md4系列四旋翼无人机系统培训教程

四旋翼无人机毕业设计

渤海大学本科毕业论文(设计)四旋翼无人机设计与制作 The Manufacture and Design of Quad Rotor Unmanned Aerial Vehicle 学院(系): 专业: 学号: 学生姓名: 入学年度: 指导教师: 完成日期:

摘要 四旋翼无人机飞行器因为它的结构简单,而且控制起来也很方便,因此它成为了近几年来发展起来的热门产业。在这里本文详细的介绍了四旋翼飞行器的设计和制作的过程,其中包括了四旋翼无人机飞行器的飞行原理,硬件的介绍和选型,姿态参考算法的推导和实现,系统软件的具体实现。该四旋翼飞行器控制系统以STM32f103zet 单片机为核心,根据各个传感器的特点,采用不同的校正方法对各个传感器数据进行校正以及低通数字滤波处理,之后设计了互补滤波器对姿态进行最优估计,实现精确的姿态测量。最后结合GPS控制与姿态控制叠加进行PID控制四旋翼飞行器的四个电机,来达到实现各种飞行动作的目的。在制作四旋翼飞行器的过程中,进行了大量的调试并且与现有优秀算法做对比验证,最终设计出能够稳定飞行的四旋翼无人机飞行器。 关键词:姿态传感器;四元数姿态解算;STM32微型处理器;数据融合;PID

The Manufacture and Design of Quad Rotor Unmanned Aerial Vehicle Abstract Quad-rotor unmanned aerial vehicle aircraft have a simple structure, and it is very easy to control, so it has become popular in recent years. Here article describes in detail the design and the process of making the four-rotor aircraft, including Quad-rotor UAV aircraft flight principle, hardware introduction and selection, implementation and realization of derivation attitude reference algorithm, the system software . The Quad-rotor aircraft control system STM32f103zet microcontroller core, and the advantages and disadvantages based on the accelerometer sensor, a gyro sensor and electronic compass sensors using different correction methods for correcting various sensor data and low-pass digital filter processing, after design complementary filter to estimate the optimal posture, precise attitude measurement. Finally, GPS control and attitude control PID control is superimposed four-rotor aircraft four motors to achieve a variety of flight maneuvers to achieve the purpose. Four-rotor aircraft in the production process, a lot of debugging and do comparison with the existing excellent algorithm validation, the final design to stabilize the Quad-rotor UAV flying aircraft. Key Words:MEMS Sensor; Quaternion; STM32 Processor; Data Fusion; PID

最高效的四旋翼无人机数据采集建模

最高效的四旋翼无人机 数据采集建模 CKBOOD was revised in the early morning of December 17, 2020.

最高效的四旋翼无人机数据采集建模 一、简介 近年来,微小型四翼无人机已经成为了无人飞行器研究领域的一个热点。它结构简单、机动性强、便于维护,能够在空中悬停、垂直起飞和降落。在军用和民用方面具有较大的潜在应用价值,国内外许多研究单位纷纷致力于四旋翼无人机飞行控制的架构设计与飞行控制研究,以实现四旋翼无人机的自主飞行。机载传感器系统是四旋翼无人机飞行控制系统的重要组成部分,它为机载控制系统提供可靠的飞行状态信息,是实现四旋翼无人机自主飞行的重要设备。 现在无人机应用最广的是倾斜摄影技术优势或者说最吸引用户的,就是利用倾斜摄影技术可以全自动、高效率、高精度、高精细的构建地表全要素三维模型。 二、四旋翼无人机特点 1、机动性能灵活,低空性能出色。能在城市、森林等复杂环境下完成各种任务。可完成空中悬停监视侦查。实现对动力要地低,能在狭小空间穿行,能垂直起降,对起降环境要求低。 2、对动力要求较小,产生的噪音低,隐蔽性能高,安全性能出色。四旋翼无人机采用四个马达提供动力,可使飞行更加稳定和精确。 3、结构简单,运行、控制原理相对容易掌握。 4、成本较低,零件容易更换,维护方便。

三、飞行软件 目前无人机种类繁多,针对无人机开发的飞控软件也有很多,目前比较好用的是DJI GS Pro、DJI GO4、Litchi Vue、Pix4d等。 四、数据采集,使用DJI GS pro 1、打开DJI GS pro软件,点击新建任务 2、点击测绘航拍区域模式 3、点击地图选点(飞行定点比较耗飞机电量,无特殊情况建议不使用) 4、点击屏幕就会出现一个航测区域,手动拖拽四个定点可以改变航测的面积和形状,同时也可以手动增加拐点,让航测面积更加的灵活多样。并且在右边的菜单栏里选择好对应的云台相机;设置好任务的高度,任务的高度和拍摄的清晰度,成图的分辨率有很大的关系;大面积的时候尽量选择等时间拍照,因为能上传的航点是有限的。 5、点击进入右侧菜单的高级选项之中,重新设置一下航测的重叠了,一般航向和旁向重叠率是700%和70%(最好不要低于70%);设置好云台俯仰角,正射影像图一般为-90°,拍摄3D立体时一般为-45°;设置好返航高度,确保返航时不会碰撞到障碍物。 6、点击右上角飞机左边更多选项,点击高级设置(地图优化限中国大陆地区使用打开);这点也是最关键的一点,这时候一定要点开中国大陆这个选项,不然飞行器的位置是偏移的。会导致航测任务区域整体偏移,有一部分任务没有拍摄到。

四旋翼飞行器实验报告

实验报告 课程名称:《机械原理课内实验》 学生姓名:徐学腾 学生学号:1416010122 所在学院:海洋信息工程学院 专业:机械设计制造及其自动化 报导教师:宫文峰 2016年6 月26 日

实验一四旋翼飞行器实验 一、实验目的 1.通过对四旋翼无人机结构的分析,了解四旋翼无人机的基本结构、工作的原理和传动控制系统; 2. 练习采用手机控制终端来控制无人机飞行,并了解无人机飞行大赛的相关内容,及程序开发变为智能飞行无人机。 二、实验设备和工具 1. Parrot公司AR.Drone 2.0四旋翼飞行器一架; 2. 苹果手机一部; 3. 蓝牙数据传输设备一套。 4. 自备铅笔、橡皮、草稿纸。 三、实验内容 1、了解四旋翼无人机的基本结构; 2、了解四旋翼无人机的传动控制路线; 3、掌握四旋翼无人机的飞行控制的基本操作; 4、了解四旋翼无人机翻转动作的机理; 5、能根据指令控制无人机完成特定操作。 四、实验步骤 1、学生自行用IPHONE手机下载并安装AR.FreeFlight四旋翼飞行器控制软件。 2、检查飞行器结构是否完好无损; 3、安装电沲并装好安全罩; 4、连接WIFI,打开手机AR.FreeFlight软件,进入控制界面; 5、软件启动,设备连通,即可飞行。 6、启动和停止由TAKE OFF 控制。 五、注意事项 1.飞行器在同一时间只能由一部手机终端进行控制; 2. 飞行之前,要检查螺旋浆处是否有障碍物干涉; 3. 飞行之后禁止用手去接飞行器,以免螺旋浆损伤手部; 4. 电量不足时,不可强制启动飞行; 5. 翻转特技飞行时,要注意飞行器距地面高度大于4米以上; 6. 飞行器不得触水; 7. 飞行器最大续航时间10分钟。

四旋翼无人机前沿报告

四旋翼无人机前沿报告 近些年来,各国的许多研究机构都对小型四旋翼无人机进行了一系列的研究,下面列出来一些比较有代表性的四旋翼无人机研究成果。 一、国内外技术发展现状 1.“蜻蜓”无人机 近期,约翰-霍普金斯大学的应用物理实验室的一个研究小组就开发出了一个叫做“蜻蜓(Dragonfly)”的概念无人机任务。该任务提出了一款利用放射性同位素驱动的双四旋翼飞行器,它将可以在土星最大的卫星Titan上执行太空任务。蜻蜓项目首席研究员Elizabeth Turtle指出,这种实验是他们在实验室无法进行的,因为涉及到时间尺度问题,而Titan富含有有机分子和液态水的表面却能维持很长一段时间的时间尺度。该项目就是为了研究Titan生命前化学而设计的。由于Titan表层厚重的云层使得那里的太阳能效率并不高,为此,研究人员改用了多任务放射性同位素热电机(MMRTG)为飞行器提供能源。据了解,MMRTG能让这架双四旋翼无人机在白天持续飞行一个小时的时间,夜晚它将接受充电。蜻蜓无人机的空气流动可以让它收集样本和测量的种类获得增加。在时长1个小时的飞行中,飞行器大概能飞10到20公里。这意味着蜻蜓可以在为期两年的任务中探测到的范围非常广。 2.“OS4”四旋翼无人机 OS4是EPFL自动化系统实验室开发的一种小型四旋翼飞行器,研究的重点是自主飞行控制算法和机构设计方法,目标是要实现室内和室外环境中的完全自主飞行。目前,该项目以及进行了两个阶段。OS4I最大长度约为73CM,质量为235g,它使用了Draganflyer3的十字框架和旋翼,电机型号为Faulhaber1724,微惯性测量单元为Xsens的MT9-B。研究

四旋翼无人机建模及其PID控制律设计

四旋翼无人机建模及其PID控制律设计 时间:2012-10-27 来源:现代电子技术作者:吴成富,刘小齐,袁旭 关键字:PID无人机建模 摘要:文中对四旋翼无人机进行建模与控制。在建模时采用机理建模和实验测试相结合的方法,尤其是对电机和螺旋桨进行了详细的建模。首先对所建的模型应用PID进行了姿态角的控制。在此基础上又对各个方向上的速度进行了PlD 控制。然后在四旋翼飞机重心进行偏移的情况下进行PID控制,仿真结果表明PID控制律能有效的控制四旋翼无人机在重心偏移情况下的姿态角和速度。最后为了方便控制加入了控制逻辑。 关键词:四旋翼;建模;PID;控制;重心偏移;控制逻辑 四旋翼无人机是一种具有4个旋翼的飞行器,有X型分布和十字型分布2种。文中采用的是X型分布的四旋翼,四旋翼无人机只能通过改变旋翼的转速来实现各种运动。国外对四旋翼无人直升机的研究非常活跃。加拿大雷克海德大学的Tavebi和McGilvrav证明了使用四旋翼设计可以实现稳定的飞行。澳大利亚卧龙岗大学的McKerrow对Dragantlyer进行了精确的建模。目前国外四旋翼无人直升机的研究工作主要集中在以下3个方面:基于惯导的自主飞行、基于视觉的自主飞行和自主飞行器系统。而国内对四旋翼的研究主要有:西北工业大学、国防科技大学、南京航天航空大学、中国空空导弹研究院第27所、吉林大学、北京科技大学和哈工大等。大多数的研究方式是理论分析和计算机仿真,提出了很多控制算法。例如,针对无人机模型的不确定性和非线性设计的 DI/QFT(动态逆/定量反馈理论)控制器,国防科技大学提出的自抗扰控制器可以对小型四旋翼直升机实现姿态增稳控制,还有一些经典的方法比如PID控制等,但是都不能很好地控制四旋翼速度较大的情况。本文对四旋翼无人机设计了另外一种不同的控制方法即四旋翼的四元数控制律设计,仿真结果表明这种控制方法是一种有效的方法。尤其是对飞机的飞行速度较大的情况,其能稳定地控制四旋翼达到预期的效果。 1 四旋翼的模型 文中所研究的四旋翼结构属于X型分布,即螺旋桨M1和M4与M2和M3关于X轴对称,螺旋桨M1和M2与M3和M4关于Y轴对称,如图1所示。对于四旋翼的模型本文主要根据四旋翼的物理机理进行物理建模,并做以下2条假设。

四旋翼无人机毕业设计

四旋翼无人机毕业设计 目录 摘要 ............................................................................................. 错误!未定义书签。Abstract ................................................................................................ 错误!未定义书签。1绪论 .. (1) 1.1研究背景及意义 (1) 1.2 国内外四旋翼飞行器的研究现状 (1) 1.2.1国外四旋翼飞行器的研究现状 (1) 1.2.2国内四旋翼飞行器的研究现状 (3) 1.3 本文研究内容和方法 (4) 2 四旋翼飞行器工作原理 (5) 2.1 四旋翼飞行器的飞行原理 (5) 2.2 四旋翼飞行器系统结构 (5) 3 四旋翼飞行器硬件系统设计 (7) 3.1 微惯性组合系统传感器组成 (7) 3.1.1 MEMS陀螺仪传感器 (7) 3.1.2 MEMS加速度计传感器 (7) 3.1.3 三轴数字罗盘传感器 (8) 3.2 姿态测量系统传感器选型 (8) 3.3 电源系统设计 (10) 3.4 其它硬件模块 (10) 3.4.1 无线通信模块 (10) 3.4.2 电机和电机驱动模块 (11) 3.4.3 机架和螺旋桨的选型 (12) 3.4.4 遥控控制模块 (13) 4 四旋翼飞行器姿态参考系统设计 (15) 4.1 姿态参考系统原理 (15) 4.2 传感器信号处理 (16) 4.2.1 加速度传感器信号处理 (16) 4.2.2 陀螺仪信号处理 (16) 4.2.3 电子罗盘信号处理 (17) 4.3 坐标系 (17) 4.4 姿态角定义 (18) 4.5 四元数姿态解算算法 (19) 4.6 校准载体航向角 (27) 5 四旋翼飞行器系统软件设计 (29) 5.1 系统程序设计 (29) 5.1.1 姿态参考系统软件设计 (29) 5.1.2 PID控制算法设计 (30)

四旋翼无人机带机械臂的设计与研究

四旋翼无人机带机械臂的设计与研究 发表时间:2018-06-06T15:23:16.953Z 来源:《科技新时代》2018年3期作者:鲍佳松[导读] 摘要:四旋翼无人机已经进入了众多的应用领域,在国家建设以及工程中扮演着越来越重要的角色。目前研究四旋翼无人机姿态及机身设计的文章较多,但是很少有带机械手臂的无人机。因此,本文采用了以往常见的无人机模型,摘要:四旋翼无人机已经进入了众多的应用领域,在国家建设以及工程中扮演着越来越重要的角色。目前研究四旋翼无人机姿态及机身设计的文章较多,但是很少有带机械手臂的无人机。因此,本文采用了以往常见的无人机模型,设计出机械手臂,既能保证无人机飞行过程的平稳性,而且保证抓取东西的快速、准确性。本文不仅设计了无人机的整体形态,而且选择了适合无人机飞行的硬件设施,为工程 应用打下了基础。 关键字:四旋翼飞行器;机械手臂;抓取;硬件设施 一、前言 目前,国内外研究无人机的人员越来越多,先进的无人机也层出不穷。但是大多数研究者只是关注于飞行姿态、飞行稳定性,而带有机械手的无人机则研究较少。在近年来,无人机不管是在飞行姿态、操纵系统、稳定性设计等都有长足发展,但是带有机械手的无人机动态操作等问题还比较突出。 在设计研究当中,无人机加上先进的操纵手臂之后,不仅改变了飞行器的整体重量,而且对于飞行中的控制提出了较大问题。在无人机飞行过程中,抓取动作的准确性、稳定性是考虑的重要问题。比如说,无人机在告诉的飞行中,对于其飞行速度与飞行的时间要求比较高,这就要要求无人机能够快速、及时地抓住物体,而且有时还需要对目标进行监视,这样就会避免因为噪音而引起的注意。除此之外,无人机动态抓握功能可以扩展到实时栖息,这可以用来快速地躲避大风、通过减少悬停时间来提高续航时间。 华北电力大学张虎[1]等在众多无人机研究的基础上,利用四旋翼飞行器作为基本结构,进行改进与创新,研究了一种飞滑式输电线巡检机器人,这种无人机结合了现有的四旋翼飞行器与巡线机器人优点的具有飞行与线上滑行巡检功能的机器人。Justin Thomas团队[2]在多年观察仿生机械的基础上设计研究了一种采用被动机制的机械手爪,这种手爪在抓取中能够不受外界环境的干扰,同时在垂直起飞和着陆系统中启用被动栖息的设计上采用了优化分析;Courtney E. Doyle团队[3]在多年针对放生机械研究的基础上,在无人机上加入了受到控制的附属物,使其能够高速地锁定对象并进行抓取。 本文以无人机整体设计为核心,分别对无人机的控制系统、工作原理及控制做出介绍,合理选择适合无人机的硬件,对工程应用具有较大的指导价值。 二、无人机总体设计 1.无人机控制系统组成 在整个的无人机系统当中,系统通过无线电与地面实现通信。在四旋翼无人机下方设置机械手,通过舵机控制其运动[4-6]。操作人员可以在地面输入指令,进而控制飞行器的飞行状态。同时,控制器还可以控制机械手的动作,实现抓举、松开等动作 2.无人机飞行器工作原理 四旋翼飞行器由四个螺旋桨驱动,螺旋桨分别有独立电机带动。在控制系统当中,旋转的力矩与平移动作实现了耦合。如果排除外界扰动,旋翼就能够产生与重力相等的升力,飞行器便处于悬停状态[7]。同时另外一组螺旋桨一个速度增大,一个速度减小就会产生俯仰和滚动的姿态;两组螺旋桨阻力矩的差异产生偏航姿态。 3.机械手控制 机械手的控制是此次设计的关键。手爪的设计要顾及到飞行器的相对移动速度,这样就能够获得相应的载荷;同时要考虑到其栖息能力,适应不同的环境,能够在广泛的区域停留。 4.无人机整体效果图

MD4四旋翼无人机

md4-1000型四旋翼无人机系统介绍 一、系统组成 “md4”系列四旋翼无人机系统由五个主要部分组成:飞行器、数字遥控器、地面站系统、机载任务设备和附属设备。 飞行器是无人机系统的主体,根据指令完成飞行任务。 数字遥控器用于对飞行器的实时操作,可以实时监控飞行器的各项状态指标。 地面站系统主要由笔记本电脑和微波信号传输系统构成,可以通过微波,实时接收飞行器上机载设备拍摄的实时影像,以及实时监控飞行的各项状态指标。 机载任务设备根据客户需要,可选配不同类型的酬载设备,如数码相机、高清摄像机、微光摄像机、红外摄像机等,完成不同的拍摄任务。 附属设备包括电池、充电箱、数据线等系统配件。 飞行器

数字遥控器 一体化地面站

机载任务设备 附属设备

二、系统技术参数

三、系统特性 1、可以定点悬停,稳定地拍摄感兴趣区域地物; 2、可以根据GPS信号,按照线路规划自主航行;没有GPS信号时也可以进行飞行,甚 至在室内飞行; 3、具有高性能平衡云台,可以在大风中依然保证酬载设备得到稳定的目标影像; 4、可以搭载高清摄影机、高画质的相机等设备,并可以进行自由调焦,以得到目标部 位最清晰的影像; 5、数传系统抗干扰性强,可以在距离电力线设备最近3m位置拍摄而信号不受干扰; 6、工业性能好,可以在强风、大雨的情况下正常起飞、作业,在紧急情况下也可以完 成任务; 7、操作简单,熟练的话,一个人即可进行操作;新手的话,两个人配合即可进行操作; 8、具备电量安全提示,当电量低于额定值时报警,当电量低于最低电压时即便人不在 现场也可以自动执行降落操作,保证无人机系统的安全; 9、采用微波作为数传系统,地面端可以实时得到高清影像; 10、具有电子围栏功能,具备位置记忆功能,可以在无操作的情况下,自动回到原来 的位置悬停拍摄; 11、对起飞场地没有要求,3×3m的场地即可实现垂直起降; 12、电机具有优良的散热性能,可以在每次飞行结束后更换电池进行再次飞行,达到 全天作业的目的;

四旋翼无人飞行器设计学习笔记

1、互补滤波算法 互补滤波器作为一种频域滤波器,常用于融合来自不同传感器测量得到的数据。一般地,互补滤波器包含至少两种频率特性互补的输入信号。例如,对于陀螺仪和加速度计解算姿态这一双输入系统,两个输入量都能分别对姿态角进行解算,其中加速度计输入量包含高频,应通过低通滤波器来滤除;陀螺仪则包含低频噪声(积分漂移),应采用高频滤波器滤队。两者的频率特性互补,可用互补滤波思想进行姿态解算,最终输出较准确信号。 2、四元数表示姿态角 运用互补滤波与卡尔曼滤波思想进行姿态整合的过程归根结底都是利用加速度计解算出的姿态角去修正陀螺仪积分的漂移误差. 这两种方法在姿态融合过程中姿态角的表示形式都是欧拉角表示.但是用欧拉角进行姿态解算在大角度计算时会出现万向节锁(角度为90度时加速度计进行姿态解算的反三解函数无解),为了避免该问题,可采用四元数来解算姿态. 四元数的优点: ·四元数不会存在欧拉角的万向节死锁的问题 ·四元数由4个数组成2个四元数之间更容易插值 ·对四元数规范化正交化计算更加容易 3、MPU6050 DMP内部四元数解算功能 运动控制传感器MPU6050提供了DMP内部四元数解算功能,可以直接输出四元数数据。它除了提供三轴陀螺仪和三轴加速度计传感器的16位ADC信号采集功能之外,还集成了数字低通滤波器和数字运动处理DMP,可以直接输出经低通滤波处理和四元数姿态解算后的四元数数据。将该四元数转换为欧拉角,可以得到准确的俯仰角和橫滚角。 4、PID 控制

由自动控制原理可知,采用角速度反馈闭环控制可有效增加系统稳定性,因此,在进行状态角控制之前需设计姿态角速度增稳内环控制。同时,系统最终控制量为空间位置,因此需要增加外环位置控制。由此得到四轴飞行器俯仰角方向整体控制结构: 4.1、PID 控制 比例控制指的是使用一个比例系数对输入量与期望量的差进行放大或缩小。不过单纯的比例控制会产生静态误差(误差不会收敛于0),所以这时要加入积分控制,对误差进行积分再乘以积分系数,误差累计越大积分控制的比重越大。其优点是可以消除静态误差;其缺点是不稳定,会使系统产生振荡。微分控制是预测系统的变化趋势。当输入的数据缓慢变化时微分项不起作用,当产生一个阶跃响应瞬间发生变化时,微分项发挥作用,做“超前控制”。 4.2串级PID 当将两个PID串联起来,用第一个PID的输出量作为第二个PID的输入量,第一个PID的期望量为期望达到的角度,第二个PID的期望量为此时该轴的角速度,角度环为1级PID为外环,角速度环为2级PID为内环 串级PID较单级PID的优点是,作为内环的角速度由陀螺仪采集数据输出,采集值一般不存在受外界影响的情况,抗干扰能力强,并且角速度变化灵敏,当受外界干扰时,回复迅速,这样使四轴在飞行时抗干扰能力强,飞行更稳定. 4.3PID调试过程详解--P64

基于STM32的微型四旋翼无人机控制系统设计—软件设计

毕业设计(论文)开题报告
题目:基于 STM32 的微型四旋翼无人机控制系统设计—软件设计
院 (系) 专 班 姓 学 导
电子信息工程学院
业电气工程及其自动化 级 名 号 师
2017 年 3 月 9 日

1. 毕业设计(论文)综述(题目背景、国内外相关研究情况及研究意义) 1.1 题目背景 微型无人机飞行器(MUAV,Mirco Unmanned Aerial Vehicle)是一种内置 控制系统,可以远程操控实现自主飞行的设备。其类型包括固定翼微型飞行器、 仿生扑翼微型飞行器及旋翼式微型飞行器。由于它具有隐蔽性强,低成本、低损 耗、零伤亡、高机动性等优点,使其迅速从军事领域拓宽到农业、民用和科研等 领域。在军事领域,因为具有零伤亡,战场生存能力强等特点,非常适合执行高 危险和人类无法参与的任务。在民用上,他也可以代替载人机完成一些任务,比 如救援搜索,灾情勘探,气象监测等。 MUAV 飞行性能主要包括,起飞着陆性能,姿态变换性能。而这些性能的优劣 取决于核心部件--飞行控制系统。随着数字处理器处理速度和能力的不断提高, 设计先进的控制系统已经是大势所趋。先进的飞行控制系统使微型无人机能在没 有外界干预的情况下自主飞行,完成预先规定的任务。由于微型无人机身有限的 负载能力和体积限制, 现在的一些导航系统和飞行控制系统很难直接在微型无人 机上使用,所以对微型无人机的飞行控制系统的研究意义重大! 1.2 国内外相关研究情况 国外对于四旋翼的研究非常的活跃,加拿大的雷克海德大学里面的相关研究 人员很早就证明了采用四旋翼设计思路能够实现飞行器的稳定飞行,澳大利亚的 卧龙岗大学相关研究人员已经对四旋翼有了精确的模型建立。各国研究人员也 以此引发了一个四旋翼的研究热潮。下面对部分研究机构所设计的四旋翼做一个 介绍 1)Microdrones MD4-1000 四旋翼无人飞行
MD4-1000 四旋翼无人机是由德国 MICRODRONES 公司生产, 可垂直起降自动驾 驶。机体云台都是采用特殊的碳纤维材料,机身重量轻、强度高,机臂可折叠, 方便运输。姿态、高度以及航向参考系统集成了加速度计、陀螺仪、电子罗盘、 气压高度计、温度计、湿度计等高精度传感器,相比 MD4-200,它的任务载荷大, 抗风能力强,续航时间更长,姿态控制更加稳定。

小型四旋翼无人机组机方案

小型四旋翼无人机组机 方案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

一、小型四旋翼无人机总体架构 典型的小型四旋翼无人机,一般由机械部分(机架),动力部分(包括电机、电子调速器、电调连接板、桨叶、电池),电子部分(包括飞控板、通信模块、遥控器接收机、PPM编码板)组成。 (一)机械部分 机架 考虑到编队飞行对实验室空间的要求,希望机架能够尽量的小。根据与蔡国伟老师对电机与桨叶(后文提到)的搭配进行讨论后,决定将机架的大小设定为轴距255mm,边距180mm(由6寸桨的大小决定)。 1,底板 2,中间机架板 3,顶板 整个机体由底板、中间机架板、顶板连接而成(通过尼龙螺柱和螺丝);底板安置电池、xbee模块、遥控器接收机、电调连接板,中间机架板安置4个电调、pixhawk飞控板,顶板用于安置定位系统标记点(同时起到保护、隐藏pixhawk飞控板及走线的作用);为便于安装,所有开孔、镂空均根据拟选器件匹配设计;拟采用碳2mm厚3K纤维板加工。 另设计四个保护罩如下(可用于避免桨叶受损或伤人):

4,保护罩 (二)动力部分 (1)电机 一般而言,小型四旋翼无人机(轴距250mm左右)选用KV2000左右(配5-6寸桨)的电机。经过对比讨论后,拟选用飓风D2206 KV1900无刷直流电机(配6寸桨)。之所以选用这款电机是因为这款电机能够提供较大的拉力,同时该电机的工作电流处在一个比较小的区间,单个电机重量仅为。

飓风D2206 KV1900参数表 飓风D2206 KV1900实物图 (2)电子调速器 电子调速器用于驱动无刷直流电机,比较重要的参数是工作电流,刷新频率,重量。一般而言,市面上可售的大部分电子调速器的刷新频率都大于 400hz,符合要求。根据上文所选电机的工作电流,综合考虑重量要求,与蔡国伟老师沟通后,拟选用好盈XRotor-10A电子调速器。

小型四旋翼无人机组机方案设计

一、小型四旋翼无人机总体架构 典型的小型四旋翼无人机,一般由机械部分(机架),动力部分(包括电机、电子调速器、电调连接板、桨叶、电池),电子部分(包括飞控板、通信模块、遥控器接收机、PPM编码板)组成。 (一)机械部分 机架 考虑到编队飞行对实验室空间的要求,希望机架能够尽量的小。根据与蔡国伟老师对电机与桨叶(后文提到)的搭配进行讨论后,决定将机架的大小设定为轴距255mm,边距180mm(由6寸桨的大小决定)。 1,底板 2,中间机架板 3,顶板 整个机体由底板、中间机架板、顶板连接而成(通过尼龙螺柱和螺丝);底板安置电池、xbee模块、遥控器接收机、电调连接板,中间机架板安置4个电调、pixhawk飞控板,顶板用于安置定位系统标记点(同时起到保护、隐藏pixhawk 飞控板及走线的作用);为便于安装,所有开孔、镂空均根据拟选器件匹配设计;拟采用碳2mm厚3K纤维板加工。 另设计四个保护罩如下(可用于避免桨叶受损或伤人):

4,保护罩 (二)动力部分 (1)电机 一般而言,小型四旋翼无人机(轴距250mm左右)选用KV2000左右(配5-6寸桨)的电机。经过对比讨论后,拟选用飓风D2206 KV1900无刷直流电机(配6寸桨)。之所以选用这款电机是因为这款电机能够提供较大的拉力,同时该电机的工作电流处在一个比较小的区间,单个电机重量仅为27.5g。

飓风D2206 KV1900参数表 飓风D2206 KV1900实物图 (2)电子调速器 电子调速器用于驱动无刷直流电机,比较重要的参数是工作电流,刷新频率,重量。一般而言,市面上可售的大部分电子调速器的刷新频率都大于400hz,符合要求。根据上文所选电机的工作电流,综合考虑重量要求,与蔡国伟老师沟通后,拟选用好盈XRotor-10A电子调速器。

四旋翼无人机术语

术语: 无人机UAV (Unmanned Aerial Vehicle), drone UAS (Unmanned Aerial Systems) 地面控制站Ground Control Station, GCS 固定翼fixed-wing 旋翼rotary-wing Rover 陆路,水路 多旋翼multirotors, multicopters 四旋翼4-rotor helicopters, quadcopter 加速计accelerometer 陀螺仪gyroscope 磁力计magnetometer 压力计barometer 射频控制R/C 遥测telemetry altitude GPS WAAS: Wide Area Augmentation System Thermopile: infrared detector, tilt, pitch, earth, sky, pan & tilt 侧视,俯视 roll pitch yaw autopilot 自主导航 takeoff & landing 起飞/着陆 MAV

MAVLink APM AI 意念控制Mind Control BCI 涡流,湍流Turbulence Navier-Stokes equations 定点waypoints DCM (Direction Cosine Matrix) COA (Certificate of Authorization) 2.4 Ghz, 72 Mhz, Kalman Filter: INS: Inertial Navigation System Inner loop / Outer loop FPV (First-Person View) 第一视角 FHSS (Frequency-Hopping Spread Spectrum) DSSS (Direct-Sequence Spread Spectrum) ROI POI PID WAAS ILS LAAS (Next-Gen GPS algorithm standard) PIC (Pilot In Command) LOS (Line of Sight) RTL (Return to Launch) 返航, Return to Home

四旋翼无人机保护罩结构设计

145 机械装备研发 Research & Development of Machinery and Equipment 周茂繁 (西南科技大学制造科学与工程学院,四川 绵阳 621000) 摘 要:随着无人机的快速发展,其在日常生活中的应用越来越广泛。因其螺旋桨与机身暴露在外,一旦发生碰撞,坠落风险很高。文章利用三维造型软件solidworks 对无人机保护外壳的三维造型进行设计建模,设计了一种结构简单、能够拆卸、便于组装的无人机保护外壳,能有效防止无人机因碰撞而发生坠落。关键词:无人机;保护罩;结构;设计中图分类号:U674.76 文献标志码:A 文章编号:1672-3872(2019)10-0145-01 ——————————————作者简介: 周茂繁(1998—),女,四川成都人,本科,研究方向: 机械设计。 随着无人机的大量投入使用,无人机坠机事故频频发生[1] 。无人机撞地事故分为两种情况,一是无人机出现机械故障或遭遇灾难性的气象致使无人机失去控制而坠地;二是操控手正常操纵无人机时,由于对地形把握不准而出现误撞山坡或障碍物,或近地着陆时高度和位置信息测量不准确导致降落触地。前者属于失控撞地,后者属于在控撞地[2]。 如何避免无人机与其他机体或障碍物碰撞已成为世界各国十分重视的问题。美军建立了防止无人机与有人机碰撞机制来避免撞击事故发生。但其效能还未达到安全程度,且对近地撞击障碍物事故至今任未研制出切实可行、安全高效的将无人机本体保护在内部,避免了螺旋桨与外部环境直接接触。其外部是由碳纤维材质组成的两个半球,使得无人机在发生碰撞时可以回弹或旋转,如图1所示。在实际使用中,当无人机发生碰撞时,两个单独的半球形外壳被动旋转,这种机制能够在不影响飞行稳定性的情况下与障碍物相撞,从而避免了复杂的传感与规避策略,旋转原理如图2所示。 2 无人机保护罩三维结构造型 利用三维设计软件Solidworks 对无人机保护罩进行设计建模,具体零部件结构如图3~图6所示。 3 实验样机与试飞 考虑到无人机载重问题,所负载外壳重量应尽可能小, 但外壳材料也需要满足具有一定强度,所以在保护外壳实物制作中选择碳纤维材料。球形外壳部分采用碳纤维管与3D 打印关节组成,中心连接部分选用碳纤维板切割制成,轴承选用轻质量的尼龙塑料轴承。实物成品与实验效果如图7~8所示。 4 结论 本项目是针对四旋翼无人机所设计的一套保护外壳,结构简单,容易拆卸,能降低无人机坠毁风险。通过实物制作与实验,保护外壳结构合理,能有效规避无人机直接与障碍物发生碰撞。参考文献: [1]薄文娟.国内外无人机系统的研究现状[D].内蒙古:内蒙古电子 技术信息学院,2016. [2]许卫东,呼曦.机载增强型近地警告系统发展概述[J].航空制造 技术,2006,24(16):51-52.[3]李洋.自主防撞击无人机传感器的信息融合算法研究[D].沈阳: 沈阳航空航天大学,2013.[4]张玉民,何鑫,杨百川.基于WPF 技术的无人机地面站软件设计 与实现[J].计算机工程与设计,2019(4):1167-1173. (收稿日期: 2019-5-18) 图1 无人机保护罩示意图 图 2 半球形外壳旋转原理 图3 碳纤维外壳结构图 4 无人机连接部分 图 5 外壳支撑与连接图 6 完整装配图 图8 无人机实验 图7 无人机保护罩安装

文献翻译-四旋翼无人机位置和姿态跟踪控制

西北工业大学明德学院本科毕业设计论文 毕业设计(论文)外文文献翻译题目:四旋翼无人机位置和姿态跟踪控制 系别 专业 班级 学生姓名 学号 指导教师

四旋翼无人机位置和姿态跟踪控制 摘要: 一个综合控制方法是提出要执行的位置和姿态跟踪小型四旋翼的动力学模型无人机(UAV),那里的动力学模型是欠驱动控制,高度耦合非线性的。首先,动力学模型分为全面启动子系统和欠驱动子系统;其次,全面启动子系统的控制器通过一种新的强大的终端滑模控制(台积电)的算法,这是用来保证所有状态变量在短时间内收敛到自己想要的值,收敛时间是如此之小,状态变量担任时间不变量的欠驱动子系统,另外,在欠驱动子系统的控制器通过滑模控制(SMC)设计。此外,该子系统的稳定性都证明了Lyapunov理论;最后,为了证明所提出的控制方法的鲁棒性,空气动力学的力和力矩,并作为外部扰动空气阻力考虑在内,得到的仿真结果表明,合成控制方法的立场和态度方面都有不错的表现当遇到外部干扰跟踪。 关键词:四旋翼无人机,欠驱动,新颖的鲁棒台积电,SMC,综合控制 1.介绍 四旋翼无人飞行器(UAV)正被用于一些典型的任务,如搜索和救援任务,监督,检查,测绘,航空摄影和法律的强制执行。 考虑到旋翼的动力学模型是一个欠驱动,高度耦合的和非线性的系统,很多控制策略,已经开发了一类相似的系统。其中,滑模控制,这已引起研究人员的瞩目,一直是一个有用的和有效的控制算法,处理系统具有较大不确定性,随时间变化的特性,非线性和有界外部干扰。该方法是基于定义指数稳定的滑动面作为机能缺失跟踪误差sandusing李亚普诺夫理论的,保证所有的状态轨迹在有限时间到达这些表面,另外,这些表面是渐近稳定,状态轨迹滑动沿着这些表面,直到他们到达原点。但是,为了获得快速跟踪误差收敛,期望的极点必须远离原点选择上的左半部分s平面,同时,这将反过来增加了控制器的增益,这是

四旋翼无人机无刷直流电机调速系统设计

( 二 〇 一 年 六 月 本科毕业设计说明书 题 目:四旋翼飞行器无刷直流调速系统设计 学生姓名: 学 院:机械学院 系 别: 专 业: 班 级: 指导教师: 讲师

摘要 最近这些年来,四轴飞行机在国家建设中发挥了越来越重要的作用。所以对于四轴飞行机的学习与设计有着至关重要的作用。 四轴飞行机它的硬件这部分选取了STC15W4K48S4型号的单片机作为其控制的芯片,它的保密性能很强,而且具有很强的抵抗干扰的能力,并且其能耗较低,下载程序是经由串行口下载,方便快捷,其本身内部的储存器更方便程序的暂存。采用MPU6050做陀螺仪加速度计,MPU6050陀螺仪测量范围宽,测量精度高,做四轴飞行机的陀螺仪是再好不过的选择。采用NRF24L01蓝牙2.4GHZ 直插模块,本次选取的蓝牙模块功耗低,通信能力强。 在研究四旋翼无人飞行器的结构与原理的设计中,我们通过牛顿力学还有刚体力学的结论这两个理论才建立了四旋翼无人飞行器它的数学模型,这样得设计就能够很有效的提升系统的性能。 在通过四旋翼无人机的姿态的解算中,通过PID算法,解算欧拉角与四元素的数据,从而使飞行器飞行更加平稳,也可对其轨道进行规划,这样便可以实现自主飞行,而PID算法的可靠性与稳定性强。 本次设计我们通过编写代码设计PID算法来实现对四旋翼无人飞行器软件的控制,从而可以实现各模块间的相互分工与合作。 关键字:四旋翼无人飞行器;硬件设计;PID;欧拉角;飞行姿态

Abstract The four rotor unmanned aerial vehicle (UA Vs) has been playing an increasingly important role in national construction in recent years. The design and research of the four rotor unmanned aerial vehicle (UA V) is of great significance. The four rotor UA V hardware using STC15W4K48S4 microcontroller as the control chip, the strong confidentiality, and strong anti-interference ability, low power consumption, through the serial port to download the program, convenient storage, its internal procedures more convenient storage. Using MPU6050 as gyro accelerometer, MPU6050 gyroscope wide measurement range, high measurement accuracy, as the four rotor aircraft gyroscope is no better choice. Using NRF24L01 Bluetooth 2.4GHZ inline module, the selected Bluetooth module has low power consumption and strong communication ability. In the study of the structure and principle of the four rotor unmanned aerial vehicle (UA V), the mathematical model of the four rotor unmanned aerial vehicle (UA V) is established by using Newton mechanics and rigid body mechanics theory, so as to improve the reliability and stability of the system. In the four rotor UA V attitude algorithm, using PID algorithm, so as to make the aircraft more smoothly, but also the planning of its orbit, so that we can achieve autonomous flight, and the reliability and stability of the PID algorithm is strong. The design of the four rotor UA V software control, through the preparation of C language code to control each module, to achieve cooperation between the modules. Key words:four rotor unmanned aerial vehicle; hardware design; PID; Euler angle; flight attitude

基于AVR的四旋翼无人机控制毕业设计

毕业设计(论文) 题目基于AVR的四旋翼无人机 控制

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分

或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

相关文档
最新文档