高考物理压轴题专题复习—电磁感应现象的两类情况的推断题综合含详细答案

高考物理压轴题专题复习—电磁感应现象的两类情况的推断题综合含详细答案
高考物理压轴题专题复习—电磁感应现象的两类情况的推断题综合含详细答案

高考物理压轴题专题复习—电磁感应现象的两类情况的推断题综合含详细答案

一、电磁感应现象的两类情况

1.某科研机构在研究磁悬浮列车的原理时,把它的驱动系统简化为如下模型;固定在列车下端的线圈可视为一个单匝矩形纯电阻金属框,如图甲所示,MN 边长为L ,平行于y 轴,MP 边宽度为b ,边平行于x 轴,金属框位于xoy 平面内,其电阻为1R ;列车轨道沿

Ox 方向,轨道区域内固定有匝数为n 、电阻为2R 的“

”字型(如图乙)通电后使

其产生图甲所示的磁场,磁感应强度大小均为B ,相邻区域磁场方向相反(使金属框的

MN 和PQ 两边总处于方向相反的磁场中).已知列车在以速度v 运动时所受的空气阻力

f F 满足2f F kv =(k 为已知常数).驱动列车时,使固定的“

”字型线圈依次通

电,等效于金属框所在区域的磁场匀速向x 轴正方向移动,这样就能驱动列车前进.

(1)当磁场以速度0v 沿x 轴正方向匀速移动,列车同方向运动的速度为v (0v <)时,金属框MNQP 产生的磁感应电流多大?(提示:当线框与磁场存在相对速度v 相时,动生电动势E BLv =相)

(2)求列车能达到的最大速度m v ;

(3)列车以最大速度运行一段时间后,断开接在“

” 字型线圈上的电源,使线圈

与连有整流器(其作用是确保电流总能从整流器同一端流出,从而不断地给电容器充电)的电容器相接,并接通列车上的电磁铁电源,使电磁铁产生面积为L b ?、磁感应强度为

B '、方向竖直向下的匀强磁场,使列车制动,求列车通过任意一个“

”字型线圈

时,电容器中贮存的电量Q .

【答案】(1) 012() BL v v R -2222

101

22BL B L kR v B L +-2

4nB Lb R '

【解析】 【详解】

解:(1)金属框相对于磁场的速度为:0v v - 每边产生的电动势:0()E BL v v =-

由欧姆定律得:1

2E I R = 解得:01

(2 )

BL v v I R -=

(2)当加速度为零时,列车的速度最大,此时列车的两条长边各自受到的安培力:

B F BIL =

由平衡条件得:20B f F F -= ,已知:2

f F kv =

解得:2222

101

22m BL B L kR v B L v kR +-=

(3)电磁铁通过字型线圈左边界时,电路情况如图1所示:

感应电动势:n E t

φ

?=?,而B Lb φ?=' 电流:12

E I R =

电荷量:11Q I t =? 解得:12

nB Lb

Q R '= 电磁铁通过

字型线圈中间时,电路情况如图2所示:B Lb φ?=',

2222E n

I R t

φ

?==? 22Q I t =?

解得:22

2nB Lb

Q R '= 电磁铁通过

字型线圈右边界时,电路情况如图3所示:n E t

φ

?=

?, B Lb φ?=',32

E I R =

33Q I t =?

解得:32

nB

Lb

Q R '=

, 总的电荷量:123Q Q Q Q =++ 解得:2

4nB Lb

Q R '=

2.如图所示,足够长的光滑平行金属导轨MN 、PQ 倾斜放置,两导轨间距离为L ,导轨平面与水平面间的夹角θ,所处的匀强磁场垂直于导轨平面向上,质量为m 的金属棒

ab 垂直于导轨放置,导轨和金属棒接触良好,不计导轨和金属棒ab 的电阻,重力加速度为g .若在导轨的M 、P 两端连接阻值R 的电阻,将金属棒ab 由静止释放,则在下滑的

过程中,金属棒ab 沿导轨下滑的稳定速度为v ,若在导轨M 、P 两端将电阻R 改接成电容为C 的电容器,仍将金属棒ab 由静止释放,金属棒ab 下滑时间t ,此过程中电容器没有被击穿,求:

(1)匀强磁场的磁感应强度B 的大小为多少? (2)金属棒ab 下滑t 秒末的速度是多大? 【答案】(1)2sin mgR B L v

θ=2)sin sin t gvt v v CgR θθ=+ 【解析】

试题分析:(1)若在M 、P 间接电阻R 时,金属棒先做变加速运动,当加速度为零时做匀速运动,达到稳定状态.则感应电动势E BLv =,感应电流E

I R

=

,棒所受的安培力F BIL =

联立可得22B L v

F R

=,由平衡条件可得F mgsin θ=,解得2

mgRsin B L v θ (2)若在导轨 M 、P 两端将电阻R 改接成电容为C 的电容器,将金属棒ab 由静止释放,产生感应电动势,电容器充电,电路中有充电电流,ab 棒受到安培力. 设棒下滑的速度大小为v ',经历的时间为t 则电容器板间电压为 U E BLv ='=

此时电容器的带电量为

Q CU = 设时间间隔△t 时间内流经棒的电荷量为Q V

则电路中电流

Q C U CBL v i t t t ???===???,又v

a t

?=?,解得i CBLa = 根据牛顿第二定律得mgsin BiL ma θ-=,解得22mgsin gvsin a m B L C v CgRsin θθ

θ

=

=++

所以金属棒做初速度为0的匀加速直线运动,ts 末的速度gvtsin v at v CgRsin θ

θ

'==

+.

考点:导体切割磁感线时的感应电动势;功能关系;电磁感应中的能量转化

【名师点睛】本题是电磁感应与电路、力学知识的综合,关键要会推导加速度的表达式,通过分析棒的受力情况,确定其运动情况.

3.如图所示,质量为4m 的物块与边长为L 、质量为m 、阻值为R 的正方形金属线圈abcd 由绕过轻质光滑定滑轮的绝缘细线相连,已知细线与斜面平行,物块放在光滑且足够长的固定斜面上,斜面倾角为300。垂直纸面向里的匀强磁场的磁感应强度为B ,磁场上下边缘的高度为L ,上边界距离滑轮足够远,线圈ab 边距离磁场下边界的距离也为L 。现将物块由静止释放,已知线圈cd 边出磁场前线圈已经做匀速直线运动,不计空气阻力,重力加速度为g ,求:

(1)线圈刚进入磁场时ab 两点的电势差大小 (2)线圈通过磁场的过程中产生的热量

【答案】(1)3245ab U BL gL =;(2)322

44

532m g R Q mgL B L

=- 【解析】 【详解】

(1)从开始运动到ab 边刚进入磁场,根据机械能守恒定律可得

214sin 30(4)2mgL mgL m m v =++o ,2

5

v gL =应电动势E BLv =,此时ab 边相当于是电源,感应电流的方向为badcb ,a 为正极,b 为负极,所以ab 的电势差等于电路的路端电压,可得332

445

ab U E gL =

= (2)线圈cd 边出磁场前线圈已经做匀速直线运动,所以线圈和物块均合外力为0,可得

绳子的拉力为2mg ,线圈受的安培力为mg ,所以线圈匀速的速度满足22m

B L v mg R

=,从

ab 边刚进入磁场到cd 边刚离开磁场,根据能量守恒定律可知

2

143sin 3(4)2m mg L mgL m m v Q θ=+++g ,32244

532m g R Q mgL B L =-

4.如图,光滑金属轨道POQ 、′′′P O Q 互相平行,间距为L ,其中′′O Q 和OQ 位于同一水

平面内,PO 和′′P O 构成的平面与水平面成30°。正方形线框ABCD 边长为L ,其中AB 边和CD 边质量均为m ,电阻均为r ,两端与轨道始终接触良好,导轨电阻不计。BC 边和AD 边为绝缘轻杆,质量不计。线框从斜轨上自静止开始下滑,开始时底边AB 与OO ′相距L 。在水平轨道之间,′′

MNN M 长方形区域分布着有竖直向上的匀强磁场,′OM O N L =>,′′N M 右侧区域分布着竖直向下的匀强磁场,这两处磁场的磁感应强度大小均为B 。在右侧磁场区域内有一垂直轨道放置并被暂时锁定的导体杆EF ,其质量为m 电阻为r 。锁定解除开关K 与M 点的距离为L ,不会阻隔导轨中的电流。当线框AB 边经过开关K 时,EF 杆的锁定被解除,不计轨道转折处OO ′和锁定解除开关造成的机械能损耗。 (1)求整个线框刚到达水平面时的速度0v ; (2)求线框AB 边刚进入磁场时,AB 两端的电压U AB ; (3)求CD 边进入磁场时,线框的速度v ;

(4)若线框AB 边尚未到达′′

M N ,杆EF 就以速度23

123B L v mr

=离开M ′N ′右侧磁场区域,求此时线框的速度多大?

【答案】(132gL 2)16BL gL ;(3)23

323B L gL mr ;(4)23

3223B L gL mr

【解析】 【分析】 【详解】

(1)由机械能守恒

2

01sin 302sin 30022

mgL mg L mv +=

??-

可得

0v =

(2)由法拉第电磁感应定律可知

0E BLv =

根据闭合电路欧姆定律可知

032

BLv I r =

根据部分电路欧姆定律

1

2

AB U I r =?

可得

AB U =(3)线框进入磁场的过程中,由动量定理

022BIL t mv mv -??=-

又有

2

32

BL I t r ??=

代入可得

23

3B L v mr

= (4)杆EF 解除锁定后,杆EF 向左运动,线框向右运动,线框总电流等于杆EF 上电流 对杆EF

1BIL t m v ??=?

对线框

22BIL t m v ??=??

可得

122v v ?=?

整理得到

23

21123B L v v mr

?=?=

可得

23

2223B L v v v mr

=-?=

5.如图所示,一阻值为R 、边长为l 的匀质正方形导体线框abcd 位于竖直平面内,下方存在一系列高度均为l 的匀强磁场区,与线框平面垂直,各磁场区的上下边界及线框cd 边均磁场方向均与线框平面垂水平。第1磁场区的磁感应强度大小为B 1,线框的cd 边到第1磁区上场区上边界的距离为h 0。线框从静止开始下落,在通过每个磁场区时均做匀速运动,且通过每个磁场区的速度均为通过其上一个磁场区速度的2倍。重力加速度大小为g ,不计空气阻力。求: (1)线框的质量m ;

(2)第n 和第n +1个磁场区磁感应强度的大小B n 与B n+1所满足的关系;

(3)从线框开始下落至cd 边到达第n 个磁场区上边界的过程中,cd 边下落的高度H 及线框产生的总热量Q 。

【答案】22112B l gh gR (2)+12n n B B =;2311

2(1)2n B l gh - 【解析】 【分析】 【详解】

(1)设线框刚进第一个磁场区的速度大小为v 1,由运动学公式得2

112v gh =,设线框所受安

培力大小为F 1,线框产生的电动势为E 1,电流为I ,由平衡条件得

1F mg =

由安培力的表达式得11F B Il =,111=E B lv ,1

E I R

=

联立解得 22

112B l m gh gR

=(2)设线框在第n 和第n +1个磁场区速度大小分别为v n 、v n +1,由平衡条件得

22n n

B l v mg R

=

22+1+1

n n B l v mg R

=

12n n v v +=

联立解得

1n n B +=

(3)设cd 边加速下落的总距离为h ,匀速下落的总距离为L ,由运动学公式得

22n

v h g

=

112n n v v -=

=2(1)L n l -

联立解得

2(1)122(1)n H h L h n l -=+=+-

由能量守恒定律得

2(1)Q mg n l =-

联立解得

Q =

6.如图所示,足够长的U 型金属框架放置在绝缘斜面上,斜面倾角30θ=?,框架的宽度

0.8m L =,质量0.2kg M =,框架电阻不计。边界相距 1.2m d =的两个范围足够大的磁

场I 、Ⅱ,方向相反且均垂直于金属框架,磁感应强度均为0.5T B =。导体棒ab 垂直放置在框架上,且可以无摩擦的滑动。现让棒从MN 上方相距0.5m x =处由静止开始沿框架下滑,当棒运动到磁场边界MN 处时,框架与斜面间摩擦力刚好达到最大值3N m f =(此时框架恰能保持静止)。已知棒与导轨始终垂直并良好接触,棒的电阻0.16R =Ω,质量0.4kg m =,重力加速度210m/s g =,试求:

(1)棒由静止开始沿框架下滑到磁场边界MN 处的过程中,流过棒的电量q ; (2)棒运动到磁场Ⅰ、Ⅱ的边界MN 和PQ 时,棒的速度1v 和2v 的大小;

(3)通过计算分析:棒在经过磁场边界MN 以后的运动过程中,U 型金属框架能否始终保持静止状态?

【答案】(1) 1.25C q =;(2)12m/s v =,24m/s v =;(3)框架能够始终保持静止状态 【解析】 【分析】

本题考查导体棒在磁场中的运动,属于综合题。 【详解】 (1)平均电动势为

BLx

E t t

?Φ=

=?? 平均电流

E

I R

=

则流过棒的电量为

BLx

q I t R

=?=

代入数据解得 1.25C q =。

(2)棒向下加速运动时,U 形框所受安培力沿斜面向下,静摩擦力向上,当棒运动到磁场边界MN 处时,框架与斜面间摩擦力刚好达到最大值3N m f =,由平衡条件,有

221

sin m B L v Mg f R

θ+=

解得12m/s v =。

棒经过MN 后做匀加速直线运动,加速度

3sin 5m/s a g θ==

由2

2

212v v ad -=,解得

24m/s v =

(3)棒在两边界之间运动时,框架所受摩擦力大小为

1sin 1N m f Mg f θ==<

方向沿斜面向上棒进入PQ 时,框架受到的安培力沿斜面向上,所受摩擦力大小为

222

2sin 3N m B L v f Mg f R

θ=-==

向沿斜面向下以后,棒做加速度减小的减速运动,最后做匀速运动。匀速运动时,框架所受安培力为

22sin 2N B L v F mg R

θ===安

方向沿斜面向上。 摩擦力大小为

223sin 1N m B L v f Mg f R

θ=-=<

方向沿斜面向下。

综上可知,框架能够始终保持静止状态。

7.如图1所示,在光滑的水平面上,有一质量m =1kg 、足够长的U 型金属导轨abcd ,间距L =1m 。一电阻值0.5ΩR =的细导体棒MN 垂直于导轨放置,并被固定在水平面上的两立柱挡住,导体棒MN 与导轨间的动摩擦因数0.2μ=,在M 、N 两端接有一理想电压表(图中未画出)。在U 型导轨bc 边右侧存在垂直向下、大小B =0.5T 的匀强磁场(从上向下看);在两立柱左侧U 型金属导轨内存在方向水平向左,大小为B 的匀强磁场。以U 型导轨bc 边初始位置为原点O 建立坐标x 轴。t =0时,U 型导轨bc 边在外力F 作用下从静止开始运动时,测得电压与时间的关系如图2所示。经过时间t 1=2s ,撤去外力F ,直至U 型导轨静止。已知2s 内外力F 做功W =14.4J 。不计其他电阻,导体棒MN 始终与导轨垂直,忽略导体棒MN 的重力。求:

(1)在2s 内外力F 随时间t 的变化规律; (2)在整个运动过程中,电路消耗的焦耳热Q ;

(3)在整个运动过程中,U 型导轨bc 边速度与位置坐标x 的函数关系式。

【答案】(1)2 1.2F t =+;(2)12J ;(3)2v x =0≤x ≤4m );

6.40.6v x =-324m m 3x ?

?≤< ?

?

?;v =0(32m 3x ≥) 【解析】 【分析】 【详解】

(1)根据法拉第电磁感应定律可知:

U BLv kt t ===

得到:

2U

v t BL

=

= 根据速度与时间关系可知:

22m/s a =

对U 型金属导轨根据牛顿第二定律有:

F IBL IBL ma μ--=

带入数据整理可以得到:

2 1.2F t =+

(2)由功能关系,有

f W Q W =+

由于忽略导体棒MN 的重力,所以摩擦力为:

A f F μ=

则可以得到:

f

A Q W

W μμ==

则整理可以得到:

(1)f W Q W Q μ=+=+

得到:

Q=12J

(3)设从开始运动到撤去外力F 这段时间为1

2s t

=,这段时间内做匀加速运动;

①1t t …时,根据位移与速度关系可知:

v ==1t t =时根据匀变速运动规律可知该时刻速度和位移为:

14m/s v = 14m x =

②1t t >时,物体做变速运动,由动量定理得到:

1(1)BL q mv mv μ-+?=-

整理可以得到:

2211(1)(1)(4)

6.40.6BL q B L x v v v x m mR

μμ+?+-=-==--

当32

3

x m =

时: 0v =

综合上述,故bc 边速度与位置坐标x 的函数关系如下:

2v x =(0≤x≤4m )

6.40.6v x =-324m m 3x ?

?≤<

??

? 0v =(32

m 3

x ≥)

8.如图,两足够长的平行金属导轨平面与水平面间夹角为=30θ?,导轨电阻忽略不计,二者相距l =1m ,匀强磁场垂直导轨平面,框架上垂直放置一根质量为m =0.1kg 的光滑导体棒ab ,并通过细线、光滑滑轮与一质量为2m 、边长为

2

l

正方形线框相连,金属框下方h =1.0m 处有垂直纸面方向的长方形有界匀强磁场,现将金属框由静止释放,当金属框刚进入磁场时,电阻R 上产生的热量为1Q =0.318J ,且金属框刚好能匀速通过有界磁场。已知两磁场区域的磁感应强度大小相等。定值电阻R =1Ω。导体棒ab 和金属框单位长度电阻r =1Ω/m ,g =10m/s 2,求

(1)两磁场区域的磁感应强度为多大?

(2)金属框刚离开磁场时,系统损失的机械能是多大? (3)金属框下方没有磁场时,棒的最大速度是多少?

【答案】(1)1T(2)2.136J(3)3m/s 【解析】 【详解】

(1)由题意知,导体棒ab 接入电路的电阻为

11ΩR rl ==

与定值电阻R 相等,故金属框由静止释放到刚进入磁场过程重金属导轨回路产生的总热量为

120.636J Q Q ==

此过程由动能定理得

21

2sin 30(2)2

mgh mgh Q m m v ?--=+

解得

v =2.4m/s

金属框的总电阻为

21

42Ω2

R l r =??=

金属框在磁场中做匀速运动时导体棒ab 产生的电动势为1E Blv =,则有

1

11E I R R

=

+ 金属框产生的电动势

212E Blv =

2

22

E I R =

金属框在磁场中做匀速运动时由平衡条件得

121

2sin 3002

mg mg BI l BI l ?---=

B =1T

(2)由于金属框刚好能做匀速通过有界磁场,说明磁场宽度与线框边长相等

0.52

l

d m =

= 根据能量守恒得

21

2(2)(2)sin 30(2)2

mg h d mg h d E m m v ?+-+=?++

2.136J E ?=

(3)金属框下没有磁场,棒的速度达到最大后做匀速运动,设此时速度为m v ,则

m

1Blv I R R

=

+ 根据平衡条件得

2sin 300mg mg BIl ?--=

解得

m 3m/s v =。

9.在如图甲所示的电路中,螺线管匝数n=1000匝,横截面积S=20cm 2.螺线管导线电阻r=1.0Ω,R 1=3.0Ω,R 2=4.0Ω,C=30μF .在一段时间内,穿过螺线管的磁场的磁感应强度B 按如图乙所示的规律变化.求:

(1)求螺线管中产生的感应电动势; (2)S 断开后,求流经R 2的电量. 【答案】(1)0.8V ;(2)41.210C -? 【解析】 【分析】 【详解】

(1)感应电动势:10.2

10000.00200.82

B E n n S V t t ?Φ?-===??=??; (2)电路电流120.8

0.1134

E I A r R R =

==++++,电阻2R 两端电压

220.140.4U IR V ==?=,

电容器所带电荷量65

230104 1.210Q CU C --==??=?,S 断开后,流经2R 的电量为

41.210C -?;

【点睛】

本题是电磁感应与电路的综合,知道产生感应电动势的那部分相当于电源,运用闭合电路欧姆定律进行求解.

10.如图所示,粗糙斜面的倾角37θ?=,斜面上直径0.4m D =的圆形区域内存在着垂直于斜面向下的匀强磁场(图中只画出了磁场区域,未标明磁场方向),一个匝数为

100n =的刚性正方形线框abcd ,边长为0.5m ,通过松弛的柔软导线与一个额定功率

2W P =的小灯泡L 相连,圆形磁场的一条直径恰好过线框bc 边,已知线框质量2kg m =,

总电阻02R =Ω,与斜面间的动摩擦因数0.5μ=,灯泡及柔软导线质量不计,从0t =时刻起,磁场的磁感应强度按2

1(T)B t π

=-

的规律变化,开始时线框静止在斜面上,T 在线

框运动前,灯泡始终正常发光,设最大静摩擦力等于滑动摩擦力,2

10m/s g =,

370.6sin ?=, 370.8cos ?=.

(1)求线框静止时,回路中的电流I ;

(2)求在线框保持不动的时间内,小灯泡产生的热量Q ;

(3)若线框刚好开始运动时即保持磁场不再变化,求线框从开始运动到bc 边离开磁场的过程中通过小灯泡的电荷量q .(柔软导线及小灯泡对线框运动的影响可忽略,且斜面足够长)

【答案】(1)1A (2)2.83J (3)0.16C 【解析】 【详解】

(1)由法拉第电磁感应定律可得线框中产生的感应电动势大小为

2

14V 22B D E n n t t π?Φ???==??= ?????

设小灯泡电阻为R ,由

2

20E P I R R R R ??== ?+?

?

可得

2R =Ω

解得

2A 1A 2

P I R =

== (2)设线框保持不动的时间为t ,根据共点力的平衡条件可得

2sin 1cos mg n t ID mg θμθπ?

?=-+ ???

解得

0.45t s π=

产生的热量为

2.J 83Q Pt ==

(3)线框刚好开始运动时

210.45T 0.1T B ππ??

=-?= ???

根据闭合电路的欧姆定律可得

00

0B

n

s

E t I R R R R -?==

++ 根据电荷量的计算公式可得

0.16C nBS

q I t R R =??=

=+

11.如图所示,间距为l 的平行金属导轨与水平面间的夹角为α,导轨间接有一阻值为R 的电阻,一长为l 的金属杆置于导轨上,杆与导轨的电阻均忽略不计,两者始终保持垂直且接触良好,两者之间的动摩擦因数为μ,导轨处于匀强磁场中,磁感应强度大小为B ,方向垂直于斜面向上,当金属杆受到平行于斜面向上大小为F 的恒定拉力作用,可以使其

匀速向上运动;当金属杆受到平行于斜面向下大小为

2

F

的恒定拉力作用时,可以使其保持与向上运动时大小相同的速度向下匀速运动,重力加速度大小为g ,求:

(1)金属杆的质量;

(2)金属杆在磁场中匀速向上运动时速度的大小。 【答案】(1)4sin F m g α=;(2)2222344tan RE RF

v B l B l μα

=-。

【解析】 【分析】 【详解】

(1)金属杆在平行于斜面向上大小为F 的恒定拉力作用下可以保持匀速向上运动,设金属杆的质量为m ,速度为v ,由力的平衡条件可得

sin cos F mg mg BIl αμα=++,

同理可得

sin cos 2

F

mg mg BIl αμα+=+, 由闭合电路的欧姆定律可得

E IR =,

由法拉第电磁感应定律可得

E BLv =,

联立解得

4sin F

m g α

=

(2)金属杆在磁场中匀速向上运动时速度的大小

2222344tan RE RF

v B l B l μα

=

-。

12.“801所”设计的磁聚焦式霍尔推进器可作为太空飞船的发动机,其原理如下:系统捕获宇宙中大量存在的等离子体(由电量相同的正、负离子组成)经系统处理后,从下方以恒定速率v 1向上射入有磁感应强度为B 1、垂直纸面向里的匀强磁场区域Ⅰ内.当栅极MN 、PQ 间形成稳定的电场后,自动关闭区域Ⅰ系统(关闭粒子进入通道、撤去磁场B 1).区域Ⅱ内有磁感应强度大小为B 2、垂直纸面向外的匀强磁场,磁场右边界是直径为D 、与上下极板相切的半圆(圆与下板相切于极板中央A ).放在A 处的放射源能够向各个方向均匀发射速度大小相等的氙原子核,氙原子核经过该区域后形成宽度为D 的平行氙粒子束,经过栅极MN 、PQ 之间的电场加速后从PQ 喷出,在加速氙原子核的过程中探测器获得反向推力(不计氙原子核、等离子体的重力,不计粒子之间相互作用于相对论效应).已知极板长RM =2D ,栅极MN 和PQ 间距为d ,氙原子核的质量为m 、电荷量为q ,求:

(1)氙原子核在A 处的速度大小v 2; (2)氙原子核从PQ 喷出时的速度大小v 3;

(3)因区域Ⅱ内磁场发生器故障,导致区域Ⅱ中磁感应强度减半并分布在整个区域Ⅱ中,求能进入区域Ⅰ的氙原子核占A 处发射粒子总数的百分比.

【答案】(1)22B Dq m (2222

1122

84B v qdm B D q m +(3)090FAN ∠= 13 【解析】 【分析】 【详解】

(1)离子在磁场中做匀速圆周运动时:2

2

22v B qv m r

=

根据题意,在A 处发射速度相等,方向不同的氙原子核后,形成宽度为D 的平行氙原子核束,即2

D r = 则:222B Dq

v m

=

(2)等离子体由下方进入区域I 后,在洛伦兹力的作用下偏转,当粒子受到的电场力等于

洛伦兹力时,形成稳定的匀强电场,设等离子体的电荷量为q ' ,则11Eq B v q ='' 即11E B v =

氙原子核经过区域I 加速后,离开PQ 的速度大小为3v ,根据动能定理可知:

22321122

Uq mv mv =

- 其中电压11U Ed B v d ==

联立可得222

11232

84B v qdm B D q

v m

+= (3)根据题意,当区域Ⅱ中的磁场变为2

B '之后,根据2

mv

r B q =''可知,2r r D '==

①根据示意图可知,沿着AF 方向射入的氙原子核,恰好能够从M 点沿着轨迹1进入区域I ,而沿着AF 左侧射入的粒子将被上极板RM 挡住而无法进入区域I .

该轨迹的圆心O 1,正好在N 点,11AO MO D ==,所以根据几何关系关系可知,此时

090FAN ∠=;

②根据示意图可知,沿着AG 方向射入的氙原子核,恰好从下极板N 点沿着轨迹2进入区域I ,而沿着AG 右侧射入的粒子将被下极板SN 挡住而无法进入区域I .

22AO AN NO D ===,所以此时入射角度030GAN ∠=.

根据上述分析可知,只有060FAG ∠=这个范围内射入的粒子还能进入区域I .该区域的

粒子占A 处总粒子束的比例为00

601

==1803

η

13.如图甲,abcd 是位于竖直平面内的正方形闭合金属线框,在金属线框的下方有一匀强磁场区域, MN 、PQ 是匀强磁场区域的上、下水平边界,并与线框的bc 边平行,磁场方向垂直于线框平面向里.现使金属线框从MN 上方某一髙度处由静止开始下落(bc 边始终与MN 平行),并以此时为计时起点,图乙是金属线框由开始下落到离开匀强磁场的过程中,线框中感应电流随时间变化的i -t 图象(图中t 1、t 2、t 3未知).已知金属线框边长为L ,质量为m ,电阻为R ,匀强磁场的磁感应强度为B ,重力加速度为g ,不计空气阻力.求:

(1)金属线框进入磁场时,线框中感应电流的方向; (2)金属线框开始下落时,bc 边距离边界MN 的高度h ; (3)在t 1—t 2时间内,流过线框导线截面的电量q ; (4)在t 1—t 3时间内,金属线框产生的热量Q .

【答案】(1) 逆时针方向 (2) 22

44

2m gR B L (3) 2BL R

(4)2mgL 【解析】 【分析】

本题考查电磁感应的综合问题。 【详解】

(1)楞次定律可知电流方向 abcda “逆时针方向”)

(2)根据i -t 图象可知,线框进入磁场区域时,做匀速运动.受力满足

=F mg 安

线框进入磁场区域过程中,感应电动势大小为

E BLv =

因为感应电流大小为

E I R

=

安培力大小

=F BIL 安

联系以上各式得,线框进入磁场时速度大小为

22

mgR

v B L =

线框进入磁场前自由下落,所以

22v gh =

解得:

2244

2m gR h B L = (3)流过线框导线截面的电量

q=It

在t 1—t 2时间内,线框中感应电流大小

2

BL I Rt

= 联立以上两式可得,在t 1—t 2时间内,流过线框导线截面的电量

2

=BL q R

(4)从i -t 图象可知,线框匀速进入磁场,并匀速离开.根据功能关系,在t 1—t 3时间内,线框中产生的热量Q 等于线框bc 边进入磁场至ad 边离开磁场的过程中,线框下落减少的重力势能,即:

Q=2mgL

14.如图所示,两根金属平行导轨MN 和PQ 放在水平面上,左端向上弯曲且光滑,导轨间距为L ,电阻不计.水平段导轨所处空间有两个有界匀强磁场,相距一段距离不重叠,磁场Ⅰ左边界在水平段导轨的最左端,磁感强度大小为B ,方向竖直向上;磁场Ⅱ的磁感应强度大小为2B ,方向竖直向下.质量均为m 、电阻均为R 的金属棒a 和b 垂直导轨放置在其上,金属棒b 置于磁场Ⅱ的右边界CD 处.现将金属棒a 从弯曲导轨上某一高处由静止释放,使其沿导轨运动.设两金属棒运动过程中始终与导轨垂直且接触良好.

(1)若水平段导轨粗糙,两金属棒与水平段导轨间的最大摩擦力均为1

5

mg ,将金属棒a 从距水平面高度h 处由静止释放.求:

①金属棒a 刚进入磁场Ⅰ时,通过金属棒b 的电流大小;

②若金属棒a 在磁场Ⅰ内运动过程中,金属棒b 能在导轨上保持静止,通过计算分析金属棒a 释放时的高度h 应满足的条件;

(2)若水平段导轨是光滑的,将金属棒a 仍从高度h 处由静止释放,使其进入磁场Ⅰ.设两磁场区域足够大,求金属棒a 在磁场Ⅰ内运动过程中,金属棒b 中可能产生焦耳热的最大值.

【答案】(1)①2BL gh ;② 22

4450m gR h B L <; (2)110mgh 【解析】 【详解】

(1)① a 棒从h 0高处释放后在弯曲导轨上滑动时机械能守恒,有

备战高考物理与电磁感应现象的两类情况有关的压轴题附答案解析

备战高考物理与电磁感应现象的两类情况有关的压轴题附答案解析 一、电磁感应现象的两类情况 1.如图所示,无限长平行金属导轨EF、PQ固定在倾角θ=37°的光滑绝缘斜面上,轨道间距L=1m,底部接入一阻值R=0.06Ω的定值电阻,上端开口,垂直斜面向上的匀强磁场的磁感应强度B=2T。一质量m=2kg的金属棒ab与导轨接触良好,ab与导轨间的动摩擦因数μ=0.5,ab连入导轨间的电阻r=0.04Ω,电路中其余电阻不计。现用一质量M=6kg的物体通过一不可伸长的轻质细绳绕过光滑的定滑轮与ab相连.由静止释放物体,当物体下落高度h=2.0m时,ab开始匀速运动,运动中ab始终垂直导轨并与导轨接触良好。不计空气阻力,sin37°=0.6,cos37°=0.8,g取10m/s2。 (1)求ab棒沿斜面向上运动的最大速度; (2)在ab棒从开始运动到开始匀速运动的这段时间内,求通过杆的电量q; (3)在ab棒从开始运动到开始匀速运动的这段时间内,求电阻R上产生的焦耳热。 【答案】(1) (2)q=40C (3) 【解析】 【分析】 (1)由静止释放物体,ab棒先向上做加速运动,随着速度增大,产生的感应电流增大,棒所受的安培力增大,加速度减小,棒做加速度减小的加速运动;当加速度为零时,棒开始匀速,速度达到最大。据法拉第电磁感应定律、闭合电路的欧姆定律、安培力公式、平衡条件等知识可求出棒的最大速度。 (2)本小问是感应电量的问题,据法拉第电磁感应定律、闭合电路的欧姆定律、电流的定义式、磁通量的概念等知识可进行求解。 (3)从ab棒开始运动到匀速运动,系统的重力势能减小,转化为系统增加的动能、摩擦热和焦耳热,据能量守恒定律可求出系统的焦耳热,再由焦耳定律求出电阻R上产生的焦耳热。 【详解】 (1)金属棒ab和物体匀速运动时,速度达到最大值,由平衡条件知 对物体,有;对ab棒,有 又、 联立解得: (2) 感应电荷量

天津市2019年高考语文压轴卷试题

天津市2019年高考语文压轴卷试题 学校_________ 班级__________ 姓名__________ 学号__________ 一、选择题组 1. 阅读下面的文字,完成各题。 孔子周游列国后,并未推销出自己的主张,又接连听到瑞兽麒麟被杀,得意门生子路在卫国内乱中被剁成肉酱,他就像一棵老树连遭雪裹雷击,很快奄奄一息,唱起了哀歌:“泰山要倾倒了,栋梁要毁坏了,哲人要辞世了。”(果然/竟然),他不久就去逝了,弟子们举行了葬礼,于是有了眼前的孔子墓。 孔子墓座落在孔林入口处西北面一座红垣环绕的院子里。一个直径二三十米的坟堆,高不过五米,前有孔子后代立的两座普通的石碑,碑前用泰山封禅石垒成的供案,大概是墓地唯一的奢侈物。以孔子的熠熠光环和崇高地位,墓显得过于朴素,一时真有些(不可思议/匪夷所思)。但细想来,似又在情理之中。孔子死时其思想并未被统治阶级所接受,他的政治和社会地位自然不会太高,于是死不轰动,葬不(隆重/庄重)。随着孔子的地位在历朝不断攀升,孔子墓的周边添加了许多包装,如苍桧翠柏侍立的神道、气势宏伟的万古长春坊、端庄肃穆的至圣林坊,尽显高贵与排场。好在古人头脑没有过于发热,孔子墓核心部分基本保持了固有的面貌,这不能不说是一件幸事。 【小题1】文中加点字的注音和加点词语的字形,都正确的一项是 A.奄奄一息(yān)红垣(yuán)推销 B.封禅(shàn)供案(gōng)去逝 C.熠熠光环(yì)苍桧(huì)座落 D.奢侈(chǐ)长春坊(fāng)攀升 【小题2】依次选用文中括号里的词语,最恰当的一项是 A.果然不可思议隆重B.竟然匪夷所思庄重 C.果然匪夷所思隆重D.竟然不可思议庄重 二、选择题 2. 下列句子,没有语病的一项是() A.金庸继承了古典武侠技击小说的写作传统,又在现代阅读氛围中对这一传统进行了空前的思想革命与技法创新,形成了“新派武侠”风格,其作品风靡整个华人世界。 B.随着城市的深入发展,一些走在前列的城市逐渐意识到以文化为根基的品牌建设对其长远发展的重要意义,在发展规划上逐渐着墨于城市文化内涵和文化品牌的打造。

初三物理-力学压轴题

力学压轴题: 16.图10是实验用的锥形瓶,将锥形瓶放在面积为s 的水平桌面上,已知锥形瓶的质量为m 1、底面积为s 1;当往锥形 瓶中倒入密度为ρ、质量为m 2的液体后,液面高度为h ,则 A .锥形瓶中的液体重为ρg s 1h B .液体对锥形瓶底的压强为ρgh C .瓶底对水平桌面的压力为(m 1+m 2)g D .瓶底对水平桌面的压强为(m 1+m 2)g/ s 16.图5中定滑轮重2N ,动滑轮重1N 。物体A 在拉力F =4N 的作用下,1s 内沿竖直方向匀速升高了0.2m 。不计绳重和轴摩擦,则以下计算结果正确的是 A .绳子自由端移动速度为0.4m/s B .滑轮组的机械效率为87.5% C .天花板对滑轮组的拉力为10N D .滑轮组对物体A 做功的功率为1.6W 23.图8中的物体A 的质量是400g ,物体B 的体积是8cm 3。用细绳将两物体通过定滑轮连 接,放手后,A 恰能沿着水平桌面向右做匀速直线运动。若将B 始终浸没在水中,并使 A 沿着水平桌面向左做匀速直线运动时,需要施加1.12N 水平向左的拉力。则物体 B 的密度为_______ g/cm 3。(g 取10N/kg ) 12.如图7所示,质量为2kg 的小铁块静止于水平导轨AB 的A 端(形状及尺寸在图中标出),导轨AB 及支架只可以绕着过D 点的转动轴在图中竖直平面内转动。现用一个沿导轨的拉力F 通过细线拉铁块,假定铁块起动后立即以0.1m/s 的速度沿导轨匀速运动,此时拉力F 为10N 。(导轨及支架ABCD 的质量忽略不计,g =10N/kg )。则从铁块运动时起,导轨及支架能保持静止的最长时间是 A .7s B .3s C .11s D . 6s (海淀一模) 39.如图所示,质量为270kg 的工人站在岸边通过一滑轮组打捞一块沉没在水池底部的石材,该滑轮组中动滑轮质量为5kg .当工人用120N 的力拉滑轮组的绳端时,石材仍沉在水底不动.工人继续增大拉力将石材拉起,在整个提升过程中,石材始终以0.2m/s 的速度匀速上升.在石材还没有露出水面之前滑轮组的机械效率为1η,当石材完全露出水面之后滑轮组的机械效率为2η.在石材脱离水池底部至完全露出水面的过程中,地面对人的支持力的最 大值与最小值之比为29:21.绳重及滑轮的摩擦均可忽略不计,石材的密度332.510kg/m ρ?石=,取10N/kg g =,求: (1)与打捞相比,当人用120N 的力拉绳端时,水池底部对石材的支持力变化了多少; (2)1η与2η的比值; (3)当石材完全露出水面以后,人拉绳子的功率. (宣武一模): 图10

历年高考物理压轴题精选(一)详细解答

历年高考物理压轴题精选 (一) 一、力学 2001年全国理综(江苏、安徽、福建卷) 31.(28分)太阳现正处于主序星演化阶段。它主要是由电子和H 11、He 4 2等原子核组成。 维持太阳辐射的是它内部的核聚变反应,核反应方程是2e+4H 11→He 4 2+释放的核能,这些核能最后转化为辐射能。根据目前关于恒星演化的理论,若由于聚变反应而使太阳中的H 11核数目从现有数减少10%,太阳将离开主序垦阶段而转入红巨星的演化阶段。为了简化,假定目前太阳全部由电子和H 11核组成。 (1)为了研究太阳演化进程,需知道目前太阳的质量M 。已知地球半径R =6.4×106 m ,地球质量m =6.0×1024 kg ,日地中心的距离r =1.5×1011 m ,地球表面处的重力加速度g =10 m/s 2,1年约为3.2×107秒。试估算目前太阳的质量M 。 (2)已知质子质量m p =1.6726×10 -27 kg ,He 42质量m α=6.6458×10 -27 kg ,电子质量m e =0.9 ×10- 30 kg ,光速c =3×108 m/s 。求每发生一次题中所述的核聚变反应所释放的核能。 (3)又知地球上与太阳光垂直的每平方米截面上,每秒通过的太阳辐射能w =1.35×103 W/m 2。试估算太阳继续保持在主序星阶段还有多少年的寿命。 (估算结果只要求一位有效数字。) 参考解答: (1)估算太阳的质量M 设T 为地球绕日心运动的周期,则由万有引力定律和牛顿定律可知 ① 地球表面处的重力加速度 2 R m G g ② 由①、②式联立解得 ③ 以题给数值代入,得M =2×1030 kg ④

高考物理压轴题之电磁学专题(5年)(含答案分析).

25.2014新课标2 (19分)半径分别为r和2r的同心圆形导轨固定在同一水平面内,一长为r、质量为m且质量分布均匀的直导体棒AB置于圆导轨上面,BA的延长线通过圆导轨中心O,装置的俯 视图如图所示.整个装置位于一匀强磁场中,磁感应强度的 大小为B,方向竖直向下,在内圆导轨的C点和外圆导轨的 D点之间接有一阻值为R的电阻(图中未画出).直导体棒 在水平外力作用下以速度ω绕O逆时针匀速转动、转动过 程中始终与导轨保持良好接触,设导体棒与导轨之间的动摩 擦因数为μ,导体棒和导轨的电阻均可忽略,重力加速度大 小为g.求: (1)通过电阻R的感应电流的方向和大小; (2)外力的功率.

25.(19分)2013新课标1 如图,两条平行导轨所在平面与水平 地面的夹角为θ,间距为L。导轨上端接 有一平行板电容器,电容为C。导轨处于 匀强磁场中,磁感应强度大小为B,方向 垂直于导轨平面。在导轨上放置一质量为 m的金属棒,棒可沿导轨下滑,且在下滑 过程中保持与导轨垂直并良好接触。已知金属棒与导轨之间的动摩擦因数为μ,重力加速度大小为g。忽略所有电阻。让金属棒从导轨上端由静止开始下滑,求: (1)电容器极板上积累的电荷量与金属棒速度大小的关系; (2)金属棒的速度大小随时间变化的关系。 24.(14分)2013新课标2 如图,匀强电场中有一半径为r的光滑绝缘圆轨道,轨道平面与电场方向平行。a、b为轨道直径的两端,该直径与电场方向平行。一电荷为q(q>0)的质点沿轨道内侧运动.经过a 点和b点时对轨道压力的大小分别为Na和Nb不计重力,求电场强度的大小E、质点经过a点和b点时的动能。

2014年天津市高考物理压轴卷(含解析)

2014天津市高考压轴卷物理 第Ⅰ卷 一、单项选择(每小题6分,共30分。每小题给出的四个选项中,只有一个选项是正确的) 1.格林尼治时间2012年2月24日22时15分,MUOS—1卫星从佛罗里达州卡纳维拉尔角空军基地发射升空.据路透社报道,MUOS系统搭建完毕后,美军通信能力可望增强10倍,不仅能够实现超髙频卫星通信,还可同时传输音频、视频和数据资料.若卫星在发射升空的过程中总质量不变,则下列有关该通信卫星的说法正确的是() A.该卫星的发射速度应不小于11. 2 km/s B 当卫星到达它的环绕轨道时,其内的物体将不受重力的作用 C.卫星在向上发射升空的过程中其重力势能逐渐变大 D.当卫星到达它的环绕轨道且其环绕轨道可视为圆形轨道时,其线速度必大于7. 9 km/s 2.小型交流发电机中,矩形金属线圈在匀强磁场中匀速转动,产生感应电动势随时间变化关系如图所示,此线圈与一个阻值为R=9Ω的电阻组成闭合电路,线圈自身电阻r=1Ω,下列说法正确的是() A.交变电流的频率为5Hz B.串接在电路中的电流表示数为2 A C.发电机输出的电压有效值为10V D.发电机输出的电功率为18 W 3.如图,直线a和曲线b分别是在平直公路上行驶的汽车a和b的 位置-时间(x-t)图线,由图可知() A.在时刻t1,a车追上b车 B.在时刻t2,a、b两车运动方向相反 C.在t1到t2这段时间内,b车的速率先增加后减少 D.在t1到t2这段时间内,b车的速率一直比a车大 4.如题4图所示,两个完全相同的金属球a、b(可视为质点),金属球a 固定在绝缘水平面上,金属球b在离a高h的正上方由静止释放,与a发生正碰后回跳的最大高度为H,若碰撞中无能量损失,空气阻力不计,则() A.若a、b带等量同种电荷,b球运动过程中,a、b两球系统机械能守恒B.若a、b带等量异种电荷,则h>H C.若a、b带不等量同种电荷,则hH 5.在高能物理研究中,粒子回旋加速器起着重要作用.回旋加速器的工作原理如题5图所示,置于高真空中的D形金属盒半径为R,磁感应强度为B的匀强磁场与盒面垂直.S处粒子源产生的粒子,质量为m、电荷量为+q,初速不计,在加速器中被加速,加速电压为玑磁场的磁感应强度为曰,D型盒的半径为R.两盒间的狭缝很小,每次加速的时间很短,可以忽略不计,加速过程中不考虑相对论效应和重力作用,下列说法正确的是 A.为使正离子每经过窄缝都被加速,交变电压的频率f=2mn/(qB) B.粒子第n次与第1欢在下半盒中运动的轨道半径之比为 C.若其它条件不变,将加速电压U增大为原来的2倍,则粒子能获得 的最大动能增大为原来的2倍 D.若其它条件不变,将D型盒的半径增大为原来的2倍,则粒子获得的最大动能增大为原来的4倍

---2018高三期中物理压轴题答案

2016-2018北京海淀区高三期中物理易错题汇编 1.如图所示为某种弹射装置的示意图,该装置由三部分组成,传送带左边是足够长的光滑水平面,一轻质弹簧左端固定,右端连接着质量M = 6.0kg的物块A.装置的中间是水平传送带,它与左右两边的台面等高,并能平滑对接.传送带的皮带轮逆时针匀速转动,使传送带上表面以u = 2.0m/s匀速运动.传送带的右边是一半径R = 1.25m位于竖直平面内的光滑1/4圆弧轨道.质量m = 2.0kg的物块B从1/4圆弧的最高处由静止释放.已知物块B与传送带之间的动摩擦因数μ= 0.1,传送带两轴之间的距离l = 4.5m.设物块A、B之间发生的是正对弹性碰撞,第一次碰撞前,物块A静止.取g = 10m/s2.求: (1)物块B滑到1/4圆弧的最低点C时对轨道的压力. (2)物块B与物块A第一次碰撞后弹簧的最大弹性势能. (3)如果物块A、B每次碰撞后,物块A再回到平衡位置时弹簧都会被立即锁定,而当它们再次碰撞前锁定被解除,求物块B经第一次与物块A后在传送带碰撞上运动的总时间. 2.我国高速铁路使用的和谐号动车组是由动车和拖车编组而成,提供动力的车厢叫动车,不提供动力的车厢叫拖车.某列动车组由8节车厢组成,其中车头第1节、车中第5节为动车,其余为拖车,假设每节动车和拖车的质量均为m = 2 × 104kg,每节动车提供的最大功率P = 600kW. (1)假设行驶过程中每节车厢所受阻力f大小均为车厢重力的0.01倍,若该动车组从静止以加速度a = 0.5m/s2加速行驶. 1求此过程中,第5节和第6节车厢间作用力大小. 2以此加速度行驶时所能持续的时间. (2)若行驶过程中动车组所受阻力与速度成正比,两节动车带6节拖车的动车组所能达到的最大速度为v1.为提高动车组速度,现将动车组改为4节动车带4节拖车,则动车组所能达到的最大速度为v2,求v1与v2的比值. 3.暑假里,小明去游乐场游玩,坐了一次名叫“摇头飞椅”的游艺机,如图所示,该游艺机顶上有一个半径为 4.5m的“伞盖”,“伞盖”在转动过程中带动下面的悬绳转动,其示意图如图所示.“摇头飞椅”高O1O2 = 5.8m,绳长5m.小明挑 选了一个悬挂在“伞盖”边缘的最外侧的椅子坐下,他与座椅的总质量为40kg.小明和椅子的转动可简化为如图所示的圆周

2015年天津市高考物理压轴试卷(解析版)

2015年天津市高考物理压轴试卷 一、选择题,每题6分,共48分.1--5题每题列出的四个选项中,只有一项是最符合题目要求的.6--8题每题给出的4个选项中,有的只有一项是正确的,有的有多个选项是正确的,全部选对的得6分,选对但不全的得3分,有选错或不答的得0分. 1.(6分)在匀强磁场中有一个静止的氡原子核(Rn),由于衰变它放出一个粒子,此粒子的径迹与反冲核的径迹是两个相互外切的圆,大圆与小圆的直径之比为42:1,如图所示,那么氡核的衰变方程应是下列方程中的哪一个() A.Rn→Fr+e B.Rn→Po+He C.Rn→At+e D.Rn→At+H 2.(6分)如图所示,不可伸长的轻绳一端固定于墙上O点,拉力F通过一轻质定滑轮和轻质动滑轮作用于绳另一端,则重物m在力F的作用下缓慢上升的过程中,拉力F变化为(不计一切摩擦)() A.变大B.变小C.不变D.无法确定

3.(6分)固定在竖直平面的光滑圆弧轨道ABCD,其A点与圆心O等高,D点为轨道最高点,DB为竖直直线,AC为水平线,AE为水平面,如图所示.今使小球自A点正上方某处由静止释放,且从A点进入圆轨道,只要适当调节释放点的高度,总能使球通过最高点D,则小球通过D点后() A.一定会落到水平面AE上B.可能从A点又进入圆轨道 C.可能撞在圆轨道AB间某位置D.可能从D点自由下落 4.(6分)如图所示,虚线是用实验方法描绘出的某一静电场的一族等势线及其电势值,一带电粒子只在电场力的作用下飞经该电场时,恰能沿图中的实线从A 点飞到B点,则下列判断正确的是() A.粒子一定带负电 B.A点的场强大于B点的场强 C.粒子在A点的电势能大于在B点的电势能 D.粒子在A点的动能小于在B点的动能 5.(6分)如图所示,水平方向的匀强电场和匀强磁场互相垂直,竖直的绝缘杆上套一带负电荷小环.小环由静止开始下落的过程中,所受摩擦力() A.始终不变B.不断增大后来不变 C.不断减小最后为零D.先减小后增大,最后不变 6.(6分)下列说法正确的是()

中考物理力学压轴题练习

《中考物理压轴题练习》 1.如图1所示,质量为60kg 的工人在水平地面上,用滑轮组把货物运到高处。第一次运送货物时,货物质量为130kg,工人用力F 1匀速拉绳,地面对工人的支持力为N 1,滑轮组的机械效率为η1;第二次运送货物时,货物质量为90 kg,工人用力F 2匀速拉绳的功率为P 2,货箱以0.1m/s 的速度匀速上升,地面对人的支持力为N 2, N 1与 N 2之比为2:3。(不计绳重及滑轮摩擦, g 取10N/kg) 求:(1)动滑轮重和力F 1的大小; (2)机械效率η1; (3) 功率P 2。 2.小文的体重为600 N ,当他使用如图3所示的滑轮组匀速提升水中的体积为0.01m 3 的重 物A 时(重物始终未出水面),他对地面的压强为8.75×103 Pa 。已知小文与地面的接触面积为4002cm 。当他用此滑轮组在空气中匀速提升重物B 时,滑轮组的机械效率是80%。已知重物A 重物B 所受重力之比G A ︰G B =5︰12,若不计绳重和摩擦,g=10N/kg 。 求:(1)提升重物A 时小文对地面的压力。 (2)物体A 的密度。 (3)在水中提升重物A 时滑轮组的机械效率。 (4)重物A 完全出水面后,以0.2m/s 的速度匀速上升, 小文拉绳的功率P 。 图3 3.如图5所示,某工地用固定在水平地面上的卷扬机(其内部有电动机提供动力)通过滑轮组匀速提升货物,已知卷扬机的总质量为120kg ,工作时拉动绳子的功率恒为400W 。第一次提升质量为320kg 的货物时,卷扬机对绳子的拉力为F 1,对地面的压力为N 1;第二次提升质量为240kg 的货物时,卷扬机对绳子的拉力为F 2,对地面的压力为N 2。已知N 1与 图1

高考物理电磁综合压轴大题汇编

2016年高考押题 1.(18分)在竖直平面内,以虚线为界分布着如图所示足够大的匀强电场和匀强磁场,其中匀强电场方向竖直向下,大小为E ;匀强磁场垂直纸面向里,磁感应强度大小为B 。虚线与水平线之间的夹角为θ=45°,一带负电粒子从O 点以速度v 0水平射入匀强磁场,已知带负电粒子电荷量为q ,质量为m ,(粒子重力忽略不计)。 (1)带电粒子从O 点开始到第1次通过虚线时所用的时间; (2)带电粒子第3次通过虚线时,粒子距O 点的距离; (3)粒子从O 点开始到第4次通过虚线时,所用的时间。 1.(18分)解:如图所示: (1)根据题意可得粒子运动轨迹如图所示。 2πm T Bq = ……………………………………(2分) 因为θ=45°,根据几何关系,带电粒子从O 运动到A 为3/4圆周……(1分) 则带电粒子在磁场中运动时间为: 3π2m t Bq = ………………………………………………………………………………………(1分) (2)由qvB=m 2 v r ………………………………………………………(2分) 得带电粒子在磁场中运动半径为:0 mv r Bq = ,…………………………(1分) 带电粒子从O 运动到A 为3/4圆周,解得0 22OA mv x r Bq ==…………………(1分) 带电粒子从第2次通过虚线到第3次通过虚线运动轨迹为1 4圆周,OA AC x x =所以粒子距O 点的距离0 2222OC mv x r Bq ==………………………………(1 分) (3)粒子从A 点进入电场,受到电场力F=qE ,则在电场中从A 到B 匀减速,再从B 到A 匀加速进入磁场。在电场中加速度大小为:

备战高考物理临界状态的假设解决物理试题-经典压轴题

备战高考物理临界状态的假设解决物理试题-经典压轴题 一、临界状态的假设解决物理试题 1.如图所示,用长为L =0.8m 的轻质细绳将一质量为1kg 的小球悬挂在距离水平面高为H =2.05m 的O 点,将细绳拉直至水平状态无初速度释放小球,小球摆动至细绳处于竖直位置时细绳恰好断裂,小球落在距离O 点水平距离为2m 的水平面上的B 点,不计空气阻力,取g =10m/s 2求: (1)绳子断裂后小球落到地面所用的时间; (2)小球落地的速度的大小; (3)绳子能承受的最大拉力。 【答案】(1)0.5s(2)6.4m/s(3)30N 【解析】 【分析】 【详解】 (1)细绳断裂后,小球做平抛运动,竖直方向自由落体运动,则竖直方向有2 12 AB h gt =,解得 2(2.050.8) s 0.5s 10 t ?-= = (2)水平方向匀速运动,则有 02m/s 4m/s 0.5x v t = == 竖直方向的速度为 5m/s y v gt == 则 22 22045m/s=41m/s 6.4m/s y v v v =+=+≈ (3)在A 点根据向心力公式得 2 v T mg m L -= 代入数据解得 2 4(1101)N=30N 0.8 T =?+?

2.如图所示,圆心为O、半径为r的圆形区域外存在匀强磁场,磁场方向垂直于纸面向外,磁感应强度大小为B。P是圆外一点,OP=3r,一质量为m、电荷量为q(q>0)的粒子从P点在纸面内沿着与OP成60°方向射出(不计重力),求: (1)若粒子运动轨迹经过圆心O,求粒子运动速度的大小; (2)若要求粒子不能进入圆形区域,求粒子运动速度应满足的条件。 【答案】(1)3Bqr ;(2) (332) v m ≤ + 或 (332) v m ≥ - 【解析】 【分析】 【详解】 (1)设粒子在磁场中做圆周运动的半径为R,圆心为O',依图题意作出轨迹图如图所示: 由几何知识可得: OO R '= ()222 (3)6sin OO R r rRθ '=+- 解得 3 R r = 根据牛顿第二定律可得 2 v Bqv m R = 解得 3Bqr v= (2)若速度较小,如图甲所示:

高考物理压轴大题

压轴大题的解题策略与备考策略 2008年高考,江苏省将采用新的高考模式,物理等学科作为学科水平测试科目,不再按百分制记分而代之以等级记成绩,把满分为120分的高考原始成绩转化为A、B、C、D等4个等级,A、B两级分别占考生总人数的前20%和20%~50%。在A、B两级中又细 化为A和B,如A,就是占考生总人数的前5%的考生。没有B级,就不能报本科,没有A级,就很难考上重点大学,而要考上名牌大学,如清华、北大、南大等,可能要A了。所以表面看起来,虽然物理等学科不按百分制记分了,似乎它对高考的作用减弱了,其实那是近视的看法,物理等学科虽然没有决定权但有否决权。 不论百分制记分还是等级记成绩,都要把题目做对才能有好成绩。要把题目做对、做好,就要研究高考命题趋势和解题策略,本文研究的是压轴大题的高考命题的趋势及压轴大题的解题策略与备考策略。因为压轴大题占分多,难度大,对于进入B级以及区分A级B级至关重要,而什么是压轴题?查现代汉语词典,有[压轴戏]词条,解释是:压轴子的戏曲节目,比喻令人注目的、最后出现的事件。有[压轴子]词条,解释是:①把某一出戏排做一次戏曲演出中的倒数第二个节目(最后的一出戏叫大轴子)。②一次演出的戏曲节目中排在倒数第二的一出戏。本文把一套高考试卷的最后一题和倒数第二题作为压轴大题研究。 根据笔者多年对高考的实践与研究认为,因为要在很短的时间内考查考生高中物理所学的很多知识和物理学科能力,压轴大题命题的角度常常从物理学科的综合着手。在知识方面,综合题常常是:或者力学综合题,或者电磁学综合题。 力学综合题的解法常用的有三个,一个是用牛顿运动定律和运动学公式解,另一个是用动能定理和机械能守恒解,第三个是用动量定理和动量守恒解,由于新课程高考把动量的内容作为选修和选考内容,所以用动量定理和动量守恒解的题目今年将会回避而不会出现在压轴大题中。在前两种解法中,前者只适用于匀变速直线运动,后者不仅适用于匀变速直线运动,也适用于非匀变速直线运动。 电磁学综合题高考的热点有两个,一个是带电粒子在电场或磁场或电磁场中的运动,一个是电磁感应。带电粒子在匀强电场中做类平抛运动,在磁

高考物理(法拉第电磁感应定律提高练习题)压轴题训练及详细答案(1)

一、法拉第电磁感应定律 1.如图甲所示,一个圆形线圈的匝数n=100,线圈面积S=200cm2,线圈的电阻r=1Ω,线圈外接一个阻值R=4Ω的电阻,把线圈放入一方向垂直线圈平面向里的匀强磁场中,磁感应强度随时间变化规律如图乙所示。求: (1)线圈中的感应电流的大小和方向; (2)电阻R两端电压及消耗的功率; (3)前4s内通过R的电荷量。 【答案】(1)0﹣4s内,线圈中的感应电流的大小为0.02A,方向沿逆时针方向。4﹣6s 内,线圈中的感应电流大小为0.08A,方向沿顺时针方向;(2)0﹣4s内,R两端的电压是0.08V;4﹣6s内,R两端的电压是0.32V,R消耗的总功率为0.0272W;(3)前4s内通过R的电荷量是8×10﹣2C。 【解析】 【详解】 (1)0﹣4s内,由法拉第电磁感应定律有: 线圈中的感应电流大小为: 由楞次定律知感应电流方向沿逆时针方向。 4﹣6s内,由法拉第电磁感应定律有: 线圈中的感应电流大小为:,方向沿顺时针方向。 (2)0﹣4s内,R两端的电压为: 消耗的功率为: 4﹣6s内,R两端的电压为: 消耗的功率为: 故R消耗的总功率为: (3)前4s内通过R的电荷量为:

2.如图,匝数为N 、电阻为r 、面积为S 的圆形线圈P 放置于匀强磁场中,磁场方向与线圈平面垂直,线圈P 通过导线与阻值为R 的电阻和两平行金属板相连,两金属板之间的距离为d ,两板间有垂直纸面的恒定匀强磁场。当线圈P 所在位置的磁场均匀变化时,一质量为m 、带电量为q 的油滴在两金属板之间的竖直平面内做圆周运动。重力加速度为g ,求: (1)匀强电场的电场强度 (2)流过电阻R 的电流 (3)线圈P 所在磁场磁感应强度的变化率 【答案】(1)mg q (2)mgd qR (3)()B mgd R r t NQRS ?+=? 【解析】 【详解】 (1)由题意得: qE =mg 解得 mg q E = (2)由电场强度与电势差的关系得: U E d = 由欧姆定律得: U I R = 解得 mgd I qR = (3)根据法拉第电磁感应定律得到: E N t ?Φ =? B S t t ?Φ?=?? 根据闭合回路的欧姆定律得到:()E I R r =+ 解得:

最新2021年高考物理压轴题训练含答案 (5)

1.如图所示,质量为m 的小物块以水平速度v 0滑上原来静止在光滑水平面上质量为M 的小车上,物块与小车间的动摩擦因数为μ,小车足够长。求: (1) 小物块相对小车静止时的速度; (2) 从小物块滑上小车到相对小车静止所经历的时间; (3) 从小物块滑上小车到相对小车静止时,系统产生的热量和物块相对小车滑行的距离。 解:物块滑上小车后,受到向后的摩擦力而做减速运动,小车受到向前的摩擦力而做加速运动,因小车足够长,最终物块与小车相对静止,如图8所示。由于“光滑水平面”,系统所受合外力为零,故满足动量守恒定律。 (1) 由动量守恒定律,物块与小车系统: mv 0 = ( M + m )V 共 ∴0 mv V M m =+共 (2) 由动量定理,: (3) 由功能关系,物块与小车之间一对滑动摩擦力做功之和(摩擦力乘以相对位移)等于系统机械能的增量: 2201()21 - f l M+m V mv 2 = -共 ∴2 02()Mv l μM+m g = 2如下图所示是固定在水平地面上的横截面为“”形的光滑长直导轨槽,槽口向上(图为俯视图)。槽内 放置一个木质滑块,滑块的左半部是半径为R 的半圆柱形光滑凹槽,木质滑块的宽度为2R ,比“ ”形槽 的宽度略小。现有半径r(r<

天津高考物理试题分类压轴题

天津高考物理试题分类一一压轴题 (2004年)25. ( 22分)磁流体发电是一种新型发电方式,图 1和图2是其 工作原理示意图。图1中的长方体是发电导管,其中空部分的长、高、宽分别 为I 、 a 、 b ,前后两个侧面是绝缘体,上下两个侧面是电阻可略的导体电极, 这两个电极 与负载电阻R i 相连。整个发电导管处于图2中磁场线圈产生的匀强 磁场里,磁感应强度为 B,方向如图所示。发电导管内有电阻率为 的高温、 高速电离气体沿导管向右流动,并通过专用管道导出。由于运动的电离气体受 到磁场作用,产生了电动势。发电导管内电离气体流速随磁场有无而不同。设 发电导管内电离气体流速处处相同,且不存在磁场时电离气体流速为 V o ,电离 气体所受摩擦阻力总与流速成正比,发电导管两端的电离气体压强差 p 维持恒 定,求: (1) 不存在磁场时电离气体所受的摩擦阻力 F 多大; (2) 磁流体发电机的电动势E 的大小; (3) 磁流体发电机发电导管的输入功率 P 。 用I 图2 (1)不存在磁场时,由力的平衡得F ab p (2)设磁场存在时的气体流速为v ,则磁流体发电机的电动势 E Bav

回路中的电流I Bav 电流I受到的安培力F安 2 2 Bav a R L bl 设F为存在磁场时的摩擦阻力’依题意y v o 存在磁场时,由力的平衡得ab p F安F Bav0 B2av0 1 — a b P(R L) bl (3)磁流体发电机发电导管的输入功率P abv p abv0 p 2 B av o 1 b P(R L £ bl (2005年)25. (22分)正电子发射计算机断层(PET是分子水平上的人体功能显像的国际领先技术,它为临床诊断和治疗提供全新的手段。 (1) PET在心脏疾病诊疗中,需要使用放射正电子的同位素氮13示踪剂。氮 13是由小型回旋加速器输出的高度质子轰击氧16获得的,反应中同时还产生另一个粒子,试写出该核反应方程。 (2) PET所用回旋加速器示意如图,其中置于高真空中的金属D形盒的半径为 R,两盒间距为d,在左侧D形盒圆心处放有粒子源S,匀强磁场的磁感应强度为B,方向如图所示。质子质量为m电荷量为q。设质子从粒子 根据上述各式解得E 由能量守恒定律得P EI F v

高考物理压轴大题

35.(18分)如图所示,一个质量为=2.0×10-11kg ,电荷量= +1.0×10-5C 的带电微粒 (重力忽略不计),从静止开始经U 1=100V 电压加速后,水平进入两平行金属板间的偏转电场,偏转电场的电压U 2=100V 。金属板长L =20cm ,两板间距d =cm 。 求: (1)微粒进入偏转电场时的速度 的大小 (2)微粒射出偏转电场时的偏转角θ和速度v (3)若带电微粒离开偏转电场后进入磁感应强度 为B = T 的均强磁场,为使微粒不从磁场 右边界射出,该匀强磁场的宽度D 至少为多大 36.(18分)如图所示,质量为m A =2kg 的木板A 静止放在光滑水平面上,一质量为 m B =1kg 的小物块B 从固定在地面上的光滑弧形轨道距木板A 上表面某一高H 处由静止开始滑下,以某一初速度v 0滑上A 的左端,当A 向右运动的位移为L =0.5m 时,B 的速度为v B =4m/s ,此时A 的右端与固定竖直挡板相距x ,已知木板A 足够长(保证B 始终不从A 上滑出),A 与挡板碰撞无机械能损失,A 、B 之间动摩擦因数为μ=0.2,g 取10m/s 2 (1)求B 滑上A 的左端时的初速度值v 0及静止滑下时距木板A 上表面的高度H (2)当x 满足什么条件时,A 与竖直挡板只能发生一次碰撞 35.(18分)如图所示,一质量为m 、电量为+q 、重力不计的带电粒子,从A 板的S 点由 静止开始释放,经A 、B 加速电场加速后,穿过中间偏转电场,再进入右侧匀强磁场区域.已知AB 间的电压为U ,MN 极板间的电压为2U ,MN 两板间的距离和板长均为L ,磁场垂直纸面向里、磁感应强度为B 、有理想边界.求: (1)带电粒子离开B 板时速度v 0的大小; (2)带电粒子离开偏转电场时速度v 的大小与方向; (3)要使带电粒子最终垂直磁场右边界射出磁场,磁场的宽度d 多大? 挡板 v 0 B A (第36题图) x L H (第35题图) U 2 B U 1 v 0 D θ v B B A - - - N + + + M S ●

近十年年高考物理电磁感应压轴题

θ v 0 x y O M a b B N 电磁感应 2006年全国理综 (北京卷) 24.(20分)磁流体推进船的动力来源于电流与磁场间的相互作用。图1是平静海面上某 实验船的示意图,磁流体推进器由磁体、电极和矩形通道(简称通道)组成。 如图2所示,通道尺寸a =,b =、c =。工作时,在通道内沿z 轴正方向加B =的匀强磁 场;沿x 轴正方向加匀强电场,使两金属板间的电压U =;海水沿y 轴正方向流过通道。已知海水的电阻率ρ=Ω·m 。 (1)船静止时,求电源接通瞬间推进器对海水推力的大小和方向; (2)船以v s =s 的速度匀速前进。若以船为参照物,海水以s 的速率涌入进水口由于通 道的截面积小球进水口的截面积,在通道内海水速率增加到v d =s 。求此时两金属板间的感应电动势U 感。 (3)船行驶时,通道中海水两侧的电压U / =U -U 感计算,海水受到电磁力的80%可以转 化为对船的推力。当船以v s =s 的船速度匀速前进时,求海水推力的功率。 解析24.(20分) (1)根据安培力公式,推力F 1=I 1Bb ,其中I 1= R U ,R =ρac b 则F t = 8.796==B p U Bb R U ac N 对海水推力的方向沿y 轴正方向(向右) (2)U 感=Bu 感b= V (3)根据欧姆定律,I 2= 600)('4=-=pb ac b Bv U R U A 安培推力F 2=I 2Bb =720 N

推力的功率P =Fv s =80%F 2v s =2 880 W 2006年全国物理试题(江苏卷) 19.(17分)如图所示,顶角θ=45°,的金属导轨 MON 固定在水平面内,导轨处在方向竖直、磁感应强度为B 的匀强磁场中。一根与ON 垂直的导体棒在水平外力作用下以恒定速度v 0沿导轨MON 向左滑动,导体棒的质量为m ,导轨与导体棒单位长度的电阻均匀为r 。导体棒与导轨接触点的a 和b ,导体棒在滑动过程中始终保持与导轨良好接触。t =0时,导体棒位于顶角O 处,求: (1)t 时刻流过导体棒的电流强度I 和电流方向。 (2)导体棒作匀速直线运动时水平外力F 的表达式。 (3)导体棒在0~t 时间内产生的焦耳热Q 。 (4)若在t 0时刻将外力F 撤去,导体棒最终在导轨上静止时的坐标x 。 19.(1)0到t 时间内,导体棒的位移 x =t t 时刻,导体棒的长度 l =x 导体棒的电动势 E =Bl v 0 回路总电阻 R =(2x +2x )r 电流强度 022E I R r ==(+) 电流方向 b →a (2) F =BlI =22 02 22E I R r ==(+) (3)解法一 t 时刻导体的电功率 P =I 2 R =23 02 22E I R r ==(+) ∵P ∝t ∴ Q =2P t =232 02 2(22E I R r ==+) 解法二 t 时刻导体棒的电功率 P =I 2 R 由于I 恒定 R / =v 0rt ∝t

2016年高考物理压轴题及答案

2016年高考理科模拟试题及答案 2016年高考物理模拟试题及答案 2016年高考物理模拟试题 一、选择题(每题3分,共24分。在每题给出的四个选项中,只有一项是符合题目要求的) 1.以下说法符合物理学史的是 A.笛卡尔通过逻辑推理和实验对落体问题进行了研究 B.奥斯特发现了电流的周围存在磁场并最早提出了场的概念 C.静电力常量是由库仑首先测出的 D.牛顿被人们称为“能称出地球质量的人” 2.如图所示,a、b两条曲线是汽车甲、乙在同一条平直公路上运动的速度时间图像,已知 在t2时刻,两车相遇,下列说法正确的是 A.t1时刻两车也相遇 B.t1时刻甲车在前,乙车在后 C.甲车速度先增大后减小,乙车速度先减小后增大 D.甲车加速度先增大后减小,乙车加速度先减小后增大 3.如图所示,粗糙的水平地面上的长方形物块将一重为G的 光滑圆球抵在光滑竖直的墙壁上,现用水平向右的拉力F缓慢拉动长方体物块,在圆球 与地面接触之前,下面的相关判断正确的是 A.球对墙壁的压力逐渐减小 B.水平拉力F逐渐减小 C.地面对长方体物块的摩擦力逐渐增大 D.地面对长方体物块的支持力逐渐增大 4.如图所示的曲线是某个质点在恒力作用下的一段运动轨迹。质点从M点出发经P点到达 N 点,已知弧长MP大于弧长PN,质点由M点运动到P点与从P点运动到N点的时间相等。下列说法中正确的是 A.质点从M到N过程中速度大小保持不变 B.质点在这两段时间内的速度变化量大小相等,方向相同 C.质点在这两段时间内的速度变化量大小不相等,方向相同 D.质点在MN间的运动是加速运动 5.水平面上放置两根相互平行的长直金属导轨,导轨间距离为L,在导轨上垂直导轨放置 质量为m的与导轨接触良好的导体棒CD,棒CD与两导轨间动摩擦因数为μ,电流从一 条轨道流入,通过CD后从另一条轨道流回。轨道电流在棒CD处形成垂直于轨道面的磁 场(可视为匀强磁场),磁感应强度的大小与轨道电流成正比。实 验发现当轨道电流为I0时,导体棒能匀速运动,则轨道电流为2I0 时,导体棒运动的加速度为 A.μg B.2μg C.3μg D.4μg 6.空间存在着平行于x轴方向的静电场,其电势φ随x的分布如图所示,A、M、O、N、B 为x轴上的点,|OA|<|OB|,|OM|=|ON|。一个带电粒子在电场中仅在电场力作用下从M

2019年高考最后压轴卷(天津卷)物理(附答案)

2019年高考最后压轴卷(天津卷)物理(附答案) 一.单项选择题:(每小题6分,共30分.每小题给出的四个选项中,只有一项是正确的)1.关于近代物理学,下列说法正确的是() A.核反应方程+X中的X表示电子 B.ɑ粒子散射实验的结果表明原子核由质子和中子构成 C.放射性元素的半衰期随温度的升高而变长 D.一个氢原子从n=4的激发态跃迁时,最多能辐射6种不同频率的光子 2.如图所示,在倾角为θ的光滑斜面和挡板之间放一个光滑均匀小球,挡板与斜面夹角为α。初始时,α+θ< 90°。在挡板绕顶端逆时针缓慢旋转至水平位置的过程中,下列说法正确的是() A.斜面对球的支持力变大 B.挡板对球的弹力变大 C.斜面对球的支持力不变 D.挡板对球的弹力先变小后变大 3.一带负电油滴在场强为E的匀强电场中的运动轨迹如图中虚线所示,电场方向竖直向下。若不计 空气阻力,则此带电油滴从A运动到B的过程中,下列判断正确的是()

A.油滴的电势能减少 B.A点电势高于B点电势 C.油滴所受电场力小于重力 D.油滴重力势能减小 4.图甲为小型发电机的结构简图,通过线圈在两磁极间转动给小灯泡供电,已知小灯泡获得的交变电压如图乙。则下列说法正确的是() A.甲图中电压表的示数为 B.乙图中的0时刻就是甲图所示时刻 C.乙图中0.5×10-2s时刻,穿过甲图中线圈的磁通量最小 D.乙图中1.0×10-2s时刻,穿过甲图中线圈的磁通量最小 5.下列说法中正确的是() A.一群氢原子处于n=3的激发态向较低能级跃迁,最多可放出二种频率的光子 B.由于每种原予都有自己的特征谱线,故可以根据原子光谱来鉴别物质 C.实际上,原子中的电子没有确定的轨道.但在空间各处出现的概率是一定的. D.α粒子散身于实验揭示了原子的可能能量状态是不连续的 二、不定项选择(每小题6分,共18分.每小题给出的四个选项中,都有多个选项是正确的.全部选对得6分,选对单选不全得3分,选错或不答的得0分) 6.下列对光电效应的理解,正确的是()

高考物理压轴题之法拉第电磁感应定律(高考题型整理,突破提升)附答案

高考物理压轴题之法拉第电磁感应定律(高考题型整理,突破提升)附答案 一、法拉第电磁感应定律 1.如图所示,竖直平面内两竖直放置的金属导轨间距为L1,导轨上端接有一电动势为E、内阻不计的电源,电源旁接有一特殊开关S,当金属棒切割磁感线时会自动断开,不切割时自动闭合;轨道内存在三个高度均为L2的矩形匀强磁场区域,磁感应强度大小均为B,方向如图。一质量为m的金属棒从ab位置由静止开始下落,到达cd位置前已经开始做匀速运动,棒通过cdfe区域的过程中始终做匀速运动。已知定值电阻和金属棒的阻值均为R,其余电阻不计,整个过程中金属棒与导轨接触良好,重力加速度为g,求: (1)金属棒匀速运动的速度大小; (2)金属棒与金属导轨间的动摩擦因数μ; (3)金属棒经过efgh区域时定值电阻R上产生的焦耳热。 【答案】(1);(2);(3)mgL2。 【解析】 【分析】 (1)金属棒到达cd位置前已经开始做匀速运动,根据平衡条件结合安培力的计算公式求解; (2)分析导体棒的受力情况,根据平衡条件结合摩擦力的计算公式求解; (3)根据功能关系结合焦耳定律求解。 【详解】 (1)金属棒到达cd位置前已经开始做匀速运动,根据平衡条件可得:mg=BIL1, 由于 解得:; (2)由于金属棒切割磁感线时开关会自动断开,不切割时自动闭合,则在棒通过cdfe区域的过程中开关是闭合的,此时棒受到安培力方向垂直于轨道向里; 根据平衡条件可得:mg=μF A, 通过导体棒的电流I′=,则F A=BI′L1, 解得μ=;

(3)金属棒经过efgh 区域时金属棒切割磁感线时开关自动断开,此时导体棒仍匀速运动; 根据功能关系可知产生的总的焦耳热等于克服安培力做的功,而W 克=mgL 2, 则Q 总=mgL 2, 定值电阻R 上产生的焦耳热Q R =Q 总=mgL 2。 【点睛】 对于电磁感应问题研究思路常常有两条:一条从力的角度,根据牛顿第二定律或平衡条件列出方程;另一条是能量,分析涉及电磁感应现象中的能量转化问题,根据动能定理、功能关系等列方程求解。 2.如图所示,间距为l 的平行金属导轨与水平面间的夹角为α,导轨间接有一阻值为R 的电阻,一长为l 的金属杆置于导轨上,杆与导轨的电阻均忽略不计,两者始终保持垂直且接触良好,两者之间的动摩擦因数为μ,导轨处于匀强磁场中,磁感应强度大小为B ,方向垂直于斜面向上,当金属杆受到平行于斜面向上大小为F 的恒定拉力作用,可以使其匀 速向上运动;当金属杆受到平行于斜面向下大小为 2 F 的恒定拉力作用时,可以使其保持与向上运动时大小相同的速度向下匀速运动,重力加速度大小为g ,求: (1)金属杆的质量; (2)金属杆在磁场中匀速向上运动时速度的大小。 【答案】(1)4sin F m g α=;(2)2222344tan RE RF v B l B l μα =-。 【解析】 【分析】 【详解】 (1)金属杆在平行于斜面向上大小为F 的恒定拉力作用下可以保持匀速向上运动,设金属杆的质量为m ,速度为v ,由力的平衡条件可得 sin cos F mg mg BIl αμα=++, 同理可得 sin cos 2 F mg mg BIl αμα+=+, 由闭合电路的欧姆定律可得 E IR =,

相关文档
最新文档