基于倒置A2O工艺处理低碳源城市污水强化脱氮综合调控技术研究

基于倒置A2O工艺处理低碳源城市污水强化脱氮综合调控技术研究
基于倒置A2O工艺处理低碳源城市污水强化脱氮综合调控技术研究

基于倒置A2/O工艺处理低碳源污水强化脱氮综合调控技术研究

摘要:重庆市某大型污水处理厂采用倒置A2/O工艺处理低碳源城市污水。针对运行存在的反硝化能力不足,脱氮除磷效果不好和2007年调控技术的缺陷进行了强化脱氮综合调控技术的生产性试验研究。在2008年常温高温季节采取投加垃圾渗滤液(投配率为0.1%)、缩短初沉池HRT为原来的1/3、提高MLSS到4500mg/L、设置好氧第1段为反硝化过渡段及提高回流比等措施后,增加可利用碳源15%以上,出水NH3-N为2.5mg/L,对NH3-N的去除率为90%;出水TN为17 mg/L,对TN的去除率提高至54%,单位电耗减少15%至0.22kW·h。在2008~2009年低温季节采用提高MLSS到6000mg/L,控制好氧区DO在1.2mg/L左右等措施,出水NH3-N 为3mg/L,对NH3-N的去除率为88%;出水TN为15.5mg/L,对TN的去除率为62%。

关键字:倒置A2/O工艺;低碳源;强化脱氮;温度;综合调控

我国南方城市人均生活用水量大,其中洗涤、淋浴用水量占80%左右,加之南方城市雨水较多,而且排水系统多为合流制。此外,地下水渗入排水管内,化粪池的不合理设置,使得大部分城市污水浓度较低,COD cr一般为200mg/L,有的甚至更低[1],难以满足系统高效脱氮对碳源的要求。倒置A2/O工艺具有缺氧段优先得到碳源,污泥回流至缺氧段,缺氧段污泥浓度高,单位池容的反硝化速率明显提高,反硝化作用能够得到有效保证[2~3],回流的所有污泥全部经历完整的释磷、吸磷过程,系统的除磷效果也更好的特点,使得该工艺已成为三峡库区污水处理厂的典型工艺,应用较多。本文通过对某大型污水处理的倒置A2/O工艺的强化脱氮的综合调控技术的研究,实现低碳源污水处理稳定达标排放,可为我国城市污水处理厂的调控运行提供借鉴。

1.试验场地及方法

试验以重庆市某大型污水处理厂为基地,该厂污水日处理能力为60×104m3/d,雨季135×104m3/d,目前已处于满负荷运行状态,正在进行三期20×104m3/d扩建工程。该厂采用倒置A2/O生物脱氮除磷工艺(见图1),其中初沉池与二沉池均为平流式沉淀池,好氧区由3段廊道构成。

出水

图1 污水处理厂工艺流程

Fig.1 Flow chart of wastewater treatment process

该厂进出水质情况见表1,可知进水水质变化较大,与设计值相差甚远,对于脱氮工艺来说通常要求BOD5/TN>4.0,从上表中可以看出该厂的进水BOD5/TN为2.5左右,属于低碳源污水。

表1 污水处理厂进、出水水质

-1)

Tab.1 Designed wastewater quality condition (

初期运行BOD5、COD Cr、SS、去除效果较好,均能持续稳定达标。NH3-N出水始终稳定在0.5mg/L左右,去除率达95%以上。但TN、TP出水严重超标,平均去除率仅在37%、40%,反硝化能力相对不足。

通过2007年控制好氧第3段为过渡段,延长反硝化区长度等工艺调控,TN、TP能够满足达标,但存在好氧第3段由于曝气控制不精确,导致在该区域污泥浓度变化较大,影响在线MLSS仪表的准确监测,偶尔还会出现死泥上浮现象,导致出水SS超标。为使得出水能够长期稳定达标,2008年进行了常温高温、低温两种条件下的生产性试验。

2.常温高温季节强化脱氮综合调控及效果分析

2.1常温高温季节强化脱氮综合调控技术

2.1.1优先利用碳源脱氮与辅助化学除磷

由于氮的性质决定其难以经济的通过化学方法去除,而TP较容易通过化学沉淀去除。故采取优先利用有限的碳源满足TN的生物去除,采取生物脱氮除磷为主,辅助化学除磷的生物-化学协同作用技术。目前每天投加2.4吨左右有效液态聚铁盐除磷剂,在曝气池出水处投加,利用跌水能量充分混合辅助除磷。

2.1.2 碳源的补充与有效利用

(1)缩短初沉池HRT增加系统利用碳源

初沉池在去除原水中的部分悬浮固体的同时,也导致了大量碳源的去除。该厂采取每座初沉池开启6格中的2格的措施,HRT由1.69hr缩短到0.56hr。使进入A2/O池的可利用碳源量得到增加。

(2)外加碳源投加垃圾渗滤液

该厂从2007年起开始投加当地某垃圾填埋场的渗滤液,每天根据进水水质情况,选择性地投加某垃圾填埋场的渗滤液400t,投配率为0.1%(垃圾渗滤液投加量与污水日处理量之比)。同时为了保证均匀的投加到污水中,投加点选择在初沉池进水渠道处。

2.1.3 运行工况调整

(1)延长反硝化段长度(设置好氧——缺氧过渡段)

2008年将好氧——缺氧过渡区调整到好氧第1段,延长反硝化时间,调整段长度根据NH3-N沿程硝化情况试验确定。由于好氧池缺少搅拌器,为了防止第1段污泥的下沉堵塞微孔曝气头和造成污泥老化,通过调整曝气支管的阀门开启度来控制曝气量,使活性污泥处于悬浮状态,同时对第三段内回流区域实施DO控制。

(2)提高系统污泥浓度

该厂的MLVSS/MLSS在0.3~0.45之间,低于一般污水厂的0.7。采用设计的污泥浓度3300mg/L运行,实际的可挥发性污泥浓度(MLVSS)偏低,难以保证系统反硝化菌的量。故系统采用较高的MLSS 4500~5000mg/L。

(3)提高回流比

只有将尽可能多的硝酸盐态氮回流到前置缺氧区,反硝化作用才可以进行,才能够得到较高的氮去除率。研究表明单纯加大污泥回流比单纯加大污水回流的TN去除效果好,故该厂内回流比、外回流比分别调整为200%与100%,其中外回流比的增大幅度大于硝化液回流比。

2.2.结果与分析

2.2.1 倒置A2/O池中碳源有效利用情况

垃圾渗滤液中由于具有较高的含碳量,这使得利用其作为污水处理的补充碳源具有一定的可行性[4]。垃圾渗液浓度波动很大,该厂接受的渗滤液属于早期渗滤液,经过抽样监测COD cr为5000~8000mg/L,NH3-N为400~1000mg/L。渗滤液COD cr/TN为7~15,高于该厂进水中的COD cr/TN值,因此可为城市污水处理补充部分碳源,同时为垃圾填埋场渗滤液处理系统容量不足提供了一个解决方法。当投加量超过一定范围时,垃圾渗滤液中所含重金属、有毒有机物等会对活性污泥造成一定的毒害。该厂在渗滤液投配率为0.1%左右时,生物反应池中活性污泥表现为絮凝体较大,具有良好的吸附和沉降性能[5]。

通过对初沉池进出口处COD cr值的多次监测(监测数据见表2),前3次是每座池子6格全开时COD cr的平均去除率为35%左右,后3次是在关闭其中的4格后,COD cr的平均去

除率减少到20%左右,进入生化池中的COD浓度提高了15%。

表2 初沉池缩短停留时间前后进、出水COD cr变化情况

before and after shorten Primary sedimentation tank HRT

Tab.2 Change of COD

2.2.2 对NH3-N的去除效果

在采取以上措施后,对2008年12个月NH3-N进、出水月平均值进行统计分析,系统对NH3-N的去除率在90%左右。实际进水中NH3-N浓度波动较大,但出水NH3-N浓度基本在2.5mg/L左右,说明在硝化区容积减少的情况下,系统仍然具有很强的抗NH3-N冲击负荷能力。好氧段内的硝化菌在与异养菌的在竞争中成为优势菌,另外MLSS一直维持在4500mg/L左右的高浓度,有大量的硝化菌聚集,为实现高效硝化创造条件。

2.2.3 对TN的去除效果

从TN的去除效果的图2中可以看出,2008年TN平均去除率在54%左右,取得了较好的脱氮效果,出水TN在17mg/L左右,其中年初低温季节脱氮效果较差。

脱氮效果大幅度提高的原因分析如下,通过工艺调整,为系统补充了碳源,有利于激发反硝化菌脱氮潜能。同时工艺中缺氧段置于整个生物反应池的最前端,该厂进水直接进入缺氧区,优先满足了反硝化脱氮对碳源的要求。在较高的活性污泥浓度下,为硝化和反硝化同步进行提供了有利条件[6]。该厂好氧段污泥浓度4500mg/L,DO控制在1.5mg/L,有研究表

[7~8]

段内存在明显的同步硝化反硝化现象。从好氧区末端回流区域硝化液中DO值较低,为缺氧脱氮创造了条件,同时由于污泥回流至缺氧段,缺氧段污泥浓度经过检测在5500mg/L左右,较好氧段高出约25%,单位池容的反硝化速率得到明显提高,同时较高的回流比也使更多的硝化液参与反硝化,提高了系统的脱氮效率。

2008年该厂出水SS在4~12mg/L,未发生超标现象,体现了控制好氧第1段的优势。

2.2.5 单位电耗分析

工艺调控后污水厂的平均电耗见图3,单位污水处理电耗与季节存在关系,第一、四季度单位电耗要高于第二、三季度,年平均电耗在0.22kW·h/m3左右,相比于调控前节能约15%,低于我国西南地区平均能耗0.275kW·h/m3 [9],分析原因是一方面,随着污水配套管网的建成,污水处理量达到设计规模,产生的规模效应使单位电耗减少。有研究表明,单位电耗与实际处理水量成幂指数关系Y=0.34X-0.168,随着实际处理量的增加,单位电耗随之降低,同时当实际处理规模越接近设计规模时,电耗降低速率越快[10]。另一方面,随着对倒置A2/O工艺各项运行参数的规律的掌握,采取调控措施后,通过对DO和进出水NH3-N值在线监测及时调整鼓风机工况,使好氧区曝气量的总体减少,气水比维持在4.5左右。鼓风曝气系统电耗一般占全厂电耗的60%左右,在运行中需要严格控制反应池的曝气量,可以避免能耗的浪费。

3.低温季节强化脱氮综合调控及效果分析

3.1低温季节强化脱氮综合调控技术

该厂低温季节出水TN经常维持在17~19mg/L,每年均出现几次TN超标的问题,在超标情况出现后,系统及时调控仍需3~4天的适应才能恢复正常。通过对近两年的低温季节运行情况的研究,对2008~2009年低温季节条件下的运行参数进行了调整,在常高温条件下采取的措施基础上,针对低温季节提出了以下措施强化脱氮。

3.1.1进一步提高污泥浓度

为了确保安全度过低温期,基于长污泥龄可以保证硝化菌的充分繁殖、高的抗冲击负荷和促进同步硝化反硝化考虑[11],该厂采取提高MLSS的措施进行了现场试验研究。从2008年11月初起,通过减少剩余污泥泵排泥次数和排泥量,经过半个多月的时间,MLSS控制在5500~6000mg/L,使污泥负荷降至0.04 ~0.05kgBOD5/ (kgMLSS·d)。

3.1.2控制系统DO值

低温条件下污水厂生物系统的正常运行就是充分处理好进水营养物的浓度与微生物对溶解氧的需求的协调问题。考虑该厂低温条件下系统硝化能力较强,由于MLSS的提高,系统中微生物量得到增加,污泥负荷降低,为了提高系统脱氮效果,必定要维持系统的一定生物活性,避免微生物处于内源呼吸阶段。故采取适当降低曝气池中的DO值,控制在1.2mg/L左右,确保活性污泥中微生物的正常生长,同时不造成污泥老化。

3.2结果与分析

表3 调控后2008~2009年低温条件下进出水水质

Tab.3 Influent and Effluent Quality in Low-temperature in 2008~2009 after regulation

从表3中可以看出,TN出水能够维持在15.5mg/L左右,基本处于一级A标附近。NH3-N 出水在3mg/L左右,比常温高温期有所提高。说明提高污泥浓度能够取得良好的脱氮效果。

分析原因如下,污水反应池中水温要高于当地气温,提高污泥浓度能够更好的维持系统水温,同时控制了好氧段的DO值,适当减少多余的曝气量,可以减少通过气体带入空气中的热量,有利于系统的生化反应的发生。在好氧硝化过程中,由于污泥浓度的提高,从而使系统的污泥龄得到提高,较高的污泥龄是保证生物污泥中的硝化细菌存在的条件。在缺厌氧阶段高污泥浓度会使更多的碳源被消耗,减少碳化阶段的容积,从而提高硝化细菌浓度,硝化速率也得到提高,同时高污泥浓度意味着能够产生更大颗粒的活性污泥,为同程硝化反硝化创造了条件。在反硝化过程中,因此硝化末端较低的溶解氧可以有效的减少硝酸盐回流液中所携带的溶解氧含量,同时高污泥浓度自身内源代谢需氧量也相对较强,可以进一步消耗回流及缺氧段中的溶解氧,提高了反硝化菌利用碳源的反硝化能力。

4、结论

(1)垃圾渗滤液投加比为0.1%时,活性污泥未出现中毒现象,在补充部分碳源的同时为渗滤液的处理提供出路。缩短初沉池HRT为原来的1/3,可以为系统提高可利用的15%的碳源。

(2)常温高温条件下,通过碳源的补充和控制好氧第1段DO值强化反硝化,可以使NH3-N去除率达到90%,TN去除率达到54%,且实现达标排放。采取调控技术后,减少了生物反应池的气水比,系统节约电耗15%。

(3)低温条件下,通过提高污泥浓度到5500~6000mg/L,控制曝气池DO在1.2mg/L 左右等措施后,出水TN稳定在15mg/L左右,对TN的去除率达到62%左右。

(4)在低温条件过去后,应及时降低污泥浓度,将工艺调整了常温高温模式运行,避免污泥大量增长。

参考文献

[1] 侯红娟,王洪洋,周琪. 进水COD浓度及C/N值对脱氮效果的影响[J].中国给水排水, 2005, 21(12):

19-23.

[2] Strous M, Van Gerven E, Zheng Ping, et al Ammonium removal from concentrated waste streams with

the anaerobic ammonium oxidation (anammox) process in different reactor configerations [ J]. Wat.Res,

1997, 31(5): 1955-1962.

[3] 张杰,臧景红,杨宏,刘俊良. A2/O工艺的固有缺欠和对策研究.给水排水, 2003, 29(3): 22-25.

[4] Lema J M, Mendez R, Blanzquez R. Characteristics of landfill leachate and alternatives for their treatment: a

review [J]. Water Air Soil Pollution, 1988, 40: 223-250.

[5] 张智,陈杰云,李勇,等. 处理低碳源污水的倒置A2/0工艺强化脱氮技术研究[J].中国给水排水, 2009,

25(13): 7-9.

[6] 毕学军,张波. 倒置A2/O工艺生物脱氮除磷原理及其生产应用[J].环境工程, 2006, 24(3):29-30.

[7] Robertson L A, Van Niel E W J. Simultaneous nitrification and denitrification aerobic chemostat cultures

of thiosphaera pantotropha. Applied Environmental Microbiology, 1998, 54(1): 2812–2818.

[8]Holman J, Wareham D. Oxidation-reduction potential as a monitoring tool in a low dissolved oxygen

wastewater treatment process [J]. Journal of Environmental Engineering, 2003,129 (1): 52-58.

[9] 杨凌波,曾思育,鞠宇平,等.我国城市污水处理厂能耗规律的统计分析与定量识别.给水排水, 2008,

34(10):42-45.

[10] 褚俊英,陈吉宁,邹骥,等.城市污水处理厂的规模与效率研究.中国给水排水, 2004,20(5):35-38

[11] QiaoX L, Zhang Z J,Chen Q X,et al. Nitrification characteristics of PEG immobilized activated sludge at high

ammonia and COD loading rates[J]. Desalination, 2008, 222(1-3): 340~347.

污水处理技术之常见的污水处理工艺计算公式(精选.)

污水处理技术之常见的污水处理工艺计算公式 北极星环保网讯:本文收集了最常见的AO脱氮工艺的计算书,工艺流程为格栅—调节池—AO—二沉池,每一个流程都有相应的计算书汇总,仅供大家参考! 格栅 1、功能描述 格栅由一组平行的金属栅条或筛网制成,安装在污水渠道、泵房集水井的进口处或污水处理厂的端部,用以截留较大的悬浮物或漂浮物,如纤维、碎石、毛发、木屑、果皮、蔬菜、塑制品等,以便减轻后续处理构筑物的处理负荷,并使之正常运行。按照栅栅条的净间隙,可分为粗格栅(50~100mm)、中格栅(10~40mm)、细格栅(3~10mm)。 2、设计要点 设置格栅的目的是拦截废水中粗大的悬浮物,首先废水的水质选择栅条净间隙,然后废水的水量和栅条净间隙来计算格栅的一些参数(B、L),得到的这些参数就可以选择格栅的型号。工业废水一般采用e=5mm,如造纸废水、制糖废水、制药废水等。采用格栅的型号一般有固定格栅、回转式机械格栅。 3、格栅的设计 (1)栅槽宽度

(2)过栅的水头损失:

式中: h1——过栅水头损失,m ; h0——计算水头损失,m ; g ——重力加速度,9.81m/s2 k ——系数,格栅受污染堵塞后,水头损失增大的倍数,一般k=3; ξ ——阻力系数,与栅条断面形状有关,,当为矩形断面时,β= 2.42。(其他形状断面的系数可参照废水设计手册) (3)栅槽总高度: 为避免造成栅前涌水,故将栅后槽底下降h1作为补偿。 式中: H ——栅槽总高度,m ; h0 ——栅前水深,m ; g ——栅前渠道超高,m,一般用0.3m。 (4)栅槽总长度:

调节池 1、功能描述 调节池主要起到收集污水,调节水量,均匀水质的作用。 2、设计要点 调节池的水力停留时间(HRT)一般取4-6h;其有效高度一般取4-5m,设计时,按水力停留时间计算池容并确定其规格。 3、调节池设计计算:

污水处理厂的工艺流程设计

目录 设计任务书 2 第一章环境条件 4 第二章设计说明书 5 第三章污水厂工艺设计及计算 7 第一节格栅 7 第二节推流式曝气池 9 第三节沉淀池 11 第四节混凝絮凝池 14 第五节气浮池 15 第六节污泥浓缩池 17 第七节脱水机房 19 第八节其他 19 第四章水头损失 21 第五章总结与参考文献 22

设计任务书 1 设计任务: 某化工区2.5万m3/d污水处理厂设计 2 任务的提出及目的,要求: 2.1 任务的提出及目的: 随着经济飞速发展,人民生活水平的提高,对生态环境的要求日益提高,要求越来越多的污水处理后达标排放。在全国乃至世界范围内,正在兴建及待建的污水厂也日益增多。有学者曾根据日处理污水量将污水处理厂分为大、中、小三种规模:日处理量大于10万m3为大型处理厂,1-10m3万为中型污水处理厂,小于1万m3的为小型污水处理厂。近年来,大型污水处理厂建设数量相对减少,而中小型污水厂则越来越多。如何搞好中、小型污水处理厂,特别是小型污水厂,是近几年许多专家和工程技术人员比较关注的问题。 根据所确定的工艺和计算结果,绘制污水处理厂总平面布置图,高程图,工艺流程图。 2.2 要求: 2.2.1 方案选择合理,确保污水经处理后的排放水质达到国家排放标准 2.2.2 所选厂址必须符合当地的规划要求,参数选取与计算准确 2.2.3 全图布置分区合理,功能明确;厂前区,污水处理区污泥处理区条块分割清楚。延流程方向依次布置处理构筑物,水流创通。厂前区布置在上风向并用绿化隔离带与生产区隔离,以尽量减少对厂前区的影响,改善厂前区的工作环境。 2.2.4 构筑物的布置应给厂区工艺管线和其他管线设有余地,一般情况下,构筑物外墙距道路边不小于6米。 2.2.5 厂区设置地坪标高尽量考虑土方平衡,减少工程造价,同时满足防洪排涝要求。 2.2.6 水力高程设计一般考虑一次提升,利用重力依次流经各个构筑物,配水管的设计需优化,以尽量减少水头损失,节约运行费用, 2.2.7 设计中应该避免磷的再次产生,一般不主张采用重力浓缩池,而是采用机械浓缩脱水的方式,随时将排出的污泥进行处理。 2.2.8 所选设备质优、可靠、易于操作。并且设计必须考虑到方便以后厂区的改造。 2.2.7 附有平面图,高程图各一份。 3 设计基础资料: 该区为A市重要的工业及化工区,化工业门类比较齐全,主要为石油化工类,并规模较大,具有的化工厂目前为十多家,每天排出生活污水量8000m3左右,工业废水量为18000m3,污水BOD、COD、SS、酸、碱、硫化物、石油、苯等浓度较高,若未经处理处理直接排海,将会对生态环境造成重大影响,根据化工区规划,必须建设一座污水处理厂。 3.1 水量 最大时水量:1042m3/h 总设计规模为25000m3/d。(远期设计规模为:100000 m3/d)

污水处理a2o工艺设计

目录 摘 要 ..................................................................... 错误!未定义书签。 Abstract .................................................................. 错误!未定义书签。 第一章 设计概论 ................................................... 错误!未定义书签。 设计依据和任务 ....................................... 错误!未定义书签。 设计目的 .............................................. 错误! 未定义书签。 第二章 工艺流程的确定 .................. 错误!未定义书签。 工艺流程的比较 ....................................... 错误!未定义书签。 工艺流程的选择 ....................................... 错误!未定义书签。 第三章 工艺流程设计计算 ................ 错误!未定义书签。 设计流量的计算 ....................................... 错误!未定义书签。 设备设计计算 .......................................... 错误!未定义书签。 格栅 ............................................... 错误!未定义书签。 提升泵房 ........................................... 错误!未定义书签。 沉砂池 ............................................. 错误!未定义书签。 初沉池 ............................................. 错误!未定义书签。 A2/O .............................................. 错误!未定义书签。 二沉池 ............................................. 错误!未定义书签。 接触池和加氯间 ...................................... 错误!未定义书签。 污泥处理构筑物的计算 ................................ 错误!未定义书签。 构建筑物和设备一览表 ................................. 错误!未定义书签。 第四章 平面布置 ........................ 错误!未定义书签。 污水处理厂平面布置 ................................... 错误!未定义书签。 平面布置原则......................................... 错误!未定义书签。 具体平面布置......................................... 错误!未定义书签。 污水处理厂高程布置 .................................... 错误!未定义书签。 主要任务 ............................................ 错误!未定义书签。

污水处理A2O工艺

A2/O工艺 1、基本信息 A2/O工艺亦称A-A-O工艺,就是英文Anaerobic-Anoxic-Oxic第一个字母得简称(厌氧-缺氧-好氧)。按实质意义来说,本工艺应为厌氧-缺氧-好氧法,生物脱氮除磷工艺得简称。 A2/O工艺就是流程最简单,应用最广泛得脱氮除磷工艺。 2、工艺特征 该工艺各反应器单元功能及工艺特征如下: 1)厌氧反应器:原污水及从沉淀池排出得含磷回流污泥同步进入该反应器,其主要功能就是释放磷,同时对部分有机物进行氨化; 厌氧池中没有分子态氧及化合态氧存在,有机物得降解得电子受体就是有机物。DO<0、2 mg/L。厌氧反应需要较高、较稳定得温度,其中中温反应在31~33℃之间。需要严格得pH。 2)缺氧反应器:污水经厌氧反应器进入该反应器,其首要功能就是脱氮,硝态氮就是通过内循环由好氧反应器送来得,循环得混合液量较大,一般为2Q (Q—原污水量); 缺氧池中电子受体就是NO3-与NO2-,也就就是说,缺氧池中允许化合态氧存在。0、2

3)好氧反应器——曝气池:混合液由缺氧反应器进入该反应器,其功能就是多重得,去除BOD、硝化与吸收磷都就是在该反应器内进行得,这三项反映都就是重要得,混合液中含有NO3-N,污泥中含有过剩得磷,而污水中得BOD(或COD)则得到去除,流量为2Q得混合液从这里回流到缺氧反应器; 在好氧区,有机污染物进一步被降解,硝化菌将污水中存在得氨氮转化为硝酸盐氮,同时聚磷菌利用在厌氧条件下产生得动力进行过度吸磷。 氨态氮在硝化菌得作用下进一步分解转化,首先在亚硝化菌得作用下转化为亚硝酸氮,继之亚硝酸氮在硝化菌得作用下,转化为硝酸氮。 缺氧环境下可以没有溶解氧,但就是有硝态氮。厌氧环境下连硝态氮也没有,所以在实际得污水处理中厌氧、好氧、缺氧等工艺,厌氧就是在封闭条件下实现,好氧就是通过曝气来实现,而缺氧就是通过回流曝气池后得沉淀池得污泥来实现,就就是好氧池当中含硝态氮得废水回流到前端得缺氧池供反硝化之用,以达到脱氮得目得。 4)沉淀池:其功能就是泥水分离,污泥得一部分回流厌氧反应器,上清液作为处理水排放。 3、工艺流程 A2/O工艺流程图如下:

生活污水处理厂工艺设计

生活污水处理厂的工艺设计 周黎 (商丘市环境监测站,河南商丘476000) 摘要设计了某生活污水处理厂的工艺方案。为了寻求投资和运行费最低的新型污水处理工艺,分别采用生物接触氧化池工艺和气浮-曝气生物滤池工艺进行现场试验,通过对两种污水处理工艺的优缺点及技术经济进行比较,决定采用气浮-曝 气生物滤池工艺。 关键词生活污水污水处理工艺设计 引言 城市生活污水处理的主要污染物是有机 物,目前国内外大多采用经济、实用的生物 法进行处理。在生物法中有活性污泥法和生 物膜法两大类。生物膜法比较有代表性的工 艺有:生物接触氧化、生物滤池、曝气生物 滤池、生物转盘等[1~4]。笔者针对商丘市某生 活污水处理厂设计了生物接触氧化池工艺和 气浮—曝气生物滤池工艺两种方案。在2004 年4~8月期间分别采用这两种工艺进行现 场试验,根据试验结果对这两种方案进行了 分析选择。 1 设计进水水质 综合考虑该污水处理厂的实际情况,设 计进水水质和选择排放标准。处理后排放废 水的水质必须达到GB 8978-1996《综合污 水排放标准》中三级排放标准。水质状况及 排放标准限值见表1。 2 方案一生物接触氧化池工艺 2.1 工艺流程 主体工艺采用生物接触氧化法,试验处 理规模30 m3/d。工艺流程见图1。 2.2 试验结果(表2) 表2显示:出水CODCr≤60 mg/L、SS≤ 20 mg/L、BOD5≤20 mg/L,排放废水的水 质达到GB 8978-1996《综合污水排放标 准》中的三级排放标准。 2.3 工艺特点 生物接触氧化池工艺是一种生物膜法工 艺,具有以下特点: (1)氧化池内设置弹性立体填料,池底 设置可变微孔曝气管。在曝气过程中弹性立 体填料对气泡有多层次的切割能力,可以提 高充氧效率,减少消耗。可变微孔曝气管氧 的传递效率高,不易堵塞、造价低、便于维 护管理。

某城镇污水处理厂工艺设计

一、总论 (4) 1、设计题目 (4) 2、设计资料 (4) 1.2.1城市概述 (4) 1.2.2自然条件 (4) 1.2.3规划资料 (4) 二、污水处理工艺流程说明 (5) 1、方案确定的原则 (5) 2、可行性方案的确定 (5) 3、污水处理工艺流程的确定 (5) 4、污水处理工艺流程说明 (6) 2.4.1进出污水水质 (6) 三、处理构筑物设计 (7) 1、格栅 (7) 3.1.1栅条间隙数n: (7) 3.1.2有效栅宽: (7) 3.1.3过栅水头损失: (8) 3.1.4栅后槽的总高度: (8) 3.1.5格栅的总长度: (8) 3.1.6每日栅渣量: (9) 2、污水提升泵房 (9) 3.2.1设计计算 (9)

3、沉砂池 (10) 3.3.1平流式沉沙池的设计参数 (10) 3.3.2平流式沉砂池设计 (10) 4、氧化沟 (12) 3.4.1氧化沟类型选择 (13) 3.4.2设计参数 (13) 3.4.3设计流量 (14) 3.4.4去除 (14) 3.4.5脱氮 (15) 3.4.6除磷 (16) 3.4.7氧化沟总容积及停留时间 (16) 3.4.8需氧量 (17) 3.4.9氧化沟尺寸 (18) 3.4.10进水管和出水管 (18) 3.4.11出水堰及出水竖井 (19) 5、浓缩池 (19) 3.5.1设计参数 (19) 3.5.2中心管面积 (19) 3.5.3沉淀部分的有效面积 (20) 3.5.4浓缩池有效水深 (20) 3.5.6校核集水槽出水堰的负荷 (21) 3.5.7浓缩部分所需的容积 (21)

3.5.8圆截锥部分的容积 (21) 3.5.9浓缩池总高度 (21) 四、参考文献 (23)

某12万吨日城市污水处理厂的A2O工艺设计

某12万吨/日城市污水处理厂的A2/O工艺设计 摘要 本次毕业设计的题目为某城市污水处理厂工艺的设计-A2/O工艺。主要任务是完成该污水处理厂的平面布置、各个构筑物的初步设计和一些处理构筑物施工图的设计。 初步设计要完成设计说明书一份、污水处理厂平面布置图一张、污水处理厂工艺流程图一张以及主要构筑物设计图三张;在主要构筑物设计图的设计中,主要是完成生物池、二沉池和接触消毒池的设计。 该污水处理厂工程,规模为12万吨/日。进水水质见下表: 污水进水水质单位:mg/L 项目COD cr BOD5NH4+-N SS TN0TP0含量270 135 30 135 30 3 本次设计所选择的A2/O工艺,具有良好的脱氮除磷功能。该污水厂的污水处理流程为:污水从粗格栅到污水提升泵房,再从泵房到细格栅,然后到旋流沉砂池,再进入生物池(即A2/O反应池),再从生物池进入二沉池,污水再经过接触消毒池后排入自然水体;污泥处理流程为:旋流沉砂池产生的垃圾直接外运处置,二沉池产生的剩余污泥则运入贮泥池,二沉池的回流污泥则通道管道、污泥回流泵房再次进入A2/O反应池,经过贮泥、加药处理后的污泥,进入污泥浓缩脱水车间,最后外运处理。污水处理厂处理后的出水水质要达到《城镇污水处理厂污染物排放标准》(GB 18918—2002)中的一级b标准。该标准的具体数据如下表所示: 出水水质标准单位:mg/L 项目COD cr BOD5NH4+-N SS TN0TP0含量60 20 15 20 15 1 关键词:A2/O工艺,脱氮除磷,污水处理,污泥处理

THE A2/O PROCESS DESIGN OF A CITY SEWAGE TREATMENT PLATE ABSTRACT The subject of this graduation project for a municipal sewage treatment plant process design—A2/O process.Main task is to complete the layout of the sewage treatment plant,the preliminary design of the various structures and construction plans of dealing with the design of structures. To complete the preliminary design of a design manual, wastewater treatment plant with a floor plan, flow chart of a sewage treatment plant and the design of three main structures;design of the main design of structures, mainly is the biological pool, secondary sedimentation tank design and contact disinfection tank. This sewage treatment plant project,the scale is 120000m3/d. The influent water quality is in the table below. Influent water quality units:mg/L Project COD cr BOD5NH4+-N SS TN0TP0 Content 270 135 30 135 30 3 The selected A2/O process, has a good Nitrogen and Phosphorus Removal.This sewage treatment plant for the sewage treatment process is: sewage from the coarse grid to enhance the pumping station,then from the pump to the fine grid,And then to the cyclone grit chamber, then entering the biological pool(A2/O reactor),then from the pool into the secondary sedimentation tank,after exposure to water disinfection and then discharged into the natural water ; Sludge treatment process is : vortex grit chamber sludge into the sludge

污水处理厂各构筑物的设计计算

山东理工大学 《水污染控制工程》课程设计题目:孤岛新镇污水处理厂设计 学院:资环学院 专业班级:环本0803班 姓名:李聪聪 序号:27号 指导教师:尚贞晓 课程设计时间:2011年12月12日~2011年12月30号共3周

第一章设计任务及资料 1.1设计任务 孤岛新镇6.46万吨/日污水处理厂工艺设计。 1.2设计目的及意义 1.2.1设计目的 孤岛新镇位于山东省黄河入海口的原黄泛区内。东径118050'~118053',北纬37064'~37057',向北15公里为渤海湾。向东10公里临莱州,向南20公里为现黄河入海口,距东营市(胜利油田指挥部)约60公里,该镇地处黄河下游三角洲河道改流摆动地区内。 该镇附近区域为胜利油田所属的孤岛油田和两桩油田。地下蕴藏着丰富的石油资源。为了开发这些油田并考虑黄河下游三角洲的长远发展。胜利油田指挥部决定兴建孤岛新镇,使之成为孤岛油田和两桩油田的生活居住中心和生产指挥与科研中心,成为一个新型的社会主义现代化的综合石油城。根据该镇总体规划,该镇具有完备的社会基础和工程基础设施。有完备的城市交通、给水排水、供电、供暖、电信等设施,并考虑今后的发展与扩建的需要。 因此,为保护环境,防治水污染问题,建设城市污水治理工程势在必行。 1.2.2设计意义 设计是实现高等工科院校培养目标所不可缺少的教学环节,是教学计划中的一个有机组成部分,是培养学生综合运用所学的基础理论、基础知识以及分析解决实际问题能力的重要一环。它与其他教学环节紧密配合,相辅相成,在某种程度上是前面各个环节的继续、深化和发展。 我国城市污水处理相对于国外发达国家、起步较晚。近200年来,城市污水处理已从原始的自然处理、简单的一级处理发展到利用各种先进技术、深度处理污水,并回用。处理工艺也从传统活性污泥法、氧化沟工艺发展到A/O、A2/O、AB、SBR、 CASS等多种工艺,以达到不同的出水要求。虽然如此,我国的污水处理还是落后于许多国家。在我们大力引进国外先进技术、设备和经验的同时,必须结合我国发展,尤其是当地实际情况,探索适合我国实际的城市污水处理系统。 其次,做本设计可以使我得到很大的提高,可在不同程度上提高调查研究,查阅文献,收集资料和正确熟练使用工具书的能力,提高理论分析、制定设计

最新城市污水处理A2O工艺

城市污水处理A2O工 艺

目录 摘要 (1) 1 前言 (3) 2 设计总则 (4) 2.1设计范围 (4) 2.2设计依据 (5) 2.3设计原则 (5) 3 工程规划资料 (5) 3.1简阳市概况 (5) 3.2自然条件 (6) 3.3城市污水排放规划 (6) 4 工程设计概况 (10) 4.1设计规模 (10) 4.2设计水质 (10) 4.3设计水量 (11) 4.4厂址选择 (11) 4.5工艺流程的选择 (12) 4.6工艺流程 (18) 5 污水处理构筑物设计计算 (19) 5.1中格栅 (19) 5.2污水提升泵房 (22) 5.3细格栅 (23) 5.4沉砂池设计及计算 (26) 5.5A2O生化反应池 (29) 5.6辐流式二沉池 (41) 5.7接触池和加氯间 (47)

5.8计量设备 (49) 6 污泥处理构筑物设计计算 (50) 6.1污泥量计算 (51) 6.2污泥浓缩池 (52) 6.3污泥脱水机房 (57) 7 主要附属建筑设计 (58) 8 污水处理厂总体布置 (61) 8.1污水处理厂平面布置 (61) 8.2污水处理厂高程布置 (64) 9 组织管理 (69) 9.1生产组织 (69) 9.2人员编制 (70) 9.3安全生产和劳动保护 (70) 10 工程投资及成本估算 (71) 10.1工程投资 (71) 10.2成本估算 (72) 10.3工程效益分析 (73) 11 结论 (74) 总结与体会 (75) 谢辞 (76) 参考文献 (77) 摘要

本设计是在简阳市新市镇新伍村拟建一座工程规模为6.09万m3/d 的污水处理厂。通过综合考虑简阳市概况及本工程的规模、进水特性、处理要求、运行费用和维护管理等情况,经技术经济比较分析,确定采用A2O生物脱氮除磷处理工艺。 A2/O工艺的生物处理部分由厌氧池、缺氧池和好氧池组成。厌氧池主要功能是释放磷,同时部分有机物进行氨化。缺氧池的主要功能是脱氮。好氧池是多功能的,能够去除BOD、硝化和吸收磷。 此外该工艺还具有高效、节能的特点,且耐冲击负荷较高,出水水质好。因此,更具有广泛的适应性,完全适合本设计的实际要求。 关键词:A2O工艺;脱氮除磷;总体布置 Abstract

污水处理厂工艺的设计论文含计算数据

一、污水处理工艺选择与可行性分析 1、污水厂的设计规模 近期污水量为2×104 m 3/d ,远期污水量为4×104 m 3/d ,其中生活污水和工业废水所占比例约为6:4。污水厂主要处理构筑物拟分为二组,这样既可满足近期处理水量要求,又留有空地以二期扩建之用。 2、进出水水质 由于进水不但含有BOD 5,还含有大量的N ,P 所以不仅要求去除BOD 5 还应去除水中的N ,P 使其达到排放标准。 3、处理程度的计算 1. BOD5的去除率 %89.88%100180 20180=?-= η 2 .COD 的去除率 %88%100500 60500=?-= η 3.SS 的去除率 %24.95%100420 20420=?-= η 4.总氮的去除率

%67.66%10060 2060=?-= η 5.总磷的去除率 %80%1005 15=?-=η 4、 本工程采用生物脱氮除磷工艺的可行性 BOD 5:N :P 的比值是影响生物脱氮除磷的重要因素,氮和磷的去除率随着BOD 5/N 和BOD 5/P 比值的增加而增加。 理论上,BOD 5/N>2.86才能有效地进行脱氮,实际运行资料表明,BOD 5/N>3时才能使反硝化正常进行。在BOD 5/N=4~5时,氮的去除率大于50%,磷的去除率也可达60%左右。本工程BOD 5/N=3,可以满足生物脱氮的要求。 对于生物除磷工艺,要求BOD 5/P=33~100。本工程BOD 5/P 等于36,能满足生物脱氮除磷工艺对碳源的要求,由此本工艺采用生物脱氮除磷的工艺。 在脱氮方面,由脱氮除磷的机理可知,有机负荷是影响硝化反应的重要因素之一,在碳化与硝化合并处理工艺中,硝化菌所占的比例很小,约5%。一般认为处理系统的BOD 5负荷小于0.15kg BOD5/kgMLSS.d 时,处理系统的硝化反应才能正常进行。 根据所给定的污水水量及水质,参考目前国内外城市污水处理厂的设计及运转经验,对于生活污水占比例较大的城市污水而言,以下几种方法最具代表性:A 2/O 法、AB 法、生物滤池、循环式活性污泥法(改良SBR )、氧化沟法。 5、工艺比较及确定

SBR工艺污水处理厂设计计算

课程设计 题 目 33000m 3/d 生活污水处理厂设计 学 院 资源与环境工程学院 专 业 环境工程 班 级 环工2012 姓 名 覃练 指导教师 方继敏、李柏林 2015 年 6 月 21 日 设计(论文)题目:33000m 3/d 生活污水处理厂工艺设计 设计(论文)主要内容及技术参数 3 1 .污水类别为城市污水,设计流量 33000m/d ; 学号

课程设计任务书(环境工程1202班,学号10) 2.要求完成污水处理厂主要工艺设计与计算说明书的编写; 3?绘制两张单元构筑物的图纸。 要求完成的主要任务及达到的技术经济指标 1?按照指导书的深度进行设计与计算说明书的编写; 2 ?绘制两个单元构筑物的图纸(两张1号) 3.个人加上自己的进水和出水水质 工作进度要求 课程设计为期一周,时间安排如下: 1?课程设计的讲授1天,设计准备(设计资料、手册、绘图工具准备)1天 2?课程设计的计算部分3天 3?课程设计的图纸绘制部分2天 指导教师(签名) ________ 系(教研室)主任(签名)_________ 年月日

课程设计指导教师意见书 评定成绩指导教师(签名) 年月日

摘要: 本设计是33000m3/d城市污水处理厂工艺设计,处理工艺采用了SBR X艺' SBR是一种按间歇曝气方式来运行的活性污泥污水处理技术,又称序批式活性污泥法。本工艺的主要构筑物包括格栅、污水泵房、沉淀池、SBR接触消毒池、浓缩 池、污泥脱水机房等。污水进入污水处理厂经过粗格栅后经污水泵房进入到细格栅,再进入平流沉砂池沉砂,再进入SBR池反应,然后进入接触消毒池消毒,污水达到水质要求,经过计量槽后排出污水。SBR的剩余污泥含水量减少再进入贮泥池,随后进入污泥脱水车间进行脱水,脱水后的污泥外运。 SBR的主要工艺特征是在运行商的有序和间歇操作,SBR工艺的核心是SBR 反应池,该池集均化、初沉、生物降解、二沉等功能与一池,无污泥回流系统。经过该废水处理工艺的废水可达到设计要求,可以直接排放。产生的污泥经过浓缩,压滤等处理后,进行堆肥产生一定的经济效益。 本设计书的主要内容为设计资料、污水污泥处理工艺的选择。污水污泥的计 算等。 关键城市污水处理;SBR X艺;脱氮除磷;污泥

(工艺技术)污水处理厂工艺设计及计算

第三章污水处理厂工艺设计及计算 第一节格栅 进水中格栅是污水处理厂第一道预处理设施, 可去除大尺寸的漂浮物或悬浮物, 以保护 进水泵的正常运转,并尽量去掉那些不利于后续处理过程的杂物。 拟用回转式固液分离机。 回转式固液分离机运转效果好, 该设备由动力装置,机架, 清 洗机构及电控箱组成,动力装置采用悬挂式涡轮减速机, 结构紧凑,调整维修方便,适用于 生活污水预处理。 1.1 设计说明 栅条的断面主要根据过栅流速确定,过栅流速一般为 0.6?1.0m/s ,槽内流速0.5m/s 左 右。如果流速过大,不仅过栅水头损失增加, 还可能将已截留在栅上的栅渣冲过格栅, 如果 流速过小,栅槽内将发生沉淀。 此外,在选择格栅断面尺寸时,应注意设计过流能力只为格 栅生产 厂商提供的最大过流能力的 80%,以留有余地。格栅栅条间隙拟定为 25.00mm 。 1.2 设计流量: a.日平均流量 3 3 3 Q d =45000m /d ~ 1875m /h=0.52m /s=520L/s K z 取 1.4 b.最大日流量 333 Q max =K z ? Q d =1.4 X 1875m /h=2625m /h=0.73m /s 1.3 设计参数: 所以栅前槽宽约 0.66m 。栅前水深h ~ 0.33m 1.4.2格栅计算 说明: Q max —最大设计流量, m 3/s ; a —格栅倾角,度(°); h —栅前水深,m ; v —污水的过栅流速, m/s 。 栅条间隙数(n )为 n .sin =遊遊 S 30(条) ehv 0.025 0.3 0.6 栅槽有效宽度(B ) 设计采用?10圆钢为栅条,即 S=0.01m 。 栅条净间隙为b =25.0mm 栅前流速V =0.7m/s 过栅流速0.6m/s 格栅倾角3 =60 ° 1.4 设计计算: 1.4.1确定栅前水深 栅前部分长度:0.5m 单位栅渣量:?=0.05m 3栅渣/10 3m 3污水 根据最优水力断面公式 Q 计算得: B 1 2Q 2 0.15 3 0.7 0.66m 0.33m

污水处理厂工艺设计计算书

5000T 污水处理厂设计计算书 设计水量: 近期(取K 总=):Q ave =5000T/d=h= m 3/s Q max =K 总Q ave =h=s (截留倍数n=)Q 合=n Q ave = m 3/h=s 远期(取K 总=):Q ave =10000T/d=h=s Q max =K 总Q ave =667m 3/h=s 一.粗格栅(设计水量按远期Q max =s ) (1)栅条间隙数(n ): 设栅前水深h=,过栅流速v=s ,栅条间隙b=,格栅倾角a=75°。 °max sin 0.185sin 75=25Q n α==(个) (2)栅槽宽度(B ) B=S (n-1)+bn=(25-1)+*25= 二.细格栅(设计水量按远期Q max =s ) (1)栅条间隙数(n ): °max sin 0.185sin 60=430.003 2.20.6 Q n bhv α==??(个) (2)栅槽宽度(B ) B=S (n-1)+bn=(43-1)+*43= 三.旋流沉砂池(设计水量按近期Q 合=s ),取标准旋流沉砂池尺寸。

四、初沉池(设计水量按近期Q 合= m 3/h =s ) (1)表面负荷:q (),根据姜家镇的情况,取 m 3/m 2 ·h 。 面积2max 416.67 277.781.5 Q F m q = == (2)直径418.8F D m π = =,取直径D=20m 。 (3)沉淀部分有效水深:设t=, h2=qt=*= (4)沉淀部分有效容积: 2232*20*3.61130.44 4 V D h m π π '= = = 污泥部分所需的容积:设S=(人·d ),T=4h , 30.8120004 1.610001000124 SNT V m n ??= ==?? 污泥斗容积:设r1=,r2=,a=60°,则 512()(1.8 1.5)60=0.52h r r tg tg α=-=-,取0.6m 。 222235 111220.6 ()(1.8 1.5 1.8 1.5) 5.143 3 h V r r r r m ππ= ++= +?+= (5)污泥斗以上圆锥体部分污泥容积:设池底径向坡度,则 4()0.1(10 1.8)*0.10.82h R r m =-?=-=,取0.8m 222234 2110.8 ()(1010 1.8 1.8)101.523 3 h V R Rr r m ππ= ++= +?+= (6)污泥总容积: V 1+V 2=+=> m 3 (7)沉淀池总高度:设h 1=, H= +++= (8)沉淀池池边高度 H ′=+=

生活污水处理A2O工艺设计计算说明书

生活污水处理A2/O工艺计算说明书 目录 1处理规模 (1) 2进水井的计算 (1) 3提升泵房设计计算 (2) 3.1泵的选择 (2) 3.2吸水管计算 (2) 3.3集水池 (2) 3.4泵房布置 (2) 4格栅的计算 (3) 4.1设计要求 (3) 4.2中格栅的设计计算 (3) 4.3细格栅的设计计算 (5) 4. 4沉砂池 (8) 4.5巴式计量槽 (9) 4.6配水井 (9) 5 A2/O反应池的设计计算 (10) 5.1设计要点 (10) 5.2设计计算 (10) 5.3曝气系统设计计算 (15) 5.4标准需氧量 (15) 5.5供气管道计算 (16) 5.6生物池设备选择 (17) 6 沉淀池的设计计算 (17) 6.1设计要点 (17) 6.2沉淀池的设计(为辐流式) (18) 6.2机械刮泥的选择 (19) 7清水池的设计计算 (19) 8浓缩池的设计计算 (20) 8.1设计要点 (20) 8.2浓缩池的设计: (20) 9水利及高程计算 (22) 9.1 水利计算 (22) 9.2 高程计算 (23) 附件2中英文翻译....................... 错误!未定义书签。

1处理规模 周同市2009年末城区人口131347人。污水量210~393L/人·d,从2010年往后,由于人们的生活水平越来越高,因此所用水量增加,从而污水量也随着增加。根据该直达市的总体规划,人口自然增长率为6.1‰,机械增长率近期14‰。根据Pn=P1(1+a+b)n,计算出2010年~2030年的 确定一期为3.3万m/d,二期为3.3万m/d,污水处理厂规模为6.63.3万m/d 2进水井的计算 因为进水井在粗格栅之前并和粗格栅连接,起到对各个格栅平均分配进水的作用,故取进水井的宽与格栅的总宽度相同,取宽度为5.34m,取长度为2.50m。则进水井的尺寸为2500 mm×5340mm。

A2O工艺的优缺点介绍及改进措施

A2O工艺的优缺点介绍及改进措施 A2O法又称AAO法,是英文Anaerobic-Anoxic-Oxic第一个字母的简称(厌氧-缺氧-好氧法),是一种常用的污水处理工艺,可用于二级污水处理或三级污水处理,以及中水回用,具有良好的脱氮除磷效果。在传统A2O工艺的单泥系统中高效地完成脱氮和除磷两个过程,就会发生各种矛盾冲突,比如泥龄的矛盾、碳源竞争、硝酸盐及溶解氧(DO)残余干扰等。 一、传统A2O工艺存在的矛盾1、污泥龄矛盾传统A2O工艺属于单泥系统,聚磷菌(PAOs)、反硝化菌和硝化菌等功能微生物混合生长于同一系统中,而各类微生物实现其功能最大化所需的泥龄不同:1)自养硝化菌与普通异养好氧菌和反硝化菌相比,硝化菌的世代周期较长,欲使其成为优势菌群,需控制系统在长泥龄状态下运行。冬季系统具有良好硝化效果时的污泥龄(SRT)需控制在30d以上;即使夏季,若SRT<5d,系统的硝化效果将显得极其微弱。2)PAOs属短世代周期微生物,甚至其最大世代周期(Gmax)都小于硝化菌的最小世代周期(Gmin)。从生物除磷角度分析富磷污泥的排放是实现系统磷减量化的唯一渠道。若排泥不及时,一方面会因PAOs的内源呼吸使胞内糖原消耗殆尽,进而影响厌氧区乙酸盐的吸收及聚-β-羟基烷酸(PHAs)的贮存,系统除磷率下降,严重时甚至造成富磷污泥磷的二次释放;另一方面,SRT也影响到系统内PAOs和聚糖菌(GAOs)的优势生长。在30℃的长泥龄(SRT≈10d)厌氧环境中,GAOs对乙酸盐的吸收速率高于PAOs,使其在系统中占主导地位,影响PAOs释磷行为的充分发挥。2、碳源竞争及硝酸盐和DO残余干扰在传统A2/O脱氮除磷系统中,碳源主要消耗于释磷、反硝化和异养菌的正常代谢等方面,其中释磷和反硝化速率与进水碳源中易降解部分的含量有很大关系。一般而言,要同时完成脱氮和除磷两个过程,进水的碳氮比(BOD5/ρ(TN))>4~5,碳磷比(BOD5/ρ(TP))>20~30。当碳源含量低于此时,因前端厌氧区PAOs吸收进水中挥发性脂肪酸(VFAs)及醇类等易降解发酵产物完成其细胞内PHAs的合成,使得后续缺氧区没有足够的优质碳源而抑制反硝化潜力的充分发挥,降低了系统对TN的脱除效率。反硝化菌以内碳源和甲醇或VFAs类为碳源时的反硝化速率分别为17~48、120~900mg/(g·d)。因反硝化不彻底而残余的硝酸盐随外回流污泥进入厌氧区,反硝化菌将优先于PAOs利用环境中的有机物进行反硝化脱氮,干扰厌氧释磷的正常进行,最终影响系统对磷的高效去除。一般,当厌氧区的NO3-N的质量浓度>1.0mg/L时,会对PAOs释磷产生抑制,当其达到3~4mg/L时,PAOs的释磷行为几乎完全被抑制,释磷(PO43--P)速率降至2.4mg/(g·d)。按照回流位置的不同,溶解氧(DO)残余干扰主要包括:1)从分子态氧(O2)和硝酸盐(NO3-N)作为电子受体的氧化产能数据分析,以O2作为电子受体的产能约为NO3-N的1.5倍,因此当系统中同时存在O2和NO3-N时,反硝化菌及普通异养菌将优先以O2为电子受体进行产能代谢。2)氧的存在破坏了PAOs释磷所需的“厌氧压抑”环境,致使厌氧菌以O2为终电子受体而抑制其发酵产酸作用,妨碍磷的正常释放,同时也将导致好氧异养菌与PAOs进行碳源竞争。一般厌氧区的DO的质量浓度应严格控制在0.2mg/L以下。从某种意义上来说硝酸盐及DO残余干扰释磷或反硝化过程归根还是功能菌对碳源的竞争问题。二、传统A2O工艺改进策略1、基于SRT矛盾的复合式A2O工艺在传统A2O工艺的好氧区投加浮动载体填料,使载体表面附着生长自养硝化菌,而PAOs和反硝化菌则处于悬浮生长状态,这样附着态的自养硝化菌的SRT相对独立,其硝化速率受短SRT排泥的影响较小,甚至在一定程度上得到强化。悬浮污泥SRT、填料投配比及投配位置的选择不仅要考虑硝化的增强程度,还要考虑悬浮态污泥含量降低对系统反硝化和除磷的负面影响。载体填料的投配并不意味可大幅度增加系统排泥量,缩短悬浮污泥SRT以提高系统除磷效率;相反,SRT的缩短可能降低悬浮态污泥(MLSS)含量,从而影响系统的反硝化效果,甚至造成除磷效果恶化。研究表明,当悬浮污泥SRT控制为5d时,复合式A2O工艺的硝化效果与传统A2O工艺相比,两者的硝化效果无明显差异,复合式A2O工艺的载体填料不能完全独立地发挥其硝化性能;若再降低悬浮污泥SRT则因系统悬浮污泥含量的降低致使

某城镇污水处理厂工艺的设计

1 总论 (2) 1.1 设计任务和内容 (2) 1.1.1 城市概况 (2) 2 工艺流程说明 (2) 2.1 污水处理厂处理工艺方案选择 (3) 3 设计工程计算 (4) 3.1污水处理程度的确定 (4) 3.1.1 设计流量 (4) 3.1.2 污水中污染物处理程度的确定 (4) 4 处理构筑物设计 (5) 4.1 格栅 (5) 4.1.1设置目的 (5) 4.1.2设计参数 (5) 4.2污水提升泵站 (6) 4.3平流式沉砂池 (6) 4.3.1 沉砂池工程设计原则: (6) 4.3.2 沉砂池设计参数: (6) 4.3.3 沉砂池设计 (7) 4.4 AAO池设计 (8) 4.4.1 设计要点 (8) 4.4.2设计说明 (8) 4.4.3设计计算 (8) 4.5二沉池 (10) 4.5.1 设计计算 (10) 4.6 消毒池 (11) 4.6.1 设计计算 (11) 4.7 污泥浓缩池 (11) 4.7.1 设计计算 (11) 5 总平面布置原则 (11) 6 参考文献 (12)

1 总论 1.1 设计任务和内容 1.1.1 城市概况 城市概况——江南某城镇位于长江冲击平原,占地约 6.3 km2,呈椭圆形状,最宽处为 2.4 km ,最长处为 2.9 km 。 1.1.2 自然条件 自然特征——该镇地形由南向北略有坡度,平均坡度为0.5 ‰,地面平整, 海拔高度为黄海绝对标高3.9~5 .0 m,地坪平均绝对标高为4.80 m。属长江冲击粉质砂土区,承载强度7~11 t/m2,地震裂度6 度,处于地震波及区。全年最高气温40 ℃,最低-10 ℃。夏季主导风向为东南风。极限冻土深度为17 cm。全年降雨量为1000 mm。污水处理厂出水排入距厂150 m的某河中,某河的最高水位约为4.60 m,最低水位约为1.80 m,常年平均水位约为3.00 m。 1.1.3 规划资料 规划资料——该城镇将建设各种完备的市政设施,其中排水系统采用完全分流制体系。规划人口:近期30000 人,2020年发展为60000 人,生活污水量标准为日平均200 L/人。工业污水量近期为5000 m3/d,远期达10000 m3/d,工业污水的时变化系数为1.3,污水性质与生活污水类似。生活污水和工业污水混合后的水质预计为:BOD5 = 200 mg/L,SS = 250 mg/L,COD = 400 mg/L,NH4+-N = 30 mg/L,总P = 4 mg/L;要求达到的出水水质达到国家污水综合排放二级标准。规划污水处理厂的面积约25600 m2,厂区设计地坪绝对标高采用5.00 m,处理厂四角的坐标为: X — 0 , Y — 140 ; X — 0 , Y — 0 ; X — 175 , Y — 140 ; X — 190 , Y — 0 。 污水处理厂的污水进水总管管径为DN800,进水泵房处沟底标高为绝对标高0.315 m,坡度1.0 ‰,充满度h/D = 0.65。 处理厂污泥经浓缩脱水后外运填埋处置。 2 工艺流程说明 进水格栅泵房沉砂池初沉池 出水 接触池 二沉池 AAO池 污泥回流 污泥浓缩

相关文档
最新文档