TL431典型的恒流源电路

TL431典型的恒流源电路
TL431典型的恒流源电路

6种最常用恒流源电路的分析与比较

6种最常用恒流源电路的分析与比较 恒流电路有很多场合不仅需要场合输出阻抗为零的恒流源,也需要输入阻抗为无限大的恒流源,以下是几种单极性恒流电路: 类型1: 特征:使用运放,高精度 输出电流:Iout=Vref/Rs 类型2: 特征:使用并联稳压器,简单且高精度 输出电流:Iout=Vref/Rs 检测电压:根据Vref不同(1.25V或2.5V)

类型3: 特征:使用晶体管,简单,低精度 输出电流:Iout=Vbe/Rs 检测电压:约0.6V 类型4: 特征:减少类型3的Vbe的温度变化,低、中等精度,低电压检测输出电流:Iout=Vref/Rs 检测电压:约0.1V~0.6V

类型5: 特征:使用JEFT,超低噪声 输出电流:由JEFT决定 检测电压:与JEFT有关 其中类型1为基本电路,工作时,输入电压Vref与输出电流成比例的检测电压Vs(Vs=Rs×Iout)相等,如图5所示, 图5 注:Is=IB+Iout=Iout(1+1/h FE)其中1/h FE为误差

若输出级使用晶体管则电流检测时会产生基极电流分量这一误差,当这种情况不允许时,可采用图6所示那样采用FET管 图6 Is=Iout-I G 类型2,这是使用运放与Vref(2.5V)一体化的并联稳压器电路,由于这种电路的Vref高达2.5V,所以电源利用范围较窄 类型3,这是用晶体管代替运放的电路,由于使用晶体管的Vbe(约0.6V)替代Vref的电路,因此,Vbe 的温度变化毫无改变地呈现在输出中,从而的不到期望的精度 类型4,这是利用对管补偿Vbe随温度变化的电路,由于检测电压也低于0.1V左右,应此,电源利用范围很宽 类型5,这是利用J-FET的电路,改变R gs可使输出电流达到漏极饱和电流I DSS,由于噪声也很小,因此,在噪声成为问题时使用这种电路也有一定价值,在该电路中不接R GS,则电流值变成I DSS,这样,J-FET 接成二极管形式就变成了“恒流二极管” 以上电路都是电流吸收型电路,但除了类型2以外,若改变Vref极性与使用的半导体元件,则可以变成电流吐出型电路。

TL431的原理及应用说明

TL431的原理及使用说明 TL431简介 德州仪器公司(TI)生产的TL431是一个有良好的热稳定性能的三端可调分流基准源。它的输出电压用两个电阻就可以任意地设置到从Vref(2.5V)到36V 范围内的任何值(如图2)。该器件的典型动态阻抗为0.2Ω,在很多应用中可以用它代替齐纳二极管。例如,数字电压表,运放电路、可调压电源,开关电源等等。 上图是该器件的符号。3个引脚分别为:阴极(CATHODE)、阳极(ANODE)和参考端(REF)。 TL431的具体功能可以用如图1的功能模块示意。 图1 由图可以看到,VI是一个内部2.5V的基准源,接在运放的反相输入端。由运放的特性可知,只有当REF端(同相端)的电压非常接近VI(2.5V)时,三极管中才会有一个稳定的非饱和电流通过,而且随着REF端电压的微小变化,通过三极管的电流将从1到100mA变化。当然,该图绝不是TL431的实际内部结构,所以不能简单地用这种组合来代替它。但如果在设计、分析应用TL431的电路时,这个模块图对开启思路,理解电路都是很有帮助的,本文的一些分析也将基于此模块而展开。

图2 前面提到TL431的内部含有一个2.5V的基准电压,所以当在REF端引入输出反馈时,器件可以通过从阴极到阳极很宽范围的分流,控制输出电压。如图2所示的电路,当R1和R2的阻值确定时,两者对Vo的分压引入反馈,若Vo增大,反馈量增大,TL431的分流也就增加,从而又导致Vo下降。显见,这个深度的负反馈电路必然在VI等于基准电压处稳定,此时Vo=(1+R1/R2)Vref。选择不同的R1和R2的值可以得到从2.5V到36V范围内的任意电压输出,特别地,当R1=R2时,Vo=5V。需要注意的是,在选择电阻时必须保证TL431工作的必要条件,就是通过阴极的电流要大于1 mA。 当然,这个电路并不太实用,但它很清晰地展示了该器件的工作原理在应用中的方法。将这个电路稍加改动,就可以得到在很多实用的电源电路,如图3,4。 图3 大电流的分流稳压电路

可调式精密稳压集成电路TL431及应用

可调式精密稳压集成电路TL431及应用 * 潘玉成 (宁德职业技术学院,福建福安 355000) 摘要:介绍了TL 431三端可调精密并联稳压器内部结构、工作原理和主要特点,分析了其典型应用电路,并总结了该器件应用时应注意的几个问题. 关键词:TL431;稳压基准;性能;典型应用 中图分类号:TN 453 文献标识码:A 文章编号:1004-2911(2008)01-0051-05 TL431是美国德洲仪器公司(Texas I nstr um ent)开发的一个有良好热稳定性能的三端可调精密电压基准集成电路,其全称是可调试精密并联稳压器,也称为电压调节器或三端取样集成电路.该器件犹如上世纪70年代诞生的555时基芯片一样,价廉物美、参数优越、性能可靠,因而广泛应用于各种电源电路中.此外,TL431与其它器件巧妙连接,还可以构造出具有其它功能的实用电路.现在TL431已成为用途很广、知名度很高的通用集成电路之一,越来越受到电路设计者的欢迎.1 内部结构和工作原理 TL431有三个引出脚,分别为阴极(CATHODE )、阳极(ANODE)和参考端(REF),应用中将这三个引脚分别用K 、A 、R 表示,其中,K 为控制端,A 为接地端,R 为取样端,有些电路图中用1、2、3分别代表R 、A 、K,在电路中的表示符号如图1所示.TL431有两种封装形式:一种为TO -92封装,它的外型和小功率塑封三极管一模一样;另一种为双列直插8脚塑封结构. TL431内部电路如图2所示,它由多极放大电路、偏置电路、补偿和保护电路组成.其中晶体管V 1、V 2构成输入极,V 3、V 4、V 5构成稳压基准,V 6、V 7、V 8、V 9构成差分放大器,V 10、V 11形成复合管,构成输出极,其它一些电阻、电容、二级管分别起偏置、补偿和保护作用,在原理上它是一个单端输入、单端输出的多级直流放大器.其等效功能框图如图3所示,由一个2.5V 的精密基准电压源、一个电压比较器和一个输出开关管等组成,参考端R 的输出电压与2.5V 的精密基准电压源相比较,当R 端电压超过2.5V 第20卷第1期 宁德师专学报(自然科学版) 2008年2月 Journa l o f N i ngde T eachers Co ll ege(N a t ura l Sc i ence) V o l 20 N o 1 Feb .2008 *收稿日期:2007-12-10 作者简介:潘玉成(1964-),男,高级讲师,福建福州人,现从事高校物理教学及研究. E-ma i:l FA PYC@https://www.360docs.net/doc/ae13915469.html,

tl431反馈电路

在一般的隔离电源中,光耦隔离反馈是一种简单、低成本的方式。但对于光耦反馈的各种连接方式及其区别,目前尚未见到比较深入的研究。而且在很多场合下,由于对光耦的工作原理理解不够深入,光耦接法混乱,往往导致电路不能正常工作。本研究将详细分析光耦工作原理,并针对光耦反馈的几种典型接法加以对比研究。 1 常见的几种连接方式及其工作原理 常用于反馈的光耦型号有TLP521、PC817等。这里以TLP521为例,介绍这类光耦的特性。 TLP521的原边相当于一个发光二极管,原边电流If越大,光强越强,副边三极管的电流Ic越大。副边三极管电流Ic与原边二极管电流If的比值称为光耦的电流放大系数,该系数随温度变化而变化,且受温度影响较大。作反馈用的光耦正是利用“原边电流变化将导致副边电流变化”来实现反馈,因此在环境温度变化剧烈的场合,由于放大系数的温漂比较大,应尽量不通过光耦实现反馈。此外,使用这类光耦必须注意设计外围参数,使其工作在比较宽的线性带内,否则电路对运行参数的敏感度太强,不利于电路的稳定工作。 通常选择TL431结合TLP521进行反馈。这时,TL431的工作原理相当于一个内部基准为2.5 V的电压误差放大器,所以在其1脚与3脚之间,要接补偿网络。 常见的光耦反馈第1种接法,如图1所示。图中,Vo为输出电压,Vd为芯片的供电电压。com信号接芯片的误差放大器输出脚,或者把PWM 芯片(如UC3525)的内部电压误差放大器接成同相放大器形式,com信号则接到其对应的同相端引脚。注意左边的地为输出电压地,右边的地为芯片供电电压地,两者之间用光耦隔离。 图1所示接法的工作原理如下:当输出电压升高时,TL431的1脚(相当于电压误差放大器的反向输入端)电压上升,3脚(相当于电压误差放大器的输出脚)电压下降,光耦TLP521的原边电流If增大,光耦的另一端输出电流Ic增大,电阻R4上的电压降增大,com引脚电压下降,占空比减小,输出电压减小;反之,当输出电压降低时,调节过程类似。 常见的第2种接法,如图2所示。与第1种接法不同的是,该接法中光耦的第4脚直接接到芯片的误差放大器输出端,而芯片内部的电压误差放大器必须接成同相端电位高于反相端电位的形式,利用运放的一种特性——当运放输出电流过大(超过运放电流输出能力)时,运放的输出电压值将下降,输出电流越大,输出电压下降越多。因此,采用这种接法的电路,一定要把PWM 芯片的误差放大器的两个输入引脚接到固定电位上,且必须是同向端电位高于反向端电位,使误差放大器初始输出电压为高。

TL431_典型应用电路

TL431 典型应用电路及稳压电路 TL431是一个有良好的热稳定性能的三端可调分流基准源。他的输出电压用两个电阻就可以任意的设置到从Verf(2.5V)到36V范围内的任何值。该器件的典型动态阻抗为0.2Ω,在很多应用中用它代替齐纳二极管,例如,数字电压表,运放电路,可调压电源,开关电源等。 TL431是一种并联稳压集成电路。因其性能好、价格低,因此广泛应用在各种电源电路中。其封装形式与塑封三极管9013等相同。 TL431精密可调基准电源有如下特点:稳压值从 2.5~36V连续可调;参考电压原误差+-1.0%,低动态输出电阻,典型值为0.22欧姆输出电流1.0~100毫安;全温度范围内温度特性平坦,典型值为50ppm;低输出电压噪声。 主要参数 三端可调分流基准源 可编程输出电压:2.5V~36V 电压参考误差:±0.4% ,典型值25℃(TL431B) 低动态输出阻抗:0.22Ω(典型值) 等效全范围温度系数:50 ppm/℃(典型值) 温度补偿操作全额定工作温度范围 稳压值送从2.5--36V连续可调, 参考电压原误差+-1.0%, 低动态输出电阻, 典型值为0.22欧姆,

输出电流1.0--100毫安。 全温度范围内温度特性平坦, 典型值为50ppm, 低输出电压噪声。 封装:TO-92,PDIP-8,Micro-8,SOIC-8,SOT-23 最大输入电压为37V 最大工作电流150mA 内基准电压为2.5V 输出电压范围为2.5~36V 内部结构 TL431的具体功能可以用下图的功能模块示意。由图可以看到,VI是一个内部的2.5V 的基准源,接在运放的反向输入端。由运放的特性可知,只有当REF端(同向端)的电压非常接近VI(2.5V)时,三极管中才会有一个稳定的非饱和电流通过,而且随着REF 端电压的微小变化,通过三极管图1的电流将从1到100mA变化。当然,该图绝不是TL431的实际内部结构,但可用于分析理解电路。 典型应用电路如下: 1:精密基准电压源(附图1)该电路具有良好的温度稳定性及较大的输出电流。但在连接容

TL431内部分析

上图是一个基准电压源电路,若D6与D5、D4的特性完全一样,那么就有 Vref=Vbe4+(Vd3/Rd3)*Rd2 式中Vbe4是D4的基级与发射极之间的电压,Vd3是D3的电压,为Vbed6-Vbed5。由于这三个管子特性完全相同,那么D5、D6的集电极电压是相等的。所以Vref= Vbe4+(KT/q)* (Rd2/Rd3)*ln(Rd2/Rd1),这里利用了PN结的电流方程:i=Is(equ/kt -1)【Is为PN结反向饱和电流】 基准稳压电源在电路中的应用是很广泛的,特别是在AD/DA IC中,本想接下来介绍以下比较常见的TL431的,我在学习TL431时,发现它的内部结构电路图,不是我想象的拿么难,觉得有必要把内部结构分析下,纯粹是为了提高自己的模电。 不过我首先得先介绍两个基准电流源: 1> 微电流源: 它的原理图如下: 这里的NPN管的放大倍数β都是>>1的,所以U2管的集电极电流为 Iu2=Iu4=(Ubeu1-Ubeu2)/Ru4 式中Ubeu1-Ubeu2只有几十毫伏,甚至更小,因此只要几千欧的Ru4就可以得到几十微安的Iu2,由于这两管子特性完全相同,所以同样可以利用PN结的电流方程得到: Iu2=(Ut/Ru4)*ln(Iu3/Iu2) 2> 比例电流源 它的原理图如下: 这里的NPN管同样是特性相同的管子。从电路可知 Ubeu0+Iru3*Ru3=Ubeu1+Iru4*Ru4 (1) 根据PN结的电流方程可知

Ubeu0 = Ut * ln(Ieu0/Is), Ubeu1=Ut*ln(Ieu1/Is) 把上两式代入 1 中可得: Iru4*Ru4 = Iru3*Ru3 + Ut*ln(Ieu0/Ieu1);这里的对数部分可以忽略,因为Ieu0/Ieu1接近于1。 当β>>2时,Icuo=Iru3=Iru2, Icu1=Iru4; 所以 Iru4*Ru4 = Iru2*Ru3 而此式中的Iru2=(Vcc-Ubeu0)/(Ru2+Ru3) 这两个基准电流源的具体分析可以参考童诗白教授和华成英副教授主编的模拟电子技术基础。 TL431内部电路结构: 初看这原理图,发现它使用了两个电流源,左下角使用的是微电流源,中上面使用的是比例电流源。 原理图分析: 首先当阴极CATHODE通电时,a点便有了电压,那么后面的Q10、Q11组成的达林顿管也会导通,但会马上截止【电压稳定后a点电压会为0】,同时Q4,Q1也导通,拿么下面的微电流源就开始工作,这样整个电路的在通电的瞬间开始工作,在微电流源中,由于电流源比较稳定,不管阴极的电压波动多大,它总会因为后面有个稳压管而使得微电流源的电流很稳定,这样b点的电压也就很稳定,进而REF端的电压也很稳定在2.5V ,【至于为什么是2.5V,我觉得没有必要进行具体分析】;由于微电流源工作,所以Q7、Q8都导通,从而上面的比例电流源也开始导通,由于这里的两个电阻都为800,所以也可以把它看成是一个镜像电流源,事实上镜像电流源与比例电流源的原理几乎没有差别。不过这里的Q7我觉得它会饱和,因为集电极端可以等效的认为比基级端接了个800欧的电阻,可能电压没有基级高,Q8处于放大状态。而当比例电流源工作后,Q9会导通,那么a点便又有了电压,这样后面的达林顿管也会导通。这样它会去控制CATHODE端的电压。

恒流源总结

恒流源是电路中广泛使用的一个组件,这里我整理一下比较常见的恒流源的结构和特点。 恒流源分为流出(Current Source)和流入(Current Sink)两种形式。 最简单的恒流源,就是用一只恒流二极管。实际上,恒流二极管的应用是比较少的,除了因为恒流二极管的恒流特性并不是非常好之外,电流规格比较少,价格比较贵也是重要原因。 最常用的简易恒流源如图(1) 所示,用两只同型三极管,利用三极管相对稳定的be电压作为基准, 电流数值为:I = Vbe/R1。 这种恒流源优点是简单易行,而且电流的数值可以自由控制,也没有使用特殊的元件,有利于降低产品的成本。缺点是不同型号的管子,其be电压不是一个固定值,即使是相同型号,也有一定的个体差异。同时不同的工作电流下,这个电压也会有一定的波动。因此不适合精密的恒流需求。 为了能够精确输出电流,通常使用一个运放作为反馈,同时使用场效应管避免三极管的be电流导致的误差。典型的运放恒流源如图(2)所示,如果电流不需要特别精确,其中的场效应管也可以用三极管代替。 电流计算公式为: I = Vin/R1

这个电路可以认为是恒流源的标准电路,除了足够的精度和可调性之外,使用的元件也都是很普遍的,易于搭建和调试。只不过其中的Vin还需要用户额外提供。 从以上两个电路可以看出,恒流源有个定式(寒,“定式”好像是围棋术语XD),就是利用一个电压基准,在电阻上形成固定电流。有了这个定式,恒流源的搭建就可以扩展到所有可以提供这个“电压基准”的器件上。 最简单的电压基准,就是稳压二极管,利用稳压二极管和一只三极管,可以搭建一个更简易的恒流源。如图(3)所示: 电流计算公式为:I = (Vd-Vbe)/R1 TL431是另外一个常用的电压基准,利用TL431搭建的恒流源如图(4)所示,其中的三极管替换为场效应管可以得到更好的精度。TL431组成流出源的电路,暂时我还没想到:) TL431的其他信息请参考《TL431的内部结构图》和《TL431的几种基本用法》

TL431开关电源电路中的应用

TL431的应用 1、介绍 后备式电源的安全运行需要将输入和输出隔离,这种隔离需要保证控制芯片不能直接对输入和输出电压进行侦 测。由于输入控制输出,一个用于控制输出的误差信号必须从输出得到,这篇应用文章主要讨论了一种应用 AS431 和光耦 4N27 实现电压反馈的简单方法。 2、电源电路 图一显示了一种简单的反激调整器,用电流型控制芯片 AS3842 控制输出, AS431 被用来侦测输出电压的参考 和反馈误差放大器,并产生相应得误差放大信号,然后误差电压信号转化成误差电流信号通过光耦 4N27 送到原边。 3、光耦 目前,光耦器件制造厂商在光耦元件的处理以及封装技术上得到了关键的提高,得到更好的传输比( current transfer ratio CTR )误差和更长时间的可靠性。 当设计光耦反馈电路的时候,设计人员应该注意到光耦正向二极管的电流,因为它直接关系到器件的电流传输比 CTR 和器件长时间内的可靠性,就像灯丝一样,光耦二极管在遭受较高电流时将老化,损坏。光耦的增益带宽随着 二极管正向电流增加而相应增加,带宽的控制由输出晶体管参数的变化来调制。值得一提的是,输出晶体管基极和 集电极间的米勒电容将使光耦的带宽下降。一个好的光耦反馈环不但需要提高整体可靠性,还需要保证系统的响应 速度。 4、设计实例参考 图二显示了反激电路电压反馈环,为了保证 5V 电压的稳定输出, Vcomp 必须跟随输出电压,输出电压通过两 个 2.5k 的电阻分压,结果送到 AS431 误差反馈网络,误差反馈的输出电压 Vcathode 被转化成与二极管成比例的 电流信号,此处光耦起到隔离原边二次侧的作用,并产生与二极管电流成比例的集电极电流(即光耦的三极管的集电极),因为光耦连接到 Vcomp 脚,光耦输出电流就是 Icomp 电流,在一般运行状态下,更高的输出电流促使 Vcathode 下降,导致流过光耦二极管电流增加,发光二极管发光增强,使得三极管接受到的信号增加,使得集电极 电流增加,即 Icomp 增加,从而使得 Vcomp 下降, Vcomp 下降使得 PWM 占空比减小,输出电压下降。 5、光耦工作电流 此设计实例显示了由最大 Icomp 决定的二极管工作电流,为了得到随着 Icomp 线性变化的 Vcomp ,需要让 Icomp 工作于稍大于最大 Icomp 源极电流的线性工作区。图三显示了其线性工作区

几种简单的恒流源电路5

几种简单的恒流源电路 恒流电路有很多场合不仅需要场合输出阻抗为零的恒流源,也需要输入阻抗为无限大的恒流源,以下是几种单极 性恒流电路: 类型1: 特征:使用运放,高精度 输出电流:Iout=Vref/Rs

类型2: 特征:使用并联稳压器,简单且高精度 输出电流:Iout=Vref/Rs 检测电压:根据Vref不同(1.25V或2.5V) 类型3: 特征:使用晶体管,简单,低精度 输出电流:Iout=Vbe/Rs 检测电压:约0.6V

类型4: 特征:减少类型3的Vbe的温度变化,低、中等精度,低电压检测 输出电流:Iout=Vref/Rs 检测电压:约0.1V~0.6V 类型5:

特征:使用JE FT,超低噪声 输出电流:由JE FT决定 检测电压:与JE FT有关 其中类型1为基本电路,工作时,输入电压Vref与输出电流成比例的检测电压Vs(Vs=Rs×Iout)相等,如图5所 示, 图5 注:Is=IB+Iout=Iout(1+1/hFE)其中1/hFE为误差 若输出级使用晶体管则电流检测时会产生基极电流分量这一误差,当这种情况不允许时,可采用图6所示那样采 用FE T管

图6 Is=Iout-IG 类型2,这是使用运放与Vref(2.5V)一体化的并联稳压器电路,由于这种电路的Vref高达2.5V,所以电源利 用范围较窄 类型3,这是用晶体管代替运放的电路,由于使用晶体管的Vbe(约0.6V)替代Vref的电路,因此,Vbe的温 度变化毫无改变地呈现在输出中,从而的不到期望的精度 类型4,这是利用对管补偿Vbe随温度变化的电路,由于检测电压也低于0.1V左右,应此,电源利用范围很宽类型5,这是利用J-FE T的电路,改变Rgs 可使输出电流达到漏极饱和电流IDSS,由于噪声也很小,因此,在噪声成为问题时使用这种电路也有一定价值,在该电路中不接RGS,则电流值变成IDSS,这样,J-FE T接成二极管形 式就变成了“恒流二极管” 以上电路都是电流吸收型电路,但除了类型2以外,若改变Vref极性与使用的半导体元件,则可以变成电流吐 出型电路。 1.由7805组成的恒流电路,电路图如下图1所示: 电流I=Ig+VOUT/R,Ig的电流相对于Io是不能忽略的,且随Vout,Vi n及环境温度的变化而变化,所以

Tl431资料及应用电路

Tl431资料及应用电路 Tl431资料及应用电路 1 TL431的应用资料简介 德州仪器公司(TI)生产的TL431是一是一个有良好的热稳定性能的三端可调分流基准源。它的输出电压用两个电阻就可以任意地设置到从Vref(2.5V)到36V范围内的任何值(如图2)。该器件的典型动态阻抗为0.2Ω,在很多应用中可以用它代替齐纳二极管,例如,数字电压表,运放电路、可调压电源,开关电源等等。 左图是该器件的符号。3个引脚分别为:阴极(CATHOD E)、阳极(ANODE)和参考端(REF)。TL431的具体功能可以用如图1的功能模块示意。

由图可以看到,VI是一个内部的2.5V基准源,接在运放的反相输入端。由运放的特性可知,只有当REF端(同相端)的电压非常接近VI(2.5V)时,三极管中才会有一个稳定的非饱和电流通过,而且随着REF端电压的微小变化,通过三极管图1 的电流将从1到100mA变化。当然,该图绝不是TL4 31的实际内部结构,所以不能简单地用这种组合来代替它。但如果在设计、分析应用TL431的电路时,这个模块图对开启思路,理解电路都是很有帮助的,本文的一些分析也将基于此模块而展开。 2. Tl431在恒压电路中的应用

前面提到TL431的内部含有一个2.5V的基准电压,所以当在REF端引入输出反馈时,器件可以通过从阴极到阳极很宽范围的分流,控制输出电压。如图2所示的电路,当R1和R2的阻值确定时,两者对Vo的分压引入反馈,若V O增大,反馈量增大,TL431的分流也就增加,从而又导致Vo下降。显见,这个深度的负反馈电路必然在VI等于基准电压处稳定,此时Vo=(1+R1/R2)Vref。选择不同的R1和R2的值可以得到从2.5V到36V范围内的任意电压输出,特别地,当R1=R2时,Vo=5V。需要注意的是,在选择电阻时必须保证TL431工作的必要条件,就是通过阴极的电流要大于1 MA 。 当然,这个电路并不太实用,但它很清晰地展示了该器件的工作原理在应用中的方法。将这个电路稍加改动,就可以得到在很多实用的电源电路,如图3,4。

TL431的几种基本用法电路

TL431的几种基本用法电路 作者:疯狂的三极管来源:未知日期:2009-12-22 10:19:52 人气:1096 标签: 导读:TL431作为一个高性价比的常用分流式电压基准,有很广泛的用途。这里简单介绍一下TL431常见的和不常见的几种接法。图(1)是TL431的典型接法,输出一个固定电压值,计算 TL431作为一个高性价比的常用分流式电压基准,有很广泛的用途。这里简单介绍一下TL431常见的和不常见的几种接法。 图(1)是TL431的典型接法,输出一个固定电压值,计算公式是: Vout = (R1+R2)*2. 5/R2, 同时R3的数值应该满足1mA < (Vcc-Vout)/R3 < 500mA 当R1取值为0的时候,R2可以省略,这时候电路变成图(2)的形式,TL431在这里相当于一个2.5V稳压管。 利用TL431还可以组成鉴幅器,如图(3),这个电路在输入电压 Vin < (R1+R2)*2.5/R 2 的时候输出Vout为高电平,反之输出接近2V的电平。需要注意的是当Vin在(R1+R2)*2. 5/R2附近以微小幅度波动的时候,电路会输出不稳定的值。

TL431可以用来提升一个近地电压,并且将其反相。如图(4),输出计算公式为: Vout = ( (R1+R2)*2.5 - R1*Vin )/R2 特别的,当R1 = R2的时候,Vout = 5 - Vin。这个电路可以用来把一个接近地的电压提升到一个可以预先设定的范围内,唯一需要注意的是TL431的输出范围不是满幅的。 TL431自身有相当高的增益(我在仿真中粗略测试,有大概46db),所以可以用作放大器。 图(5)显示了一个用TL431组成的直流电压放大器,这个电路的放大倍数由R1和Rin 决定,相当于运放的负反馈回路,而其静态输出电压由R1和R2决定。 这个电路的优点在于,它结构简单,精度也不错,能够提供稳定的静态特性。缺点是输入阻抗较小,Vout的摆幅有限。 图(6)是交流放大器,这个结构和直流放大器很相似,而且具有同样的优缺点。我正在尝试用这个放大器代替次级运放来放大热释红外传感器的输出信号。

TL431及PC817在开关电源中的应用

TL431及PC817在开关电源中的应用 TL431功能简介 本设计的基准电压和反馈电路采用常用的三端稳压器TL431来完成,在反馈电路的应用中运用采样电压通过TL431限压,再通过光电耦合器PC817把电压反馈到SG3525的COMP端。 由于TL431具有体积小、基准电压精密可调,输出电流大等优点,所以用TL431可以制作多种稳压器。其性能是输出电压连续可调达36V,工作电流范围宽达0.1~100mA,动态电阻典型值为0.22欧,输出杂波低。其最大输入电压为37V,最大工作电流为150mA,内基准电压为2.5V,输出电压范围为2.5~30V。 TL431是由美国德州仪器(TI)和摩托罗拉公司生产的2.5~36V可调式精密并联稳压器。其性能优良,价格低廉,可广泛用于单片精密开关电源或精密线性稳压电源中。此外,TL431还能构成电压比较器、电源电压监视器、延时电路、精密恒流源等。 TL431大多采用DIP-8或TO-92封装形式,引脚排列分别如图4.26所示。

图中,A为阳极,使用时需接地;K为阴极,需经限流电阻接正电源;UREF是输出电压UO的设定端,外接电阻分压器;NC为空脚。 TL431的等效电路如图所示,主要包括①误差放大器A,其同相输入端接从电阻分压器上得到的取样电压,反相端则接内部2.5V基准电压Uref,并且设计的UREF=Uref,UREF通常状态下为2.5V,因此也称为基准端;②内部2.5CV基准电压源Uref;③NPN型晶体管VT,它在电路中起到调节负载电流的作用;④保护二极管VD,可防止因K-A间电源极性接反而损坏芯片。TL431的电路图形符号和基本接线如图4.27所示。 它相当于一只可调式齐纳稳压管,输出电压由外部精密分压电阻来设定,其公式为(4-16):

基于单片机的恒流源.doc

随着电子技术的发展,数字电路应用领域的扩展,现今社会,产品智能化、数字化已经成为人们追求的一种趋势,设备的性能、价格,发展空间等备受人们关注,尤其对电子设备的精密度和稳定度最为关注。性能好的电子设备,首先离不开稳定的电源,电源稳定度越高,设备和外围条件就越优越,那么设备的寿命就更长。基于此,人们对数控恒定电流器件的需要越来越迫切。 电源技术尤其是数控电源技术是一门实践性很强的工程技术,服务于各行各业。电力电子技术是电能的最佳应用技术之一。当今电源技术融合了电气、电子、系统集成、控制理论、材料等诸多学科领域。随着计算机和通讯技术发展而来的现代信息技术革命,给电力电子技术提供了广阔的发展前景,同时也给电源提出 了更高的要求。随着数控电源在电子装置中的普遍使用,普通电源在工作时产生的误差,会影响整个系统的精确度。电源在使用时会造成很多不良后果,世界各国纷纷对电源产品提出了不同要求并制定了一系列的产品精度标准。只有满足产品标准,才能够进入市场。随着经济全球化的发展,满足国际标准的产品才能获得进出的通行证。数控电源是从80年代才真正的发展起来的,期间系统的电力电子理论开始建立。这些理论为其后来的发展提供了一个良好的基础。在以后的一段时间里,数控电源技术有了长足的发展。但其产品存在数控程度达不到要求、分辨率不高、

功率密度比较低、可靠性较差的缺点。因此数控电源主要的发展方向,是针对上述缺点不断加以改善。单片机技术及电压转换模块的出现为精确数控电源的发展提供了有利的条件。新的变换技术和控制理论的不断发展,各种类型专用集成电路、数字信号处理器件的研制应用,到90年代,己出现了数控精度达到0.05V 的数控电源,功率密度达到每立方英寸50W的数控电源。从组成上,数控电源可分成器件、主电路与控制等三部分。目前在电力电子器件方面,几乎都为旋纽开关调节电压,调节精度不高,而且经常跳变,使用麻烦。数字化智能电源是针对传统电源的不足设计的,数字化能够减少生产过程中的不确定因素和人为参与的环节数,有效地解决电源模块中诸如可靠性、智能化和产品一致性等工程问题,极大地提高生产效率和产品的可维护性。 当今社会,数控恒压技术已经很成熟,但是恒流源方面特别是数控恒流源的技术菜刚刚起步有待发展,高性能的数控横流器件的开发和应用存在巨大的发展空间。本数控直流恒流源系统输出电流稳定,不随负载和环境变化,并且有很高的精度,输出电流误差范围很小,输出电流可在一定范围内任意设定,因而可实际应用于需要稳定度小功率横流源的领域。

TL431基准发生器稳压原理及应用

TL431基准发生器稳压原理及应用 如图1是TL431的框图。一般情况下,使用时CATHODE端通过一个电阻接到电源正或调整管上,ANODE端接到电源地,REF端则一般通过分压电阻进行采样。TL431是一个名义 =2.500V(名义值),当REF端的电压与之相等电压为2.5V的电压基准,亦即图1中的V REF 时,电路工作稳定,即三极管电流稳定不变----这时电路是通过控制内部的调整管(即三极管)工作电流的大小来达到稳压的目的。 图1 如图2是TL431的基本应用图。正常情况下,应当在R EF与CATHODE之间接一个电容,以确保电路的工作稳定。电路的控制效果通过控制TL431内部的受控程度在一定范围内的三极管的电流来达到稳定电压V 的目的(其反馈过程,请自己尝试画出来)。我们注意到, O 端上的负载并联的,所以,称之为并联稳压器。 TL431的这个三极管实际上是和接在V O 事实上,如果将图中的R1、R2和TL431合成一个整体,那么我们就不难发现它和一个稳压二极管所处的位置和作用是完全相同的。平时,你觉得稳压管是并联稳压的器件吗?如果没觉得,就得清醒一下了。也许用稳压管的稳压电路你很熟悉,也没觉得它有什么,不过不能让人换个名称叫做并联稳压(电路)就给搞糊涂了。 图2 图片链接:TL431框图.gif TL431的基本应用1.gif 附注: 这里名义值的意思是,生产这个产品时的控制目标就是2.500V,但实际产品可能存在或高或低一些的偏差,因此,我们虽然叫它是2.500V稳压器,但实际上并不保证它一定准确地输出2.500V。当然,误差范围是确定的,如数据表中给出了在一定温度范围内的最大值和最小值。关于误差的概念大家不要小看,这是个可以很简单也可以很复杂的问题。今后要讲到的。

LED驱动电源恒流电路方案详解

恒流案大全 恒流源是电路中广泛使用的一个组件,这里我整理一下比较常见的恒流源的结构和特点。 恒流源分为流出(Current Source)和流入(Current Sink)两种形式。 最简单的恒流源,就是用一只恒流二极管。实际上,恒流二极管的应用是比较少的,除了因为恒流二极管的恒流特性并不是非常好之外,电流规格比较少,价格比较贵也是重要原因。 最常用的简易恒流源如图(1) 所示,用两只同型三极管,利用三极管相对稳定的be电压作为基准,电流数值为:I = Vbe/R1。 这种恒流源优点是简单易行,而且电流的数值可以自由控制,也没有使用特殊的元件,有利于降低产品的成本。缺点是不同型号的管子,其be电压不是一个固定值,即使是相同型号,也有一定的个体差异。同时不同的工作电流下,这个电压也会有一定的波动。因此不适合精密的恒流需求。 为了能够精确输出电流,通常使用一个运放作为反馈,同时使用场效应管避免三极管的be电流导致的误差。典型的运放恒流源如图(2)所示,如果电流不需要特别精确,其中的场效应管也可以用三极管代替。电流计算公式为: I = Vin/R1

这个电路可以认为是恒流源的标准电路,除了足够的精度和可调性之外,使用的元件也都是很普遍的,易于搭建和调试。只不过其中的Vin还需要用户额外提供。 从以上两个电路可以看出,恒流源有个定式(寒,“定式”好像是围棋术语XD),就是利用一个电压基准,在电阻上形成固定电流。有了这个定式,恒流源的搭建就可以扩展到所有可以提供这个“电压基准”的器件上。 最简单的电压基准,就是稳压二极管,利用稳压二极管和一只三极管,可以搭建一个更简易的恒流源。如图(3)所示: 电流计算公式为:I = (Vd-Vbe)/R1

TL431的工作原理

摘要:分析了TL431的工作原理,整理了技术指标,论述了四个方面的典型应用,总结了使用注意事项,并以详尽的图表证明,该芯片参数优越,性能可靠,应用前景广阔。 关键词:TL431 稳压基准性能应用 1 引言 TL431是TL、ST公司研制开发的并联型三端稳压基准。由于其封装简单(型如三极管)、参数优越(高精度、低温漂)、性价比高(民品1.3~1.5元/只),近年来在国外已经得到了广泛应用。 从1988年获得该器件的第一手资料开始,我们就对该器件给予了关注。通过大量的实验和多年的应用证明,该器件犹如七十年代诞生的555时基芯片一样,价廉物美、参数优越、性能可靠、应用方便、值得推广。尤其是在民品开发中,大有用武之地。 2 工作原理 该芯片的内部等效电路如图1所示。其中V1V2构成输入级,V3V4V5构成稳压基准,V6V7V8V9构成差分放大器,V10V11形成复合管,构成输出级。D1D2均为反向极向保护。引线端子1为参考电压输入端R,2为公共阳极端A,3为输出阴极端K。 其等效功能框图如图2(a)所示。其中VR为基准电压(VR=2.5V),A为同相放大器,V为并联型调整管(总增益A0≥1000倍),W为馈电支路。其封装引脚如图2(b),电路符号如图2(c)所示。 3 技术指标

TL431的电气参数见表1。 表1 TL431电气参数 附注:①上表是综合多个生产厂家提供的参数及实测数据(*)而制。 ②TL431尾缀字母表示产品级别及工作温度范围,C 为商业品(-10℃~+70℃),I 为工业品 (-40℃~+85℃),M 为军品(-55℃~+125℃)。 该器件的主要技术指标为: ●基准电压温漂小:≤±50p pm /℃; ●基准电压精度高:2.5V±1%; ●输出噪声电压低:≤100μVpp ; ●稳压范围宽:(2.5~36)V 连续可调; ●负载电流范围大:(1.0~100)mA 。 4 典型应用实例 4.1 稳压基准 许多稳压基准的负载能力都很小,端电压调节也不方便,而由TL431构成的稳压基准温漂小,又有相当的负载能力,且输出电压连续可调,电路简单。其典型接线如图3所示,输出电压由下式确定: U0=[1+(R1/R2)]·VR (VR=2.5V) 其电压调节范围为2.5V ~36V ,当R1短路或R2断路时,Uo=VR=2.5V ;电流动态范围为0~[(Ui -Uo)/R0-1]mA 。该电路还可以很方便地加入一只扩流管即构成一个性能优良的稳压电源。

关于恒流源电路的研究与几种设计方案

第一章引言 随着现代技术的发展,恒定电流源的应用将十分重要,如机器人、工业自动化、卫星通信、电力通讯、智能化仪器仪表以及其它数字控制等方面都迫切需要应用恒定电流器件,因此, 研究和开发恒流器件具有十分重要的意义。许多场合, 尤其是高精度测控系统需要高精度的电压源与电流源。微电子工艺的高度发展, 给我们提供了许多小型化、集成化的高精度电压源, 但电流源, 特别是工作电流大的高精度电流源仍需使用者自行设计实现。 恒流源是能够向负载提供恒定电流的电源,因此恒流源的应用范围非常广泛,并且在许多情况下是必不可少的。例如在用通常的充电器对蓄电池充电时,随着蓄电池端电压的逐渐升高,充电电流就会相应减少。为了保证恒流充电,必须随时提高充电器的输出电压,但采用恒流源充电后就可以不必调整其输出电压,从而使劳动强度降低,生产效率得到了提高。恒流源还被广泛用于测量电路中,例如电阻器阻值的测量和分级,电缆电阻的测量等,且电流越稳定,测量就越准确。 本论文主要概括了恒流源的基本概念,并设计出几种不同要求的恒流源,运用了SPCE061A单片机设计出新型数控恒流源,具有高稳定性和高灵敏性。对以往恒流源进行了改进创新。 第二章基本恒流源电路 2.1恒流源基础知识 基本恒流源电路是恒流源电路的基本组成,是分析恒流源电路的基础。2.1.1恒流源介绍 恒流源,是一种能向负载提供恒定电流之电路.它既可以为各种放大电路提供偏流以稳定其静态工作点,又可以作 为其有源负载,以提高放大倍数.并且在差动放大电路、脉冲产生电路中得到了广泛应用. 过一定的论述.然而,对各种恒流电路之对比分析,各自应用特点,以及需要改进的方面,还有待进一步研究,本文就来探 讨这些问题. 2.1.2恒流源的原理和特点

几种简单恒流源电路

几种简单的恒流源电路 恒流电路应用的范围很广,下面介绍几种由常用集成块组成的恒流电路。 1.由7805组成的恒流电路,电路图如下图1所示: 电流I=Ig+VOUT/R,Ig的电流相对于Io是不能忽略的,且随Vout,Vin及环境温度的变化而变化,所以 这个电路在精度要求有些高的场合不适用。 2.由LM317组成的恒流电路如图2所示,I=Iadj+Vref/R,他的恒流会更好,另外他是低压差稳 压IC。 摘要:本文论述了以凌阳16位单片机为控制核心,实现数控直流电流源功能的方案。设计采用MOSFET和精密运算放大器构成恒流源的主体,配以高精度采样电阻及12位D/A、A/D转换器,完成了单片机对输出电流的实时检测和实时控制,实现了10mA~ 2000mA范围内步进小于2mA恒定电流输出的功能,保证了纹波电流小于0.2mA,具有较高的精度与稳定性。人机接口采用4×4键盘及LCD液晶显示器,控制界面直观、简洁,具有良好的人机交互性能。关键字:数控电流源 SPCE061A 模数转换数模转 换采样电阻 一、方案论证根据题目要求,下面对整个系统的方案进行论证。方案一:采用开关电源的恒流源采用开关电源的恒流源电路如图1.1所示。当电源电压降低或负载电阻Rl降低时,采样电阻RS上的电压也将减少,则SG3524的12、13管脚输出方波的占空比增大,从而BG1导通时间变长,使电压U0回升到原来的稳定值。BG1关断后,储能元件L1、E2、E3、E4保证负载上的电压不变。当输入电源电压增大或负载电阻值增大引起U0增大时,原理与前类似,电路通过反馈系统使U0下降到原来的稳定值,从而达到稳定负载电流Il的目的。 图 1.1 采用开关电源的恒流源 优点:开关电源的功率器件工作在开关状态,功率损耗小,效率高。与之相配套的散热器体积大大减小,同时脉冲变压器体积比工频变压器小了很多。因此采用开关电源的恒流源具有效率高、体积小、重量轻等优点。缺点:开关电源的控制电路结构复杂,输出纹波较大,在有限的时间内实现比较困难。方案二:采用集成稳压器构成的开关恒流源系统电路构成如图1.2所 示。MC7805为三端固定式集成稳压器,调节,可以改变电流的大小,其输出电流为:,式中为MC7805 的静态电流,小于10mA。当较小即输出电流较大时,可以忽略,当负载电阻变化时,MC7805改变自身压差来维持通过负载的电流不变。

TL431应用电路图集

文章编 100816163121 文章分类:电路>电子元件 号: 点击:... 关键词:TL431文章来源:互联网 摘要: 1、tl431用做音频放大器 下图是tl431用作电压比较器:它是巧妙的运用了Vref=2.5v这个临界电压。当ViVref时,Vo=2V由于TL431内阻小,因而输入输出波形跟踪良好。当比较电压大于2.5V时候可以采取电阻分压然后再比较,(但是显然这对输入阻抗有一定的影响);同样当比较电压低于2.5V时候可以采用1.24V的tl432。

(400mW单声道功率放大电路) 2、tl431大电流电源 3、tl431用做上下限检测器

4、tl431用作延时器 5、tl431用作电流源(恒流源)

6、基于TL431的精密5V稳压器

7、TL431开关电源上的应用 在过去的普通开关电源设计中,通常采用将输出电压经过误差放大后直接反馈到输入端的模式。这种电压控制的模式在某些应用中也能较好地发挥作用,但随着技术的发展,当今世界的电源制造业大多已采用一种有类似拓扑结构的方案。此类结构的开关电源有以下特点:输出经过TL431(可控分流基准)反馈并

将误差放大,TL431的沉流端驱动一个光耦的发光部分,而处在电源高压主边的光耦感光部分得到的反馈电压,用来调整一个电流模式的PWM控制器的开关时间,从而得到一个稳定的直流电压输出。上图是一个实用的4W开关型5V直流稳压电源的电路。该电路采用了此种拓扑结构并同时使用了TOPSwitch技术。图中C1、L1、C8和C9构成EMI滤波器,BR1和C2对输入交流电压整流滤波,D1和D2用于消除因变压器漏感引起的尖峰电压,U1是一个内置MOSFET的电流模式PWM控制器芯片,它接受反馈并控制整个电路的工作。D3、C3是次极整流滤波电路,L2和C4组成低通滤波以降低输出纹波电压。R2和R3是输出取样电阻,两者对输出的分压通过TL431的REF端来控制该器件从阴极到阳极的分流。这个电流又是直接驱动光耦U2的发光部分的。那么当输出电压有变大趋势时,Vref随之增大导致流过 TL431的电流增大,于是光耦发光加强,感光端得到的反馈电压也就越大。U1在接受这个变大反馈电压后将改变MOSFET的开关时间,输出电压随改变而回落。事实上,上面讲述的过程在极短的时间内就会达到平衡,平衡时Vref=2.5V,又有R2=R3,所以输出为稳定的5V。这里要注意的是,不再能通过简单地改变取样电阻R2、R3的值来改变输出电压,因为在开关电源中每个元件的参数对整个电路工作状态的影响都会很大。按图中所示参数时,电路可在90VAC~264VAC(50/60Hz)输入范围内,输出+5V,精度优于±3%,输出功率为4W,最大输出电流可达0.8A,典型变换效率为70%。

相关文档
最新文档