chamber.

6.3Dial Micrometer—The dial micrometer shall conform to the requirements of Practice D3767(Method A).For ring specimens,see14.10of these test methods.

6.4Apparatus for Tensile Set Test—The testing machine described in6.1or an apparatus similar to that shown in Fig.1 may be used.A stop watch or other suitable timing device measuring in minute intervals for at least30min,shall be provided.A scale or other device shall be provided for measuring tensile set to within1%.

7.Selection of Test Specimens

7.1Consider the following information in making selec-tions:

7.1.1Since anisotropy or grain directionality due to?ow introduced during processing and preparation may have an in?uence on tensile properties,dumbbell or straight specimens should be cut so the lengthwise direction of the specimen is parallel to the grain direction when this direction is known. Ring specimens normally give an average of with and across the grain properties.

7.1.2Unless otherwise noted,thermoplastic rubber or ther-moplastic elastomer specimens,or both,are to be cut from injection molded sheets or plaques with a thickness of3.06 0.3mm.Specimens of other thickness will not necessarily give comparable results.Specimens are to be tested in directions both parallel and perpendicular to the direction of?ow in the mold.Sheet or plaque dimensions must be sufficient to do this.

grip separation,but the elongation across the radial width of

the ring specimens is not uniform.To minimize this effect the

width of the ring specimens must be small compared to the

diameter.

7.1.4Straight specimens tend to break in the grips if normal

extension-to-break testing is conducted and should be used

only when it is not feasible to prepare another type of

specimen.For obtaining non-rupture stress-strain or material

modulus properties,straight specimens are quite useful.

7.1.5The size of specimen type used will be determined by

the material,test equipment and the sample or piece available

for test.A longer specimen may be used for rubbers having low

ultimate elongation to improve precision of elongation mea-

8.Calibration of the Testing Machine 8.1Calibrate the testing machine in accordance with Proce-dure A of Practice E 4.If the dynamometer is of the strain-gage type,calibrate the tester at one or more forces in addition to the requirements in Sections 7and 18of Practice E 4.Testers having pendulum dynamometers may be calibrated as follows:8.1.1Place one end of a dumbbell specimen in the upper grip of the testing machine.8.1.2Remove the lower grip from the machine and attach it,by means of the gripping mechanism to the dumbbell specimen in the upper grip.8.1.3Attach a hook to the lower end of the lower specimen grip mechanism.

FIG.1Apparatus for Tensile Set

Test

specimen grip mechanism in such a way as to permit the mass assembly to temporarily rest on the lower testing machine grip framework or holder(see Note2).

8.1.5Start the grip separation motor or mechanism,as in normal testing,and allow it to run until the mass is freely suspended by the specimen in the upper grip.

8.1.6If the dial or scale does not indicate the force applied (or its equivalent in stress for a compensating type tester) within speci?ed tolerance,thoroughly inspect the testing ma-chine for malfunction(for example,excess friction in bearings and other moving parts).Ensure that the mass of the lower grip mechanism and the hook are included as part of the known mass.

8.1.7After machine friction or other malfunction has been removed,recalibrate the testing machine at a minimum of three points using known masses to produce forces of approximately 10,20and50%of capacity.If pawls or rachets are used during routine testing,use them for calibration.Check for friction in the head by calibrating with the pawls up.

N OTE3—It is advisable to provide a means for preventing the known mass from falling to the?oor in case the dumbbell should break.

8.2A rapid approximate calibration of the testing machine may be obtained by using a spring calibration device.

9.Test Temperature

9.1Unless otherwise speci?ed,the standard temperature for testing shall be2362°C(73.463.6°F).Specimens shall be conditioned for at least3h when the test temperature is23°C (73.4°F).If the material is affected by moisture,maintain the relative humidity at5065%and condition the specimens for at least24h prior to testing.When testing at any other temperature is required use one of the temperatures listed in Practice D1349.

9.2For testing at temperatures above23°C(73.4°F)preheat specimens for1062min for Method A and for662min for Method B(see Note3).Place each specimen in the test chamber at intervals ahead of testing so that all specimens of a series will be in the chamber the same length of time.The preheat time at elevated temperatures must be limited to avoid additional vulcanization or thermal aging.

N OTE4—Precaution:In addition to other precautions,suitable heat or cold resistant gloves should be worn for arm and hand protection when testing at other than23°C(73.4°F).A mask for the face is very desirable for high temperature testing to prevent the inhalation of toxic fumes when the door of the chamber is open.

9.3For testing at temperatures below23°C(73.4°F)condi-tion the specimens at least10min prior to testing.

TEST METHOD A—DUMBBELL AND STRAIGHT

SPECIMENS

10.Apparatus

10.1Die—The shape and dimensions of the die for prepar-ing dumbbell specimens shall conform with those shown in Fig. 2.The inside faces in the reduced section shall be perpendicular to the plane formed by the cutting edges and polished for a distance of at least5mm(0.2in.)from the cutting edge.The die shall at all times be sharp and free of

N OTE5—The condition of the die may be determined by investigating the rupture point on any series of broken(ruptured)specimens.Remove such specimens from the grips of the testing machine,stack the joined-together specimens on top of each other,and note if there is any tendency for tensile breaks to occur at the same position on each of the specimens. Rupture consistently at the same place indicates that the die may be dull, nicked,or bent at that location.

10.2Bench Marker—The two marks placed on the speci-men and used to measure elongation or strain are called“bench marks”(see Note5).The bench marker shall consist of a base plate containing two raised parallel projections.The surfaces of the raised projections(parallel to the plane of the base plate) are ground smooth in the same plane.The raised projection marking surfaces shall be between0.05and0.08mm(0.002 and0.003in.)wide and at least15mm(0.6in.)long.The angles between the parallel marking surfaces and the sides of the projections shall be at least75°.The distance between the centers of the two parallel projections or marking surfaces shall be within1%of the required or target bench mark distance.A handle attached to the back or top of the bench marker base plate is normally a part of the bench marker.

N OTE6—If a contact extensometer is used to measure elongation, bench marks are not necessary.

10.3Ink Applicator—A?at unyielding surface(hardwood, metal,or plastic)shall be used to apply either ink or powder to the bench marker.The ink or powder shall adhere to the specimen,have no deteriorating effect on the specimen and be of contrasting color to that of the specimen.

10.4Grips—The testing machine shall have two grips,one of which shall be connected to the dynamometer.

10.4.1Grips for testing dumbbell specimens shall tighten automatically and exert a uniform pressure across the gripping surfaces,increasing as the tension increases in order to prevent slippage and to favor failure of the specimen in the straight reduced section.Constant pressure pneumatic type grips also are satisfactory.At the end of each grip a positioning device is recommended for inserting specimens to the same depth in the grip and for alignment with the direction of pull.

10.4.2Grips for testing straight specimens shall be constant pressure pneumatic,wedged,or toggle type designed to trans-mit the applied gripping force over the entire width of the gripped specimen.

11.Specimens

11.1Dumbbell Specimens—Whenever possible,the test specimens shall be injection molded or cut from a?at sheet not less than1.3mm(0.05in.)nor more than3.3mm(0.13in.) thick and of a size which will permit cutting a specimen by one of the standard methods(see Practice D3182).Sheets may be prepared directly by processing or from?nished articles by cutting and buffing.If obtained from a manufactured article, the specimen shall be free of surface roughness,fabric layers, etc.in accordance with the procedure described in Practice D3183.All specimens shall be cut so that the lengthwise portion of the specimens is parallel to the grain unless otherwise speci?ed.In the case of sheets prepared in accor-dance with Practice D3182,the specimen shall be2.060.2 mm(0.0860.008in.)thick died out in the direction of the

specimens from the sheet with a single impact stroke (hand or

machine)to ensure smooth cut surfaces.

11.1.1Marking Dumbbell Specimens —Dumbbell speci-

mens shall be marked with the bench marker described in 10.2,

with no tension on the specimens at the time of marking.Marks

shall be placed on the reduced section,equidistant from its

center and perpendicular to the longitudinal axis.The between

bench mark distance shall be as follows:for Die C or Die D of

Fig.2,25.0060.25mm (1.0060.01in.);for any other Die

of Fig.2,50.0060.5mm (2.0060.02in.).

11.1.2Measuring Thickness of Dumbbell Specimens —

Three measurements shall be made for the thickness,one at the

center and one at each end of the reduced section.The median

of the three measurements shall be used as the thickness in

ence between the maximum and the minimum thickness exceeding 0.08mm (0.003in.),shall be discarded.The width of the specimen shall be taken as the distance between the cutting edges of the die in the restricted section.11.2Straight Specimens —Straight specimens may be pre-pared if it is not practical to cut either a dumbbell or a ring specimen as in the case of a narrow strip,small tubing or narrow electrical insulation material.These specimens shall be of sufficient length to permit their insertion in the grips used for the test.Bench marks shall be placed on the specimens as described for dumbbell specimens in 11.1.1.To determine the cross sectional area of straight specimens in the form of tubes,the mass,length,and density of the specimen may be required.The cross sectional area shall be calculated from these mea-

FIG.2Standard Dies for Cutting Dumbbell

Specimens

A 5M /DL (1)

where:A =cross-sectional area,cm 2,M =mass,g,D =density,g/cm 3,and L =length,cm.

N OTE 7—A in square inches =A (cm 2)30.155.12.Procedure

12.1Determination of Tensile Stress,Tensile Strength and

Yield Point —Place the dumbbell or straight specimen in the

grips of the testing machine,using care to adjust the specimen

symmetrically to distribute tension uniformly over the cross

section.This avoids complications that prevent the maximum

strength of the material from being evaluated.Unless otherwise

speci?ed,the rate of grip separation shall be 500650mm/min

(2062in./min)(see Note 7).Start the machine and note the

distance between the bench marks,taking care to avoid

parallax.Record the force at the elongation(s)speci?ed for the

test and at the time of rupture.The elongation measurement is

made preferably through the use of an extensometer,an

autographic mechanism or a spark mechanism.At rupture,

measure and record the elongation to the nearest 10%.See

Section 13for calculations.

N OTE 8—For materials having a yield point (yield strain)under 20%

elongation when tested at 500650mm/min (2062in./min),the rate of

elongation shall be reduced to 5065mm/min (2.060.2in./min).If the

be reduced to 560.5mm/min (0.260.002in./min).The actual rate of separation shall be reported.

12.2Determination of Tensile Set —Place the specimen in the grips of the testing machine described in 6.1or the apparatus shown in Fig.1,and adjust symmetrically so as to distribute the tension uniformly over the cross section.Sepa-rate the grips at a rate of speed as uniformly as possible,that requires 15s to reach the speci?ed elongation.Hold the specimen at the speci?ed elongation for 10min,release quickly without allowing it to snap back and allow the specimen to rest for 10min.At the end of the 10min rest period,measure the distance between the bench marks to the nearest 1%of the original between bench mark https://www.360docs.net/doc/a811653922.html,e a stop watch for the timing operations.See Section 13for calculations.12.3Determination of Set-After-Break —Ten minutes after a specimen is broken in a normal tensile strength test,carefully ?t the two pieces together so that they are in good contact over the full area of the break.Measure the distance between the bench marks.See Section 13for calculations.13.Calculation 13.1Calculate the tensile stress at any speci?ed elongation as follows:T ~xxx !5F ~xxx !/A (2)Dimensions of Standard Dumbbell Dies A (Metric Units)

Dimension

Units Tolerance Die A Die B Die C Die D Die E Die F A

mm 61252525161616B

mm max 404040303030C

mm min 140140115100125125D

mm 66B 323232323232D-E

mm 61131313131313F

mm 62383819193838G

mm 61141414141414H

mm 62252525161616L

mm 62595933335959W

mm 60.05,–0.001266336Z

mm 61131313131313A Dies whose dimensions are expressed in metric units are not exactly the same as dies whose dimensions are expressed in U.S.customary units.Dies dimensioned in metric units are intended for use with apparatus calibrated in metric units.

B For dies used in clicking machines it is preferable that this tolerance be 60.5mm.

FIG.2a (continued)

Dimensions of Standard Dumbbell Dies A (U.S.Customary Units)

Dimension

Units Tolerance Die A Die B Die C Die D Die E Die F A

in.60.041110.620.620.62B

in.max 1.6 1.6 1.6 1.2 1.2 1.2C

in.min 5.5 5.5 4.5455D

in.60.25B 1.25 1.25 1.25 1.25 1.25 1.25D-E

in.60.040.50.50.50.50.50.5F

in.60.08 1.5 1.50.750.75 1.5 1.5G

in.60.040.560.560.560.560.560.56H

in.60.081110.630.630.63L

in.60.08 2.32 2.32 1.31 1.31 2.32 2.32W

in.60.002,–0.0000.5000.2500.2500.1250.1250.250Z

in.60.040.50.50.50.50.50.5A

Dies whose dimensions are expressed in metric units are not exactly the same as dies whose dimensions are expressed in U.S.customary units.B For dies used in clicking machines it is preferable that this tolerance by 60.02in.

FIG.2b

(continued)

T(xxx)=tensile stress at(xxx)%elongation,MPa(lbf/ in.2),

F(xxx)=force at speci?ed elongation,MN or(lbf),and

A=cross-sectional area of unstrained specimen,m2 (in.2).

13.2Calculate the yield stress as follows:

Y~stress!5F~y!/A(3) where:

Y(stress)=yield stress,that stress level where the yield point occurs,MPa(lbf/in.2),

F(y)=magnitude of force at the yield point,MN(lbf), and

A=cross-sectional area of unstrained specimen,m2 (in.2).

13.3Evaluate the yield strain as that strain or elongation magnitude,where the rate of change of stress with respect to strain,goes through a zero value.

13.4Calculate the tensile strength as follows:

TS5F~BE!/A(4) where:

TS=tensile strength,the stress at rupture,MPa(lbf/ in.2),

F(BE)=the force magnitude at rupture,MN(lbf),and

A=cross-sectional area of unstrained specimen,m2 (in.2).

13.5Calculate the elongation(at any degree of extension)as follows:

E5100@L–L~o!#/L~o!(5) where:

E=the elongation in percent(of original bench mark distance),

L=observed distance between bench marks on the extended specimen,and

L(o)=original distance between bench marks(use same units for L and L(o)).

13.6The breaking or ultimate elongation is evaluated when L is equal to the distance between bench marks at the point of specimen rupture.

13.7Calculate the tensile set,by using Eq5,where L is equal to the distance between bench marks after the10min retraction period.

13.8Test Result—A test result is the median of three individual test measurement values for any of the measured properties as described above,for routine testing.There are two exceptions to this and for these exceptions a total of?ve specimens(measurements)shall be tested and the test result reported as the median of?ve.

13.8.1Exception1—If one or two of the three measured values do not meet speci?ed requirement values when testing for compliance with speci?cations.

13.8.2Exception2—If referee tests are being conducted.

TEST METHOD B—CUT RING SPECIMENS 14.Apparatus

14.1Cutter—A typical ring cutter assembly is illustrated in mounting the upper shaft portion of the cutter in a rotating housing that can be lowered onto a sheet held by the rubber holding plate as shown in Fig.4.

14.1.1Blade Depth Gage—This gage consists of a cylin-drical disk having a thickness of at least0.5mm(0.02in.) greater than the thickness of the rubber to be cut and a diameter less than the inside diameter of the specimen used for adjusting the protrusion of the blades from the body of the cutter.See Fig.3.

14.2Rubber Holding Plate—The apparatus for holding the sheet during cutting shall have plane parallel upper and lower surfaces and shall be a rigid polymeric material(hard rubber, polyurethane,polymethylmethacrylate)with holes approxi-mately1.5mm(0.06in.)in diameter spaced6or7mm(0.24 or0.32in.)apart across the central region of the plate.All the holes shall connect to a central internal cavity which can be maintained at a reduced pressure for holding the sheet in place due to atmospheric pressure.Fig.4illustrates the design of an apparatus for holding standard sheets(approximately1503 15032mm)during cutting.

14.3Source of Reduced Pressure—Any device such as a vacuum pump that can maintain an absolute pressure below10 kPa(0.1atm)in the holding plate central cavity.

14.4Soap Solution—A mild soap solution shall be used on the specimen sheet to lubricate the cutting blades.

14.5Cutter Rotator—A precision drill press or other suit-able machine capable of rotating the cutter at an angular speed of at least30rad/s(approximately300r/min)during cutting shall be used.The cutter rotator device shall be mounted on a horizontal base and have a vertical support orientation for the shaft that rotates the spindle and cutter.The run-out of the rotating spindle shall not exceed0.01mm(0.004in.).

14.6Indexing Table—A milling table or other device with typical x-y motions shall be provided for positioning the sheet and holder with respect to the spindle of the cutter rotating device.

14.7Tensile Testing Machine—A machine as speci?ed in 6.1shall be provided.

14.8Test Fixture—A test?xture as shown in Fig.5shall be provided for testing the ring specimens.The testing machine shall be calibrated as outlined in Section8.

14.9Test Chamber—A chamber for testing at high and low temperatures shall be provided as speci?ed in6.2.

14.9.1The?xtures speci?ed in14.8are satisfactory for testing at other than room temperature.However at extreme temperatures,a suitable lubricant shall be used to lubricate the spindle bearings.

14.9.2The dynamometer shall be suitable for use at the temperature of test or thermally insulated from the chamber.

14.10Dial Micrometer—A dial micrometer shall be pro-vided that conforms to the requirements of Practice D3767.

14.10.1The base of the micrometer used to measure the radial width shall consist of an upper cylindrical surface(with its axis oriented in a horizontal direction)at least12mm(0.5 in.)long and15.560.5mm(0.6160.02in.)in diameter.To accommodate small diameter rings that approach the15.5mm (0.61in.)diameter of the base and to avoid any ring extension

cylindrical surface may be truncated at the cylinder centerline,

that is,a half cylinder shape.This permits placing small rings

on the upper cylindrical surface without interference ?t prob-

lems.Curved feet on the end of the dial micrometer shaft to ?t

the curvature of the ring(s),may be used.

15.Ring Specimen

15.1ASTM Cut Rings —Two types of cut ring specimens

may be used.Unless otherwise speci?ed,the Type 1ring

specimen shall be used.

15.1.1Ring Dimensions :mm in.Type 1Circumference (inside)50.060.01 2.060.004Diameter (inside)15.9260.0030.63760.001Radial width 1.060.010.04060.0004Thickness,minimum 1.00.040maximum 3.30.13Type 2Circumference mean 100.060.2 4.060.0004Diameter (inside)29.860.06 1.1960.0001Radial width 2.060.020.0860.0008Thickness,minimum 1.00.04maximum 3.30.1315.2ISO Cut Rings —The normal size and the small size

ring specimens in ISO 37have the following dimensions given

in mm.See ISO 37for speci?c testing procedures for these

rings.

Normal Small Diameter,inside

44.660.2mm 8.060.1mm Diameter,outside

52.660.2mm 10.060.1mm Thickness 4.060.2mm 1.060.1

mm

N OTE 1—Dimension C to be 2mm (0.08in.)less than the inside diameter of the ring.

FIG.3Typical Ring Cutter

Assembly

15.3Rings Cut from Tubing —The dimensions of the ring

specimen(s)depend on the diameter and wall thickness of the

tubing and should be speci?ed in the product speci?cation.

15.4Preparation of Cut Ring Specimens —Place the blades

in the slots of the cutter and adjust the blade depth using the

blade depth gage.Place the cutter in the drill press and adjust

the spindle or table so that the bottom of the blade holder is

about 13mm (0.5in.)above the surface of the holding plate.

Set the stop on the vertical travel of the spindle so that the tips

Place the sheet on the holding plate and reduce the pressure in the cavity to 10kPa (0.1atm)or less.Lubricate the sheet with mild soap solution.Lower the cutter at a steady rate until it reaches the stop.Be sure that the blade holder does not contact the sheet.If necessary,readjust the blade depth.Return the spindle to its original position and repeat the operation on another sheet.15.5Preparation of Ring Specimens from Tubing —Place the tubing on a mandrel preferably slightly larger than the inner

Dimension

mm in.Dimension mm in.A

1787.0F 190.75B

152 6.0G 230.90C

89 3.5H 1.50.062

D

2299.0E 60.25FIG.4Rubber Holding

Plate

FIG.5Assembly,Ring Tensile Test

Fixture

lathe.Cut ring specimens to the desired axial length by means of a knife or razor blade held in the tool post of the https://www.360docs.net/doc/a811653922.html,y thin wall tubing?at and cut ring specimens with a die or cutting mechanism having two parallel blades.

15.6Ring Dimension Measurements:

15.6.1Circumference—The inside circumference can be determined by a stepped cone or by“go-no go”gages.Do not use any stress in excess of that needed to overcome any ellipticity of the ring specimen.The mean circumference is obtained by adding to the value for the inside circumference, the product of the radial width and p(3.14).

15.6.2Radial Width—The radial width is measured at three locations distributed around the circumference using the mi-crometer described in14.10.

15.6.3Thickness—For cut rings,the thickness of the disk cut from the inside of the ring is measured with a micrometer described in Practice D3767.

15.6.4Cross-Sectional Area—The cross-sectional area is calculated from the median of three measurements of radial width and thickness.For thin wall tubing,the area is calculated from the axial length of the cut section and wall thickness.

16.Procedure

16.1Determination of Tensile Stress,Tensile Strength, Breaking(Ultimate)Elongation and Yield Point—In testing ring specimens,lubricate the surface of the spindle with a suitable lubricant,such a mineral oil or silicone oil.Select one with documented assurance that it does not interact or affect the material being tested.The initial setting of the distance between the spindle centers may be calculated and adjusted according to the following equation:

IS5@C~TS!–C~SP!#/2(6) where:

IS=initial separation of spindle centers,mm(in.),

C(TS)=circumference of test specimen,inside circumfer-ence for Type1rings,mean circumference for

Type2rings,mm(in.),and

C(SP)=circumference of either(one)spindle,mm(in.). Unless otherwise speci?ed the rate of spindle separation shall be500650mm/min(2062in./min)(see Notes7and 8).Start the test machine and record the force and correspond-ing distance between the spindles.At rupture,measure and record the ultimate(breaking)elongation and the tensile(force) strength.See Section17for calculations.

N OTE9—When using the small ISO ring,the rate of spindle separation shall be100610mm/min(460.4in./min).

16.2Tests at Temperatures Other than Standard—Use the test chamber described in6.2and observe the precautionary statement in Note2.For tests at temperatures above23°C (73.4°F),preheat the specimens662min at the test temperature.For below room temperature tests cool the speci-mens at the test temperature for at least10min prior to test. Use test temperatures prescribed in Practice D1349.Place each specimen in the test chamber at intervals such that the recommendations of9.2are followed.

17.Calculation eral calculated in the same manner as for dumbbell and straight specimens with one important exception.Extending a ring specimen generates a nonuniform stress(or strain)?eld across the width(as viewed from left to right)of each leg of the ring. The initial inside dimension(circumference)is less than the outside dimension(circumference),therefore for any extension of the grips,the inside strain(or stress)is greater than the outside strain(or stress)because of the differences in the initial (unstrained)dimensions.

17.2The following options are used to calculate stress at a speci?ed elongation(strain)and breaking or ultimate elonga-tion.

17.2.1Stress at a Speci?ed Elongation—The mean circum-ference of the ring is used for determining the elongation.The rationale for this choice is that the mean circumference best represents the average strain in each leg of the ring.

17.2.2Ultimate(Breaking)Elongation—This is calculated on the basis of the inside circumference since this represents the maximum strain(stress)in each leg of the ring.This location is the most probable site for the initiation of the rupture process that occurs at break.

17.3Calculate the tensile stress at any speci?ed elongation by using Eq2in13.1.

17.3.1The elongation to be used to evaluate the force as speci?ed in Eq2(13.1),is calculated as follows:

E5200@L/MC~TS!#(7) where:

E=elongation(speci?ed),percent,

L=increase in grip separation at speci?ed elonga-tion,mm(in.),and

MC(TS)=mean circumference of test specimen,mm(in.).

17.3.2The grip separation for any speci?ed elongation can be found by rearranging Eq7,as given below:

L5E3MC~TS!/200(8) 17.4Calculate the yield stress by using Eq3in13.2. 17.5Evaluate the yield strain as given in13.3.Since yield strain may be considered to be an average bulk property of any material,use the mean circumference for this evaluation. 17.6Calculate the tensile strength by using Eq4in13.4.

17.7Calculate the breaking or ultimate elongation as fol-lows(see Notes9and10):

E5200/@L/IC~TS!#(9) where:

E=breaking or ultimate elongation,percent,

L=increase in grip separation at break,mm(in.),and IC(TS)=inside circumference of ring test specimen,mm (in.).

17.8The inside circumference is used for both types of rings,see15.1.1for https://www.360docs.net/doc/a811653922.html,e the inside diameter to calculate the inside circumference for Type2rings.

N OTE10—Eq8,Eq9,and10are applicable only if the initial setting of the spindle centers is adjusted in accordance with Eq7.

N OTE11—The user of these test method should be aware that because of the different dimensions used in calculating(1)stress at a speci?ed elongation(less than the ultimate elongation)and(2)the ultimate (breaking)elongation(see20.1and20.2),it is possible that a stress at a

cannot be measured(calculated).

18.Report

18.1Report the following information:

18.1.1Results calculated in accordance with Section13or 17,whichever is applicable,

18.1.2Type or description of test specimen and with Section 13which type of die,either U.S.Customary Units or Metric Units,was used.

18.1.3Date of test,

18.1.4Rate of extension if not as speci?ed,

18.1.5Temperature and humidity of test room if not as speci?ed,

18.1.6Temperature of test if at other than2362°C(73.46 3.6°F)and

18.1.7Date of vulcanization,preparation of the rubber,or both,if known.

19.Precision and Bias

19.1This precision and bias section has been prepared in accordance with Practice D4483.Refer to Practice D4483for terminology and other statistical details.

19.2The precision results in this precision and bias section give an estimate of the precision of these test methods with the materials used in the particular interlaboratory program as described below.The precision parameters should not be used for acceptance/rejection testing of any group of materials without documentation that the parameters are applicable to those particular materials and the speci?c testing protocols that include these test methods.

19.3Test Method A(Dumbbells):

19.3.1For the main interlaboratory program a Type1 precision was evaluated in1986.Both repeatability and repro-ducibility are short term,a period of a few days separates replicate test results.A test result is the median value,as speci?ed by this test method,obtained on three determina-tion(s)or measurement(s)of the property or parameter in question.

19.3.2Three different materials were used in this interlabo-ratory program,these were tested in ten laboratories on two different days.

19.3.3For the main interlaboratory program cured sheets of each of the three compounds were circulated to each laboratory and stress-strain(dumbbell)specimens were cut,gaged,and tested.A secondary interlaboratory test was conducted for one of the compounds(R19160).For this testing,uncured com-pound was circulated and sheets were cured at a speci?ed time and temperature(10min at157°C)in each laboratory.From these individually cured sheets,test specimens were cut and tested on each of two days one week apart as in the main program.The main program results are referred to as“Test Only”and the secondary program results are referred to as “Cure and Test.”

19.3.4The results of the precision calculations for repeat-ability and reproducibility are given in Tables1and2,in ascending order of material average or level,for each of the materials evaluated and for each of the three properties evaluated.

19.3.5The precision of this test method may be expressed in the format of the following statements that use what is called an“appropriate value”of r,R,(r),or(R),that is,that value to

TABLE1Type1(Test Only)Precision on Method A Die C Dumbbell Test Specimens

N OTE:

Sr=repeatability standard deviation.

r=repeatability=2.83times the square root of the repeatability variance.

(r)=repeatability(as percentage of material average).

SR=reproducibility standard deviation.

R=reproducibility=2.83times the square root of the reproducibility variance.

(R)=reproducibility(as percentage of material average).

Part1Tensile Strength,MPa:

Material Average Within Laboratories Between Laboratories

Sr r(r)SR R(R)

1.N180819.880.2000.568 5.750.2930.8298.40

3.E1707415.380.467 1.3238.600.482 1.3668.88

2.R1916025.700.436 1.235 4.80 1.890 5.35120.82

Pooled Values A16.990.385 1.090 6.42 1.102 3.12018.37 Part2Percent Elongation:

Material Average Within Laboratories Between Laboratories

Sr r(r)SR R(R)

3.E17074156.3 6.30417.84211.4111.48132.49220.78

2.R19160510.411.47132.464 6.3621.24360.12011.77

1.N18081591.617.81050.4028.5227.19876.97213.01

Pooled Values A419.412.76136.1148.6120.99959.42714.16 Part3Stress at100%Elongation,MPa:

Material Average Within Laboratories Between Laboratories

Sr r(r)SR R(R)

1.N18081 1.170.0530.1511

2.960.0610.174414.92

2.R19160 2.010.0500.1427.100.2740.775538.62

3.E170749.080.489 1.38515.250.738 2.091023.02

Pooled Values A 4.090.2850.80819.790.456 1.291531.60

be used in decisions about test results(obtained with the test method).The appropriate value is that value of r or R associated with a mean level in Tables1-4closest to the mean level under consideration at any given time,for any given material in routine testing operations.

19.3.6Repeatability—The repeatability,r,of this test method has been established as the appropriate value tabulated in Tables1and2.Two single test results,obtained under normal test method procedures,that differ by more than this tabulated r(for any given level)must be considered as derived from different or nonidentical sample populations.

19.3.7Reproducibility—The reproducibility,R,of this test method has been established as the appropriate value tabulated in Tables1and2.Two single test results obtained in two different laboratories,under normal test method procedures,that differ by more than the tabulated R(for any given level) must be considered to have come from different or nonidentical sample populations.

19.3.8Repeatability and reproducibility expressed as a percentage of the mean level,(r)and(R),have equivalent application statements as above for r and R.For the(r)and(R) statements,the difference in the two single test results is expressed as a percentage of the arithmetic mean of the two test results.

19.3.9Bias—In test method terminology,bias is the differ-ence between an average test value and the reference(or true) test property value.Reference values do not exist for this test method since the value(of the test property)is exclusively de?ned by the test method.Bias,therefore,cannot be deter-mined.

TABLE2Type1(Cure and Test)Precision on Method A Die C Dumbbell Test Specimens A

N OTE1:

Sr=repeatability standard deviation.

r=repeatability=2.83times the square root of the repeatability variance.

(r)=repeatability(as percentage of material average).

SR=reproducibility standard deviation.

R=reproducibility=2.83times the square root of the reproducibility variance.

(R)=reproducibility(as percentage of material average).

N OTE2:

N18081—highly extended,low durometer CR(Neoprene).

R19160—high tensile NR.

E17047—moderately?lled EPDM.

Part1Tensile Strength,MPa:

Material Average Within Laboratories Between Laboratories

Sr r(r)SR R(R)

1.R1916026.00.613 1.73 6.66 1.74 4.9519.0 Part2Percent Elongation:

Material Average Within Laboratories Between Laboratories

Sr r(r)SR R(R)

1.R19160526.913.3237.77.1519.655.7010.5 Part3Stress at100%Elongation,MPa:

Material Average Within Laboratories Between Laboratories

Sr r(r)SR R(R)

1.R19160 1.830.0720.20511.210.2260.64134.5

A Seven laboratories participated in this cure and test program.

TABLE3Type1Precision—Test Method B(Rings)

N OTE:

Sr=repeatability standard deviation.

r=repeatability=2.83times the square root of the repeatability variance.

(r)=repeatability(as percentage of material average).

SR=reproducibility standard deviation.

R=reproducibility=2.83times the square root of the reproducibility variance.

(R)=reproducibility(as percentage of material average).

Tensile Strength(MPa)

Material Average Within Laboratories Between Laboratories

Sr r(r)SR R(R)

5.MATL511.50.666 1.8851

6.3 1.43 4.0635.3

6.MATL612.70.2740.775 6.00.83 2.3518.5

1.MATL114.60.367 1.0407.10.40 1.157.9

4.MATL41

5.00.553 1.56510.4 3.038.5957.2

2.MATL220.3 1.293

3.66018.0 2.47 6.993

4.4

3.MATL322.3 1.556

4.40519.6 1.55 4.4019.6

Pooled Values A15.90.942 2.66616.7 1.87 5.3133.3

19.4Test Method B (Rings):

19.4.1A Type 1precision was evaluated in 1985.Both

repeatability and reproducibility are short term,a period of a

few days separates replicate test results.A test result is the

mean value,as speci?ed by this test method,obtained on three

determinations or measurements of the property or parameter

in question.

19.4.2Six different materials were used in the interlabora-

tory program,these were tested in four laboratories on two

different days.

19.4.3The results of the precision calculations for repeat-

ability and reproducibility are given in Tables 3and 4,in

ascending order of material average or level,for each of the

materials evaluated.

19.4.4Repeatability,r ,varies over the range of material

levels as evaluated.Reproducibility,R ,varies over the range of

material levels as evaluated.

19.4.5The precision of this test method may be expressed in

the format of the following statements that use what is called

an “appropriate value”of r,R,(r ),or (R ),that is,that value to

be used in decisions about test results (obtained with the test

method).The appropriate value is that value of r or R

associated with a mean level in Tables 1-4closest to the mean

level under consideration at any given time,for any given

material in routine testing operations.

19.4.6Repeatability —The repeatability,r ,of this test

method has been established as the appropriate value tabulated in Tables 3and 4.Two single test results,obtained under normal test method procedures,that differ by more than this tabulated r (for any given level)must be considered as derived from different or nonidentical sample populations.19.4.7Reproducibility —The reproducibility,R ,of this test method has been established as the appropriate value tabulated in Tables 3and 4.Two single test results obtained in two different laboratories,under normal test method procedures,that differ by more than the tabulated R (for any given level)must be considered to have come from different or nonidentical sample populations.19.4.8Repeatability and reproducibility expressed as a percentage of the mean level,(r )and (R ),have equivalent application statements as 19.3.6and 19.3.7for r and R .For the (r )and (R )statements,the difference in the two single test results is expressed as a percentage of the arithmetic mean of the two test results.19.4.9Bias —In test method terminology,bias is the differ-ence between an average test value and the reference (or true)test property value.Reference values do not exist for this test method since the value (of the test property)is exclusively de?ned by the test method.Bias,therefore,cannot be deter-mined.20.Keywords 20.1elongation;set after break;tensile properties;tensile set;tensile strength;tensile stress;yield point

The American Society for Testing and Materials takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this https://www.360docs.net/doc/a811653922.html,ers of this standard are expressly advised that determination of the validity of any such patent rights,and the risk of infringement of such rights,are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every ?ve years and if not revised,either reapproved or withdrawn.Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM Headquarters.Your comments will receive careful consideration at a meeting of the responsible technical committee,which you may attend.If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards,at the address shown below.

This standard is copyrighted by ASTM,100Barr Harbor Drive,PO Box C700,West Conshohocken,PA 19428-2959,United States.Individual reprints (single or multiple copies)of this standard may be obtained by contacting ASTM at the above address or at 610-832-9585(phone),610-832-9555(fax),or service@https://www.360docs.net/doc/a811653922.html, (e-mail);or through the ASTM website (https://www.360docs.net/doc/a811653922.html,).TABLE 4Type 1Precision—Test Method B (Rings)

N OTE :

Sr =

repeatability standard deviation.r =

repeatability =2.83times the square root of the repeatability variance.(r)=

repeatability (as percentage of material average).SR =

reproducibility standard deviation.R =

reproducibility =2.83times the square root of the reproducibility variance.(R)=reproducibility (as percentage of material average).

Ultimate Elongation,%

Material

Average Within Laboratories Between Laboratories Sr r (r )SR R (R )1.MATL 1

322.115.2543.1813.4033.494.729.42.MATL 2

445.411.3532.127.2134.196.621.74.MATL 4

509.427.4477.6515.2451.1144.828.45.MATL 5

545.0 2.918.25 1.5156.3159.529.26.MATL 6

599.712.9136.55 6.0914.039.6 6.603.MATL 3

815.816.2545.99 5.6390.6256.531.4Pooled Values A

539.616.5446.828.6748.2136.425.2A No values

omitted.

拉伸曲线分析

试验原理:拉伸曲线分析 拉伸试验的本质是对试样施加轴向拉力,测量试样在变形过程中直至断裂的各项力学性能。试验材料的全面性能反映在拉伸曲线上,因此为了对拉伸试验透彻了解,首先复习一下拉伸曲线,根据试验材料的特性,拉伸曲线可分为两种类型,典型的拉伸曲线(低碳钢)。 第1阶段:弹性变形阶段(oa) 两个特点: a 从宏观看,力与伸长成直线关系,弹性伸长与力的大小和试样标距长短成正比,与材料弹性模量及试样横截面积成反比。 b 变形是完全可逆的。 加力时产生变形,卸力后变形完全恢复。从微观上看,变形的可逆性与材料原子间作用力有直接关系,施加拉力时,在力的作用下,原子间的平衡力受到破坏,为达到新的平衡,原子的位置必须作新的调整即产生位移,使外力、斥力和引力三者平衡,外力去除后,原子依靠彼此间的作用力又回到平衡位置,使变形恢复,表现出弹性变形的可逆性,即在弹性范围保持力一段时间,卸力后仍沿原轨迹回复。Oa段变形机理与高温条件下变形机理不同,在高温保持力后会产生蠕变,卸力后表现出不可逆性。

由于在拉伸试验中无论在加力或卸力期间应力和应变都保持单值线性关系,因此试验材料的弹性模量是oa段的斜率,用公式求得: E=σ/ε oa线段的a点是应力-应变呈直线关系的最高点,这点的应力叫理论比例极限,超过a点,应力-应变则不再呈直线关系,即不再符合虎克定律。比例极限的定义在理论上很有意义,它是材料从弹性变形向塑性变形转变的,但很难准确地测定出来,因为从直线向曲线转变的分界点与变形测量仪器的分辨力直接相关,仪器的分辨力越高,对微小变形显示的能力越强,测出的分界点越低,这也是为什麽在最近两版国家标准中取消了这项性能的测定,而用规定塑性(非比例)延伸性能代替的原因。 第2阶段:滞弹性阶段(ab) 在此阶段,应力-应变出现了非直线关系,其特点是:当力加到b点时然后卸除力,应变仍可回到原点,但不是沿原曲线轨迹回到原点,在不同程度上滞后于应力回到原点,形成一个闭合环,加力和卸力所表现的特性仍为弹性行为,只不过有不同程度的滞后,因此称为滞弹性阶段,这个阶段的过程很短。这个阶段也称理论弹性阶段,当超过b点时,就会产生微塑性应变,可以用加力和卸力形成的闭合环确定此点,当加卸力环第1此形成开环时所对应的点为b点。 第3阶段:微塑性应变阶段(bc) 是材料在加力过程中屈服前的微塑性变形部分,从微观结构角度讲,就是多晶体材料中处于应力集中的晶粒内部,低能量易动位错的运动。塑性变形量很小,是不可回复的。大小仍与仪器分辨力有关。 第4阶段:屈服阶段(cde) 这个阶段是金属材料的不连续屈服的阶段,也称间断屈服阶段,其现象是当力加至c点时,突然产生塑性变形,由于试样变形速度非常快,以致试验机夹头的拉伸速度跟不上试样的变形速度,试验力不能完全有效的施加于试样上,在曲线这个阶段上表现出力不同程度的下降,而试样塑性变形急剧增加,直至达到e 点结束,当达到c点,在试样的外表面能观察到与试样轴线呈45度的明显的滑移带,这些带称为吕德斯带,开始是在局部位置产生,逐渐扩展至试样整个标距内,宏观上,一条吕德斯带包含大量滑移面,当作用在滑移面上的切应力达到临界值时,位错沿滑移方向运动。在此期间,应力相对稳定,试样不产生应变硬化。

ASTMC297夹层结构平面拉伸强度标准试验方法中文版.doc

ASTM 标准:C 297/C 297M–04 夹层结构平面拉伸强度标准试验方法1 Standard Test Method for Flatwise Tensile Strength of Sandwich Constructions 本标准以固定标准号C 297/C 297M发布;标准号后面的数字表示最初采用的或最近版本的年号。带括号的数据表明最近批准的年号。上标( )表明自最近版本或批准以后进行了版本修改。 本标准已经被美国国防部批准使用。 1 范围 1.1 本试验方法适用于测量组合夹层壁板的夹芯、夹芯-面板胶接或者面板的平面拉伸强度。允许的夹芯材料形式包括连续的胶接表面(如轻质木材或泡沫)和不连续的胶接表面(如蜂窝)。 1.2 以国际单位(SI)或英制单位(inch–pound)给出的数值可以单独作为标准。正文中,英制单位在括号内给出。每一种单位制之间的数值并不严格等值,因此,每一种单位制都必须单独使用。由两种单位制组合的数据可能导致与本标准的不相符。 1.3 本标准并未打算提及,如果存在的话,与使用有关的所有安全性问题。在使用本标准之前,本标准的用户有责任建立合适的安全与健康的操作方法,以及确定规章制度的适用性。 2 引用标准 2.1 ASTM标准2 C 274 夹层结构术语 Terminology of Structural Sandwich Constructions D 792 置换法测量塑料的密度和比重(相对密度)的试验方法; Test Methods for Density and Specific Gravity (Relative Density) of Plastics by Displacement D 883 与塑料有关的术语; Terminology Relating to Plastics D 2584 固化增强树脂的灼烧损失试验方法; Test Method for Ignition Loss of Cured Reinforced Resins D 2734 增强塑料孔隙含量试验方法; Test Method for Void Content of Reinforced Plastics D 3039/D 3039M 聚合物基复合材料拉伸性能试验方法 Test Method for Tensile Properties of Polymer Matrix Composite Materials D 3171 复合材料的组分含量试验方法; Test Methods for Constituent Content of Composites Materials D 3878 复合材料术语; Terminology for Composite Materials D 5229/D 5229M 聚合物基复合材料的吸湿性能及平衡状态调节试验方法; 1本试验方法由ASTM的复合材料委员会D30审定,并由单层和层压板试验方法专业委员会D30.09直接负责。当前版本于2004年5月1日批准,2004年5月出版。最初出版于1952年批准,上一版本为:C 297–94(1999),于1999年批准。 2有关的ASTM标准请访问ASTM网站https://www.360docs.net/doc/a811653922.html,,或者与ASTM客户服务@https://www.360docs.net/doc/a811653922.html,联系。ASTM标准年鉴的卷标信息,参看ASTM 网站标准文件摘要页。

橡胶与各指标的关系

浅谈橡胶的各种物性与密度的关系 前言: 在橡胶制品过程中,一般必须测试的物性实验不外乎有: 拉伸强度 2、撕裂强度 3、定伸应力与硬度 4、耐磨性 5、疲劳与疲劳破坏 6、弹性 7、扯断伸长率。 各种橡胶制品都有它特定的使用性能与工艺配方要求。为了满足它的物性要求需选择最适合的 聚合物与配合剂进行合理的配方设计。首先要了解配方设计与硫化橡胶物理性能的关系。硫化橡 胶的物理性能与配方的设计有密切关系,配方中所选用的材料品种、用量不同都会产生性能上的差 异。 1、拉伸强度:就是制品能够抵抗拉伸破坏的根限能力。 它就是橡胶制品一个重要指标之一。许多橡胶制品的寿命都直接与拉伸强度有关。如输送带的 盖胶、橡胶减震器的持久性都就是随着拉伸强度的增加而提高的。 A:拉伸强度与橡胶的结构有关: 分了量较小时,分子间相互作用的次价健就较小。所以在外力大于分子间作用时、就会产生分子 间的滑动而使材料破坏。反之分子量大、分子间的作用力增大,胶料的内聚力提高,拉伸时链段不易滑动,那么材料的破坏程度就小。凡影响分子间作用力的其它因素均对拉伸强度有影响。如 NR/CR/CSM这些橡胶主链上有结晶性取代基,分子间的价力大大提高,拉伸强度也随着提高。也就 就是这些橡胶自补强性能好的主要原因之一。一般橡胶随着结晶度提高,拉伸强度增大。 B:拉伸强度还跟温度有关: 高温下拉伸强度远远低于室温下的拉伸强度。 C:拉伸强度跟交联密度有关: 随着交联密度的增加,拉伸强度增加,出现最大值后继续增加交联密度,拉伸强度会大幅下降。硫 化橡胶的拉伸强度随着交联键能增加而减小。能产生拉伸结晶的天然橡胶,弱键早期断裂,有利于主健的取向结晶,因此会出现较高的拉伸强度。通过硫化体系,采用硫黄硫化,选择并用促进 剂,DM/M/D也可以提高拉伸强度,(碳黑补强除外,因为碳黑生热作用)。 D:拉伸强度与填充剂的关系:

聚乙烯拉伸性能试验影响因素的分析

聚乙烯拉伸性能试验影响因素的分析

聚乙烯拉伸性能试验影响因素的分析 摘要:本文分析了影响聚乙烯塑料拉伸实验结果的因素,包括实验仪器、试样制备与处理、实验环境、操作过程、数据处理和人员因素等。通过实验和分析,指出了这些外部因素对试验结果的影响原因和影响方式,并据此给出了聚乙烯拉伸性能的最佳测试条件。 关键词:聚乙烯压片拉伸强度断裂伸长率 1 引言 聚乙烯塑料是一种性能优良的材料,广泛应用于生产、生活的各个方面。在塑料的各项性能中,力学性能是影响塑料实际应用的一个最重要方面,包括拉伸强度、弯曲模量、冲击强度等。其中塑料的拉伸强度和断裂伸长率是决定塑料产品在使用过程中受外力作用下能否保持原有形状的主要因素,因此它们的测试有着非常重要的意义。 实际测试过程中,由于影响拉伸性能试验的因素很多,导致测试结果波动较大,从而影响聚乙烯产品等级的判定。于是厂里成立了技术攻关小组对生产工艺和试验部分加以改进,本人主要负责测试方面的工作。通过对影响整个试验过程的因素的分析,在遵循国家标准的基础上确定了各参测量参数,制定了新的操作规程,为工艺生产及顾客提供真实准确的产品数据。 2 试验部分 2.1 主要仪器和设备 4465型万能试验机(美国INSRON公司) 螺旋测微计可读度0.01mm PL-15型.压片机(西班牙IQAPLAP公司) 2.2 测试方法依从标准 拉伸断裂强度:GB1040-92

压片试验:GB/T9053-88 环境状态调节:GB/T2918-1982 2.3 试验材料 我厂生产的聚乙烯(PE)LLDPE-F-20D008(国家牌号)9085(厂内牌号)200610033(批号) 2.4 PE9085优级品控制指标 熔融指数:0.75±0.2g/10min 密度:0.920±0.002g/cm3 拉伸强度:≥17Mpa 断裂伸长率≥700% 2.5 样条形状 采用GB/1040-1992Ⅱ型(哑铃型)样条 3 结果与讨论:。 3.1 试样的制备对测定结果的影响 标准试样的制备是塑料各项性能测定的基础,对试验结果有决定性的影响。我厂的拉伸性能测试中采用GB/1040-1992Ⅱ型(哑铃型)样条,压片试验方法参考GB/T9053-88。 3.1.1 压片温度对测定结果的影响 图1. 压片温度对断裂伸长率和拉伸强度的影响

2020年(塑料橡胶材料)橡胶配方设计与性能的关系

(塑料橡胶材料)橡胶配方设计与性能的关系

橡胶配方设计和性能的关系 一、橡胶配方设计和硫化橡胶物理性能的关系 (一)拉伸强度 拉伸强度表征硫化橡胶能够抵抗拉伸破坏的极限能力。虽然绝大多数橡胶制品在使用条件下,不会发生比原来长度大几倍的形变,但许多橡胶制品的实际使用寿命和拉伸强度有较好的相关性。 研究高聚物断裂强度的结果表明,大分子的主价健、分子间的作用力(次价健)以及大分子链的柔性、松弛过程等是决定高聚物拉伸强度的内在因素。 下面从各个配合体系来讨论提高拉伸强度的方法。 1.橡胶结构和拉伸强度的关系 相对分子质量为(3.0~3.5)×105的生胶,对保证较高的拉伸强度有利。 主链上有极性取代基时,会使分子间的作用力增加,拉伸强度也随之提高。例如丁腈橡胶随丙烯腈含量增加,拉伸强度随之增大。 随结晶度提高,分子排列会更加紧密有序,使孔隙和微观缺陷减少,分子间作用力增强,大分子链段运动较为困难,从而使拉伸强度提高。橡胶分子链取向后,和分子链平行方向的拉伸强度增加。 2.硫化体系和拉伸强度的关系 欲获得较高的拉伸强度必须使交联密度适度,即交联剂的用量要适宜。 交联键类型和硫化橡胶拉伸强度的关系,按下列顺序递减:离子键>多硫键>双硫键>单硫键>碳-碳键。拉伸强度随交联键键能增加而减小,因为键能较小的弱键,在应力状态下能起到释放应力的作用,减轻应力集中的程度,使交联网链能均匀地承受较大的应力。 3.补强填充体系和拉伸强度的关系 补强剂的最佳用量和补强剂的性质、胶种以及配方中的其他组分有关:例如炭黑的粒径

越小,表面活性越大,达到最大拉伸强度时的用量趋于减少;软质橡胶的炭黑用量在40~60份时,硫化胶的拉伸强度较好。 4.增塑体系和拉伸强度的关系 总地来说,软化剂用量超过5份时,就会使硫化胶的拉伸强度降低。对非极性的不饱和橡胶(如NR、IR、SBR、BR),芳烃油对其硫化胶的拉伸强度影响较小;石蜡油对它则有不良的影响;环烷油的影响介于俩者之间。对不饱和度很低的非极性橡胶如EPDM、IIR,最好使用不饱和度低的石蜡油和环烷油。对极性不饱和橡胶(如NBR,CR),最好采用酯类和芳烃油软化剂。 为提高硫化胶的拉伸强度,选用古马隆树脂、苯乙烯-茚树脂、高分子低聚物以及高黏度的油更有利壹些。 5.提高硫化胶拉伸强度的其他方法 (1)橡胶和某些树脂共混改性例如NR/PE共混、NBR/PVC共混、EPDM/PP共混等均可提高共混胶的拉伸强度。 (2)橡胶的化学改性通过改性剂在橡胶分子之间或橡胶和填料之间生成化学键和吸附键,以提高硫化胶的拉伸强度。 (3)填料表面改性使用表面活性、偶联剂对填料表面进行处理,以改善填料和橡胶大分子间的界面亲和力,不仅有助于填料的分散,而且能够改善硫化胶的力学性能。 (二)定伸应力和硬度 定伸应力和硬度都是表征硫化橡胶刚度的重要指标,俩者均表征硫化胶产生壹定形变所需要的力。定伸应力和较大的拉伸形变有关,而硬度和较小的压缩形变有关。 1.橡胶分子结构和定伸应力的关系 橡胶分子量越大,游离末端越少,有效链数越多,定伸应力也越大。

影响材料拉伸性能试验的几大技术因素

影响材料拉伸性能试验的几大技术因素 屈服强度σs、抗拉强度σb等参数是金属材料最富代表性的力学性能指标,是工程设计、机械制造的主要依据,这类力学性能指标的分析和研究对于从事基础理论研究和分析工程事故具有非常重要的意义。 一、影响材料拉伸试验强度的因素: 1.温度效应 随着试验温度的升高, 金属材料的σs (σ0.2)显著降低。例如低碳钢材料,随着试验温度升高,其屈服强度σs相应降低且屈服平台的长度逐渐缩短,直至某一温度屈服平台消失,σs不复存在;由于温度升高使材料的晶界由硬、脆转变为软、弱,使其抗力降低,因此,材料的σb在宏观上也随试验温度的变化而改变。 2. 加载速率效应 材料的屈服点随加载速率的增大而提高;室温条件下,拉伸速度对强度较高的金属材料的σb 无影响,而对强度较低的、塑性好的金属材料有微小的影响。拉伸时加载速率增大,σb有增高的趋势。在高温下,拉伸加载速率对σb有显著的影响。 3.试验条件及试样工艺效应 金属材料处于有害的介质环境时,试样的屈服点降低。试样的表面粗糙度对屈服点也有影响,特别是对塑性较差的金属材料有较大的影响,有使屈服点降低的趋势。 4. 偏心效应 由于试验机的加载轴线与试样的几何中心不一致,所以严格的轴向荷载(图1(a))是很难获得的,这就造成了试验机偏心加载、产生弯曲而引入测试误差。考虑同轴度的影响,试样受。如图1(b)所示。其中,几何同轴度为e、力的同轴度为α 图1 5.试验刚度效应 在创恒实验室的材料的拉伸试验中,试验系统可视为试验机机身、夹具-加载系统和试样三部分构成的“可变形的试验系统”。显然,试验机机身的刚度、夹具-加载系统的刚度和受拉试样的抗拉刚度共同构成了“试验系统”的刚度。所以,试验机的弹性变形、夹具-加载系统的工作状态和试样本身的变形都会对试验产生影响,即试验刚度在一定程度上会影响试样的试验强度指标。在实践中,不同刚度的试验机实测对比结果也反映了试验刚度对材料试验强度的影响。

胶粘剂拉伸强度试验标准

胶粘剂拉伸强度试验标准在胶接接头受拉伸应力作用时,有三种不同的接头受力方式。 (1)拉伸应力和胶接面互相垂直,并且通过胶接面中心均匀地分布在整个胶接面上,这一应力均匀拉伸应力,又称正拉伸应力。 (2)拉伸应力分布在整个胶接面上,但力呈不均匀分布,此种情况称为不均匀拉伸。 (3)和不均匀拉伸相比,它的力作用线不是捅咕试样中心,而偏于试样的一端;它的受力面不是对称的,而是不对称的,这种拉伸叫不对称拉伸,人们有时将这一试验叫撕离试验或劈裂试验,以示和剥离相区别。 一.拉伸强度试验(条型和棒状) 拉伸强度试验又叫正拉强度试验或均匀扯离强度试验。 1.原理 由两根棒状被粘物对接构成的接头,其胶接面和试样纵轴垂直,拉伸力通过试样纵轴传至胶接面直至破坏,以单位胶接面积所承受的最大载荷计算其拉伸强度。 2.仪器设备 拉力试验机应能保证恒定的拉伸速度,破坏负荷应在所选刻度盘容量的1 0%-90%范围内。拉力机的响应时间应短至不影响测量精度,应能测得试样断裂时的破坏载荷,其测量误差不大于1%。拉力试验机应具有加载时可和试样的轴线和加载方向保持一致的,自动对中的拉伸夹具。 固化夹具,能施加固定压力,保证正确胶接和定位。 3.试验步骤 (1)试棒和试样试棒为具有规定形状,尺寸的棒状被粘物。试样为将两个试棒通过一定工艺条件胶接而成的被测件。 除非另有规定,其试棒尺寸见表8-4。其试样尺寸的选择视待测胶黏剂的强度,拉力机的满量程,试棒本身材质的强度以及试验时环境因素而定。 表8-4 圆柱形和方形试棒尺寸 试棒直径和边长a/mm 直径/ L/mm 胶接面表面粗糙

b/mm mm 度Ra/um 10±0.1 15±0.1 25±0.1 10 12 15 5 7 9 30 45 50 0.8 0.8 0.8 用于试棒加工的金属材料有45号钢,LY12CZ铝合金,铜,H62黄铜等。非金属材料有层压塑料等。层压制品试棒,其层压平面应和试棒一个侧面平行,试棒上的销孔应和层压平面垂直。 试棒的表面处理,涂胶及试样制备工艺,应符合产品标准规定。胶接好试样,以周围略有一圈细胶梗为宜,此时不必清除,若需清除余胶,则应在固化后进行。 (2)试验在正常状态下,金属试样从试样制备完毕到测试之间,最短停放时间为16h,最长为1个月,非金属试样至少停放40h。 试样应在试验环境下停放30min以上,将它安装在拉力试验机夹具上,测试其破坏负荷,对电子拉力机试验机应使试样在(60±20)s内破坏;有时对机械式拉力机则采用10mm/min拉伸速度。 4.结果评定 试验结果以5个试样拉伸强度算术平均值表示,取3位有效数字。 同时应记下每个试样的破坏类型,如界面破坏,胶层内聚破坏,被粘物破坏和混合破坏。 5.影响因素 (1)应力分析粘接接头在受到垂直于粘接面应力作用时,应力分布比受剪切应力要均匀得多,但根据理论推测和应力分布试验证实,在拉伸接头边缘也存在应力集中。为证实这一点,有人采用一定厚度的橡胶胶接在试样中以代替胶黏剂,发现试样在拉伸时,橡胶中部有明显收缩。说明在接头受正拉伸应力作用,剪切应力则集中在试样胶黏剂-空气-被粘体的三者边界处最大,也就是说在这一点上应力最集中。如果我们胶接后两半圆柱体错位大,则试样的轴线偏离了加载方向中心线,这是经常会发生的。那么,就存在有劈应力,而使边缘应力集中急剧增加。当边界应力大到一个临界值时,胶层边缘就发生开裂,裂缝迅速地扩展到整个胶接面上。从对拉伸试样的应力分布进行分析表明,胶接试件的尺寸和模量,胶层的厚度,胶黏剂的模量都影响接头边缘的应力分布系数大小,因此也必然会影响它的强度值。和拉伸剪切试样一样,加载速度和试样温度也影响拉伸强度。 (2)试样尺寸

橡胶力学性能测试标准

序号标准号:发布年份标准名称(仅供参考) 1 GB 1683-1981 硫化橡胶恒定形变压缩永久变形的测定方法 2 GB 1686-1985 硫化橡胶伸张时的有效弹性和滞后损失试验方法 3 GB 1689-1982 硫化橡胶耐磨性能的测定(用阿克隆磨耗机) 4 GB 532-1989 硫化橡胶与织物粘合强度的测定 5 GB 5602-1985 硫化橡胶多次压缩试验方法 6 GB 6028-1985 硫化橡胶中聚合物的鉴定裂解气相色谱法 7 GB 7535-1987 硫化橡胶分类分类系统的说明 8 GB/T 11206-1989 硫化橡胶老化表面龟裂试验方法 9 GB/T 11208-1989 硫化橡胶滑动磨耗的测定 10 GB/T 11210-1989 硫化橡胶抗静电和导电制品电阻的测定 11 GB/T 11211-1989 硫化橡胶与金属粘合强度测定方法拉伸法 12 GB/T 1232.1-2000 未硫化橡胶用圆盘剪切粘度计进行测定第1部分:门尼粘度的测定 13 GB/T 12585-2001 硫化橡胶或热塑性橡胶橡胶片材和橡胶涂覆织物挥发性液体透过速率的测定(质量法) 14 GB/T 12829-2006 硫化橡胶或热塑性橡胶小试样(德尔夫特试样)撕裂强度的测定 15 GB/T 12830-1991 硫化橡胶与金属粘合剪切强度测定方法四板法 16 GB/T 12831-1991 硫化橡胶人工气候(氙灯)老化试验方法 17 GB/T 12834-2001 硫化橡胶性能优选等级 18 GB/T 13248-1991 硫化橡胶中锰含量的测定高碘酸钠光度法 19 GB/T 13249-1991 硫化橡胶中橡胶含量的测定管式炉热解法 20 GB/T 13250-1991 硫化橡胶中总硫量的测定过氧化钠熔融法 21 GB/T 13642-1992 硫化橡胶耐臭氧老化试验动态拉伸试验法 22 GB/T 13643-1992 硫化橡胶或热塑性橡胶压缩应力松弛的测定环状试样 23 GB/T 13644-1992 硫化橡胶中镁含量的测定CYDTA滴定法 24 GB/T 13645-1992 硫化橡胶中钙含量的测定EGTA滴定法 25 GB/T 13934-2006 硫化橡胶或热塑性橡胶屈挠龟裂和裂口增长的测定(德墨西亚型) 26 GB/T 13935-1992 硫化橡胶裂口增长的测定 27 GB/T 13936-1992 硫化橡胶与金属粘接拉伸剪切强度测定方法 28 GB/T 13937-1992 分级用硫化橡胶动态性能的测定强迫正弦剪切应变法 29 GB/T 13938-1992 硫化橡胶自然贮存老化试验方法 30 GB/T 13939-1992 硫化橡胶热氧老化试验方法管式仪法 31 GB/T 14834-1993 硫化橡胶与金属粘附性及对金属腐蚀作用的测定 32 GB/T 14835-1993 硫化橡胶在玻璃下耐阳光曝露试验方法 33 GB/T 14836-1993 硫化橡胶灰分的定性分析 34 GB/T 15254-1994 硫化橡胶与金属粘接180°剥离试验 35 GB/T 15255-1994 硫化橡胶人工气候老化(碳弧灯)试验方法 36 GB/T 15256-1994 硫化橡胶低温脆性的测定(多试样法) 37 GB/T 15584-1995 硫化橡胶在屈挠试验中温升和耐疲劳性能的测定第一部分:基本原理 38 GB/T 15905-1995 硫化橡胶湿热老化试验方法 39 GB/T 16585-1996 硫化橡胶人工气候老化(荧光紫外灯)试验方法 40 GB/T 16586-1996 硫化橡胶与钢丝帘线粘合强度的测定 41 GB/T 16589-1996 硫化橡胶分类橡胶材料

橡胶制品常用测试方法及标准

橡胶制品常用测试方法 及标准 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

1.胶料硫化特性 GB/T 9869—1997橡胶胶料硫化特性的测定(圆盘振荡硫化仪法) GB/T 16584—1996橡胶用无转子硫化仪测定硫化特性 ISO 3417:1991橡胶—硫化特性的测定——用摆振式圆盘硫化计 ASTM D2084-2001用振动圆盘硫化计测定橡胶硫化特性的试验方法 ASTM D5289-1995(2001)橡胶性能—使用无转子流变仪测量硫化作用的试验方法 DIN 53529-4:1991橡胶—硫化特性的测定——用带转子的硫化计测定交联特性 2.未硫化橡胶门尼粘度 GB/T —2000未硫化橡胶用圆盘剪切粘度计进行测定—第1部分:门尼粘度的测定 GB/T 1233—1992橡胶胶料初期硫化特性的测定—门尼粘度计法 ISO 289-1:2005未硫化橡胶——用剪切圆盘型黏度计—第一部分:门尼黏度的测定

ISO 289-2-1994未硫化橡胶——用剪切圆盘型黏度计测定—第二部分:预硫化特性的测定 ASTM D1646-2004橡胶粘度应力松驰及硫化特性(门尼粘度计)的试验方法JIS K6300-1:2001未硫化橡胶-物理特性-第1部分:用门尼粘度计测定粘度及预硫化时间的方法 3.橡胶拉伸性能 GB/T528—1998硫化橡胶或热塑性橡胶拉伸应力应变性能的测定 ISO37:2005硫化或热塑性橡胶——拉伸应力应变特性的测定 ASTMD412-1998(2002)硫化橡胶、热塑性弹性材料拉伸强度试验方法 JIS K6251:1993硫化橡胶的拉伸试验方法 DIN 53504-1994硫化橡胶的拉伸试验方法 4.橡胶撕裂性能 GB/T 529—1999硫化橡胶或热塑性橡胶撕裂强度的测定(裤形、直角形和新月形试样)

如何分析拉伸曲线

如何分析拉伸曲线?拉伸曲线分析篇 时间:2012-11-16 15:19:29 来源:越联作者:越联点击数:核心提示:拉伸试验的本质是对试样施加轴向拉力,测量试样在变形过程中直至断裂的各项力学性能。试验材料的全面性能反映在拉伸曲线上。拉力曲线如此重要,如何根据拉伸曲线分析材料的各项性能呢?现在就给大家分析下拉伸曲线。 拉伸试验的本质是对试样施加轴向拉力,测量试样在变形过程中直至断裂的各项力学性能。试验材料的全面性能反映在拉伸曲线上。拉力曲线如此重要,如何根据拉伸曲线分析材料的各项性能呢?现在就给大家分析下拉伸曲线。 典型的拉伸曲线图(低碳钢) 第 1 阶段:弹性变形阶段(oa)两个特点 a 从宏观看,力与伸长成直线关系,弹性伸长与力的大小和试样标距长短成正比,与材料弹性模量及试样横截面积成反比。 b 变形是完全可逆的。 加力时产生变形,卸力后变形完全恢复。从微观上看,变形的可逆性与材料原子间作用力有直接关系,施加拉力时,在力的作用下,原子间的平衡力受到破坏,为达到新的平衡,原子的位置必须作新的调整即产生位移,使外力、斥力和引力三者平衡,外力去除后,原子依靠彼此间的作用力又回到平衡位置,使变形恢复,表现出弹性变形的可逆性,即在弹性范围保持力一段时间,卸力后仍沿原轨迹回复。Oa 段变形机理与高温条件下变形机理不同,在高温保持力后会产生蠕变,卸力后表现出不可逆性。 由于在拉伸试验中无论在加力或卸力期间应力和应变都保持单值线性关系,因此试验材料的弹性模量是 oa 段的斜率,用公式求得:

E=σ/ε oa 线段的 a 点是应力-应变呈直线关系的最高点,这点的应力叫理论比例极限,超过 a 点,应力-应变则不再呈直线关系,即不再符合虎克定律。比例极限的定义在理论上很有意义,它是材料从弹性变形向塑性变形转变的,但很难准确地测定出来,因为从直线向曲线转变的分界点与变形测量仪器的分辨力直接相关,仪器的分辨力越高,对微小变形显示的能力越强,测出的分界点越低,这也是为什麽在最近两版国家标准中取消了这项性能的测定,而用规定塑性(非比例)延伸性能代替的原因。 第 2 阶段:滞弹性阶段(ab) 在此阶段,应力-应变出现了非直线关系,其特点是:当力加到 b 点时然后卸除力,应变仍可回到原点,但不是沿原曲线轨迹回到原点,在不同程度上滞后于应力回到原点,形成一个闭合环,加力和卸力所表现的特性仍为弹性行为,只不过有不同程度的滞后,因此称为滞弹性阶段,这个阶段的过程很短。这个阶段也称理论弹性阶段,当超过 b 点时,就会产生微塑性应变,可以用加力和卸力形成的闭合环确定此点,当加卸力环第 1 此形成开环时所对应的点为 b 点。 第 3 阶段:微塑性应变阶段(bc) 是材料在加力过程中屈服前的微塑性变形部分,从微观结构角度讲,就是多晶体材料中处于应力集中的晶粒内部,低能量易动位错的运动。塑性变形量很小,是不可回复的。大小仍与仪器分辨力有关。 第 4 阶段:屈服阶段(cde)

金属拉伸强度测试标准 金属拉伸强度检测

金属拉伸强度测试标准金属拉伸强度检测 拉伸强度是指材料产生最大均匀塑性变形的应力,对于金属材料来说通过做拉伸试验可确定这几个指标:抗拉强度、上屈服强度、下屈服强度、规定塑性延伸强度、规定总延伸强度、规定残余延伸强度。 抗拉强度(Rm)---相应最大力 Fm对应的应力; 上屈服强度(Reh)---试样发生屈服而力首次下降前的最大应力; 下屈服强度(Rel)---在屈服期间,不计初始瞬时效应时的最小应力; 规定塑性延伸强度(Rp)---塑性延伸率等于规定的引伸计标距 Le百分率时对应的应力; 规定总衍射强度(Rt)---总延伸率等于规定的引伸计标距 Le百分率时的应力; 规定残余延伸强度(Rr)---卸除应力后残余延伸率等于规定的原始标距 Lo 或引伸计标距 Le百分率时对应的应力。 金属拉伸强度这几个测试指标均依据GB/T 228-2010 金属材料拉伸试验方法这个标准而定。 金属拉伸强度试验则是应用最广泛的力学性能试验方法。拉伸性能指标是金属材料的研制、生产和验收最主要的测试项目之一,拉伸试验过程中的各项强度和塑性性能指标是反映金属材料力学性能的重要参数。 拉伸试验原理:金属拉伸实验是测定金属材料力学性能的一个最基本的实验,是了解材料力学性能最全面,最方便的实验。比如,测定低碳钢在轴向静载拉伸过程中的力学性能。在试验过程中,利用实验机的自动绘图装置可绘出低碳钢的拉伸图。由于试件在开始受力时,其两端的夹紧部分在试验机的夹头内有一定的滑动,故绘出的拉伸图最初一段是曲线。 拉伸试验特点:拉伸试验操作简单、方便,通过获得的应力应变曲线包含了大量信息,很容易看出材料的各项力学性能,如比例极限、弹性模量、屈服极限、强度极限等等,因此拉伸试验成为了应用最广泛的力学性能试验方法。 拉伸实验中材料在达到破坏前的变形是均匀的,能够得到单向的应力应变关系,但其缺点是难以获得大的变形量,缩小了测试范围。 洛阳中船重工第七二五研究所专业提供金属材料检测指标:弹性指标、硬度指标、强度指标、塑性指标、韧性指标、疲劳性能、断裂韧度等。

橡胶力学性能测试范围

橡胶力学性能测试范围 1、橡胶拉伸性能测试 任何橡胶制品都是在一定外力条件下使用,因而要求橡胶应有一定的物理机械性能,而性能中最为明显为拉伸性能,在进行成品质量检查,设计胶料配方,确定工艺条件,及比较橡胶耐老化,耐介质性能时,一般均需通过拉伸性能予以鉴定,因此,拉伸性能则为橡胶重要常规项目之一。 拉伸性能包括如下项目: ⑴ 拉伸应力S(tensile stress)试样在拉伸时产生的应力,其值为所施加的力与试样的初始横截面积之比。 ⑵ 定伸应力Se(tensile stress at a given elongation)试样的工作部分拉伸至给定伸长率时的拉伸应力。常见定伸应力有100%、200%、300%、500%定伸应力。 ⑶ 拉伸强度TS(tensile strength)试样拉伸至扯断时的最大拉伸应力。过去曾称为扯断强度和抗张强度。 ⑷ 伸长率E(elongation percent)由于拉伸试样所引起的工作部分的形变,其值为伸长的增量与初始长度百分之比。 ⑸ 定应力伸长率Eg(elongation at a given stress)试样在给定应力下的伸长率。 ⑹扯断伸长率Eb(elongation at break)试样在扯断时的伸长率。 ⑺ 扯断永久变形将试样伸至断裂,再受其在自出状态下,恢复一定的时间(3min)后剩余的变形,其值为工作部分伸长的增量与初始长度百分之比。

⑻ 断裂拉伸强度TSb(tensile strength at break)拉伸试样在断裂时的拉伸应力。如果在屈服点以后,试样继续伸长并伴随着应力下降,为时TS 和TSb 的值是不相同,TSb 值小于TS。 ⑼ 屈服点拉伸应力Sy(tensile stress at yield)应力应变曲线上出现应变进一步增加而应力不增加的第一个点对应的应力。 ⑽ 屈服点伸长率Ey(elongation at yield)应力应变曲线上出现应变进一步增加而应力不增加的第一个点对应的应变(伸长率)。 2、橡胶压缩永久变形的测定 有些橡胶制品(如密封制品)是在压缩状态下使用,其耐压缩性能是影响产品质量的主要性能之一,橡胶耐压缩性一般用压缩永久变形来恒量。 橡胶在压缩状态时,必然会发生物理和化学变化,当压缩力消失后,这些变化阻止橡胶恢复到原来的状态,于是就产生了压缩永久变形。压缩永久变形的大小,取决于压缩状态的温度和时间,以及恢复高度时的温度和时间。在高温下,化学变化是导致橡胶发生压缩永久变形的主要原因。压缩永久变形是去除施加给试样的压缩力,在标准温度下恢复高度后测得。在低温下试验,由玻璃态硬化和结晶作用造成的变化是主要的,当温度回升后,这些作用就会消失,因此必须在试验温度下测量试样高度。 我国目前测定橡胶压缩永久变形有2 个国家标准,分别为硫化橡胶、热塑性橡胶常温、高温和低温下压缩永久变形测定(GB/T7759)和硫化橡胶恒定形变压缩永久变形的测定方法(GB/T1683)。

铸造A356铝合金的拉伸性能及其断口分析

摘要:研究了铸造A356-T6铝合金板不同位置处的拉伸性能。采用扫描电子显微镜和光学显微镜对拉伸断口及断口纵剖面的组织形貌进行了观察分析。试验结果表明,铸造A356一T6铝合金的拉伸屈服强度随离浇道口平面距离的增加而减小,断裂强度则是先减小然后再增大,而延伸率随高度变化不明显。铸造A356-T6铝合金的平均屈服强度、断裂强度、延伸率和断面收缩率分别为2l6.64 MPa,224 MPa,1.086%和0.194%。断口分析表明拉伸断口的表面分布着杂质、孔洞、铸造缩孔和氧化膜等缺陷,断口表面也存在开裂的由碳、氧、铁、镁、铝和硅元素形成的复合粒子。铸造A356-T6铝合金在拉伸过程中,裂纹萌生于共晶硅粒子与基体结合处,并沿枝晶胞之间的共晶区域进行扩展,当前进的裂纹遇到取向不一致的共晶硅粒子时,裂纹将截断共晶硅粒子。铸造A356-T6铝合金拉伸断裂方式为沿胞(即穿晶)断裂的准解理断。 关键词:铸造A356铝合金:A1-7%Si-0.4Mg;拉伸性能;断裂机制:断口形貌 1 前言 铸造铝合金由于具有优异的铸造性能,良好的耐腐蚀性,高的强重比和铸件制造成本低,能够近终成型等特点,在汽车和航空工业上得到了日益广泛的应用[1-4],其中 A1.Si7.Mg(A356)铸造铝合金通常用来制备汽车气缸盖及发动机滑块构件[5]。铸造铝合金构件的主要问题是存在孔隙、氧化物和非金属夹杂物等缺陷[4],这些缺陷强烈影响构件的服役性能。铸造A356铝合金的力学性能取决于构件中相的特性及其分布,缺陷的性质、数量和尺寸。尽管铸造A356铝合金的力学性能及其疲劳性能得到了广泛的研究[4-9],但仍然有一些问题有待于进一步研究予以澄清,比如,铸造铝合金在拉伸过程中裂纹的萌生及其扩展的定量分析有待进一步的建立。在疲劳载荷加载中,短裂纹扩展行为取决于应力状态和组织结构特征,比如,硅粒子和α-Al形态、分布及其大小,缺陷的性质、分布、数量及其大小。因此,充分研究铸造铝合金的拉伸性能及其微观组织特征是定量分析和描述短裂纹扩展的前提,为定量模拟和建立疲劳短裂纹行为提供基本的信息,也为铸造A356铝合金的工程应用奠定基础。没有经过Sr改性和热等静压处理的铸造A356合金,其具有优异的加工性能和制备成本低等特点,但关于其拉伸性能,疲劳特征及其机制研究较少。因此,研究该类合金的力学性能及其疲劳机制在工业生产上具有重要的意义。本试验主要研究铸造 A356(A1.Si7.Mg)的拉伸性能和分析拉伸断口及其断口纵剖面的微观组织特征。 2 试验 2.1 合金及热处理条件

混凝土轴心抗压、轴心抗拉强度设计值及标准值

混凝土轴心抗压、轴心抗拉强度设计值 f c 、f t 应按表 4.1.4 采用。 2 强度 种类 混凝土强度等级 C15 C20 C25 C30 C35 C40 C45 C50 C55 C60 C65 C70 C75 C80 f c 7.2 9.6 11.9 14.3 16.7 19.1 21.1 23.1 25.3 27.5 29.7 31.8 33.8 35.9 f t 0.91 1.10 1.27 1.43 1.57 1.71 1.80 1.89 1.96 2.04 2.09 2.14 2.18 2.22 注:1 计算现浇钢筋混凝土轴心受压及偏心受压构件时,如截面的边长或直径小于 300mm,则表中混凝土的强度设计值应乘以系数 0.8;当构件质量(如混凝土成型、截面和轴线尺寸等)确有保证时,可不受此限制; 2 离心混凝土的强度设计值应按专门标准取用。 混凝土是一种脆性材料,在受拉时很小的变形就要开裂,它在断裂前没有残余变 形。 图4-12 混凝土劈裂抗拉试验示意图 1-上压板2-下压板3-垫层4-垫条混凝土的抗拉强度只有抗压强度的1/10~1/20,且随着混凝土强度等级的提高,比值降低。混凝土在工作时一般不依靠其抗拉强度。但抗拉强度对于抗开

裂性有重要意义,在结构设计中抗拉强度是确定混凝土抗裂能力的重要指标。有时也用它来间接衡量混凝土与钢筋的粘结强度等。 混凝土抗拉强度采用立方体劈裂抗拉试验来测定,称为劈裂抗拉强度f ts 。该方法的原理是在试件的两个相对表面的中线上,作用着均匀分布的压力,这样就能够在外力作用的竖向平面内产生均布拉伸应力(图4-12),混凝土劈裂抗拉强度应按下式计算: 式中f ts ——混凝土劈裂抗拉强度,MPa; P——破坏荷载,N; A ——试件劈裂面面积,mm2。 混凝土轴心抗拉强度f t 可按劈裂抗拉强度f ts 换算得到,换算系数可由试验确 定。 各强度等级的混凝土轴心抗压强度标准值f ck 、轴心抗拉强度标准值f tk 应按 表4-17采用。 表4-17混凝土强度标准值(N/mm2) 强度种类 混凝土强度等级 C15 C20 C25 C30 C35 C40 C45 C50 C55 C60 C65 C70 C75 C80 f ck 10.0 13.4 16.7 20.1 23.4 26.8 29.6 32.4 35.5 38.5 41.5 44.5 47.4 50.2 f tk 1.27 1.54 1.78 2.01 2.20 2.39 2.51 2.64 2.74 2.85 2.93 2.99 3.05 3.11

橡胶材料拉伸试验报告

橡胶材料拉伸实验报告 北京理工大学 橡胶材料拉伸实验报告 一、实验目的 1.进一步熟悉电子万能实验机操作以及拉伸实验的基本操作过程; 2.通过橡胶材料的拉伸实验,理解高分子材料拉伸时的力学性能,观察橡胶拉伸时的变形特点,测定橡胶材料的弹性模量E,强度极限σ,伸长率δ和截面收缩率Ψb二、实验设备 1.WDW3050型50kN电子万能实验机; 2.游标卡尺; 3.橡胶材料试件一件。 三、实验原理 拉伸橡胶试件时,实验机可自动绘出橡胶的拉伸应力-应变曲线。图中曲线的最初阶段会呈曲线,这是由于试样头部在夹具内有滑动及实验机存在间隙等原因造成的。分析时应将图中的直线段延长与横坐标相交于O点,作为其坐标原点。橡胶的拉伸只有弹性阶段。拉伸曲线可以直观而又比较准确地反映出橡胶拉伸时的变形特征及受力和变形间的关系。 橡胶拉伸时,基本满足胡克定律,在应力-应变曲线上大致为一段直线,因此可以用这一段直线的斜率tanα来表示弹性模量E。为了更准确地计算出弹性模量的值,可以用Matlab对比例极限内的数据进行直线拟合,得到拟合直线的斜率,即为弹性模量的值。 四、实验过程 1.用游标卡尺测量橡胶试件实验段的宽度h和厚度b,并标注一个20 mm的标距,并做记录; 2.打开实验机主机及计算机等实验设备,安装试件; 3.打开计算机上的实验软件,进入实验程序界面,选择联机,进行式样录入和参数设置,输入相关数据并保存; 4.再认真检查试件安装等实验准备工作,并对实验程序界面上的负荷、轴向变形和位移进行清零,确保没有失误;、 5.点击程序界面上的实验开始按钮,开始实验; 6.试件被拉断后,根据实验程序界面的提示,测量相关数据并输入,点击实验结束; 7.从实验程序的数据管理选项中,调出相关实验数据,以备之后处理数据使用。 五、实验注意事项 1.在实验开始前,必须检查横梁移动速度设定,严禁设定高速度进行实验。在实验进行中禁止在▲、▼方向键之间直接切换,需要改变方向时,应先按停止键; 2.安装试件时,要注意不能把试件直接放在下侧夹口处,而是应该用手将试件提 起, . . . . 橡胶材料拉伸实验报告 观察夹口下降的高度是否合适,之后再将试件夹紧、固定; 3.横梁速度v=10m/s,最大载荷为500N,最大位移400mm;

胶黏剂拉伸剪切强度测试标准

胶黏剂拉伸剪切强度的测定方法 一实验原理 试样为单搭接结构,在试样的搭接面上施加纵向拉伸剪切力,测定试样能承受的最大负荷。搭接面上的平均剪应力为胶粘剂的金属对金属搭接的拉伸剪切强度,单位为MPa。 二实验装置及试样 1)试验机。使用的试验机应使试样的破坏负荷在满标负荷的(15~85)%之间。试验机的力值示值误差不应大于1 %。试验机应配备一副自动调心的试样夹持器,使力线与试样中心线保持一致。 试验机应保证试样夹持器的移动速度在(5±1)mm/min内保持稳定。 2)量具。测量试样搭接面长度和宽度的量具精度不低于 0."05 mm。 3)夹具。胶接试样的夹具应能保证胶接的试样符合要求。在保证金属片不破坏的情况下,试样与试样夹持器也可用销、孔连接的方法。但不能用于仲裁试验。 4)试样标准试样的搭接xx是( 12."5± 0."5)mm,金属片的厚度是( 2."0± 0."1)mm,试样的搭接长度或金属片的厚度不同对试验结果会有影响。 5)建议使用LY12-CZ铝合金、1Cr18Ni9Ti不锈钢、45碳钢、T2铜等金属材料。

6)常规试验,试样数量不应少于5个。仲裁试验试样数量不应少于10个。 对于高强度胶粘剂,测试时如出现金属材料屈服或破坏的情况,则可适当增加金属片厚度或减少搭接长度。两者中选择前者较好。 测试时金属片所受的应力不要超过其屈服强度σ S,金属片的厚度δ可按式(11-12)计算: δ=(L·τ)/σ S(11-12)式中: δ——金属片厚度; L——试样搭接xx; τ——胶粘剂拉伸剪切强度;σS——金属材料屈服强度(MPa)。 三、试样制备 1)试样可用不带槽或带槽的平板制备,也可单片制备。 2)胶接用的金属片表面应平整,不应有弯曲、翘曲、歪斜等变形。金属片应无毛刺,边缘保持直角。 3)胶接时,金属片的表面处理、胶粘剂的配比、涂胶量、涂胶次数、晾置时间等胶接工艺以及胶粘剂的固化温度、压力、时间等均按胶粘剂的使用要求进行。 4)制备试样都应使用夹具,以保证试样正确地搭接和精确地定位。 5)切割已胶接的平板时,要防止试样过热,应尽量避免损伤胶接缝。 四、试验条件 试样的停放时间和试验环境应符合下列要求:

相关文档
最新文档