贪心算法 会场安排问题

贪心算法 会场安排问题
贪心算法 会场安排问题

计算机算法设计与分析(第3版)

128页

算法实现题4-1 会场安排问题

问题描述:假设要在足够多的会场里安排一批活动,并希望使用尽可能少的会场。设计一个有效的算法进行安排。(这个问题实际上是著名的图着色问题。若将每一个活动作为图的一个顶点,不相容活动间用边相连。使相邻顶点着有不同颜色的最小着色数,相应于要找的最小会场数。) 编程任务:对于给定的k 个待安排的活动,编程计算使用最少会场的时间表。Input 输入数据是由多组测试数据组成。每组测试数据输入的第一行有1 个正整数k,表示有k 个待安排的活动。接下来的k 行中,每行有2 个正整数,分别表示k 个待安排的活动开始时间和结束时间。时间以0 点开始的分钟计。Output 对应每组输入,输出的每行是计算出的最少会场数。

源代码:

#include

int fnPartition(int a[], int low, int high)

{

int i,j;

int x = a[low];

i = low;

j = high;

while(i

{

while(i

{ j = j-1; }

if(i

while(i =a[i]) i++;

if(i

}

a[i] = x;

return i;

}

void fnQuickSort(int a[],int low, int high)

{

int pos;

if(low < high)

{

pos = fnPartition(a,low,high);

fnQuickSort(a,low,pos-1);

fnQuickSort(a,pos+1,high);

}

}

int fnSchedule(int a[],int b[],int s,int e)

{

int n=0; int i=s+1; if (a[s]>-1)

{

n = 1;

for(; i <=e; i++) if(a[i]>=b[s]) s++; else n++;

}

return n;

}

int main(void)

{

int n,i;

while(1 == scanf("%d",&n))

{

int *st = new int [n];

int *et = new int [n];

for (i = 0; i

fnQuickSort(et,0,n-1);

printf("%d\n",fnSchedule(st,et,0,n-1));

delete []st; delete []et;

} return 0;

}

输入文件示例:输出文件示例:

5 3

1 23

12 28

25 35

27 80

36 50

课程设计报告-贪心算法:任务调度问题

数据结构课程设计报告 贪心算法:任务调度问题的设计 专业 学生姓名 班级 学 号 指导教师 完成日期

贪心算法:任务调度问题的设计 目录 1设计内容 (1) 2)输入要求 (1) 3)输出要求 (1) 2设计分析 (1) 2.1排序(将数组按照从小到大排序)的设计 (1) 2.2多个测试案例的处理方法的设计 (2) 2.3 for循环设计 (2) 2.4系统流程图 (2) 3设计实践 (2) 3.1希尔排序模块设计 (2) 3.2 多个测试案例的处理方法的模块设计 (3) 4测试方法 (4) 5程序运行效果 (4) 6设计心得 (6) 7附录 (6)

数据结构课程设计报告(2017) 贪心算法:任务调度问题的设计 1设计内容 有n项任务,要求按顺序执行,并设定第I项任务需要t[i]单位时间。如果任务完成的顺序为1,2,…,n,那么第I项任务完成的时间为c[i]=t[1]+…+t[i],平均完成时间(ACT)即为(c[1]+..+c[n])/n。本题要求找到最小的任务平均完成时间。 2)输入要求 输入数据中包含n个测试案例。每一个案例的第一行给出一个不大于2000000的整数n,接着下面一行开始列出n各非负整数t(t≤1000000000),每个数之间用空格相互隔开,以一个负数来结束输入。 3)输出要求 对每一个测试案例,打印它的最小平均完成时间,并精确到0.01。每个案例对应的输出结果都占一行。若输入某一个案例中任务数目n=0,则对应输出一个空行。 2 设计分析 这个题目属于贪心算法应用中的任务调度问题。要得到所有任务的平均完成时间,只需要将各个任务完成时间从小到大排序,任务实际完成需要的时间等于它等待的时间与自身执行需要的时间之和。这样给出的调度是按照最短作业优先进行来安排的。贪心算法通过一系列的选择来得到一个问题的解。它所做的每一个选择都是当前状态下某种意义的最好选择,即贪心选择。在许多可以用贪心算法求解的问题中一般具有两个重要的性质:贪心选择性质和最有子结构性质。所谓贪心选择性只是指所求问题的整体最优解可以通过一系列局部最优的选择,即贪心选择来达到,这是贪心算法可行的第一基本要素。对于一个具体问题,要确定它是否具有贪心选择性质,必须证明每一步所做的贪心选择最终将会得到问题的一个整体最优解。首先考察问题的一个整体最优解,并证明可修改这个最优解,使其以贪心选择开始。而且做了贪心选择后,原问题简化为一个规模更小的类似子问题。然后,用数学归纳法证明,通过每一步做贪心选择,最终可得到问题的一个整体最优解。其中,证明贪心选择后问题简化为规模更小的类似子问题的关键在于利用该问题的最优子结构性质。当一个问题的最优解包含着它的子问题最优解时,称此问题具有最优子结构性质,这个性质是该问题可用贪心算法求解的一个关键特征。 2.1排序(将数组按照从小到大排序)的设计 排序的方法有很多,如:冒泡排序、希尔排序、堆排序等,这些排序的方法都可以使用。这里采用希尔排序来实现。 它的基本思想是:先取一个小于n的整数d1作为第一个增量;这里选取n的一半作为第一个增量(increment=n》1),把数组的全部元素分成d1个组。所有距

贪心算法经典例题

贪心算法经典例题 发布日期:2009-1-8 浏览次数:1180 本资料需要注册并登录后才能下载! ·用户名密码验证码找回密码·您还未注册?请注册 您的账户余额为元,余额已不足,请充值。 您的账户余额为元。此购买将从您的账户中扣除费用0.0元。 内容介绍>> 贪心算法经典例题 在求最优解问题的过程中,依据某种贪心标准,从问题的初始状态出发,直接去求每一步的最优解,通过若干次的贪心选择,最终得出整个问题的最优解,这种求解方法就是贪心算法。 从贪心算法的定义可以看出,贪心法并不是从整体上考虑问题,它所做出的选择只是在某种意义上的局部最优解,而由问题自身的特性决定了该题运用贪心算法可以得到最优解。 我们看看下面的例子 例1 均分纸牌(NOIP2002tg) [问题描述] 有 N 堆纸牌,编号分别为 1,2,…, N。每堆上有若干张,但纸牌总数必为 N 的倍数。可以在任一堆上取若干张纸牌,然后移动。移牌规则为:在编号为 1 堆上取的纸牌,只能移到编号为 2 的堆上;在编号为 N 的堆上取的纸牌,只能移到编号为 N-1 的堆上;其他堆上取的纸牌,可以移到相邻左边或右边的堆上。现在要求找出一种移动方法,用最少的移动次数使每堆上纸牌数都一样多。例如 N=4,4 堆纸牌数分别为: ①9 ②8 ③17 ④ 6 移动3次可达到目的: 从③取 4 张牌放到④(9 8 13 10) -> 从③取 3 张牌放到②(9 11 10 10)-> 从②取 1 张牌放到①(10 10 10 10)。 [输入]:键盘输入文件名。 文件格式:N(N 堆纸牌,1 <= N <= 100) A1 A2 … An (N 堆纸牌,每堆纸牌初始数,l<= Ai <=10000) [输出]:输出至屏幕。格式为:所有堆均达到相等时的最少移动次数。 [输入输出样例] a.in: 4 9 8 17 6 屏慕显示:3 算法分析:设a[i]为第i堆纸牌的张数(0<=i<=n),v为均分后每堆纸牌的张数,s为最小移到次数。 我们用贪心法,按照从左到右的顺序移动纸牌。如第i堆(0

实验二(贪心算法)

华东师范大学计算机科学技术系上机实践报告 课程名称:算法设计与分析年级:05上机实践成绩: 指导教师:柳银萍姓名:张翡翡 上机实践名称:贪心算法学号:10052130119上机实践日期:2007-4-10 上机实践编号:NO.2组号:上机实践时间:10:00-11:30 一、目的 了解熟悉掌握贪心算法实质并学会灵活运用,从而解决生活中一些实际问题。 二、内容与设计思想 1.超市的自动柜员机(POS)要找给顾客各种数值的现金,表面上看,这是一个很简单的任务,但交给机器办就不简单了。你作为一个计算机专家,要求写一个程序来对付这个“简单”的问题。 你的自动柜员机有以下的币种:100元,50元,20元,10元,5元,2元,1元。你可以假设每种钱币的数量是无限的。现在有一笔交易,需要找个客户m元,请你设计一个算法,使得找给顾客的钱币张数最少。 要求: 输入:第一行仅有一个整数n(0

贪心算法 会场安排问题 算法设计分析

贪心算法会场安排问题算法设计分析Description 假设要在足够多的会场里安排一批活动,并希望使用尽可能少的会场。设计一个有效的算法进行安排。(这个问题实际上是著名的图着色问题。若将每一个活动作为图的一个顶点,不相容活动间用边相连。使相邻顶点着有不同颜色的最小着色数,相应于要找的最小会场数。) 编程任务: 对于给定的k个待安排的活动,编程计算使用最少会场的时间表。 Input 输入数据是由多组测试数据组成。每组测试数据输入的第一行有1 个正整数k,表示有k个待安排的活动。接下来的k行中,每行有2个正整数,分别表示k 个待安排的活动开始时间和结束时间。时间以0 点开始的分钟计。 Output 对应每组输入,输出的每行是计算出的最少会场数。 Sample Input 5 1 23 12 28 25 35 27 80 3 6 50

Sample Output 3 程序: #include int fnPartition(int a[], int low, int high) { int i,j; int x = a[low]; i = low; j = high; while(i =a[i]) i++; if(i -1) { n = 1; for(; i <=e; i++) if(a[i]>=b[s]) s++; else n++; } return n; } int main(void) { int n,i; while(1 == scanf("%d",&n)) { int *st = new int [n]; int *et = new int [n]; for (i = 0; i

算法习题

算法设计与分析试卷 一、填空题(20分,每空2分) 1、算法的性质包括输入、输出、确定性、有限性。 2、动态规划算法的基本思想就将待求问题分解成若干个子问题、先求解子问题,然后 从这些子问题的解得到原问题的解。 3、设计动态规划算法的4个步骤: (1)找出最优解的性质,并刻画其结构特征。 (2)递归地定义最优值。 (3)以自底向上的方式计算出最优值。 (4)根据计算最优值得到的信息,构造最优解。 4、流水作业调度问题的johnson算法: (1)令N1={i|ai=bj}; (2)将N1中作业依ai的ai的非减序排序;将N2中作业依bi的非增序排序。 5、对于流水作业高度问题,必存在一个最优调度π,使得作业π(i)和π(i+1)满足Johnson不等式min{bπ(i),aπ(i+1)}≥min{bπ(i+1),aπ(i)}。 6、最优二叉搜索树即是最小平均查找长度的二叉搜索树。 二、综合题(50分) 1、当(a1,a2,a3,a4,a5,a6)=(-2,11,-4,13,-5,-2)时,最大子段和为∑ak(2<=k<=4)=20(5分) 2、由流水作业调度问题的最优子结构性质可知,T(N,0)=min{ai+T(N-{i},bi)}(1=sum){ sum=thissum; besti=i; bestj=j;} } return sum; } 4、设计最优二叉搜索树问题的动态规划算法OptimalBinarysearchTree? (15分) Void OptimalBinarysearchTree(int a,int n,int * * m, int * * w) { for(int i=0;i<=n;i++) {w[i+1][i]=a[i]; m[i+1][i]= 0;} for(int r=0;r

算法设计(eclipse编写贪心算法设计活动安排)

陕西师大计科院2009级《算法设计与分析》课程论文集 算法设计(贪心算法解决活动安排) 设计者:朱亚君 贪心算法的计算过程如下图所示。图中每行相应于算法的一次迭代。阴影长条表示的活动是已选入集合A的活动,而空白长条表示的活动是当前正在检查相容性的活动。 图1贪心算法的计算过程图 若被检查的活动i的开始时间Si小于最近选择的活动j的结束时间fi,则不选择活动i,否则选择活动i加入集合A中。 贪心算法并不总能求得问题的整体最优解。但对于活动安排问题,贪心算法却总能求得的整体最优解,即它最终所确定的相容活动集合A的规模最大。这个结论可以用数学归纳法证明。

运用贪心算法解决活动安排问题 附录: 贪心算法的实现具体程序如下: // 贪心算法实现代码 n为活动个数 s为活动开始起始时间队列 f 为活动结束队列 A为已选入集合 import java.util.Scanner; public class a { /** * @param args */ static void GreedySelector(int s[],int f[],boolean A[]) { //第一个活动为结束时间最早进入选入队列 int n=s.length; A[1]=true; int j=2; for(int i=2;i=f[j]) { A[i]=true; j=i; } else A[i]=false; } } static void paixu(int s[],int f[])//进行以结束时间的大小排序 { int n=s.length; int m; for(int i=0;if[j+1]) { m=f[j]; f[j]=f[j+1]; f[j+1]=m;//终止时间如果前一个大于后一个就交换位置

算法设计与分析课程大作业

题目作业调度问题及算法分析 学院名称:计算机与信息工程学院 专业名称:计算机科学与技术

目录 《算法设计与分析》课程大作业.................................................................... 错误!未定义书签。一.动态规划算法解决流水作业调度. (4) 1、问题描述 (4) 2、算法分析 (4) 3. 算法的描述 (5) 4、部分算法实现 (6) 5. 运行结果 (8) 6、时空效率分析 (8) 二.贪心算法解多机调度问题 (8) 1、问题描述 (8) 2、算法分析 (9) 3.部分算法实现 (9) 4.计算复杂性分析 (11) 5. 运行结果 (12) 三.回溯法解决批作业调度问题 (12) 1.问题描述 (12) 2.算法思想 (13) 3. 部分算法实现 (14) 4.运行结果 (15) 5.时间复杂性分析 (15) 四.作业调度算法比较 (16) 五.课程学习总结 (16)

摘要: 在现代企业中,作业调度已成为提高资源利用率、从而提高企业运行效益的关键环节之一。把各个作业分配到车间现有的设备上,并确定它们的先后次序,这是一项复杂的工作本文就作业调度排序问题进行了研究,通过对几个经典作业调度算法的分析讨论,总结了各个算法对作业调度的求解过程,并给出了每个算法的复杂度及性能分析。 关键词:作业调度;动态规划;贪心算法;回溯法;

一.动态规划算法解决流水作业调度 1、问题描述 给定n 个作业,每个作业有两道工序,分别在两台机器上处理。一台机器一次只能处理一道工序,并且一道工序一旦开始就必须进行下去直到完成。一个作业只有在机器1上的处理完成以后才能由机器2处理。假设已知作业i 在机器j 上需要的处理时间为t[i,j]。流水作业调度问题就是要求确定一个作业的处理顺序使得尽快完成这n 个作业。 2、算法分析 直观上,一个最优调度应使机器M1没有空闲时间,且机器M2的空闲时间最少。在一般情况下,机器M2上会有机器空闲和作业积压2种情况。 在一般情况下,机器M1开始加工S 中作业时,机器M2还在加工其他作业,要等时间t 后才可利用。将这种情况下完成S 中作业所需的最短时间记为T(S,t)。流水作业调度问题的最优值为T(N,0)。 由流水作业调度问题的最优子结构性质可知, )}},{({min )0,(1i i n i b i N T a N T -+=≤≤(1)

贪心算法概论

贪心算法概论 贪心算法一般来说是解决“最优问题”,具有编程简单、运行效率高、空间 复杂度低等特点。是信息学竞赛中的一个有为武器,受到广大同学们的青睐。本 讲就贪心算法的特点作些概念上的总结。 一、贪心算法与简单枚举和动态规划的运行方式比较 贪心算法一般是求“最优解”这类问题的。最优解问题可描述为:有n个输入,它的解是由这n 个输入的某个子集组成,并且这个子集必须满足事先给定的条 件。这个条件称为约束条件。而把满足约束条件的子集称为该问题的可行解。这 些可行解可能有多个。为了衡量可行解的优劣,事先给了一个关于可行解的函数,称为目标函数。目标函数最大(或最小)的可行解,称为最优解。 a)求“最优解”最原始的方法为搜索枚举方案法(一般为回溯法)。 除了极简单的问题,一般用深度优先搜索或宽度优先搜索。通常优化方法为利用约束条件进行可行性判断剪枝;或利用目标函数下界(或上界),根据当前最 优解进行分枝定界。 b)其次现今竞赛中用的比较普遍的动态规划(需要满足阶段无后效性原则)。 动态规划主要是利用最最优子问题的确定性,从后向前(即从小规模向大规模)得到当前最优策略,从而避免了重复的搜索。 举例说明:求多段图的最短路径。

在图(1)中,我们省略了各线段的长度。 如果用回溯法,搜索树大致如下: 显然,上面的搜索有大量重复性工作。比如节点8、9、10到11的最短路分别被调用了9次,从节点5、6、7到节点11也分别搜索了3次。 如果先算出节点8、9、10到11的最短路,由于它与前面的点无关,因此最优值确定下来,再用它们求定节点5、6、7 到节点11 的最短路径。同理,再用节 点5、6、7 的最优值,来求节点2、3、4 优值。最后从节点2、3、4 推出1 到 11的最优值。显然复杂度大为降低。 当然,如果本题把简单搜索改为搜索+记忆化的方法,则就是得能动态规划的原理,本质上就是动态规划,只是实现的方法不同与传统的表格操作法。搜索+记忆化算法有其特有的特点,以后再讨论。 c)贪心算法则不同,它不是建立在枚举方案的基础上的。它从前向后,根据当前情况,“贪心地”决定出下一步,从而一步一步直接走下去,最终得到解。 假如上面的例子中,我们定下这样的贪心策略:节点号k%3= =1。则有图3:

贪 心 算 法

【贪心算法】思想 & 基本要素 & 贪心算法与局部最优 & 贪心算法与动态规划的区别 & 运用贪心算法求解问题 首先我们先代入问题来认识一下贪心算法涉及的问题 找钱问题 给顾客找钱,希望找零的钞票尽可能少,零钱种类和数量限定 找钱问题满足最优子结构 最快找零(贪心):为得到最小的找零次数,每次最大程度低减少零额活动安排问题 设个活动都需要使用某个教室,已知它们的起始时间和结束时间,求合理的安排使得举行的活动数量最多 贪心:使得每次安排后,教室的空闲时间最多 解决过程如下: 贪心算法求得的相容活动集是最大的 第一步:证明最优解中包含结束时间最早的活动 设相容集 A 是一个最优解,其结束最早的活动为 a,则 ( A - { a }) U { 1 } 也是一个最优解 第二步:证明去掉结束时间最早的活动后,得到的子问题仍是最优的:反证法 理解贪心算法 贪心算法总是做出当前最好的选择 贪心选择的依据是当前的状态,而不是问题的目标

贪心选择是不计后果的 贪心算法通常以自顶向下的方法简化子问题 贪心算法求解的问题具备以下性质 贪心选择性质:问题的最优解可以通过贪心选择实现 最优子结构性质:问题的最优解包含子问题的最优解 贪心选择性质的证明 证明问题的最优解可以由贪心选择开始 即第一步可贪心 证明贪心选择后得到的子问题满足最优子结构 即步步可贪心 背包问题 问题描述:给定 n 个物品和一个背包。物品 i 的重量为 Wi ,价值为 Vi ,背包的容量为 c ,问如何选择物品或物品的一部分,使得背包中物品的价值最大? 当 n = 3 ,c = 50 0-1背包问题:装入物品2、3,最大价值220 背包问题:装入物品1、2和2-3的物品3,最大价值240(贪心算法)贪心算法无法求解0-1背包问题,按贪心算法,0-1背包问题将装入物品1和2 贪心与局部最优 思考:为什么0-1背包可以用动态规划?而不能用贪心算法 贪心易陷入局部最优

算法分析与设计期末模拟试题

安徽大学2010-2011学年第1学期《算法分析与设计》 期末试题 押宝 (内部交流,非考试试题,学生自发交流创作,版权归作者testfudan@https://www.360docs.net/doc/a115844820.html, 所有) 一、选择题(单选)(10*2’=20’) 1. 选择正确的组合对于 2112n +=( ) ①2()o n ② 2()O n ③2()n θ ④2()n Ω ⑤ 2()n ω A. ①③④ B. ②③④ C.③④⑤ D. ①⑤ 2. ①21()()n i i O n O n ==∑ ②2()()n O n O n = ③(log )()O n O n ? ④ 2.99993 ()n O n = ⑤2/lo g ()n n n ω=其中正确的有( ) A .5组 B.4组 C.3组 D.没有正确的 3. 2/102n n +=( ) A. 2()O n B.(2)n O C.2(2)n n O + D.2 ()o n 4. 211/n += ( )(我认为是比较不错的一道题,考试可能会出现相同的方法,用极限定义来做,最后一节课老师也讲过类似的方法) A. ()O n B.()o n C.()n Ω D.(1)O 5. 310lo g n = ( ) A.(log )O n n B. (log )O n C. 3()O n D. lo g ()n O n 6. 认真完成课后习题P5面的算法分析题1-6,里面也有我不会做的,可是有谁愿意讨论? 如果能够把以上的题目都能做对,应该就是掌握了。给自己一个奖励吧!答案(如有问题,联系我吧):1-5:BBBDB 6.做出来对对答案吧。 二、填空题 1.()2(/2)T n T n n =+????的一个渐进上界为 (答案:(log )O n n ,用迭代法) 2.()(/3)(2/3)()T n T n T n O n =++的一个渐进上界为 (答案:(log )O n n ,用递归树求解,不会的赶快看) 3.()9(/3)T n T n n =+的一个渐进紧致界为 (答案:2 ()n θ,采用迭代法或者采用主方法,不会的赶快看)

贪心算法解决活动安排问题报告

1.引言: 贪心法是一种改进了的分级处理方法。用贪心法设计算法的特点是一步一步地进行,每一步上都要保证能获得局部最优解。每一步只考虑一个数据,它的选取满足局部优化条件。若下一个数据与部分最优解连在一起不再是可行解时,就不把该数据添加到部分解中,直到把所有数据枚举完,或者不能再添加为止。这种能够得到某种度量意义下的最优解的分级处理方法称为贪心法。 贪心算法总是做出在当前看来是最优的选择,也就是说贪心算法并不是从整体上加以考虑,它所做出的选择只是在某种意义上的局部最优解,而许多问题自身的特性决定了该题运用贪心算法可以得到最优解或较优解。 2.贪心算法的基本思想及存在问题 贪心法的基本思想: 从问题的某一个初始解出发逐步逼近给定的目标,以尽可能快的地求得更好的解。当达到某算法中的某一步不能再继续前进时,算法停止。 1.建立数学模型来描述问题。 2.把求解的问题分成若干个子问题。 3.对每一子问题求解,得到子问题的局部最优解。 4.把子问题的解局部最优解合成原来解问题的一个解。 3.活动安排问题: 3.1 贪心算法解决活动安排问题 学校举办活动的安排问题是用贪心算法有效求解的一个很好例子。活动安排问题要求安排一系列争用某一公共资源的活动。用贪心算法可使尽可能多的活动能兼容的使用公共资源。设有n个活动的集合{0,1,2,…,n-1},其中每个活动都要求使用同一资源,如会场等,而在同一时间内只有一个活动能使用这一资源。每个活动i都有一个要求使用该资源的起始时间starti和一个结束时间endi,且starti

贪心算法求解多机调度问题

贪心算法求解多机调度问题 设有n项独立的作业{1,2,…, n},由m 台相同的机器加工处理。作业i 所需要的处理时间为台相同的机器加工处理。设有n 项独立的作业由ti。约定:任何一项作业可在任何一台机器上处理,但未完工前不准中断处理;任何作业不能拆分成更小的子作业。多机调度问题要求给出一种调度方案,能拆分成更小的子作业。多机调度问题要求给出一种调度方案,使所给的n 个作业在尽可台机器处理完。利用贪心策略,设计贪心算法解决多机调度问题,能短的时间内由m 台机器处理完。利用贪心策略,设计贪心算法解决多机调度问题,并计算其时间复杂度。 多机调度问题的一个实例: 多机调度问题的一个实例:项独立的作业{1,2,3,4,5,6,7},要由三台机器M1, M2 ,M3 处理。各个作业所需处理。各个作业所需例如设有7 项独立的作业,要的处理时间分别为{2,14,4,16,6,5,3}。利用你设计的贪心算法,要的处理时间分别为。利用你设计的贪心算法,安排作业的处理顺序使得机器处理作业的时间最短。器处理作业的时间最短。 #include using namespace std; void Greedy(int t[],int n,int m); int main() { int n=7,m=3,t[]={2,14,4,16,6,5,3};//待分配的工作

Greedy(t,n,m); return 0; } void Greedy(int t[],int n,int m) { int flagn,flagm; int M[]={0,0,0,0,0,0,0,0}; for(int i=0;iM[j]) {flagm=j;} } M[flagm]=M[flagm]+t[flagn]; t[flagn]=0; //被选择过的机器时间调为0 cout<

贪心算法经典问题:活动安排,背包问题,最优装载,单源最短路径 Dijiksra,找零钱问题,多机调度

活动安排 public static int greedySelector(int [] s, int [] f, boolean a[]) { //s[]开始时间f[]结束时间 int n=s.length-1; a[1]=true; int j=1; int count=1; for (int i=2;i<=n;i++) { if (s[i]>=f[j]) { a[i]=true; j=i; count++; } else a[i]=false; } return count; } 背包问题 void Knapsack(int n,float M,float v[],float w[],float x[]) { Sort(n,v,w); //以每种物品单位重量的价值Vi/Wi从大到小排序 int i; for (i=1;i<=n;i++) x[i]=0; float c=M; for (i=1;i<=n;i++) { if (w[i]>c) break; x[i]=1; c-=w[i]; } if (i<=n) x[i]=c/w[i]; //允许放入一个物品的一部分 } 最优装载 void Loading(int x[], T ype w[], T ype c, int n) { int *t = new int [n+1]; //t[i]要存的是w[j]中重量从小到大的数组下标Sort(w, t, n); //按货箱重量排序 for (int i = 1; i <= n; i++) x[i] = 0; //O(n) for (int i = 1; i <= n && w[t[i]] <= c; i++) {x[t[i]] = 1; c -= w[t[i]];} //调整剩余空间 } 单源最短路径Dijiksra template void Dijikstra(int n, int v, Type dist[], int prev[], Type **c) { //c[i][j]表示边(i,j)的权,dist[i]表示当前从源到顶点i的最短特殊路径bool s[maxint]; for(int i= 1;i<=n; i++) { dist[i]=c[v][i]; s[i]=false;

贪心算法的应用

从贪心算法的定义可以看出,贪心法并不是从整体上考虑问题,它所做出的选择只是在某种意义上的局部最优解,而由问题自身的特性决定了该题运用贪心算法可以得到最优解。 我们看看下面的例子 例1 均分纸牌(NOIP2002tg) [问题描述] 有 N 堆纸牌,编号分别为 1,2,…, N。每堆上有若干张,但纸牌总数必为 N 的倍数。可以在任一堆上取若干张纸牌,然后移动。移牌规则为:在编号为 1 堆上取的纸牌,只能移到编号为 2 的堆上;在编号为 N 的堆上取的纸牌,只能移到编号为 N-1 的堆上;其他堆上取的纸牌,可以移到相邻左边或右边的堆上。现在要求找出一种移动方法,用最少的移动次数使每堆上纸牌数都一样多。例如 N=4,4 堆纸牌数分别为: ①9 ②8 ③17 ④6 移动3次可达到目的: 从③取 4 张牌放到④(9 8 13 10) -> 从③取 3 张牌放到②(9 11 10 10)-> 从②取 1 张牌放到①(10 10 10 10)。 [输入]:键盘输入文件名。 文件格式:N(N 堆纸牌,1 <= N <= 100) A1 A2 … An (N 堆纸牌,每堆纸牌初始数,l<= Ai <=10000) [输出]:输出至屏幕。格式为:所有堆均达到相等时的最少移动次数。 [输入输出样例] : 4 9 8 17 6 屏慕显示:3 算法分析:设a[i]为第i堆纸牌的张数(0<=i<=n),v为均分后每堆纸牌的张数,s为最小移到次数。 我们用贪心法,按照从左到右的顺序移动纸牌。如第i堆(0v,则将a[i]-v张纸牌从第I堆移动到第I+1堆; (2)若a[i]

第四章-贪心算法(模拟试题)

计算机与信息科学学院2010-2011学年第2学期模拟试卷 计算机算法设计与分析—第四章.贪心算法 本卷满分100分 完卷时间120分钟 一. 简答题(每小题2分,共20分) 1. 当一个问题具有 且具有 时可用贪心算法,如最小生成树问题(背包问题,活动安排问题等)。 2. 在动态规划可行的基础上满足 才能用贪心。 3. 贪心算法总是作出在当前看来最好的选择。也就是说贪心算法并不从整体最优考虑,它所作出的选择只是在某种意义上的 选择。 4. 动态规划算法通常以 的方式解各子问题,而贪心算法则通常 以 的方式进行,以迭代的方式作出相继的贪心选择,每作一次贪心选择就将所求问题简化为规模更小的子问题 5. 贪心算法和动态规划算法都要求问题具有 性质,这是2类算法的一个共同点。 6. 当一个问题的最优解包含其子问题的最优解时,称此问题具有 。 7. 对于具有n 个顶点和e 条边的带权有向图,如果用带权邻接矩阵表示这 个图,那么Dijkstra 算法的主循环体需要 时间。这个循环需要执行n-1次,所以完成循环需要 时间。算法的其余部分所需要时间不超过 。 8. 0-1背包问题指:给定n 种物品和一个背包。物品i 的重量是Wi ,其价值为Vi ,背包的容量为C 。应如何选择装入背包的物品,使得装入背包中物品的 最大。 9. 有一批集装箱要装上一艘载重量为c 的轮船。其中集装箱i 的重量为Wi 。最优装载问题要求确定在 不受限制的情况下,将 装上轮船。 10. 多机调度问题要求给出一种作业调度方案,使所给的n 个作业在 由m 台机器加工处理完成。 二. 综合题(1-6题每题7分,7-8题每题9分,共60分) 1. 有4个物品,其重量分别为(4, 7, 5, 3),物品的价值分别为(40, 42, 25, 12),背包容量为10。试设计3种贪心策略,并给出在每种贪心策略下背包问题的解。 )(n O

0021算法笔记——【贪心算法】贪心算法与活动安排问题

0021算法笔记——【贪心算法】贪心算法与活动安排问题 1、贪心算法 (1)原理:在对问题求解时,总是做出在当前看来是最好的选择。也就是说,不从整体最优上加以考虑,他所做出的仅是在某种意义上的局部最优解。贪心算法不是对所有问题都能得到整体最优解,但对范围相当广泛的许多问题他能产生整体最优解或者是整体最优解的近似解。 (2)特性:贪心算法采用自顶向下,以迭代的方法做出相继的贪心选择,每做一次贪心选择就将所求问题简化为一个规模更小的子问题,通过每一步贪心选择,可得到问题的一个最优解,虽然每一步上都要保证能获得局部最优解,但由此产生的全局解有时不一定是最优的,所以贪婪法不要回溯。能够用贪心算法求解的问题一般具有两个重要特性:贪心选择性质和最优子结构性质。 1)贪心选择性质 所谓贪心选择性质是指所求问题的整体最优解可以通过一系列局 部最优的选择,即贪心选择来达到。这是贪心算法可行的第一个基本要素。贪心算法则通常以自顶向下的方式进行,以迭代的方式作出相继的贪心选择,每作一次贪心选择就将所求问题简化为规模更小的子问题。 对于一个具体问题,要确定它是否具有贪心选择性质,必须证明每一步所作的贪心选择最终导致问题的整体最优解。证明的大致过程为:

首先考察问题的一个整体最优解,并证明可修改这个最优解,使其以贪心选择开始。做了贪心选择后,原问题简化为规模更小的类似子问题。然后用数学归纳法证明通过每一步做贪心选择,最终可得到问题的整体最优解。其中,证明贪心选择后的问题简化为规模更小的类似子问题的关键在于利用该问题的最优子结构性质。 2)最优子结构性质 当一个问题的最优解包含其子问题的最优解时,称此问题具有最优子结构性质。 (3)贪心算法与动态规划算法的差异: 动态规划和贪心算法都是一种递推算法,均有最优子结构性质,通过局部最优解来推导全局最优解。两者之间的区别在于:贪心算法中作出的每步贪心决策都无法改变,因为贪心策略是由上一步的最优解推导下一步的最优解,而上一部之前的最优解则不作保留,贪心算法每一步的最优解一定包含上一步的最优解。动态规划算法中全局最优解中一定包含某个局部最优解,但不一定包含前一个局部最优解,因此需要记录之前的所有最优解。 (4)基本思路: 1)建立数学模型来描述问题。 2)把求解的问题分成若干个子问题。 3)对每一子问题求解,得到子问题的局部最优解。 4)把子问题的解局部最优解合成原来解问题的一个解。 2、活动安排问题

算法分析与设计选修课-贪心算法应用研究

武汉理工大学 算法设计与分析论文题目:贪心算法应用研究 姓名:吴兵 学院:信息工程 专业班级:电子133 学号: 1409721303131 任课教师:张小梅

目录 摘要 (1) 1.绪论 (2) 2贪心算法的基本知识概述 (3) 2.1 贪心算法定义 (3) 2.2 贪心算法的基本思路及实现过程 (3) 2.3贪心算法的核心 (3) 2.4贪心算法的基本要素 (4) 2.5 贪心算法的理论基础 (6) 2.6 贪心算法存在的问题 (7) 3贪心算法经典应用举例 (8) 3.1删数问题 (8) 3.2 汽车加油问题 (10) 3.3会场安排问题 (12) 4.总结 (16) 5.参考文献 (17)

摘要 在求最优解问题的过程中,依据某种贪心标准,从问题的初始状态出发,直接去求每一步的最优解,通过若干次的贪心选择,最终得出整个问题的最优解,这种求解方法就是贪心算法。从贪心算法的定义可以看出,贪心法并不是从整体上考虑问题,它所做出的选择只是在某种意义上的局部最优解,而由问题自身的特性决定了该题运用贪心算法可以得到最优解。贪心算法所作的选择可以依赖于以往所作过的选择,但决不依赖于将来的选择,也不依赖于子问题的解,因此贪心算法与其它算法相比具有一定的速度优势。如果一个问题可以同时用几种方法解决,贪心算法应该是最好的选择之一。本文讲述了贪心算法的含义、基本思路及实现过程,贪心算法的核心、基本性质、特点及其存在的问题。并通过贪心算法的特点举例列出了以往研究过的几个经典问题,对于实际应用中的问题,也希望通过贪心算法的特点来解决。 关键词:贪心算法最小生成树多处最优服务次序问题删数问题

作业调度快速贪心算法

作业调度快速贪心算法 班级:08级通信三班学号:14081403173 姓名:阮晨 成绩:分 一、设计目的 1.掌握贪心算法的思想; 2.掌握贪心算法的典型问题,如作业调度问题; 3.进一步多级调度的基本思想和算法设计方法; 4.提高分析与解决问题的能力。 二、设计内容 1.任务描述 1)多段图问题简介 在无资源约束且每个作业可在等量的是时间内完成的作业调度问题中,可以拟定一个最优解的算法,制定如何选择下一个作业的量度标准,使得所选择的下一个作业在这种量度下达到最优。快速贪心算法利用减少作业移动—分配最晚时间片原则使得作业在最短的时间片内达到最大的效益值。 2)设计任务简介 设计快速贪心算法实现在效益p=(35, 30, 25, 20, 15, 10, 5, 1),时间期限 d=(4, 2, 4, 5, 6, 4, 5, 7)条件下的最大效益,输出作业的调度序列。 2.快速贪心算法的实现过程 已知n=8, p=(35, 30, 25, 20, 15, 10, 5, 1), d=(4, 2, 4, 5, 6, 4, 5, 7)。设计、编程实现作业调度快速贪心算法, 要求按作业调度顺序输出作业序列。 案例分析: 可用最晚空闲时间片序号数组 F[]。 存储截止期限值为 i 的作业可用的最晚空闲时间片序号。 初始状态: F[0:k]={0, 1, 2, 3, …, k-1, k},k = min { n, max {dj} } 竞争可用最晚空闲时间片的截止期限值集合 set[0:k] 在树结构表示下, 初值为: set[0:k]={{0,-1},{1, -1},{2, -1},{3, -1}, …,{k-1, -1},{k, -1}}. 如下表:

贪心算法解活动安排实验报告

实验3 贪心算法解活动安排问题 一、实验要求 1.要求按贪心法求解问题; 2.要求读文本文件输入活动安排时间区间数据; 3.要求显示结果。 二、实验仪器和软件平台 仪器:带usb接口微机 软件平台:WIN-XP + VC++6.0 三、源程序 #include "stdafx.h" #include #include #include #define N 50 #define TURE 1 #define FALSE 0 int s[N];/*开始时间*/ int f[N];/*结束时间*/ int A[N];/*用A存储所有的*/ int Partition(int *b,int *a,int p,int r); void QuickSort(int *b,int *a,int p,int r); void GreedySelector(int n,int *s,int *f,int *A); int main() { int n=0,i; while(n<=0||n>50) { printf("\n"); printf("请输入活动的个数,n="); scanf("%d",&n); if(n<=0) printf("请输入大于零的数!"); else if(n>50) printf("请输入小于50的数!"); } printf("\n请分别输入开始时间s[i]和结束时间f[i]:\n\n"); for(i=1;i<=n;i++) { printf("s[%d]=",i,i); scanf("%d",&s[i]);

相关文档
最新文档