AR技术原理

AR技术原理
AR技术原理

AR从其技术手段和表现形式上,可以明确分为大约两类,一是Vision based AR,即基于计算机视觉的AR,二是LBS based AR,即基于地理位置信息的AR,我们分门别类对其进行概念讲解和原理解析。

? Vision based AR

基于计算机视觉的AR是利用计算机视觉方法建立现实世界与屏幕之间的映射关系,使我们想要绘制的图形或是3D模型可以如同依附在现实物体上一般展现在屏幕上,如何做到这一点呢?本质上来讲就是要找到现实场景中的一个依附平面,然后再将这个3维场景下的平面映射到我们2维屏幕上,然后再在这个平面上绘制你想要展现的图形,从技术实现手段上可以分为2类:

1) Marker-Based AR

这种实现方法需要一个事先制作好的Marker(例如:绘制着一定规格形状的模板卡片或者二维码),然后把Marker放到现实中的一个位置上,相当于确定了一个现实场景中的平面,然后通过摄像头对Marker 进行识别和姿态评估(Pose Estimation),并确定其位置,然后将该Marker中心为原点的坐标系称为Marker Coordinates即模板坐标系,我们要做的事情实际上是要得到一个变换从而使模板坐标系和屏幕坐标系建立映射关系,这样我们根据这个变换在屏幕上画出的图形就可以达到该图形依附在Marker上的效果,理解其原理需要一点3D射影几何的知识,从模板坐标系变换到真实的屏幕坐标系需要先旋转平移到摄像机坐标系(Camera Coordinates)然后再从摄像机坐标系映射到屏幕坐标系(其实由于硬件误差这中间还需要理想屏幕坐标系到实际屏幕坐标系的转换,这里不深究),见下图。

在实际的编码中,所有这些变换都是一个矩阵,在线性代数中矩阵代表一个变换,对坐标进行矩阵左乘便是一个线性变换(对于平移这种非线性变换,可以采用齐次坐标来进行矩阵运算)。公式如下:

矩阵C的学名叫摄像机内参矩阵,矩阵Tm叫摄像机外参矩阵,其中内参矩阵是需要事先进行摄像机标定

得到的,而外参矩阵是未知的,需要我们根据屏幕坐标(x c ,y c)和事先定义好的Marker 坐标系以及内参矩

阵来估计Tm,然后绘制图形的时候根据Tm来绘制(初始估计的Tm不够精确,还需要使用非线性最小

二乘进行迭代寻优),比如使用OpenGL绘制的时候就要在GL_MODELVIEW的模式下加载Tm矩阵来

进行图形显示。

2) Marker-Less AR

基本原理与Marker based AR相同,不过它可以用任何具有足够特征点的物体(例如:书的封面)作

为平面基准,而不需要事先制作特殊的模板,摆脱了模板对AR应用的束缚。它的原理是通过一系列算法(如:

SURF,ORB,FERN等)对模板物体提取特征点,并记录或者学习这些特征点。当摄像头扫描周围场景,

会提取周围场景的特征点并与记录的模板物体的特征点进行比对,如果扫描到的特征点和模板特征点匹配

数量超过阈值,则认为扫描到该模板,然后根据对应的特征点坐标估计Tm矩阵,之后再根据Tm进行图

形绘制(方法与Marker-Based AR类似)。

? LBS-Based AR

其基本原理是通过GPS获取用户的地理位置,然后从某些数据源(比如wiki,google)等处获取该

位置附近物体(如周围的餐馆,银行,学校等)的POI信息,再通过移动设备的电子指南针和加速度传感器

获取用户手持设备的方向和倾斜角度,通过这些信息建立目标物体在现实场景中的平面基准(相当于

marker),之后坐标变换显示等的原理与Marker-Based AR类似。

这种AR技术利用设备的GPS功能及传感器来实现,摆脱了应用对Marker的依赖,用户体验方面要

比Marker-Based AR更好,而且由于不用实时识别Marker姿态和计算特征点,性能方面也好于

Marker-Based AR和Marker-Less AR,因此对比Marker-Based AR和Marker-Less AR,LBS-Based AR

可以更好的应用到移动设备上。

LBS-Based AR导航类应用,由于需要显示的信息较多,会出现以下两个问题。

物体相互覆盖无法显示的问题

采用实时聚类技术,将互相覆盖较严重的标签进行实时合并,当用户点击聚合标签时,聚合标签聚合的所有标签都以列表的形式显示出来,再供用户二次选择。

点选几个物体相互覆盖部分时的物体选择问题。

采用射线相交技术,当用户点击屏幕时,通过坐标变化,把2D的屏幕坐标转换为3D的射线,并判断该射线是否与3D场景中的标签相交,如果相交,则把所有相交的标签以列表的形式显示出来,再供用户二次选择。

硬件方面

硬件技术难点:

交互技术

手势操控:微软HoloLens是利用手势进行交互的、最有特点的AR硬件。戴上HoloLens眼镜后,

可通过手指在空中点选、拖动、拉伸来控制虚拟物体、功能菜单界面。比如利用Air tap 手势打开全息图,

利用Bloom 手势打开开始菜单。

语音操控:手势操控固然解放了双手,但是它有着致命的缺陷,那就是频繁的抬手会造成手臂酸软。笔者在利用Leap Motion体验小游戏时,发现这种问题尤甚。而语音操控便是更好的人机交互方案。现在微软Cortana、Google Now、苹果Siri、亚马逊Echo都是优秀的语音识别助手,但是他们的识别率还是不高,只能作为辅助操作工具,智能程度也远远达不到AR交互需求。

体感操控:假设有一天全息通话成为了现实,那么除了语音、视觉交流之外,你是否可以和远程的朋友进行体感交流(比如握手)?想要获得更加完美的增强现实体验,体感外设显然是非常重要的一环。现在,已经有不少厂商推出了体感手套、体感枪等外设。只是这些设备功能还很单薄,还有着极大的改进空间。

镜片成像技术

无论是增强现实还是虚拟现实,FOV 都是影响使用体验的最重要因素之一。现在的AR眼镜的可视广角普遍不高,HoloLens有30°,Meta One只有23°,而公众最为熟悉的Google Glass视角仅有12°。这是由于镜片成像技术和光学模组不成熟造成的,现在还没有太好的解决方案,但太窄的视角显然让增强现实效果大打折扣。

而除了FOV,AR在成像方面,还存在着以下的问题需要解决:

首先软件方面,底层算法(输入、输出算法)还需要加强。这需要精确的图像识别技术来判断物体所处的位置以及3D坐标等信息。不同于其他3D定位,增强现实领域的物体位置,必须结合观测者的相对位置、

三维立体坐标等信息进行定位,难度要高很多。而如何利用叠加呈像算法,将相关信息叠加显示在视网膜上也是个技术难点。

而在硬件方面,光学镜片还是存在着色散和图形畸变的问题。智能眼镜成像时,视场周边会出现红绿蓝色变,这就是棱镜反射光线时常见的色散现象,可以通过软件进行色彩补偿或者通过多材料镜片来消除。前

者会增加硬件负担并降低图像帧率。后者的成品率低,这也是造成AR眼睛昂贵的原因之一。

SLAM技术

SLAM 即指同步定位与建图技术。有人说,两年前,扫地机是就是它的代言人。确实,能够扫描室内布局结构,并构建、规划扫地路线的扫地机器人是SLAM技术最好代表了。其实,这项技术也可以被运用在

AR领域,现阶段基于SLAM技术开发的代表性产品有微软Hololens,谷歌Project Tango以及Magic Leap。

举个例子,我们知道AR可以用来观看视频,但是如果我想把画面准确的投射到墙上或者壁橱上呢?这就需要SLAM技术。以HoloLens为例,它在启动的时候,会对用户所处空间进行扫描,从而建立房间内物体摆设的立体模型。

扫描仪的基本原理及基础知识

扫描仪的基本原理及基础知识 扫描仪是一种光机电一体化的高科技产品。它是将各种形式的图像信息输入计算机的重要工具。是继键盘和鼠标之后的第三代计算机输入设备。也是功能极强的一种输入设备。人们通常将扫描仪用于计算机图像的输入,从最直接的图片、照片、胶片到各类图纸图形以及各类文稿资料都可以用扫描仪输入到计算机中进而实现对这些图像形式的信息的处理、管理、使用、存贮、输出等。目前扫描仪已广泛应用于各类图形图像处理、出版、印刷、广告制作、办公自动化、多媒体、图文数据库、图文通讯、工程图纸输入等许多领域。 2.扫描仪由哪些部分组成?是如何工作的? 扫描仪主要由光学成像部分、机械传动部分和转换电路部分组成。这几部分相互配合将反映图像特征的光信号转换为计算机可接受的电信号。扫描仪的核心是完成光电转换的光电转换部件。目前大多数扫描仪采用的光电转换部件是所谓的电荷耦合器件(CCD)。它可以将照射在其上的光信号转换为对应的电信号。其它主要部分的组成有:光学成像部分的光源、光路和镜头;转换电路部分的A/D转换处理电路及控制机械部分运动的控制电路和机械传动机构的步进电机、扫描头及导轨等。扫描仪工作时首先由光源将光线照在欲输入的图稿上产生表示图像特征的反射光(反射稿)或透射光(透射稿)。光学系统采集这些光线将其聚焦在CCD上,由CCD将光信号转换为电信号,然后由电路部分对这些信号进行A/D转换及处理产生对应的数字信号输送给计算机。当机械传动机构在控制电路的控制下带动装有光学系统和CCD的扫描头与图稿进行相对运动将图稿全部扫描一遍,一幅完整的图像就输入到计算机中去了。 3.扫描仪是如何分类的? 目前市场上扫描仪种类很多,按不同的标准可分成不同的类型。按扫描原理可将扫描仪分为以CCD 为核心的平板式扫描仪、手持式扫描仪和以光电倍增管为核心的滚筒式扫描仪。按扫描图像幅面的大小可分为小幅面的手持式扫描仪、中等幅面的台式扫描仪和大幅面的工程图扫描仪,按扫描图稿的介质可分为反射式(纸材料)扫描仪和透射式(胶片)扫描仪以及既可扫反射稿又可扫透射稿的多用途扫描仪。按用途可将扫描仪分为可用于各种图稿输入的通用型扫描仪和专门用于特殊图像输入的专用型扫描仪如条码读入器、卡片阅读机等。 4.扫描仪的主要性能指标有哪些? 扫描仪的性能指标主要有表示扫描仪精度的分辨率;表示扫描图像灰度层次范围的灰度级;表示扫描图像彩色范围的色彩数,以及扫描速度和扫描幅面等。分辨率表示了扫描仪对图像细节的表面能力,通常用每英寸长度上扫描图像所含有的象素点的个数表示,记做DPI(Dot Per Inch)。目前,多数扫描仪的分辨率在300DPI-2400DPI之间。灰度级表示灰度图像的亮度层次范围。级数越多扫描图像的亮度范围越大、层次越丰富。目前多数扫描仪的灰度为256级。色彩数表示彩色扫描仪所能产生的颜色范围。通常用表示每个象素点上颜色的数据位数(bit)表示。比如常说的真彩色图像指的是每个象素点的颜色用24位二进制数表示,共可表示224=16.8M种颜色,通常称这种扫描仪为24bit真彩色扫描仪。色彩数越多扫描图像越鲜艳真实。扫描速度有多种表示方法,通常用在指定的分辨率和图像尺寸下的扫描时间表示。扫描幅面表示可扫描图稿的最大尺寸,常见的有A4、A3、A0幅面等。 5.手持扫描仪的主要特点及用途是什么? 手持扫描仪的主要优点是体积小、携带方便、价格低廉。其扫描图像的最大宽度是105mm,长度方向不限。使用时由人手推动扫描仪从图稿上移过,扫描图像质量与人的操作有关。扫大图时可用软件实现拼接,手持扫描仪的性能指标一般较低,分辨率通常为400DPI左右,以黑白和灰度的类型居多,彩色类型近来发展较快,此类扫描仪主要用于名片制作、桌面排版、图文数据库、电脑刻字、字符识别(OCR)等方面。由于手持扫描仪的幅面小、精度低、应用范围有限,通常适合于初学者、家庭和资金有限且对幅面和精度要求不高的用户。目前世界市场上70%以上的手持扫描仪是台湾生产的,代表性产品有Mustek系列、Primax 系列、Qtronix系列等。

矩阵键盘的工作原理和扫描确认方式

9.3.1 矩阵键盘的工作原理和扫描确认方式 来源:《AVR单片机嵌入式系统原理与应用实践》M16华东师范大学电子系马潮 当键盘中按键数量较多时,为了减少对I/O 口的占用,通常将按键排列成矩阵形式,也称为行列键盘,这是一种常见的连接方式。矩阵式键盘接口见图9-7 所示,它由行线和列线组成,按键位于行、列的交叉点上。当键被按下时,其交点的行线和列线接通,相应的行线或列线上的电平发生变化,MCU 通过检测行或列线上的电平变化可以确定哪个按键被按下。 图9-7 为一个 4 x 3 的行列结构,可以构成12 个键的键盘。如果使用 4 x 4 的行列结构,就能组成一个16 键的键盘。很明显,在按键数量多的场合,矩阵键盘与独立式按键键盘相比可以节省很多的I/O 口线。 矩阵键盘不仅在连接上比单独式按键复杂,它的按键识别方法也比单独式按键复杂。在矩阵键盘的软件接口程序中,常使用的按键识别方法有行扫描法和线反转法。这两种方法的基本思路是采用循环查循的方法,反复查询按键的状态,因此会大量占用MCU 的时间,所以较好的方式也是采用状态机的方法来设计,尽量减少键盘查询过程对MCU 的占用时间。 下面以图9-7 为例,介绍采用行扫描法对矩阵键盘进行判别的思路。图9-7 中,PD0、PD1、PD2 为3 根列线,作为键盘的输入口(工作于输入方式)。PD3、PD4、PD5、PD6 为4根行线,工作于输出方式,由MCU(扫描)控制其输出的电平值。行扫描法也称为逐行扫描查询法,其按键识别的过程如下。 √将全部行线PD3-PD6 置低电平输出,然后读PD0-PD2 三根输入列线中有无低电平出现。只要有低电平出现,则说明有键按下(实际编程时,还要考虑按键的消抖)。如读到的都是高电平,则表示无键按下。 √在确认有键按下后,需要进入确定具体哪一个键闭合的过程。其思路是:依

锁相环pll工作原理及verilog代码

锁相环的组成和工作原理 #1 1.锁相环的基本组成 . 许多电子设备要正常工作, 通常需要外部的输入信号与内部的振荡信 许多电子设备要正常工作, 号同步,利用锁相环路就可以实现这个目的。 号同步,利用锁相环路就可以实现这个目的。 锁相环路是一种反馈控制电路, 锁相环路是一种反馈控制电路,简称锁相环 )。锁相环的特点是 (PLL)。锁相环的特点是:利用外部输入的 )。锁相环的特点是: 参考信号控制环路内部振荡信号的频率和相 位。 因锁相环可以实现输出信号频率对输入信号频率的自动跟踪, 所以锁 因锁相环可以实现输出信号频率对输入信号频率的自动跟踪, 相环通常用于闭环跟踪电路。锁相环在工作的过程中, 相环通常用于闭环跟踪电路。锁相环在工作的过程中,当输出 于闭环跟踪电路 信号的频率与输入信号的频率相等时, 信号的频率与输入信号的频率相等时,输出电压与输入电压保 持固定的相位差值,即输出电压与输入电压的相位被锁住,这 持固定的相位差值,即输出电压与输入电压的相位被锁住, 就是锁相环名称的由来。 就是锁相环名称的由来。 ( ) 锁相环通常由鉴相器 PD) 环路滤波器 LF) 、 ( ) 和压控振荡器 VCO) ( ) 三部分组成, 所示。 三部分组成,锁相环组成的原理框图如图 8-4-1 所示。 锁相环中的鉴相器又称为相位比较器, 它的作用是检测输入信号和输 锁相环中的鉴相器又称为相位比较器, 出信号的相位差,并将检测出的相位差信号转换成 uD(t)电压信号 出信号的相位差, ) 输出, 该信号经低通滤波器滤波后形成压控振荡器的控制电压 u(t) 输出, , C ) 对振荡器输出信号的频率实施控制。 对振荡器输出信号的频率实施控制。 施控制 2.锁相环的工作原理 . 锁相环中的鉴相器通常由模拟乘法器组成, 利用模拟乘法器组成的鉴 锁相环中的鉴相器通常由模拟乘法器组成, 相器电路如图 8-4-2 所示。 所示。

PLL(锁相环)电路原理及设计 [收藏]

PLL(锁相环)电路原理及设计[收藏] PLL(锁相环)电路原理及设计 在通信机等所使用的振荡电路,其所要求的频率范围要广,且频率的稳定度要高。无论多好的LC振荡电路,其频率的稳定度,都无法与晶体振荡电路比较。但是,晶体振荡器除了可以使用数字电路分频以外,其频率几乎无法改变。如果采用PLL(锁相环)(相位锁栓回路,PhaseLockedLoop)技术,除了可以得到较广的振荡频率范围以外,其频率的稳定度也很高。此一技术常使用于收音机,电视机的调谐电路上,以及CD唱盘上的电路。 一PLL(锁相环)电路的基本构成 PLL(锁相环)电路的概要 图1所示的为PLL(锁相环)电路的基本方块图。此所使用的基准信号为稳定度很高的晶体振荡电路信号。 此一电路的中心为相位此较器。相位比较器可以将基准信号与VCO (Voltage Controlled Oscillator……电压控制振荡器)的相位比较。如果此两个信号之间有相位差存在时,便会产生相位误差信号输出。 (将VCO的振荡频率与基准频率比较,利用反馈电路的控制,使两者的频率为一致。) 利用此一误差信号,可以控制VCO的振荡频率,使VCO的相位与基准信号的相位(也即是频率)成为一致。 PLL(锁相环)可以使高频率振荡器的频率与基准频率的整数倍的频率相一致。由于,基准振荡器大多为使用晶体振荡器,因此,高频率振荡器的频率稳定度可以与晶体振荡器相比美。 只要是基准频率的整数倍,便可以得到各种频率的输出。 从图1的PLL(锁相环)基本构成中,可以知道其是由VCO,相位比较器,基准频率振荡器,回路滤波器所构成。在此,假设基准振荡器的频率为fr,VCO的频率为fo。 在此一电路中,假设frgt;fo时,也即是VC0的振荡频率fo比fr低时。此时的相位比较器的输出PD 会如图2所示,产生正脉波信号,使VCO的振荡器频率提高。相反地,如果frlt;fo时,会产生负脉波信号。

SEM基本结构及工作原理

SEM基本结构及原理 1 电子束与样品表面的作用 弹性散射:电子束的能量不损失,只改变方向,如背散射电子。 非弹性散射:入射电子熟不进改变方向,也改变能量。包括二次电子,俄歇电子,特征X射线,荧光。 图1 电子束与样品的作用深度示意图

1.1 二次电子Secondary electron 二次电子是指背入射电子轰击出来的核外电子。由于原子核和外层价电子间的结合能很小,当原子的核外电子从入射电子获得了大于相应的结合能的能量后,可脱离原子成为自由电子。如果这种散射过程发生在比较接近样品表层处,那些能量大于材料逸出功的自由电子可从样品表面逸出,变成真空中的自由电子,即二次电子。二次电子来自表面5-10nm的区域,二次电子的逃逸深度很小,在入射电子束处,约为5λ,金属λ=1nm,非金属λ=10nm。 图2 二次电子产量与逃逸深度关系 能量为0-50eV。它对试样表面状态非常敏感,能有效地显示试样表面的微观形貌。由于它发自试样表层,入射电子还没有被多次反射,因此产生二次电子的面积与入射电子的照射面积没有多大区别,所以二次电子的分辨率较高,一般可达到5-10nm。扫描电镜的分辨率一般就是二次电子分辨率。 二次电子产额随原子序数的变化不大,它主要取决于表面形貌,呈以下关系: δ(θ)= δ0Secθ 图3二次电子产量与样品倾斜角度关系 θ增大时δ增大,样品表面的起伏形貌与样品倾转原理一样,形成形貌衬度。 入射电子与样品核外电子碰撞,使样品表面的核外电子被激发出来的电子,是作为SEM的成像信号,代表样品表面的结构特点。

图4 二次电子的检测示意图 1.2 背散射电子back scattered electron 背散射电子是由样品反射出来的初次电子,是弹性散射返回来的电子,其主要特点是:能量很高,有相当部分接近入射电子能量,总能量约占入射点子能量的30%,在试样中产生的范围大,像的分辨率低。背散射电子发射系数随原子序数增大而增大。作用体积随入射束能量增加而增大,但发射系数变化不大。 背散射电子的原子序数衬度: 图5背散射电子产量与原子序数关系 图6背散射电子产量与入射束能量关系

PLL 锁相环原理

什么是锁相环(PLL)工作原理及对硬件电路连接的要求锁相环是一种反馈电路,其作用是使得电路上的时钟和某一外部时钟的相位同 步。PLL通过比较外部信号的相位和由压控晶振(VCXO)的相位来实现同步的,在 比较的过程中,锁相环电路会不断根据外部信号的相位来调整本地晶振的时钟相位,直到两个信号的相位同步。 在数据采集系统中,锁相环是一种非常有用的同步技术,因为通过锁相环,可以使得不同的数据采集板卡共享同一个采样时钟。因此,所有板卡上各自的本地80MHz 和20MHz时基的相位都是同步的,从而采样时钟也是同步的。因为每块板卡的采样时钟都是同步的,所以都能严格地在同一时刻进行数据采集。 通过锁相环同步多块板卡的采样时钟所需要的编程技术会根据您所使用的硬件板卡的不同而不同。对于基于PCI总线的产品(M系列数据采集卡,PCI数字化仪等),所有的同步都是通过RTSI总线上的时钟和触发线来实现的;这时,其中一块版板卡会作为主卡并且输出其内部时钟,通过RTSI线,其他从板卡就可以获得这个用于同步的时钟信号,对于基于PXI总线的产品,则通过将所有板卡的时钟于PXI内置的 10MHz背板时钟同步来实现锁相环同步的。 锁相环(PLL)的工作原理 1.锁相环的基本组成 许多电子设备要正常工作,通常需要外部的输入信号与内部的振荡信号同步,利用锁相环路就可以实现这个目的。 锁相环路是一种反馈控制电路,简称锁相环(PLL,Phase-Locked Loop)。锁相环的特点是:利用外部输入的参考信号控制环路内部振荡信号的频率和相位。 因锁相环可以实现输出信号频率对输入信号频率的自动跟踪,所以锁相环通常用于闭环跟踪电路。锁相环在工作的过程中,当输出信号的频率与输入信号的频率相等时,输出电压与输入电压保持固定的相位差值,即输出电压与输入电压的相位被锁住,这就是锁相环名称的由来。 锁相环通常由鉴相器(PD,Phase Detector)、环路滤波器(LF,Loop Filter)和压控振荡器(VCO,Voltage Controlled Oscillator)三部分组成,锁相环组成的 原理框图如图8-4-1所示。 锁相环中的鉴相器又称为相位比较器,它的作用是检测输入信号和输出信号的相位差,并将检测出的相位差信号转换成u D(t)电压信号输出,该信号经低通滤波器滤波后形成压控振荡器的控制电压u C(t),对振荡器输出信号的频率实施控制。

关于ocr

如何使用OCR 下面教你如何使用OCR: OCR是英文Optical Character Recognition的缩写,翻译成中文就是通过光学技术对文字进行识别的意思, 是自动识别技术研究和应用领域中的一个重要方面。它是一种能够将文字自动识别录入到电脑中的软件技术,是与扫描仪配套的主要软件,属于非键盘输入范畴,需要图像输入设备主要是扫描仪相配合。现在OCR主要是指文字识别软件,在1996年清华紫光开始搭配中文识别软件之前,市场上的扫描仪和OCR软件一直是分开销售的,专业的OCR 软件谠缧┦焙蚵舻帽壬 枰腔挂 蟆K孀派 枰欠直媛实奶嵘 琌CR软件也在不断升级,扫描仪厂商现在已把专业的OCR软件搭配自己生产的扫描仪出售。OCR技术的迅速发展与扫描仪的广泛使用是密不可分的,近两年随着扫描仪逐渐普及和OCR技术的日臻完善,OCR 己成为绝大多数扫描仪用户的得力助手 二、OCR的基本原理 简单地说,OCR的基本原理就是通过扫描仪将一份文稿的图像输入给计算机,然后由计算机取出每个文字的图像,并将其转换成汉字的编码。其具体工作过程是,扫描仪将汉字文稿通过电荷耦合器件CCD将文稿的光信号转换为电信号,经过模拟/数字转换器转化为数字信号传输给计算机。计算机接受的是文稿的数字图像,其图像上的汉字可能是印刷汉字,也可能是手写汉字,然后对这些图像中的汉字进行识别。对于印刷体字符,首先采用光学的方式将文档资料转换成原始黑白点阵的图像文件,再通过识别软件将图像中的文字转换成文本格式,以便文字处理软件的进一步加工。其中文字识别是OCR的重要技术。 1.OCR识别的两种方式 与其它信息数据一样,在计算机中所有扫描仪捕捉到的图文信息都是用0、1这两个数字来记录和进行识别的,所有信息都只是以0、1保存的一串串点或样本点。OCR识别程序识别页面上的字符信息,主要通过单元模式匹配法和特征提取法两种方式进行字符识别。 单元模式匹配识别法(Pattern Matching)是将每一个字符与保存有标准字体和字号位图的文件进行不严格的比较。如果应用程序中有一个已保存字符的大数据库,则应用程序会选取合适的字符进行正确的匹配。软件必须使用一些处理技术,找出最相似的匹配,通常是不断试验同一个字符的不同版本来比较。有些软件可以扫描一页文本,并鉴别出定义新字体的每一个字符。有些软件则使用自己的识别技术,尽其所能鉴别页面上的字符,然后将不可识别的字符进行人工选择或直接录入。 特征提取识别法(Feature Extraction)是将每个字符分解为很多个不同的字符特征,包括斜线、水平线和曲线等。然后,又将这些特征与理解(识别)的字符进行匹配。举个简单的例子,应用程序识别到两条水平横线,它就会“认为”该字符可能是“二”。特征提取法的优点是可以识别多种字体,例如中文书法体就是采用特征提取法实现字符识别的。 多数OCR应用软件都加入了语法智能检查功能,这种功能进一步提高了识别率。它主要通过上下文检查法实现拼写和语法的纠正,在文字识别时,OCR应用程序会做多次的上下文衔接性检查,根据程序中已经存在的词组、固定的用词顺序,对应的检查字符串的用词字。比较高级的应用软件会自动用它“认为”正确的词语替换错误词语,纠正语句意思。 2.文字识别的几个步骤 文字识别包括以下几个步骤:图文输入、预处理、单字识别和后处理等。 (1)图文输入 是指通过输入设备将文档输入到计算机中,也就是实现原稿的数字化。现在用得比较普遍的设备是扫描仪。文档图像的扫描质量是OCR软件正确识别的前提条件。恰当地选择扫描分辨率及相关参数,是保证文字清楚、特征不丢失的关键。此外,文档尽可能地放置端正,以

CMOS4046集成电路研究锁相环(PLL)的工作原理 毕业论文外文翻译

本实验要使用CMOS4046集成电路研究锁相环(PLL )的工作原理。电路包括两个不同的鉴相器和一个VCO 。另外还有一个齐纳二极管参考电压源用在供电调节中,在解调器输出中有一个缓冲电路。用户必须提供环路滤波器。4046具有高输入阻抗和低输出阻抗,容易选择外围元件。 注意事项 1. 本实验较为复杂,进入实验室之前,确认你已经弄懂了电路预计应该怎样工作。对某样东西还没有充分分析之前,不要去尝试制作它。在开始实验之前要通读本文。 2. 在实验第一部分得到的数据要用来完成实验的其它任务。所以要仔细对待这部分内容。 3. 小心操作4046芯片,CMOS 集成电路很容易损坏。避免静电释放,使用10k Ω电阻把信号发生器的输出耦合到PLL 。在关掉4046供电电源之前先关闭信号发生器,或者从信号输入端给整个电路供电。要避免将输出端对电源或对地短路,TTL 门电路可以容忍这种误操作但CMOS 不能(要注意松散的导线)。CMOS 输出也没有能力驱动电容负载。VSS 应该接地,VDD 应该接5V ,引脚5应该接地(否则VCO 被禁止)。 1 VCO 工作原理 阅读数据手册中的电路描述。VCO 常数(0K 单位为弧度/秒-伏)是工作频率 变化与输入电压(引脚9上)变化之比值。测量出0K ,即,画出输出频率关于 输入电压的曲线。确认数据范围要覆盖5kHz 到50kHz 。对于R1, R2 和C 的各种参数取值进行测量,确定0K 对于R1 ,R2 和C 是怎样的近似关系。测量VCO 输出的上升和下降时间,研究电容性负载的影响。 2 无源环路滤波器 无源环路滤波器位于鉴相器输出与VCO 输入之间。此滤波器对鉴相器输出中的高次谐波进行衰减,并控制环路的强度。通常用一个简单RC 滤波器就可以满足要求,这种设计能避免有源滤波器设计中固有的电平移动和输出限制的恼人问题。但另外一方面,有源滤波器可以提供更优越的性能。 2.1 相位比较器 首先来看一下4046的相位比较器II 的输出。该输出端是一个三态器件,这可以在环路锁定时减小波纹。与存在两倍基频拍频的情况不同,这里没有任何拍频。糟糕的方面是,当我们需要为环路建立一个框图时,D K 却不能很好地定义。当向上或向下驱动之一接通时,输出端表现为电压源。但是当输出端悬浮时,它实质上为一个电流源(一个0A 电流源)。因此D K 的值将依赖于给定的滤波器。考察图1。 图1 相位比较器II 的输出 图中当向上驱动器接通时,相位比较器输出为5PO v V =+,当向下驱动器接通时,0PO v V =,当相位比较器处在开路状态时,PO D v v =。我们可以求出输出的平均值:

ocr工作原理

ocr工作原理 汉王ocr工作原理 所谓OCR (Optical Character Recognition光学字符识别)技术,是指电子设备(例如扫描仪或数码相机)检查纸上打印的字符,通过检测暗、亮的模式确定其形状,然后用字符识别方法将形状翻译成计算机文字的过程;即,对文本资料进行扫描,然后对图像文件进行分析处理,获取文字及版面信息的过程。 由于OCR是一门与识别率拔河的技术,因此如何除错或利用辅助信息提高识别正确率,是OCR最重要的课题,ICR(Intelligent Character Recognition)的名词也因此而产生。而根据文字资料存在的媒体介质不同,及取得这些资料的方式不同,就衍生出各式各样、各种不同的应用。 一、OCR的发展 要谈OCR的发展,早在 60、70年代,世界各国就开始有OCR的研究,而研究的初期,多以文字的识别方法研究为主,且识别的文字仅为0至9的数字。以同样拥有方块文字的日本为例,1960年左右开始研究OCR的基本识别理论,初期以数字为对象,直至1965至1970年之间开始有一些简单的产品,如印刷文字的邮政编码识别系统,识别邮件上的邮政编码,帮助邮局作区域分信的作业;也因此至今邮政编码一直是各国所倡导的地址书写方式。 OCR可以说是一种不确定的技术研究,正确率就像是一个无穷趋近函数,知道其趋近值,却只能靠近而无法达到,永远在与100%作拉锯战。因为其牵扯的因素太多了,书写者的习惯或文件印刷品质、扫描仪的扫描品质、识别的方法、学习及测试的样本……等等,多少都会影响其正确率,也因此,OCR的产品除了需有一个强有力的识别核心外,产品的操作使用方便性、所提供的除错功能及方法,亦是决定产品好坏的重要因素。 一个OCR识别系统,其目的很简单,只是要把影像作一个转换,使影像内的图形继续保存、有表格则表格内资料及影像内的文字,一律变成计算机文

SEM工作原理与使用方法

SEM的工作原理与使用方法 1、SEM的工作原理 扫描电镜(SEM)是对样品表面形态进行测试的一种大型仪器。当具有一定能量的入射电子束轰击样品表面时,电子与元素的原子核及外层电子发生单次或多次弹性与非弹性碰撞,一些电子被反射出样品表面,而其余的电子则渗入样品中,逐渐失去其动能,最后停止运动,并被样品吸收。在此过程中有99%以上的入射电子能量转变成样品热能,而其余约1%的入射电子能量从样品中激发出各种信号。如图1所示,这些信号主要包括二次电子、背散射电子、吸收电子、透射电子、俄歇电子、电子电动势、阴极发光、X 射线等。扫描电镜设备就是通过这些信号得到讯息,从而对样品进行分析的。 图1 入射电子束轰击样品产生的信息示意图 从结构上看,如图2所示,扫描电镜主要由七大系统组成,即电子光学系统、探测、信号处理、显示系统、图像记录系统、样品室、真空系统、冷却循环水系统、电源供给系统。

图2 扫描电子显微镜结构图 图3 扫描电子显微镜成像原理图 由图3,可以看出,从灯丝发射出来的热电子,受2-30KV 电压加速,经两个聚光镜和一个物镜聚焦后,形成一个具有一定能量,强度和斑点直径的入射电子束,在扫描线圈产生的磁场作用下,入射电子束按一定时间、空间顺序做光栅式扫描。由于入射电子与样品之间的相互作用,从样品中激发出的二次电子通过收集极的收集,可将向各个方向发射的二次电子收集起来。这些二次电子经加速并射到闪烁体上,使二次电子信息转变成光信号,经过光导管进入光电倍增管,使光信号再转变成电信号。这个电信号又经视频放大器放大,并将其输入到显像管的栅极中,调制荧光屏的亮度,在荧光屏上就会出现与试样上一一对应的相同图像。入射电子束在样品表面上扫描时,因二次电子发射量随样品表面起伏程度(形貌)变化而变化。 故视频放大器放大的二次电子信号是一个交流信号,用这个交流信号调制显像管栅极电,其结果在显像管荧光屏上呈现的是一幅亮暗程度不同的,并反映样品表面起伏程度(形貌)的二次电子像。应该特别指出的是:入射电子束在样品表面上扫描和在荧光屏上的扫描必须是“同步”,即必须用同一个扫描发生器来控制,这样就能保证样品上任一“物点”样品A 点,在显像管荧光屏上的电子束恰好在A ’点即“物点”A 与“像

锁相环PLL的组成和工作原理

锁相环的组成和工作原理#1 1.锁相环的基本组成 许多电子设备要正常工作,通常需要外部的输入信号与内部的振荡信号同步,利用锁相环路就可以实现这个目的。 锁相环路是一种反馈控制电路,简称锁相环(PLL)。锁相环的特点是:利用外部输入的参考信号控制环路内部振荡信号的频率和相位。 因锁相环可以实现输出信号频率对输入信号频率的自动跟踪,所以锁相环通常用于闭环跟踪电路。锁相环在工作的过程中,当输出信号的频率与输入信号的频率相等时,输出电压与输入电压保持固定的相位差值,即输出电压与输入电压的相位被锁住,这就是锁相环名称的由来。 锁相环通常由鉴相器(PD)、环路滤波器(LF)和压控振荡 器(VCO)三部分组成,锁相环组成的原理框图如图8-4-1 所示。 锁相环中的鉴相器又称为相位比较器,它的作用是检测输入 信号和输出信号的相位差,并将检测出的相位差信号转换成uD(t)电压信号输出,该信号经低通滤波器滤波后形成压控振荡器的控制电压uC(t),对振荡器输出信号的频率实施控制。 2.锁相环的工作原理 锁相环中的鉴相器通常由模拟乘法器组成,利用模拟乘法器组成的鉴相器电 路如图8-4-2所示。 鉴相器的工作原理是:设外界输入的信号电压和压控振荡器输出的信号电压 分别为: (8-4-1) (8-4-2) 式中的ω0为压控振荡器在输入控制电压为零或为直流电压时的振荡角频率,称为电路的固有振荡角频率。则模拟乘法器的输出电压uD为: 用低通滤波器LF将上式中的和频分量滤掉,剩下的差频分量作为压控振荡器的输入控制电压uC(t)。即uC(t)为: (8-4-3) 式中的ωi为输入信号的瞬时振荡角频率,θi(t)和θO(t)分别为输入信号和输出信号的瞬时位相,根据相量的关系可得瞬时频率和瞬时位相的关系为: 即(8-4-4) 则,瞬时相位差θd为 (8-4-5)

结构方程模型_SEM_的原理及操作

第27卷第2期2005年4月 宁波大学学报(教育科学版) JOURNAL OF N I N G BO UN I V ERSI TY (E DUCATI O NAL SC I E NCE ) Vol .27NO.2 Ap r . 2005 结构方程模型(SE M )的原理及操作 孙连荣 (宁波大学师范学院,浙江宁波315211) 摘要:结构方程模型(SE M )是应用线性方程系统表示观测变量与潜在变量之间及潜在变量之间关系的一种统计方法。当前,SE M 及相应的L I SRE L 软件已成为心理学等社会学科中广泛应用的一种分析思想和技术。文章简要介绍了SE M 的特点、原理及L I SRE L 的操作方法。关键词:结构方程模型(SE M );L I S RE L;吻合指数操作程序 中图分类号:B841.2 文献标识码:A 文章编号:1008-0627(2005)02-0031-05 收稿日期:2004-06-27 作者简介:孙连荣,宁波大学师范学院助教,硕士。 科学研究的目的,是通过探讨变量之间的因果关系来揭示客观事物发展、变化的规律及特点,在具体操作层面上,一般是使用一定的统计技术处理并计算各种观测数据的结果来反映因果关系。在心理科学的研究中,实验的方法一直都是揭示心理过程及现象的主流范式。[1] 但由于实验法过分强调控制而使研究结果的真实性和外推力受到局限,尤其是当面对成因复杂的人的行为以及人的许多高级心理现象时,多数情况下都很难对它们进行直接测量或客观标定。事实上,人们一直都在寻求以非实验的方法获取因果关系,以 及通过考察人的外部表现(观测指标)来了解其实质特性(潜在变量或心理概念)的技术,而结构方程模型正是这种思想的产物。上个世纪70年代中期,瑞典统计学家、心理测量学家Karlg .Joreskog 提出了结构方程模型(Structural Equati on Modeling,简称SE M )。根据该方法的不同属性,统计学家们以不同的术语命名,如根据数据结构将其称为“协方差结构分析”;根据其功能,称之为“因果建模(Casual Modeling )”[2,3]等;并开发了相应的L I SRE L (L inear Structural Relati ons:线性结构关系)统计软件。目前,几经完善L I SRE L8.30版本已成为一种重要的统计分析技术,在心理学、社会学、管理学等社会学科的研究中得到了广泛的应用。本文将对SE M 的特点、原理及L I SRE L 的操作方法做一简要的介绍。 1 S E M 的特点 结构方程模型是在已有的理论基础上,应用与之相应的线性方程系统表示该理论的一种统计分析方法。相对于相关、回归分析、路径分析等研究变量间关系的统计方法来说,SE M 从两个方面完善了这些常用方法的不足。第一,针对探索性因素分析假设限制过多的缺点,完善变量结构的探讨。与探索性因素分析相比,结构方程模型既可以假定相关、不相关的潜在因素,从而更符合心理学实际;同时也可以确定某些观察变量只受特定潜在变量影响,而不是受所有潜在变量影响,使结构更清晰;还能在对每个潜在因素进行多方法测量(采用多方法-多特质模型,简称MMM T )时,可排除测量方法的误差。除此之外,最重要的是它不需要假定所有特定变量的误差无相关,而是指定那些两者之间存在相关的特定性变量误差。第二,在考虑测量误差的前提下建立变量间的因果关系。这一步以统计的思路区分了观测(外显)变量和潜在(内隐)变量,进而通过观测外在表现推测潜在概念。这样,研究便能在探讨变量间直接影响、间接影响和总效应以及表达中介变量作用的同时,用潜在变量代替路径分析中的单一外显变量,并考虑变量的测量误差,从而使研究结果更精确。概括来讲,SE M 具有以下特点[4]: (1)可同时考虑及处理多个因变量(endogenous/dependent variable ); (2)允许自变量和因变量(exogenous and endoge 2nous )项目含有测量误差; (3)允许潜伏变量由多个外显指标变量构成(这一 点与因素分析类似),并可同时估计指标变量的信度及效度; (4)可采用比传统方法更有弹性的测量模式(measure ment model )。在传统方法中,项目更多的依 附于单一因子,而在SE M 中,某一指标变量可从属于两个潜伏因子; (5)可构建潜伏变量之间的关系,并估计模式与数

PLL电路的基本工作原理

PLL电路的基本工作原理 1.1PLL电路的三大组成各部分 Phase lock loop锁相环电路适用于生成与输入信号同步的新的信号电路。PLL电路基本上由三大部分组成: 1)鉴相器(phase detector) 鉴相器用于检测出两个输入信号的相位差。鉴相器的工作方式多种多样,大部分是数字方式的,也有模拟方式工作的鉴相器,主要方式检测出两个信号上升沿的差。 2)环路滤波器(loop filter) 环路滤波器是将鉴相器输出的含有波纹的直流信号平均化,将次变换为交流成分较少的低通滤波器。环路滤波器滤除了滤除波纹的功能外,还有一个重要的功能,即决定稳定进行PLL环路控制的传输特性。稳定的PLL电路的环路滤波特性是非常重要的。关系到整个系统的性能。 3)压控振荡器(voltage controlled osillator) 压控振荡器就是用输入的直流信号控制振荡频率,它是一种可变频振荡器。 1.1.2PLL的应用与频率合成器 在图中可以看到,将输入信号与VCO输出信号进行比较,控制两个信号使其保持相位同步。两个输入信号同相位,当然也可以对频率进行同样的控制,这样一来就可以是VCo输出的振荡频率能够跟踪输入信号的频率了。 这时,VcO的振荡频率变化由环路滤波器的时间常数决定。时间常数越大,频率的变化越慢;时间常数越小,频率变化越快。这样,VCo的振荡频率同步跟踪输入信号的频率。 在图中若跟踪速度设计得当,由VCO可得到接受信号或与电磁波同步的信号。例如,接受电磁波信号中叠加有噪声时,VCO立即停止接收该信号,不收噪声影响,VCO与接收信号平品均频率稳定同步,并持续振荡。

扫描仪的工作原理、性能及应用

扫描仪的工作原理、性能及应用 扫描仪是除键盘和鼠标之外被广泛应用于计算机的输入设备。你可以利用扫描仪输入照片建立自己的电子影集;输入各种图片建立自己的网站;扫描手写信函再用E-mail发送出去以代替传真机;还可以利用扫描仪配合OCR 软件输入报纸或书籍的内容,免除键盘输入汉字的辛苦。所有这些为我们展示了扫描仪不凡功能,它使我们在办公、学习和娱乐等各个方面提高效率并增进乐趣。 在选购扫描仪时,我们常常遇到许多难懂的专业技术名词,如光学分辨率(光学解析度)、最大分辨率(最大解析度)、色彩分辨率(色彩深度)、扫描模式、接口方式(连接界面)等等。 在使用扫描仪当中,又会遇到到扫描速度慢,占用硬盘空间多,以及一些不知所云的设置等诸多困扰。然而说明书提供给我们的操作指导并不能让所有的人成为应用专家,即使照着说明书去进行某些设置,也不知道为什么要这样做,这无疑给我们用好用巧机器带来了障碍。 本文针对这些问题,从扫描仪的基本结构入手,阐述它的工作原理,使我们对每一项设置或操作都道原因,在应用水平上有一个提高。 一、扫描仪的工作原理 扫描仪是图像信号输入设备。它对原稿进行光学扫描,然后将光学图像传送到光电转换器中变为模拟电信号,又将模拟电信号变换成为数字电信号,最后通过计算机接口送至计算机中。 扫描仪扫描图像的步骤是:首先将欲扫描的原稿正面朝下铺在扫描仪的

玻璃板上,原稿可以是文字稿件或者图纸照片;然后启动扫描仪驱动程序后,安装在扫描仪内部的可移动光源开始扫描原稿。为了均匀照亮稿件,扫描仪光源为长条形,并沿y方向扫过整个原稿;照射到原稿上的光线经反射后穿过一个很窄的缝隙,形成沿x方向的光带,又经过一组反光镜,由光学透镜聚焦并进入分光镜,经过棱镜和红绿蓝三色滤色镜得到的RGB三条彩色光带分别照到各自的CCD上,CCD将RGB光带转变为模拟电子信号,此信号又被A/D变换器转变为数字电子信号。 至此,反映原稿图像的光信号转变为计算机能够接受的二进制数字电子信号,最后通过串行或者并行等接口送至计算机。扫描仪每扫一行就得到原稿x方向一行的图像信息,随着沿y方向的移动,在计算机内部逐步形成原稿的全图。 在扫描仪获取图像的过程中,有两个元件起到关键作用。一个是CCD,它将光信号转换成为电信号;另一个是A/D变换器,它将模拟电信号变为数字电信号。这两个元件的性能直接影响扫描仪的整体性能指标,同时也关系到我们选购和使用扫描仪时如何正确理解和处理某些参数及设置。 1.什么是CCD? CCD是Charge Couple Device的缩写,称为电荷耦合器件,它是利用微电子技术制成的表面光电器件,可以实现光电转换功能。 CCD在摄像机、数码相机和扫描仪中应用广泛,只不过摄像机中使用的是点阵CCD,即包括x、y两个方向用于摄取平面图像,而扫描仪中使用的是线性CCD,它只有x一个方向,y方向扫描由扫描仪的机械装置来完成。 CCD芯片上有许多光敏单元,它们可以将不同的光线转换成不同的电荷,

锁相环路工作原理

摘要:锁相环路是PLL 是一个能够跟踪输入信号相位变化,以消除频率误差为目的的闭环自动控制系统。锁相环环路PLL 主要由鉴相器PD 、环路滤波器LF 和电压控制振荡器VCO 组成,工作原理主要是频率牵引和相位锁定。PLL 在无线电技术很多领域,如调制与解调、频率合成、数字同步系统等方面得到了广泛运用,已经成为现代模拟与数字通信系统中不可缺少的基本部件。 关键词:锁相环;鉴相器;压控振荡器;环路滤波器 1锁相环基本工作原理 锁相环(PLL )主要由鉴相器(PD )、环路滤波器(LF) 、压控振荡器(VCO)三部分组成。基本组成框图如图1所示。 图1 锁相环结构图 图1中,输入信号()i u t 与反馈输出信号()o u t 的相位进行比较,得到误差相位()e t θ,并由此产生误差电压()D u t ,误差电压经过环路滤波器过滤得到控制电压()c u t ,()c u t 控制VCO 的振荡频率,改变输出信号 ()o u t 的频率和相位,同时改变了输出信号和输入信号的相位差()e t θ。即控制电压加到压控振荡器上使之 产生频率偏移,来跟踪输入信号频率()i w t 。当输出信号频率等于输入信号频率时,会有一个稳态相位差,使鉴相器输出一个稳定的直流误差电压,控制VCO 输出信号频率稳定在输入信号频率上,即为PLL 的锁定状态。 在PLL 中,鉴相器的鉴相特性 ()()D d e u t K t θ= (1) 式中:d K 为鉴相器灵敏度。 压控振荡器VCO 的控制特性为 v w =o w +c K ()c u t (2) 式中:o w 为压控振荡器的自由振荡频率(c u 为0时的固有频率),c K 为压控灵敏度。若输入信号()i u t 为单频信号,()sin[]i i i i u t U wt θ=+,则相位误差()e t θ为 ()[()]()()t t e i i o c c i o i c c t w t w K u t dt w w t K u t dt θθθ=+-+=-+-?? (3)

发票ocr识别

发票ocr识别 早已经步入信息化时代的我们,享受着方便快捷生活的同时,也在不断地创造新的技术,工业4.0不断地升温。就连办公也要无纸化,假如你是一名会计,每天要在系统里录入很多的发票,你觉得你会崩溃吗,所以无纸化办公,使用发票ocr识别就相当重要了。 发票ocr识别的工作原理 发票ocr识别是利用ocr文字识别技术,对所选取的文字进行字符切割,与现有的字符库进行比对,比对成功率较高的就将该文字识别出来。发票ocr识别,就是在程序中设置了要识别的文字字段,只要字迹清楚,人眼可鉴,一般识别率就不会低。发票ocr识别系统,是一种票据表单自动录入系统,在系统后台设置好要识别的字段,或者选择要识别的票据表单,就已经完成了大部分的工作。 发票ocr识别使用背景 发票ocr识别是怎么样走进人们的工作中的?我们以银行票据为例来说明:银行票据是银行在处理财务过程当中产生那个的一种票据行为,该票据做为结算的凭证及流通说明,内容比较复杂,所以需要识别的种类也比较多,但是我国的发票ocr识别管理程度还不是很高,银行在处理发票过程中,工作效率差,存在以下现状: 1.票据手工建档、人工查询,劳动强度大、容易出错,效率和服务质量低; 2.票据缺乏备份,如遇水灾、火灾或虫鼠叮咬造成难以挽回的损失; 3.票据不能进行现代化的网络电子传输,满足不了日益快节奏的金融需求; 4.人工进行支票的真伪判断,存在人为的误判和干预等; 看国外金融部门,早已经将发票ocr识别的研究提上日程,致力于研究发票ocr识别多年,已经取得了初步的成效。美国、加拿大、意大利、法国等在上世纪八十年代末就开始进行这方面的研究,有些公司从事票据图像的处理,如美国AcuForm、法国A2iA支票自动处理系统等,主要应用于银行及企业的各种票据ocr处理业务流程,包括储蓄业务、会计业务、印鉴识别等;而我国的发票ocr研究始于1988年,清华大学学子在期间

一文让你彻底明白“什么是锁相环PLL及其工作原理”

锁相环PLL 1、PLL基本介绍 目前我见到的所有芯片中都含有PLL模块,接下来主要介绍如何利用PLL对晶振进行倍频及PLL的原理。 1)时钟与振荡电路 在芯片中,最重要的就是时钟,时钟就像是心脏的脉冲,如果心脏停止了跳动,那人也就死亡了,对于芯片也一样,那时钟是怎么来的呢?时钟可看成周期性的0与1信号变化,而这种周期性的变化可以看成振荡。因此,振荡电路成为了时钟的来源。 小注: 振荡电路的形成可以分两类: ?石英晶体的压电效应:电导致晶片的机械变形,而晶片两侧施加机械压力又 会产生电,形成振荡。它的谐振频率与晶片的切割方式、几何形状、尺寸有关,可以做得精确,因此其振荡电路可以获得很高的频率稳定度。 ?电容Capacity的充电放电:能够存储电能,而充放电的电流方向是反的, 形成振荡,可通过电压等控制振荡电路的频率。 2)PLL与倍频 ① PLL电路组成 由上面可以知道,晶振由于其频率的稳定性,一般作为系统的外部时钟源。但晶振的频率虽然稳定,但是频率无法做到很高(成本与工艺限制),因此芯片中高频时钟就需要一种叫做压控振荡器VCO(Voltage Controlled Oscillator)的东西生成了(顾名思义,VCO就是根据电压来调整输出频率的不同),可压控振荡器也有问题,其频率不够稳定,而且变化时很难快速稳定频率,这就是标准开环系统所出现的问题,解决办法就是接入反馈,使开环系统变成闭环系统,并且加入稳定的基准信号与反馈比较,以便生成正确的控 制。

因此,为了将频率锁定在一个固定的期望值,锁相环PLL出现了一个锁相环电路,PLL电路通常由以下模块组成: 鉴相器PD(Phase Detector):对输入的基准信号(来自频率稳定的晶振)和反馈回路的信号进行频率的比较,输出一个代表两者差异的信号。 低通滤波器LPF(Low-Pass Filter):将PD中生成的差异信号的高频成分滤除,保留直流部分。 压控振荡器VCO(Voltage Controlled Oscillator):根据输入电压,输出对应频率的周期信号,利用变容二极管(偏置电压的变化会改变耗尽层的厚度,从而影响电容大小)与电感构成的LC谐振电路构成,提高变容二极管的逆向偏压,二极管内耗尽层变大,电容变小,LC电路的谐振频率提高,反之,降低逆向偏压时,二极管内电容变大,频率降低。 反馈回路FL(Feedback Loop):通常由一个分频器实现。将VCO的输出降低到与基准信号相同级别的频率才能在PD中比较。 ② PLL工作原理 PLL工作的基本原理就是: 将压控振荡器的输出经过分频后与基准信号输入PD,PD通过比较这两个信号的频率差,输出一个代表两者差异的信号,再经过低通滤波器转变成一个直流脉冲电压去控制VCO使它的频率改变。这样经过一个很短的时间,VCO 的输出就会稳定下来。 所以,PLL并不是直接对晶振进行倍频,而是将频率稳定的晶振作为基准信号,与PLL内部振荡电路生成的信号分频后进行比较,使PLL输出的信号频率稳定。

相关文档
最新文档