凸轮设计

凸轮设计
凸轮设计

凸轮设计

凸轮机构中,从动件的运动规律与凸轮轮廓曲线存在着对应关系。要进行凸轮设计,首先需根据工作要求和使用场合,选择从动件运动规律。从动件远离凸轮回转中心的这一行程称推程,对应的凸轮转角称为运动角;从动件靠近凸轮回转中心的这一行程称回程,对应的凸轮转角称为回程运动角;对应于从动件在离凸轮回转中心最远处停止不动时间凸轮的转角称为远休止角;对应于从动件在离凸轮回转中心最近处停止不动时间凸轮的转角称为近休止角;从动件的最大行程称为升程h。常用的从动件运动规律包括:

等速运动规律:该运动规律的速度曲线不连续,从动件在运动起始和终止位置速度有突变,理论上加速度在此时变为无穷大,从动件产生无穷大的惯性力。实际上由于材料具有弹性,加速度和惯性力都不会无穷大,但仍会使机构产生刚性冲击。

等加速等减速运动规律:其速度曲线连续,加速度在起始、中间、终止位置有突变,引起惯性力的突然变化,导致柔性冲击。

简谐运动规律:速度曲线连续,加速度在起始、终止位置有突变,引起柔性冲击。

摆线运动规律:速度加速度均连续变化,无冲击。

3-4-5次多项式运动规律:速度加速度均连续变化,无冲击。

此处,仅给出计算等速运动规律的位移、速度、加速度公式,其他运动规律的计算方法见文献【10】。

推程:

(2-1)

(2-2)

(2-3)

回程:

(2-4)

(2-5)

(2-6)

式中表示由推程起始点算起凸轮的转角。在实际工作中,应根据不同的工作情况选择从动件不同的运动规律,为了获得更好的运动和动力特性,还可以把几种常用的运动规律组合起来使用,这种组合称运动曲线的拼接。本文软件中提供了以上五种运动规律曲线。

2.1.1 凸轮校验

2.1.1.1 压力角

凸轮廓线决定从动件的运动,设计不好,将使从动件不能准确、有效地实现预期的运动规律。凸轮检验的指标是压力角和实际廓线的曲率半径[10]。

压力角表示凸轮实际廓线上某点与从动件接触时,在不计摩擦的前提下,凸轮廓线在该点上的法线方向与从动件速度方向所夹的锐角。压力角是衡量凸轮传力特性好坏的重要参数。凸轮对从动件的作用力可分解成沿从动件运动方向的有效分力和垂直于从动件运动方向的无效分力,压力角越大,无效分力越大,导致的摩擦力越大,机构工作效率越低,当压力角达到某个数值时,将会使机构产生自锁。为了使机构顺利工作,规定了压力角的许用值,许用值的数值随着凸轮机构的类型和行程段的变化而变化。

为减小压力角,应增大凸轮的最小向径——基圆半径,但一味增加基圆半径又会使机构庞大。机构的尺寸特性和传力特性相互制约,应两者兼顾,在满足压力角条件的前提下,基圆半径取较小值。

2.1.1.2 曲率半径

直观的看,滚子从动件盘形凸轮机构理论廓线是滚子中心在凸轮这一运动平面上的轨迹,以

凸轮理论廓线上各点为圆心作一系列滚子圆,该圆族的包络线即凸轮实际廓线。平底从动件盘形凸轮机构理论廓线是平底中心在凸轮这一运动平面上的轨迹,以凸轮理论廓线上各点为中心作一系列平底,该平底族的包络线即凸轮实际廓线。

对于滚子从动件凸轮机构,内凹的凸轮理论廓线总可以得到实际廓线,实际廓线的曲率半径等于理论廓线曲率半径与滚子半径之和,即,在设计时,通常是先根据结构和强度条件选择,再校核,曲率半径应不小于某一规定值,即。

若滚子从动件凸轮机构的凸轮理论廓线的外凸,其实际廓线的曲率半径,若,则,实际廓线将出现尖点,极易被磨损,不能付之实用;若,则,实际廓线将出现交叉,加工时,交点以外的部分将被刀具割去,导致从动件运动失真,无法准确实现预期的运动规律。

对于平底从动件盘形凸轮机构,只要保证凸轮实际廓线各点处的曲率半径均大于零,则可使凸轮廓线全部外凸,避免廓线变尖或出现交叉。为防止接触应力过高和减少磨损,应有。

2.2 用高副低代方法设计平面凸轮的基本原理

据高副低代理论,平面机构中的高副可用含有2个低副的虚拟构件代替,低副中心位于运动副元素的曲率中心处,代换前后,机构自由度及瞬时运动不变。将凸轮与从动件瞬时接触点M处的高副用带2个低副的杆件代替,代换后,平面连杆机构主、从动件的瞬时运动特性分别和凸轮及凸轮从动件完全一致,该瞬时平面连杆机构的压力角即凸轮机构的压力角。对于滚子从动件盘形凸轮机构和移动凸轮机构,虚拟杆为带两个转动副的连杆AB,转动副的中心分别位于凸轮廓线上点M处的曲率中心A和滚子中心B处,点A到点B间的长度lAB即凸轮理论廓线上点B处曲率半径,点A、M间长度即凸轮实际廓线上点M处曲率半径。

对于平底从动件盘形凸轮机构,虚拟杆为带一转动副的滑块,转动副的中心位于凸轮廓线上点M处的曲率中心A处,导路垂直于点M的运动方向。

对代换后的平面连杆机构建立位移、速度、加速度的矢量方程式,可求得虚拟连杆长和方向,进而得出凸轮廓线方程、曲率半径和压力角表达式。

2.3 盘形凸轮的设计

盘形凸轮是最常用的凸轮,设计时,首先初步拟定凸轮轮廓基圆半径、滚子半径、许用压力角和许用曲率半径以及必须的尺寸参数,再根据机构工作要求选定凸轮转速、从动件运动规律和升程h、推程运动角、回程运动角、远休止角、近休止角。

据设计的从动件运动规律,求取直动从动件位移、速度、加速度或摆动从动件角位移、角速度、角加速度,再据此分析代换机构中虚拟杆的杆长和方向,求取凸轮实际廓线坐标,并检验压力角和实际曲率半径,若不满足,调整相应的参数。

考虑到圆向量函数[8]直观性强,可避免公式推导中不必要的展开,采用圆向量函数表达矢量,矢量用单位向量或与模的乘积表示,表示与x轴之间有向角为的单位向量,表示与x轴之间有向角为的单位向量,自x轴正向度量,逆时针为正,顺时针度量为负。圆向量的计算法则详见附录I。

以凸轮回转中心O为原点建立直角坐标系Oxy,x、y轴单位向量分别为i、j。图2.1中用粗实线表示凸轮转过任意角时,高副低代所得平面连杆机构。机构中各构件的转角、角速度、角加速度逆时针取正、顺时针取负。

2.3.1 滚子直动从动件盘形凸轮机构中的凸轮设计

偏置滚子直动从动件盘型凸轮机构,从动件导路偏距为w(

导路在x轴左侧w为正,反之为负),升程h,从动滚子中心初始位置处于B0点,当凸轮转过角后,如图2.1所示,从动滚子中心处于B点。

凸轮机构高副低代后得到曲柄滑块机构OAB,滑块上B点位移、速度、加速度矢量方程分别为

(2-7)

式中

图2.1滚子直动从动件盘形凸轮机构的高副低代

(2-8)

(2-9)

由式(2-7)(2-8)(2-9)得:

(2-10)

当时,;当时,,

(2-11)

AB杆的方向亦即从动件受力方向,从动件运动沿y轴方向,凸轮机构压力角为

(2-12)

点M处曲率半径为即

(2-13)

从动滚子与凸轮轮廓接触点M的向径为,将该向径反方向旋转角,得凸轮处于初始位置时点M的向径:

(2-14)

式(2-14)分别点乘,得凸轮实际廓线的直角坐标方程

(2-15)

机床加工凸轮时,常采用铣刀、砂轮等圆形刀具。给定刀具半径,刀具与凸轮廓点M接触时,刀具中心Q必在代换机构的虚拟连杆方向,与点M相距。用代换式(2-15)中的,得圆形刀具中心轨迹曲线直角坐标方程

(2-16)

取时,式(2-15)即对心式直动从动件盘形凸轮机构凸轮廓线直角坐标方程;取时,式(2-15)即尖底直动从动件盘形凸轮机构的实际凸轮廓线方程,亦可看作滚子直动从动件盘形凸轮机构的理论凸轮廓线方程。

2.3.2 滚子摆动从动件盘2 形凸轮机构中的凸轮设计

图2.2所示滚子摆动从动件盘形凸轮机构,摆杆摆动中心C,杆长为l,机架OC长为b,从动件处于起始位置时,滚子中心处于B0点,摆杆与机架OC之间的夹角为,当凸轮转过角后,从动件摆过角,滚子中心处于B点。

凸轮机构高副低代后得到平面连杆机构OABC,从动杆BC上B点位移、速度、加速度矢量式为

(2-17)

图2.2滚子摆动从动件盘形凸轮机构的高副低代

(2-18)

(2-19)

式(2-17)中。在文献[10]中,从动件的角速度、角加速度在回程时为负,推程时为正,而此处逆时针为正,顺时针为负,所以引用公式时,须添加负号。

由式(2-17)(2-18)(2-19)得

(2-20)

当时,;当时,,

(2-21)

AB杆的方向即从动件受力方向,从动件运动方向垂直于CB杆,凸轮机构压力角为

(2-22)

点M处曲率半径为即

(2-23)

凸轮实际廓线上点M的向径为。将该向径反方向旋转角,得凸轮处于初始位置时点M的向径

(2-24)

式(2-24)分别点乘,得凸轮实际廓线的直角坐标方程

(2-25)

用代换式(2-25)中的,得圆形刀具中心轨迹曲线直角坐标方程

(2-26)

当取时,式(2-25)即尖底摆动从动件盘形凸轮机构的实际凸轮廓线方程,亦可看作滚子摆动从动件盘形凸轮机构的理论凸轮廓线方程。

2.3.3 平底直动从动件盘形凸轮机构中的凸轮设计

图2.3平底直动从动件盘形凸轮机构的高副低代

平底从动件盘形凸轮机构高副元素的曲率中心分别位于凸轮廓该点曲率中心A和垂直于平底的无穷远处,高副可用导路平行于平底的滑块A表示。

图2.3所示偏置平底直动从动件盘形凸轮机构,导路偏距e,平底中心初始位置处于B0点,当凸轮转过角后,平底中心处于B点,。列从动件位移、速度、加速度矢量方程式(2-27)

(2-28)

(2-29)

矢量式(2-27)(2-28)(2-29)中有六个未知量, 可求,求得。点M处曲率半径,即

(2-30)

平底与凸轮廓线接触点M的向径为。将该向径反方向旋转角,得凸轮处于初始位置时点M的向径

(2-31)

式(2-31)分别点乘,得凸轮实际廓线的直角坐标方程

(2-32)

刀具与凸轮廓点M接触时,刀具中心Q必在AM方向,与点M相距。用代换式(2-32)中的,得圆形刀具中心轨迹曲线直角坐标方程

(2-33)

显然,平底直动从动件盘形凸轮机构中的凸轮轮廓与偏心距大小无关。

当平底垂直于从动件导路时,压力角为

(2-34)

2.3.4 平底摆动从动件盘形凸轮机构中的凸轮设计

图2.4所示平底摆动从动件盘形凸轮机构,机架OC长为b,摆杆在虚线所示初始位置与机

架OC之间的夹角为,当凸轮转过角后,平底转到CM处。此时代换机构从动件角位移、角速度、角加速度矢量方程式为

(2-35)

(2-36)

(2-37)

图2.4平底摆动从动件盘形凸轮机构的设计

式(2-36)、(2-37)中。

矢量式(2-35)(2-36)(2-37)中共有六个未知量, 可求,因推导需要一些技巧,此处给出较为详细的推导过程。

将式(2-36)中各矢量旋转,得

(2-38)

将式(2-35)(2-38)等号两边矢量两两相减,得

(2-39)

将式(2-39)等号两边同时点乘,得。因,可得

(2-40)

将式(2-37)(2-38)等号两边矢量两两相加,得

(2-41)

由式(2-39)和(2-41)可得

(2-42)

将式(2-42)等号两边同时点乘,得,则

(2-43)

将式(2-43)带入式(2-39)中,得

(2-44)

点M处曲率半径即MA的长度,即

(2-45)

从动摆杆上M点的受力方向衡与速度方向一致,压力角为

(2-46)

平底与凸轮廓线接触点M的向径为。将该向径反方向旋转角,得凸轮处于初始位置时点M的向径:

(2-47)

式(2-47)分别点乘后求得凸轮实际廓线的直角坐标方程

(2-48)

刀具与凸轮廓点M接触时,刀具中心Q必在AM方向,与点M相距,其向径为(2-49)

直角坐标方程为

(2-50)

2.4 圆柱/移动凸轮机构中的凸轮设计

圆柱凸轮属空间凸轮机构,其轮廓曲线为一条空间曲线,不能直接在平面上表示。但在低速轻载的工作条件下,可以将圆柱面展开成平面,圆柱凸轮便成为平面移动凸轮,可以运用高副低代的方法对其进行设计。

2.4.1 直动推杆圆柱/移动凸轮机构中的凸轮设计

图2.5a为直动推杆移动凸轮机构运动示意图,也可看作将圆柱凸轮展开后,得到的机构运动示意图,滚子中心B,滚子中心与凸轮廓线接触点处的曲率中心为A。图2.5b表示高副

低代后得到的平面连杆机构,设圆柱凸轮半径为R,速度,以滚子最低点o为圆心,以直动推杆升程方向为y轴,建立坐标系xoy,建立代换机构的速度、加速度矢量方程

(2-51)

(2-52)

变换式(2-51)为

(2-53)

图2.5a 图2.5b

图2.5直动推杆圆柱/移动凸轮的高副低代

将式(2-53)等号两边分别点乘,并将所得二式等号两边分别相除,得

(2-54)

当时,

当时,

AB杆的方向亦即从动件受力方向,从动件运动沿方向y轴方向,凸轮机构压力角为

(2-55)

由式(2-51)和(2-52),可求得

(2-56)

点M处曲率半径为

(2-57)

从动滚子与凸轮轮廓接触点M的向径为

(2-58)

将该接触点M沿凸轮平动方向的反向移动,得凸轮处于初始状态时点M的位置,此时向径

(2-59)

将式(2-59)分别点乘,得凸轮实际廓线的直角坐标方程

(2-60)

式(2-58)(2-59)(2-60)中“+”表示凸轮轮廓线上部,“-”表示凸轮轮廓线下部。2.4.2 摆动推杆圆柱/移动凸轮机构中的凸轮设计

图2.6a为摆动推杆移动凸轮机构运动示意,也可看作将摆动推杆圆柱凸轮机构中凸轮展开后,得到的机构运动示意图,滚子中心B,滚子中心与凸轮廓线接触点处的曲率中心为A。图2.6 b表示高副低代后得到的平面连杆机构,设圆柱凸轮半径为R,速度,摆秆的任一瞬时摆角,最大摆角为,摆角速度为摆秆的回转中心o通常在摆动幅角的等分线上,以o 为圆心,以凸轮移动方向为x轴,建立坐标系xoy,列代换机构的速度、加速度矢量方程

图2.6摆动推杆圆柱/移动凸轮机构的高副低代

(2-61)

(2-62)

式中。

将式(2-61)中各矢量旋转后化为

(2-63)

将式(2-63)等号两边分别点乘,并将所得二式等号两边分别相除,得

(2-64)

当时,;当时,

AB杆的方向亦即从动件受力方向,从动件运动沿方向y轴方向,凸轮机构压力角为(2-65)

由(2-62)(2-63)联列可求得

(2-66)

接触点M处曲率半径为

(2-67)

从动滚子与凸轮轮廓接触点M的向径为

(2-68)

将该向径沿展开凸轮平动方向的反向运动距离,即得凸轮处于初始位置时点M的向径(2-69)

将式(2-67)分别点乘,得凸轮实际廓线的直角坐标方程

(2-70)

式(2-68)(2-69)(2-70)中“+”对应着凸轮廓线上部,“-” 对应着凸轮廓线下部。

解析法设计凸轮

解析法设计凸轮Ⅱ的实际轮廓曲线代码: Private Sub Command1_Click() Form2.Show '焦点出现form2 End Sub Private Sub Command1_Click() Dim l1, l2, l3 As Single Form2.Picture2.Scale (-0.1, 400)-(7, -400) l1 = -Abs(Form2.Picture1.ScaleHeight / Form2.Picture1.ScaleWidth) l3 = -Abs(Form2.Picture3.ScaleHeight / Form2.Picture3.ScaleWidth) '定义两个图框的高宽比Form2.Picture1.ScaleWidth = 9.5 Form2.Picture3.ScaleWidth = 150 '设定图框的长度 Form2.Picture1.ScaleHeight = l1 * Form2.Picture1.ScaleWidth Form2.Picture3.ScaleHeight = l3 * Form2.Picture3.ScaleWidth Form2.Picture1.ScaleLeft = -0.1 Form2.Picture3.ScaleLeft = -70 Form2.Picture1.ScaleTop = 7 Form2.Picture3.ScaleTop = 63 '规定高度的起点 Dim dt1, dt2, dt3, dt4, dt5, s1, v1, s2, v2, k1, s0 As Single Dim n, m As Integer Dim h, e As Integer Dim dt6, dt7, dt8, dt9, dt10, dt11, x1, y1, x2, y2, r As Single Dim x3, y3, x4, y4, rg '定义各种量 h = Form2.Text3 e = Form2.Text2 k1 = Form2.Text4 s0 = Form2.Text1 rg = Form2.Text5 '试各种变量与文本框相等,用于输入数据 Const pi = 3.1415926 n = 1000 '把每一步定义为360°/1000 dt11 = 0 dt1 = pi / 3 dt2 = pi / 3 dt3 = pi / 2 / n dt4 = 0 dt6 = pi / 18 Form2.Picture3.Line (-70, 0)-(70, 0) Form2.Picture3.Line (0, 70)-(0, -70) Form2.Picture1.Line (0, 0)-(7, 0) Form2.Picture1.Line (0, 6.5)-(0, 0) Form2.Picture2.Line (0, 0)-(7, 0) Form2.Picture2.Line (0, 390)-(0, -390) '画出各个两个图框的坐标轴 s1 = h * ((dt4 / dt1) - Sin(2 * pi * dt4 / dt1) / (2 * pi)) v1 = h * k1 * (1 - Cos(2 * pi * dt4 / dt1)) / dt1 '计算第一个点的速度和推程,选择正弦加速度规

自动车床凸轮设计教程

1.自动车床主要靠凸轮来控制加工过程,能否设计出一套好的凸轮,是体现自动车床师傅的技术高低的一个标准。凸轮设计计算的资料不多,在此,我将一些基本的凸轮计算方法送给大家。凸轮是由一组或多组螺旋线组成的,这是一种端面螺旋线,又称阿基米德螺线。其形成的主要原理是:由A点作等速旋转运动,同时又使A点沿半径作等速移动,形成了一条复合运动轨迹的端面螺线。这就是等速凸轮的曲线。 凸轮的计算有几个专用名称: 1、上升曲线——凸轮上升的起点到最高点的弧线称为上升曲线 2、下降曲线——凸轮下降的最高点到最低点的弧线称为下降曲线 3、升角——从凸轮的上升起点到最高点的角度,即上升曲线的角度。我们定个代号为φ。 4、降角——从凸轮的最高点到最低点的角度,即下降曲线的角度。代号为φ1。 5、升距——凸轮上升曲线的最大半径与最小半径之差。我们给定代号为h,单位是毫米。 6、降距——凸轮下降曲线的最大半径与最小半径之差。代号为h1。 7、导程——即凸轮的曲线导程,就是假定凸轮曲线的升角(或降角)为360°时凸轮的升距(或降距)。代号为L,单位是毫米。 8、常数——是凸轮计算的一个常数,它是通过计算得来的。代号为K。 凸轮的升角与降角是给定的数值,根据加工零件尺寸计算得来的。 凸轮的常数等于凸轮的升距除以凸轮的升角,即K=h/φ。由此得h=Kφ。 凸轮的导程等于360°乘以常数,即L=360°K。由此得L=360°h/φ。 举个例子: 一个凸轮曲线的升距为10毫米,升角为180°,求凸轮的曲线导程。(见下图) 解:L=360°h/φ=360°×10÷180°=20毫米

升角(或降角)是360°的凸轮,其升距(或降距)即等于导程。 这只是一般的凸轮基本计算方法,比较简单,而自动车床上的凸轮,有些比较简单,有些则比较复杂。在实际运用中,许多人只是靠经验来设计,用手工制作,不需要计算,而要用机床加工凸轮,特别是用数控机床加工凸轮,却是需要先计算出凸轮的导程,才能进行电脑程序设计。 要设计凸轮有几点在开始前就要了解的. 在我们拿到产品图纸的时候,看好材料,根据材料大小和材质将这款产品 的 主轴转速先计算出来. 计算主轴转速公式是[切削速度乘1000]除以材料直径. 切削速度是根据材质得来的,在购买材料时供应商提供.单位是米/分钟. 材料硬度越大,切削速度就越小,切的太快的话热量太大会导致材料变形, 所以切削速度已知的. 切削速度乘1000就是把米/分钟换算成毫米/分钟,在除以材料直径就是 主 轴每分钟的转速了.材料直径是每转的长度,切削速度是刀尖每分钟可以移动的 距离. 主轴转速求出来了,就要将一个产品需要多少转可以做出来,这个转的圈数求出来.主轴转速除以每个产品需要的圈数就是生产效率.[单位.个/分钟] 每款不同的产品,我们看到图纸的时候就先要将它的加工工艺给确定下来. 加工工艺其实就是加工方法,走芯机5把刀具怎么安排,怎么加工,哪把刀具 先做,按顺序将它安排,这样就是确定加工工艺.

机械原理凸轮机构设计

凸轮机构的设计 一、简介 凸轮机构是由凸轮,从动件和机架三个基本构件组成的高副机构。 凸轮是一个具有曲线轮廓或凹槽的构件,一般为主动件,作等速回转运动或往复直线运动。 与凸轮轮廓接触,并传递动力和实现预定的运动规律的构件,一般做往复直线运动或摆动,称为从动件。 凸轮机构在应用中的基本特点在于能使从动件获得较复杂的运动规律。因为从动件的运动规律取决于凸轮轮廓曲线,所以在应用时,只要根据从动件的运动规律来设计凸轮的轮廓曲线就可以了。 凸轮机构广泛应用于各种自动机械、仪器和操纵控制装置。凸轮机构之所以得到如此广泛的应用,主要是由于凸轮机构可以实现各种复杂的运动要求,而且结构简单、紧凑。 二、凸轮机构的工作原理 由凸轮的回转运动或往复运动推动从动件作规定往复移动或摆动的机构。凸轮具有曲线轮廓或凹槽,有盘形凸轮、圆柱凸轮和移动凸轮等,其中圆柱凸轮的凹槽曲线是空间曲线,因而属于空间凸轮。从动件与凸轮作点接触或线接触,有滚子从动件、平底从动件和尖端从动件等。尖端从动件能与任意复杂的凸轮轮廓保持接触,可实现任意运动,但尖端容易磨损,适用于传力较小的低速机构中。为了使从动件与凸轮始终保持接触,可采用弹簧或施加重力。具有凹槽的凸轮可使从动件传递确定的运动,为确动凸轮的一种。一般情况下凸轮是主动的,但也有从动或固定的凸轮。多数凸轮是单自由度的,但也有双自由度的劈锥凸轮。凸轮机构结构紧凑,最适用于要求从动件作间歇运动的场合。它与液压和气动的类似机构比较,运动可靠,因此在自动机床、内燃机、印刷机和纺织机中得到广泛应用。但凸轮机构易磨损,有噪声,高速凸轮的设计比较复杂,制造要求较高。 一、工作过程和参数 在凸轮机构中最常见的运动形式为凸轮机构作等速回转运动,从动件往复移动。以图6-8为例(对心外轮廓盘形凸轮机构)。首先介绍一下本图中各构件的名称。 1,运动分析: 从动件运动状态凸轮运动凸轮转过的角度 ? 升AB 1 ?2 停BC 2 ?3 降CD 3

第9章凸轮机构及其设计(有答案)

1.图示凸轮机构从动件推程运动线图是由哪两种常用的基本运动规律组合而成?并指出有无冲击。如果有冲击,哪些位置上有何种冲击?从动件运动形式为停-升-停。 (1) 由等速运动规律和等加速等减速运动规律组合而成。 (2) 有冲击。 (3) ABCD 处有柔性冲击。 2. 有一对心直动尖顶从动件盘形凸轮机构,为改善从动件尖端的磨损情况,将其尖端改为滚子,仍使用原来的凸轮,这时该凸轮机构中从动件的运动规律有无变化?简述理 由。 (1) 运动规律发生了变化。 (见下图 ) (2)采用尖顶从动件时,图示位置从动件的速度v O P 2111=ω,采用滚子从动件时,图示位置的速度 '='v O P 2111ω,由于O P O P v v 1111 22≠'≠',;故其运动规律发生改变。

3. 在图示的凸轮机构中,画出凸轮从图示位置转过60?时从动件的位置及从动件的位移s。 总分5分。(1)3 分;(2)2 分 (1) 找出转过60?的位置。 (2) 标出位移s。

4. 画出图示凸轮机构从动件升到最高时的位置,标出从动件行程h ,说明推程运动角和回程运动角的大小。 总分5分。(1)2 分;(2)1 分;(3)1 分;(4)1 分 (1) 从动件升到最高点位置如图示。 (2) 行程h 如图示。 (3)Φ=δ0-θ (4)Φ'=δ' 0+θ

5.图示直动尖顶从动件盘形凸轮机构,凸轮等角速转动,凸轮轮廓在推程运动角Φ=? 从动件行程h=30 mm,要求: (1)画出推程时从动件的位移线图s-?; (2)分析推程时有无冲击,发生在何处?是哪种冲击? - 总分10分。(1)6 分;(2)4 分 (1)因推程时凸轮轮廓是渐开线,其从动件速度为常数v=r0?ω,其位移为直线, 如图示。

matlab解析法画凸轮轮廓线

m a t l a b解析法画凸轮 轮廓线 -CAL-FENGHAI.-(YICAI)-Company One1

班级:姓名:学号: 基于matlab的凸轮轮廓设计 一、设计凸轮机构的意义 在工业生产中,经常要求机器的某些部件按照规定的准确路线运动,仅应用连杆机构已难以满足这个要求,所以需要利用工作表面具有一定形状的凸轮。凸轮在所有基本运动链中,具有易于设计和能准确预测所产生的运动的优点。如果设计其他机构来产生给定的运功、速度、和加速度,其设计工作是很复杂的,但是设计凸轮机构则比较容易,而且运动准确、有效。所以在许多机器中,如纺织机、包装机、自动机床、自动化专用机床、数控机床、印刷机、内燃机、建筑机械、矿山机械、计算机的辅助装备及农业机具等,都可以找到凸轮机构。 在进行研究时,先设计一个简单的凸轮,在给定的旋转角度内有一定的总升距。设计凸轮轮廓的基本方法是把凸轮固定,使从动件以其与凸轮的相关位置绕凸轮回转而形成凸轮轮廓。因此设计凸轮时,必须画出足够多的点,使凸轮轮廓平滑可靠。 Matlab软件提供了强大的矩阵处理和绘图功能,具有核心函数工具箱。其编程代码接近数学推导公式,简洁直观,操作简易,人机交互性能好。因此,基于matlab软件进行凸轮机构的设计可以解决设计工作量大的问题。运用解析法进行设计,matlab可以精确的计算出轮廓上每一点的坐标,然后更为精确的绘制出凸轮轮廓曲线。 二、设计凸轮机构的已知条件 凸轮做逆时针方向转动,从动件偏置在凸轮轴心右边。从动件在推程做等加/减速运动,在回程做余弦加速运动。基圆半径rb=50mm,滚子半径 rt=10mm,推杆偏距e=10mm,推程升程h=50mm,推程运动角ft=100o,远休止角fs=60o,回程运动角fh=90o。 三、分析计算 1、建立坐标系 以凸轮轴心为坐标原点建立平面直角坐标系XOY,取杆件上升方向为Y轴正方向。 2、推杆运动规律计算 凸轮运动一周可分为5个阶段:推程加速阶段、推程减速阶段、远休止阶段、回程阶段、进休止阶段。 根据已知条件,推程阶段为等加/减速,故推程阶段的运动方程为:

第九章凸轮机构及其设计

第九章凸轮机构及其设计 第一节凸轮机构的应用、特点及分类 1.凸轮机构的应用 在各种机械,特别是自动机械和自动控制装置中,广泛地应用着各种形式的凸轮机构。 例1内燃机的配气机构 当凸轮回转时,其轮廓将迫使推杆作往复摆动,从而使气阀开启或关闭(关闭是借弹簧的作用),以控制可燃物质在适当的时间进入气缸或排出废气。至于气阀开启和关闭时间的长短及其速度和加速度的变化规律,则取决于凸轮轮廓曲线的形状。 例2自动机床的进刀机构 当具有凹槽的圆柱凸轮回转时,其凹槽的侧面通过嵌于凹槽中的滚子迫使推杆绕其轴作往复摆动,从而控制刀架的进刀和退刀运动。至于进刀和退刀的运动规律如何,则决定于凹槽曲线的形状。 2.凸轮机构及其特点 (1)凸轮机构的组成 凸轮是一个具有曲线轮廓或凹槽的构件。凸轮通常作等速转动,但也有作往复摆动或移动的。推杆是被凸轮直接推动的构件。因为在凸轮机构中推杆多是从动件,故又常称其为从动件。凸轮机构就是由凸轮、推杆和机架三个主要构件所组成的高副机构。 (2)凸轮机构的特点

1)优点:只要适当地设计出凸轮的轮廓曲线,就可以使推杆得到各种预期的运动规律,而且机构简单紧凑。 2)缺点:凸轮廓线与推杆之间为点、线接触,易磨损,所以凸轮机构多用在传力不大的场合。 3.凸轮机构的分类 凸轮机构的类型很多,常就凸轮和推杆的形状及其运动形式的不同来分类。 (1)按凸轮的形状分 1)盘形凸轮(移动凸轮) 2)圆柱凸轮 盘形凸轮是一个具有变化向径的盘形构件绕固定轴线回转。移动 凸轮可看作是转轴在无穷远处的盘形凸轮的一部分,它作往复直线移动。圆柱凸轮是一个在圆柱面上开有曲线凹槽,或是在圆柱端面上作 出曲线轮廓的构件,它可看作是将移动凸轮卷于圆柱体上形成的。盘形凸轮机构和移动凸轮机构为平面凸轮机构,而圆柱凸轮机构是一种 空间凸轮机构。盘形凸轮机构的结构比较简单,应用也最广泛,但其推杆的行程不能太大,否则将使凸轮的尺寸过大。 (2)按推杆的形状分 1)尖顶推杆。这种推杆的构造最简单,但易磨损,所以只适用于作用力不大和速度较低的场合(如用于仪表等机构中)。 2)滚子推杆。滚子推杆由于滚子与凸轮轮廓之间为滚动摩擦,所以磨损较小,故可用来传递较大的动力,因而应用较广。

机械原理 凸轮机构及其设计

第六讲凸轮机构及其设计 (一)凸轮机构的应用和分类 一、凸轮机构 1.组成:凸轮,推杆,机架。 2.优点:只要适当地设计出凸轮的轮廓曲线,就可以使推杆得到各种预期的运动规律,而且机构简单紧凑。缺点:凸轮廓线与推杆之间为点、线接触,易磨损,所以凸轮机构多用在传力不大的场合。 二、凸轮机构的分类 1.按凸轮的形状分:盘形凸轮圆柱凸轮 2.按推杆的形状分 尖顶推杆:结构简单,能与复杂的凸轮轮廓保持接触,实现任意预期运动。易遭磨损,只适用于作用力不大和速度较低的场合 滚子推杆:滚动摩擦力小,承载力大,可用于传递较大的动力。不能与凹槽的凸轮轮廓时时处处保持接触。 平底推杆:不考虑摩擦时,凸轮对推杆的作用力与从动件平底垂直,受力平稳;易形成油膜,润滑好;效率高。不能与凹槽的凸轮轮廓时时处处保持接触。 3.按从动件的运动形式分(1)往复直线运动:直动推杆,又有对心和偏心式两种。(2)往复摆动运动:摆动推杆,也有对心和偏心式两种。 4.根据凸轮与推杆接触方法不同分: (1)力封闭的凸轮机构:通过其它外力(如重力,弹性力)使推杆始终与凸轮保持接触,(2)几何形状封闭的凸轮机构:利用凸轮或推杆的特殊几何结构使凸轮与推杆始终保持接触。①等宽凸轮机构②等径凸轮机构③共轭凸轮 (二)推杆的运动规律 一、基本名词:以凸轮的回转轴心O为圆心,以凸轮的最小半径r0为半径所作的圆称为凸轮的基圆,r0称为基圆半径。推程:当凸轮以角速度转动时,推杆被推到距凸轮转动中心最远的位置的过程称为推程。推杆上升的最大距离称为推杆的行程,相应的凸轮转角称为推程运动角。回程:推杆由最远位置回到起始位置的过程称为回程,对应的凸轮转角称为回程运动角。休止:推杆处于静止不动的阶段。推杆在最远处静止不动,对应的凸轮转角称为远休止角;推杆在最近处静止不动,对应的凸轮转角称为近休止角 二、推杆常用的运动规律 1.刚性冲击:推杆在运动开始和终止时,速度突变,加速度在理论上将出现瞬时的无穷大值,致使推杆产生非常大的惯性力,因而使凸轮受到极大冲击,这种冲击叫刚性冲击。 2.柔性冲击:加速度有突变,因而推杆的惯性力也将有突变,不过这一突变为有限值,因而引起有限

凸轮曲线设计

凸轮曲线设计 当根据使用要求确定了凸轮机构的类型、基本参数以及从动件运动规律后,即可进行凸轮轮廓曲线的设计。设计方法有几何法和解析法,两者所依据的设计原理基本相同。几何法简便、直观,但作图误差较大,难以获得凸轮轮廓曲线上各点的精确坐标,所以按几何法所得轮廓数据加工的凸轮只能应用于低速或不重要的场合。对于高速凸轮或精确度要求较高的凸轮,必须建立凸轮理论轮廓曲线、实际轮廓曲线以及加工刀具中心轨迹的坐标方程,并精确地计算出凸轮轮廓曲线或刀具运动轨迹上各点的坐标值,以适合在数控机床上加工。 圆柱凸轮的廓线虽属空间曲线,但由于圆柱面可展成平面,所以也可以借用平面盘形凸轮轮廓曲线的设计方法设计圆柱凸轮的展开轮廓。本节分别介绍用几何法和解析法设计凸轮轮廓曲线的原理和步骤。 1 几何法 反转法设计原理: 以尖底偏置直动从动件盘形凸轮机构为例: 凸轮机构工作时,凸轮和从动件都在运动。为了在图纸上画出凸轮轮廓曲线,应当使凸轮与图纸平面相对静止,为此,可采用如下的反转法:使整个机构以角速度(-w)绕O转动,其结果是从动件与凸轮的相对运动并不改变,但凸轮固定不动,机架和从动件一方面以角速度(-w)绕O转动,同时从动件又以原有运动规律相对机架往复运动。根据这种关系,不难求出一系列从动件尖底的位置。由于尖底始终与凸轮轮廓接触,所以反转后尖底的运动轨迹就是凸轮轮廓曲线。 1). 直动从动件盘形凸轮机构 尖底偏置直动从动件盘形凸轮机构: 已知从动件位移线图,凸轮以等角速w顺时针回转,其基圆半径为r0,从动件导路偏距为e,要求绘出此凸轮的轮廓曲线。 运用反转法绘制尖底直动从动件盘形凸轮机构凸轮轮廓曲线的方法和步骤如下: 1) 以r0为半径作基圆,以e为半径作偏距圆,点K为从动件导路线与偏距圆的切点,导路线与基圆的交点B0(C0)便是从动件尖底的初始位置。 2) 将位移线图s-f的推程运动角和回程运动角分别作若干等分(图中各为四等分)。 3) 自OC0开始,沿w的相反方向取推程运动角(1800)、远休止角(300)、回程运动角(1900)、近休止角(600),在基圆上得C4、C5、C9诸点。将推程运动角和回程运动角分成与从动件位移线图对应的等分,得C1、C2、C3

盘形凸轮的四种设计方法

盘形凸轮的四种设计方法 深圳市百特兴科技有限公司 周杰平 摘要:详细介绍运用SolidWorks 绘制盘形凸轮的不同方法,包括插件法、解析法、折弯法及仿真法。 关键词:盘形凸轮,插件法,解析法,折弯法,仿真法,余弦加速度, SolidWorks,EXCEL。 凸轮/连杆机构以其快速、稳定的特点,在很多的场合尤其是传统的制程设备中得以运用。但其缺点也很明显:适应性较差,结构相对比较复杂,开发周期长,凸轮加工精确要求比较高等,非标设备大多由伺服马达/步进马达、丝杆/同步带、气缸/油缸等替代。近年来,由于对设备产能要求越来也高,传统的凸轮/连杆机构又受到用户青睐。以动力电池制造设备中塑封制程为例。进口设备核心机构采用凸轮/连杆机构,产能在140件/分钟以上,国产设备采用伺服/丝杆驱动,产能则在50件/分钟左右。更为重要的是前者用于制程的有效时间更长,确保了品质的可靠性。凸轮的设计将成为机构设计工程是不可缺少的技能。 本文以盘形凸轮为研究对象,分别介绍几种不同的设计方法。 一、基本参数 1.1、凸轮基本参数 项目 代号 参数值 基圆直径 D 150 凸轮厚度 W 15 辊子直径 d 25 升程 h 50 表1 1.2、从动杆运动规律 动作 运动角度数 (Φ) 起始角度位置 终止角度位置 结束半径 运动规律 推程 120 0 120 125 余弦加速度 远休止角 30 120 150 125 回程 90 150 240 75 余弦加速度 近休止角 120 240 360 75 表2 注:余弦加速度(简谐运动)方程: S=h*[1-cos(πφ/Φ)]/2

图1 二、SolidWorks 插件法 2.1、如图2,打开SolidWorks,新建零件,关闭草图。菜单栏Toolbox -> 凸轮 如菜单栏无Toolbox,先加入插件。 图2 图3 2.2、设置。如图3 凸轮类型为圆形,推杆类型为平移,如果是偏心的,可作相应的选择;开始半径为基圆半径,开始角度根据<表2>填写;旋转方向为顺时针 2.3、运动如图4

凸轮机构及其设计

第三章凸轮机构及其设计 §3-1 概述 1 凸轮机构的基本组成及应用特点 组成:凸轮、从动件、机架 运动特征:主动件(凸轮)作匀角速回转,或作匀速直线运动,从动件能实现各种复杂的预期运动规律。 尖底直动从动件盘形凸轮机构、尖底摆动从动件盘形凸轮机构滚子直动从动件盘形凸轮机构、滚子摆动从动件盘形凸轮机构圆柱凸轮机构、移动凸轮机构、平底直动从动件盘形凸轮机构端面圆柱凸轮机构、燃机配气凸轮机构 优点: (1)从动件易于实现各种复杂的预期运动规律。 (2)结构简单、紧凑。 (3)便于设计。 缺点: (1)高副机构,点或线接触,压强大、易磨损,传力小。 (2)加工制造比低副机构困难。 应用: 主要用于自动机械、自动控制中(如轻纺、印刷机械)。 2 凸轮机构的分类 1.按凸轮形状分:盘型、移动、圆柱 2.按从动件运动副元素分:尖底、滚子、平底、球面(P197)3.按从动件运动形式分:直动、摆动 4.按从动件与凸轮维持接触的形式分:力封闭、形封闭 3 凸轮机构的工作循环与运动学设计参数

§3-2凸轮机构基本运动参数设计 一.有关名词 行程-从动件最大位移h。 推程-S↑的过程。 回程-S↓的过程。 推程运动角-从动件上升h,对应凸轮转过的角度。 远休止角-从动件停留在最远位置,对应凸轮转过的角度。 回程运动角-从动件下降h,对应凸轮转过的角度。 近休止角-从动件停留在低远位置,对应凸轮转过的角度。 一个运动循环凸轮:转过2π,从动件:升→停→降→停 基圆-以理论廓线最小向径r0作的圆。 尖底从动件:理论廓线即是实际廓线。 滚子从动件:以理论廓线上任意点为圆心,作一系列滚子圆,其包络线为实际廓线。 从动件位移线图——从动件位移S与凸轮转角 (或时间t)之间 的对应关系曲线。 从动件速度线图——位移对时间的一次导数

走心机凸轮设计步骤

编制调整卡片应注意以下几点: (一) 保证零件质量 没有质量就没有一切,这是第一重要的问题。主要从三个方面来考虑: 1 合理选择机床:一般来说,尽量不用机床的最大的规格来加工零件,特别是加工钢件时。如加工棒料直径是7MM,尽可能采用CM1113而不用CG1107。也尽量不用机床的最高转速来加工零件。如需要主轴转速为6500转/分,则不用CG1107(10000转/分)。原因是在机床的极限规格时不易获得最佳的加工精度。 2 合理安排工序:工序的编制必须满足零件的加工要求,同时也应充分考虑纵切自动车床的加工工艺特点。 3 正确选择切削用量,既要得到高的生产效率,又要保证刀具有足够的耐用度,以求尺寸的稳定。(刀具种类很多,也要分清楚合适刀具,这里我就不打广告了) (二) 提高生产效率:简化辅助动作,安排重合工序。(有经验才可以做的更好) (三) 便于机床的调整:安排必要的工序间隙和停持工序。 (四) 便宜凸轮及刀具的制造:机床上有许多调整机构,如杠杆比,天平刀架及主轴箱的钢性挡块,多凸轮机构双触头机构等,这些机构可以调整零件的加工尺寸,以弥补凸轮的制造误差。充分利用这些机构可以降低凸轮的制造精度要求。用成型刀具可以简化零件的加工过程,但刀具制造困难。如果用复合走刀法来加工成型表面,可简化刀具。 (五) 零件的成组加工:充分利用机床的特性,通过对机床的调整,用一套凸轮加工出几种形状,尺寸相近的零件。用于小批量多品种的零件生产。另外

与此类似的用几块无关的凸轮配出来打制简单的样品,或者多块凸轮重叠制造复杂零件.这些都需要对凸轮非常了解和熟悉才容易做到。这里就不举例了。 二凸轮设计程序 凸轮调整卡片的设计编制可分为四个步骤: (一) 对加工零件进行分析 分析加工零件部分精度和表面粗糙要求.分析轴向尺寸的标注法和要求,并对加工零件的材料.生产性质情况全面了解。 (二) 选择机床 在分析的基础上,选择合适型号的纵切自动车床和附属装置,并了解机床调整的特别,着重考虑机床对此零件的加工可能性。 (三) 确定设计方案 设计方案的正确与否关系到设计工作的全局,方案制订不好或不合理,轻者影响生产效率,严重的会造成调整困难或严重影响加工质量,所以确定设计方案是设计凸轮的重要环节,尤其对复杂零件的凸轮设计方案,更应反复进行推敲,然后定出合理的设计方案。设计方案的内容一般分为下述三个方面: (1) 按零件的形状和要求,结合机床的特点,决定加工顺序和切削步骤。 (2) 在确定切削步骤的同时,分配各刀具的切削任务,并确定各个刀具的几何形状。 (3) 考虑零件尺寸的调整方法,尽可能充分合理地运用机床可调整性,以便顺利调整和提高加工零件的质量和产量。 (4) 编制调整卡片 每个技术员编制的调整卡片都会略有不同,或者角度不尽相同,或者刀具

凸轮机构的设计毕业设计..

济源职业技术学院 毕业设计 题目凸轮机构的设计 系别机电系 专业机电一体化技术 班级机电0601 姓名赵贝贝 学号06010107 指导教师高清冉 日期2008年12月

设计任务书 设计题目: 凸轮机构的设计 设计要求: 原始条件:内燃机中的凸轮,该凸轮满足以下条件。凸轮以等角速度逆时针回转,及基圆半径rb=30mm,及从动件滚子圆半径rt=8mm。 应完成的任务: 1、凸轮轮廓设计 2、凸轮零件图 设计进度要求: 第一周:确定题目; 第二周:搜集凸轮机构相关资料及前期准备工作; 第三周:凸轮曲线设计及计算; 第四周:初步拟定设计的草稿; 第五周:毕业论文的整体校核、修改; 第六周:论文完善、定稿及打印装订; 第七周:毕业答辩。 指导教师(签名):

摘要 在各种机器中,特别是自动化机器中,为实现某些特殊或复杂的运动规律,常采用凸轮机构。凸轮机构通常是由原动件凸轮、从动件和机件组成。其功能是将凸轮的连续转动或移动转换为从动件的连续或不连续的移动或摆动。与连杆机构相比,凸轮机构便于准确的实现给定的运动规律。所以凸轮机构被广泛地应用,以实现各种复杂的运动要求。 本设计主要设计内燃机中的凸轮机构,内燃机中的凸轮以等角速度回转,其轮廓驱使从动件(阀杆)按预期的运动规律启闭阀门,以控制可燃物进入汽缸或排除废气。至于气阀开启或关闭时间的长短及其速度的变化规律,则取决于凸轮轮廓线的形状。根据从动件运动规律,来设计内燃机中滚子盘形凸轮,使其得到预期的运动规律。 关键词:凸轮机构分类,从动件运动规律,位移曲线,轮廓曲线,结构及材料

目录 设计任务书...................................................................................................................................... I 摘要........................................................................................................................................ II 1凸轮机构的应用及分类.. (1) 1.1凸轮机构的应用 (1) 1.2凸轮机构的分类 (1) 2 从动件常用运动规律 (3) 2.1 凸轮机构的基本参数 (3) 2.2 从动件常用的运动规律 (4) 3盘形凸轮轮廓曲线的设计 (8) 3.1凸轮廓线设计的基本原理 (8) 4凸轮机构的结构及材料 (11) 4.1 凸轮的结构 (11) 4.2从动件结构 (11) 4.3凸轮和滚子的材料 (11) 4.4凸轮的零件图 (13) 结论 (14) 致谢 (15) 参考文献 (16)

凸轮机构基本参数的设计

凸轮机构基本参数的设计 前节所先容的几何法和解析法设计凸轮轮廓曲线,其基圆半径r0、直动从动件的偏距e或 摆动从动件与凸轮的中心距a、滚子半径rT等基本参数都是预先给定的。本节将从凸轮机 构的传动效率、运动是否失真、结构是否紧凑等方面讨论上述参数的确定方法。 1 凸轮机构的压力角和自锁 图示为偏置尖底直动从动件盘形凸轮机构在推程的一个位置。Q为从动件上作用的载荷(包 括工作阻力、重力、弹簧力和惯性力)。当不考虑摩擦时,凸轮作用于从动件的驱动力F是 沿法线方向传递的。此力可分解为沿从动件运动方向的有用分力F'和使从动件紧压导路的有 害分力F''。驱动力F与有用分力F'之间的夹角a(或接触点法线与从动件上力作用点速度方 向所夹的锐角)称为凸轮机构在图示位置时的压力角。显然,压力角是衡量有用分力F'与有 害分力F''之比的重要参数。压力角a愈大,有害分力F''愈大,由F''引起的导路中的摩擦阻 力也愈大,故凸轮推动从动件所需的驱动力也就愈大。当a增大到某一数值时,因F''而引 起的摩擦阻力将会超过有用分力F',这时无论凸轮给从动件的驱动力多大,都不能推动从动 件,这种现象称为机构出现自锁。机构开始出现自锁的压力角alim称为极限压力角,它的 数值与支承间的跨距l2、悬臂长度l1、接触面间的摩擦系数和润滑条件等有关。实践说明, 当a增大到接近alim时,即使尚未发生自锁,也会导致驱动力急剧增大,轮廓严重磨损、 效率迅速降低。因此,实际设计中规定了压力角的许用值[a]。对摆动从动件,通常取[a]=40~ 50;对直动从动件通常取[a]=30~40。滚子接触、润滑良好和支承有较好刚性时取数据的上 限;否则取下限。 对于力锁合式凸轮机构,其从动件的回程是由弹簧等外力驱动的,而不是由凸轮驱动的,所 以不会出现自锁。因此,力锁合式凸轮机构的回程压力角可以很大,其许用值可取[a]=70~ 80。

凸轮机构及其设计(8学时)(精)

凸轮机构及其设计(8学时)(精)

第四章 凸轮机构及其设计(8学时) 一、教学目的和教学要求 1、 教学目的:使学生掌握凸轮机构设计的基础知识,并能根据生产实 际需要的运动规律设计凸轮机构。 2、 教学要求 1)了解凸轮机构的分类和应用 2)了解推杆常用的运动规律及推杆运动规律的选择原则。由于现代机器 的速度提高,几种常用的运动规律已不能满足实际工作需要,因此, 除常用运动规律外,应简单介绍一些改进型的运动规律。 3)掌握在确定凸轮机构的基本尺寸时应考虑的主要问题(包括压力角对 尺寸的影响,压力角对凸轮受力状况、效率和自锁的影响) 4)能根据选定的凸轮类型和推杆的运动规律设计凸轮的轮廓曲线。设计 时应以解析法为主。 二、本章重点教学内容及教学难点 重点1、推杆常用运动规律的特点及其选择原则; 2、凸轮机构运动过程的分析; 3、凸轮轮廓曲线的设计; 4、凸轮机构压力角与机构基本尺寸的关系。 难点 1、凸轮机构设计的基本方法 凸轮设计的基本方法是反转法,所依据的是相对运动原 理。其求解的关键是确定推杆在复合运动中其尖顶的位置。确 定时应注意以下几点: 1)要注意推杆反转方向。先要明确凸轮的实际转向,然 后在图上用箭头及“-ω”标出推杆的反转方向,以 避免搞错反转方向。 2)要正确确定推杆在反转运动中占据的位置。推杆反转 前后两位置线的夹角应等于凸轮的转角δ。 3)要正确确定推杆的位移s 。推杆在复合运动中,对应的 位移量s 应在对应的反转位置上从基圆上开始向外量 取。 2、凸轮机构的运动分析方法 反转法不仅是凸轮机构设计的基本方法,而且是凸轮机构分 析常用的方法。凸轮机构分析常涉及的问题,如给定一凸轮机构, 即已知凸轮机构的尺寸及其位置、凸轮角速度大小及方向,求解 推程角0δ、远休止角01δ、回程角0 δ'、近休止角02δ以及推杆行程h ;或求解当凸轮转过某一个δ角时,推杆所产生的相应位移s 、 速度v 等运动参数及凸轮与从动件在该位置接触时的压力角α 等。这时,如果让凸轮转过δ角后来求解,显然是很不方便的。 即利用反转法求解,这实际上与凸轮设计的反转法原理相同。 三、教学过程思路 (一)、凸轮机构的应用与分类

凸轮机构解析法综合及动画指导

一、实验目的 1.培养学生平面凸轮机构解析法综合的能力。 2. 培养学生创新意识及综合设计的能力。 二、实验前的准备工作 1.要求预习本实验,掌握实验原理; 2.初步了解一下True Basic常用命令及其使用; 3.熟练掌握各种基本平面凸轮机构的解析法综合; 4.熟悉教师给定的凸轮机构。(亦可自己选择一个凸轮机构) 三、实验原理 凸轮机构解析法综合(参见MMT第五章) 五、实验方法与步骤 1.编写主程序 (1)编写从动件运动规律的程序并绘制从动件的位移、速度和加速度曲线图,初步检验其正确性。为此,编写了“在TB中绘制SV A三曲线”和“在ACAD 中绘制SV A三曲线”的学习指导,祥见“附件Ⅰ、Ⅱ”。 (2)编写凸轮廓线解析法综合的程序并绘制凸轮廓线(实际廓线和理论廓线)和刀具中心线。为此,编写了“在TB中绘制滚子直动凸轮廓线”、“在TB 中绘制滚子摆动凸轮廓线”的学习指导,祥见“附件Ⅲ、Ⅳ”。 (3)编程求凸轮廓线上任一点的压力角和曲率半径,以检验其是否合适,并绘制相应曲线(方法类似于附件Ⅰ、Ⅱ)编写程序将相应的数据保存成文件输出(可参阅附件Ⅴ:如何将TRUE BASIC 的输出数值打印出来)。 (4)编写程序将凸轮廓线数据保存成相应的.Scr文件并导入AUTOCAD。在AUTOCAD中绘制正式的凸轮机构运动简图。编写了“在ACAD中绘制凸轮廓线”的学习指导,祥见“附件Ⅵ” (5)编写凸轮机构的动画程序。为此,编写了“滚子直动从动件凸轮动画”和“滚子摆动从动件凸轮动画”的实习指导,祥见“附件Ⅶ、Ⅷ”。 2.上机调试

3.编写实验报告

在TB中绘制SV A三曲线 DIM S(0 TO 360) ! 从动件位移S的数值 DIM S1(0 TO 360) ! 从动件位移速度的数值 DIM S11(0 TO 360) ! 从动件位移加速度的数值 OPTION NOLET SET WINDOW -230,240,-200,140 H=80 DELTA0=140*PI/180 !DELTA0代表推程角δ0 DELTAS=40*PI/180 !DELTAS代表远休止角δS DELTA01=100*PI/180 !DELTA01代表回程角δ0’ DELTAS1=80*PI/180 !DELTAS1代表近休止角δS’ S0=SQR(RP^2-E^2) !S0是常数,不要放在循环中 FOR I=0 TO 360 STEP 1 DELTA=I*PI/180 ! 需将凸轮转角转化为弧度δ IF DELTA<=DELTA0 THEN !推程区 D2=DELTA/DELTA0 S(I)=H*(10*D2^3-15*D2^4+6*D2^5) S1(I)=H*(30*D2^2-60*D2^3+30*D2^4)/DELTA0 S11(I)=H*(60*D2-180*D2^2+120*D2^3)/DELTA0^2 ELSEIF DELTA<=(DELTA0+DELTAS) THEN ! 远休止区 S(I)=H S1(I)=0 S11(I)=0 ELSEIF DELTA<=(DELTA0+DELTAS+DELTA01) THEN !回程区 D4=(DELTA-DELTA0-DELTAS)/DELTA01 S(I)=H*(1-D4+1/(2*PI)*SIN(2*PI*D4)) S1(I)=-H/DELTA01*(1-COS(2*PI*D4)) S11(I)=-2*PI*H/DELTA01^2*SIN(2*PI*D4) ELSE !近休止区 S(I)=0 S1(I)=0 S11(I)=0 END IF NEXT I FOR I=0 TO 360 STEP 1 PLOT I,S(I);!每一点坐标后面要有分号,表示连续画折线!需在TB窗口调试合适的比例系数,使得各曲线都能清晰的显示出来。!每一点坐标后面要有分号,表示连续画折线。!由于位移、速度、加速度的单位不相同,有时需要将位移曲线放大或缩小或再上下平移,以使得三曲线都能够清晰地显示出来。

凸轮型线设计

序号: 编码: 重庆理工大学 第二十四届“开拓杯”学生课外学术科技作品竞赛 参赛作品 作品名称:配气凸轮型线设计 作品类别: A 类别: A自然科学类学术论文 B 科技发明制作 C哲学社会科学类学术论文与社会调查报告

配气凸轮型线设计 摘要:配气机构是内燃机重要组成部分,它控制着内燃机的换气过程,其设计优劣直接影响着内燃机的动力性,经济性和排放性以及工作可靠性。今年来随着内燃机的高速化,低排放化的趋势,人们对其配气机构的性能要求越来越高。而凸轮型线配气机构的核心部分,其设计的合理性影响着配气机构的各个性能指标。凸轮型线的设计既要保证获得尽可能的大时面值和丰满系数以提高换气效率,又要保证加速度曲线连续,、无突变。本次论文针对以上情况,设计出一款缸径为68的配气凸轮,并对其性能做出相应的评价。 关键词:配气机构凸轮升程凸轮型线 Abstract:Air distribution mechanism is an important part of the internal combustion engine, which controls the gas exchange process of the internal combustion engine, the design of which has a direct impact on the engine power, economy and emissions as well as work reliability. This year, with the high speed of the internal combustion engine, the trend of low emission, the performance requirements of the gas distribution agencies are getting higher and higher. And the core part of the cam type air distribution mechanism, the rationality of its design affects the performance indexes of the air distribution mechanism. The design of the cam profile is not only to ensure that the face value and fullness coefficient are obtained as much as possible to improve the ventilation efficiency, but also to ensure that the acceleration curve is continuous, and there is no mutation. This paper, in view of the above situation, design a bore 68 of the cam, and make the corresponding evaluation on its performance. Key word:Valve train Cam lift Cam profile 1.凸轮设计的基本原则

凸轮机构及其设计习题解答

图 【分析】要正确地根据位移曲线、速度曲线和加速度曲线中的一个画岀其余的两个,必须对 常见四推 杆的运动规律熟悉。至于判断有无冲击以及冲击的类型,关键要看速度和加速度有无突 变。若速度突变处加 速度无穷大,则有刚性冲击;若加速度的突变为有限值,则为柔性冲击。 解:由图(3)可知,在创段内(0 <5^2), /因推杆的速度V 二0,故此段为推杆的近休段,推杆的位移及加 速度均为零。在AB 段内(n∕2 3〃因)v>0,故为推杆的推程段。且在AB 段内,因速 度线图为上升的斜直线,故推杆先等加速上升,位移曲线为抛物线运动曲线,而加速度曲线为正 的水平直线 段;在BC 段内,因速度曲线为水平直线段,故推杆继续等速上升,位移曲线为上升 的斜直线,而加速度曲 线为与 5轴重合的线段;在CD 段内,因速度线为下降的斜直线,故推杆 继续等减速上升,位移曲线为抛物线,而加速度曲线为负的水平线段。在 DE 段内(3 n/2 <5<2n) 因v<0,故为推杆的回程段,因速度曲线为水平线段,故推杆做等速下降运动。其位移曲线为下降的斜直线, 而加速度曲线为与 5轴重合的线段,且在D 和E 处其加速度分别为负无穷大和正无 穷大。综上所述作出推杆的速度 V 及加速度3线图如图⑹及(C)所示。 由推杆速度曲线和加速度曲线知,在 D 及E 处,有速度突变,且相应的加速度分别为负无穷 大和正无穷大。故凸轮机构在 D 和E 处有刚性冲击。而在A, B, C 及D 处加速度存在有限突变, 故在这儿处凸轮机构有柔性冲击。 在F 处有正的加速度值,故有惯性力,但既无速度突变,也无加速度突变,因此, F 处无冲 击存在。 【评注】本例是针对推杆常用的四种运动规律的典型题。解题的关键是对常用运动规律的位 移、速度 以及加速度线图熟练,特另U 是要会作常用运动规律的位移、速度以及加速度线图。 对于图(R 所示的凸轮机构,要求: (1) 写岀该凸轮机构的名称; (2) 在图上标岀凸轮的合理转向。 (3) 画岀凸轮的基圆; (4) 的凸轮转角 画岀从升程开始到图示位置时推杆的位移S,相对应 ,B 点的压力角 (5)画出推杆的行程H 。 如图(d)所示的凸轮机构推杆的速度曲线由五段直线组成。要求:在题图上画岀推杆的位移曲线、加速 度曲 线;判断哪儿个位置有冲击存在,是刚性冲击还是柔性冲击;在图示的 F 位置, 凸轮与推杆之间有无惯性力作用,有无冲击存在 J-

凸轮机构设计

第九章凸轮机构设计 本章学习任务:凸轮机构的基本知识、其从动件的运动规律、凸轮曲线轮廓的设计、凸轮机构基本尺寸的设计。 驱动项目的任务安排:完成项目中的凸轮机构的具体设计。 9.1凸轮机构的基本知识 (1)基圆以凸轮的回转中心为圆心,凸轮轮廓的最小向径为半径所作的圆,称为凸轮的基圆,基圆半径用r b表示,如图9-1 所示。基圆是设计凸轮轮廓曲线的基准。 图9-1 凸轮机构的部分基本术语 (2)推程从动件从距凸轮回转中心的最近点向最远点运动的过程。 (3)回程从动件从距凸轮回转中心的最远点向最近点运动的过程。 (4)行程从动件从距凸轮回转中心的最近点运动到最远点所通过的距离,或从最远点回到最近点所通过的距离。行程是指从动件的最大运动距离,常用h 来表示。 (5)凸轮转角凸轮绕回转中心转过的角度,称为凸轮转角,用表示。 (6)推程运动角从动件从距凸轮回转中心的最近点运动到最远点时,对应凸轮所转过的角度称为推程运动角,用表示。 (7)回程运动角从动件从距凸轮回转中心的最远点运动到最近点时,对应凸轮所转过的角度称为回程运动角,用' 表示。 (8)远休止角从动件在距凸轮回转中心的最远点静止不动时,对应凸轮所转过的角表示。 度称为远休止角,用 s (9)近休止角从动件在距凸轮回转中心的最近点静止不动时,对应凸轮所转过的角度称为近休止角,用' 表示。 s (10)从动件的位移凸轮转过转角φ 时,从动件所运动的距离称为从动件的位移。位

移s 从距凸轮回转中心的最近点开始度量。对于摆动从动件,其位移为角位移,只需把直动从动件的运动参数转化为相应的摆动运动参数即可。 图9-2 偏置直动尖底从动件凸轮机构的运动循环 图9-2 所示为偏置直动尖底从动件盘形凸轮机构的运动循环图。随着凸轮的转动,从动件逐渐升高,当升高到最高点时,推程运动角为=∠BOE 。凸轮升高到最高后,凸轮远休止廓线EF 段为圆弧,其远休止角为 s =∠EOF 。从F 点开始,随着凸轮的继续转动,从动件开始下降,当下降到最低点时,回程运动角为' =∠FOD ,凸轮从D 点继续转到B 点 时,从动件在最低位置静止不动,DB 段的凸轮转角为近休止角' s =∠DOB 。显然,在一个运动循环中,推程运动角、远休止角、回程运动角和近休止角之间应该满足以下关系: +'+ s +' s = 360 在设计凸轮机构时,凸轮的运动应根据实际的工作要求选择,如果没有远休止和近休止过程,则其远休止角和近休止角均等于零。 9.2从动件的运动规律 在凸轮机构中,从动件的运动通常就是凸轮机构的输出运动,其规律与特性会直接影响到 整个凸轮机构的运动学、动力学、精度等特性。而且,凸轮的轮廓曲线形状也取决于从动件 的运动规律。因此,根据实际的工作要求,正确地选择和设计从动件的运动规律,是凸轮机构 设计的一项重要内容。 从动件的运动规律是指从动件的位移s、速度v、加速度a 与凸轮转角(或时间t)之间的函数关系,可以用方程表示,也可以用线图表示。从动件运动规律的一般方程表达式为:s =s(),v =v() ,a =a() 。而从动件的位移、速度和加速度与凸轮转角(或时间)之间的 关系曲线分别称为从动件的位移曲线、速度曲线和加速度曲线,统称为从动件的运动规律线图。 凸轮机构中的凸轮一般为原动件,且作匀速回转运动。设凸轮的角速度为ω,则从动件 的位移、速度和加速度与凸轮转角之间的关系为:

相关文档
最新文档