以太网分类

以太网分类
以太网分类

一、标准以太网

开始以太网只有10Mbps的吞吐量,使用的是CSMA/CD(带有碰撞检测的载波侦听多路访问)的访问控制方法,这种早期的10Mbps以太网称之为标准以太网。以太网主要有两种传输介质,那就是双绞线和同轴电缆。所有的以太网都遵循IEEE 802.3标准,下面列出是IEEE 802.3的一些以太网络标准,在这些标准中前面的数字表示传输速度,单位是“Mbps”,最后的一个数字表示单段网线长度(基准单位是 100m),Base表示“基带”的意思,Broad代表“带宽”。

·10Base-5 使用粗同轴电缆,最大网段长度为500m,基带传输方法;

·10Base-2 使用细同轴电缆,最大网段长度为185m,基带传输方法;

·10Base-T 使用双绞线电缆,最大网段长度为100m;

· 1Base-5 使用双绞线电缆,最大网段长度为500m,传输速度为1Mbps;

·10Broad-36 使用同轴电缆(RG-59/U CATV),最大网段长度为

3600m,是一种宽带传输方式;

·10Base-F 使用光纤传输介质,传输速率为10Mbps;

二、快速以太网

随着网络的发展,传统标准的以太网技术已难以满足日益增长的网络数据流量速度需求。在1993年10月以前,对于要求10Mbps以上数据流量的 LAN应用,只有光纤分布式数据接口(FDDI)可供选择,但它是一种价格非常昂贵的、基于100Mpbs光缆的LAN。1993年10月,Grand Junction公司推出了世界上第一台快速以太网集线器Fastch10/100和网络接口卡FastNIC100,快速以太网技术正式得以应用。随后 Intel、SynOptics、3COM、BayNetworks等公司亦相继推出自己的快速以太网装置。与此同时,IEEE802工程组亦对 100Mbps以太网的各种标准,如100BASE-TX、100BASE-T4、MII、中继器、全双工等标准进行了研究。1995年3月IEEE宣布了IEEE802.3u 100BASE-T快速以太网标准(Fast Ethernet),就这样开始了快速以太网的时代。

快速以太网与原来在100Mbps带宽下工作的FDDI相比它具有许多的优点,最主要体现在快速以太网技术可以有效的保障用户在布线基础实施上的投资,它支持3、4、5类双绞线以及光纤的连接,能有效的利用现有的设施。快速以太网的不足其实也是以太网技术的不足,那就是快速以太网仍是基于CSMA/CD技术,当网络负载较重时,会造成效率的降低,当然这可以使用交换技术来弥补。100Mbps快速以太网标准又分为:100BASE-TX 、100BASE-FX、100BASE-T4三个子类。

· 100BASE-TX:是一种使用5类数据级无屏蔽双绞线或屏蔽双绞线的快速以太网技术。它使用两对双绞线,一对用于发送,一对用于接收数据。在传输中使用4B/5B编码方式,信号频率为125MHz。符合EIA586的5类布线标准和IBM 的SPT 1类布线标准。使用同10BASE-T相同的RJ-45连接器。它的最大网段长度为100米。它支持全双工的数据传输。

· 100BASE-FX:是一种使用光缆的快速以太网技术,可使用单模和多模光纤(62.5和125um)多模光纤连接的最大距离为550米。单模光纤连接的最大距离为3000米。在传输中使用4B/5B编码方式,信号频率为125MHz。它使用 MIC /FDDI连接器、ST连接器或SC连接器。它的最大网段长度为150m、412m、2000m或更长至10公里,这与所使用的光纤类型和工作模式有关,它支持全双工的数据传输。100BASE-FX特别适合于有电气干扰的环境、较大距离连接、或高保密环境等情况下的适用。

· 100BASE-T4:是一种可使用3、4、5类无屏蔽双绞线或屏蔽双绞线的快速以太网技术。100Base-T4使用4对双绞线,其中的三对用于在 33MHz的频率上传输数据,每一对均工作于半双工模式。第四对用于CSMA/CD冲突检测。在传输中使用8B/6T编码方式,信号频率为25MHz,符合EIA586结构化布线标准。它使用与10BASE-T相同的RJ-45连接器,最大网段长度为100米。

三、千兆以太网

千兆以太网技术作为最新的高速以太网技术,给用户带来了提高核心网络的有效解决方案,这种解决方案的最大优点是继承了传统以太技术价格便宜的优点。千兆技术仍然是以太技术,它采用了与10M以太网相同的帧格式、帧结构、网络协议、全/半双工工作方式、流控模式以及布线系统。由于该技术不改变传统以太网的桌面应用、操作系统,因此可与10M或100M的以太网很好地配合工作。升级到千兆以太网不必改变网络应用程序、网管部件和网络操作系统,能够最大程度地投资保护。为了能够侦测到64Bytes资料框的碰撞,Gigabit Ethernet所支持的距离更短。Gigabit Ethernet 支持的网络类型,如下表所示:

传输介质距离

1000Base-CX Copper STP 25m

1000Base-T Copper Cat 5 UTP 100m

1000Base-SX Multi-mode Fiber 500m

1000Base-LX Single-mode Fiber 3000m

千兆以太网技术有两个标准:IEEE802.3z和IEEE802.3ab。IEEE802.3z制定了光纤和短程铜线连接方案的标准。IEEE802.3ab制定了五类双绞线上较长距离连接方案的标准。

1. IEEE80

2.3z

IEEE802.3z工作组负责制定光纤(单模或多模)和同轴电缆的全双工链路标准。IEEE802.3z定义了基于光纤和短距离铜缆的 1000Base-X,采用8B/10B编码技术,信道传输速度为1.25Gbit/s,去耦后实现1000Mbit/s传输速度。 IEEE802.3z具有下列千兆以太网标准:

· 1000Base-SX 只支持多模光纤,可以采用直径为62.5um或50um的多模光纤,工作波长为770-860nm,传输距离为220-550m。

· 1000Base-LX 多模光纤:可以采用直径为62.5um或50um的多模光纤,工作波长范围为1270-1355nm,传输距离为550m。单模光纤:可以支持直径为9um或10um的单模光纤,工作波长范围为1270-1355nm,传输距离为5km左右。

· 1000Base-CX 采用150欧屏蔽双绞线(STP),传输距离为25m。

2. IEEE802.3ab

IEEE802.3ab工作组负责制定基于UTP的半双工链路的千兆以太网标准,产生IEEE802.3ab标准及协议。 IEEE802.3ab定义基于5类UTP的1000Base-T标准,其目的是在5类UTP上以1000Mbit/s速率传输100m。 IEEE802.3ab标准的意义主要有两点:

(1) 保护用户在5类UTP布线系统上的投资。

(2) 1000Base-T是100Base-T自然扩展,与10Base-T、100Base-T完全兼容。不过,在5类UTP上达到1000Mbit/s的传输速率需要解决5类UTP的串扰和衰减问题,因此,使IEEE802.3ab工作组的开发任务要比IEEE802.3z复杂些

四、万兆以太网

万兆以太网规范包含在 IEEE 802.3 标准的补充标准 IEEE 802.3ae 中,它扩展了 IEEE 802.3 协议和 MAC 规范使其支持 10Gb/s 的传输速率。除此之外,通过WAN 界面子层(WIS:WAN interface sublayer),10千兆位以太网也能被调整为较低的传输速率,如 9.584640 Gb/s (OC-192),这就允许10千兆位以太网设备与同步光纤网络(SONET) STS -192c 传输格式相兼容。

· 10GBASE-SR 和 10GBASE-SW 主要支持短波(850 nm)多模光纤(MMF),光纤距离为 2m 到 300 m 。10GBASE-SR 主要支持“暗光纤”(dark fiber),暗光纤是指没有光传播并且不与任何设备连接的光纤。10GBASE-SW 主要用于连接 SONET 设备,它应用于远程数据通信。

· 10GBASE-LR 和 10GBASE-LW 主要支持长波(1310nm)单模光纤(SMF),光纤距离为 2m 到 10km (约32808英尺)。10GBASE-LW 主要用来连接 SONET 设备时,10GBASE-LR 则用来支持“暗光纤”(dark fiber)。

· 10GBASE-ER 和 10GBASE-EW 主要支持超长波(1550nm)单模光纤(SMF),光纤距离为 2m 到 40km (约131233英尺)。10GBASE-EW 主要用来连接 SONET 设备,10GBASE-ER 则用来支持“暗光纤”(dark fiber)。

· 10GBASE-LX4 采用波分复用技术,在单对光缆上以四倍光波长发送信号。系统运行在 1310nm 的多模或单模暗光纤方式下。该系统的设计目标是针对于 2m 到 300 m 的多模光纤模式或 2m 到 10km 的单模光纤模式。

10 Gigabit Ethernet:10千兆位以太网

(10 Gigabit Ethernet:Ethernet at data rate 10 Gbps - IEEE 802.3ae)

10千兆位以太网,定义在 IEEE 802.3ae 中,其数据传输速率达到百亿比特每秒。基于当今广泛应用的以太网技术,10千兆位以太网提供了与各种以太网标准相似的有利特点。它主要用于局域网( LAN)、广域网(WAN)以及城域网(MAN)之间的相互连接。它采用大家熟知的以太网介质访问控制协议及其帧格式和帧大小。然而,10千兆位以太网只支持全双工,而不支持半双工工作模式,并且只工作于光纤上,因此它不再需要其它以太网标准使用的载波监听多路访问和冲突检测(CSMA/CD)协议。10 千兆位以太网结构如下所示:

10 千兆位以太网结构

10千兆位规范包含在 IEEE 802.3 标准的补充标准 IEEE 802.3ae 中,它扩展了 IEEE 802.3 协议和 MAC 规范使其支持 10Gb/s 的传输速率。除此之外,通过 WAN 界面子层(WIS:WAN interface sublayer),10千兆位以太网也能被调整为较低的传输速率,如 9.584640 Gb/s (OC-192),这就允许10千兆位以太网设备与同步光纤网络(SONET) STS -192c 传输格式相兼容。

10GBASE-SR 和 10GBASE-SW 主要支持短波(850 nm)多模光纤(MMF),光纤距离为 2m 到 300 m 。10GBASE-SR 主要支持“暗光纤”(dark fiber),暗光纤是指没有光传播并且不与任何设备连接的光纤。10GBASE-SW 主要用于连接 SONET 设备,它应用于远程数据通信。

10GBASE-LR 和 10GBASE-LW 主要支持长波(1310nm)单模光纤(SMF),光纤距离为2m 到 10km (约32808英尺)。10GBASE-LW 主要用来连接 SONET 设备时,10GBASE- LR 则用来支持“暗光纤”(dark fiber)。

10GBASE-ER 和 10GBASE-EW 主要支持超长波(1550nm)单模光纤(SMF),光纤距离为 2m 到 40km (约131233英尺)。10GBASE-EW 主要用来连接 SONET 设备,10GBASE- ER 则用来支持“暗光纤”(dark fiber)。

最后,还有一种 10GBASE-LX4 介质类型,采用波分复用技术,在单对光缆上以四倍光波长发送信号。10GBASE-LX4 系统运行在 1310nm 的多模或单模暗光纤方式下。该系统的设计目标是针对于 2m 到 300 m 的多模光纤模式或 2m 到 10km 的单模光纤模式。

协议结构

关于以太网802.3.10中,千兆位以太网帧最小为64字节,最大可达到1518字节。

7 1 6 6 2 46=< n =<1500 bytes 4 bytes

Pre SFD DA SA Length Type Data unit + pad FCS

Preamble(Pre)- 7字节。Pre 字段中1和0交互使用,接收站通过该字段知道导入帧,并且该字段提供了同步化接收物理层帧接收部分和导入比特流的方法。

Start-of-Frame Delimiter(SFD)- 1字节。字段中1和0交互使用,结尾是两个连续的1,表示下一位是利用目的地址的重复使用字节的重复使用位。

Destination Address(DA)- 6字节。DA 字段用于识别需要接收帧的站。

Source Addresses (SA)- 6字节。SA 字段用于识别发送帧的站。

Length/Type - 2字节。如果是采用可选格式组成帧结构时,该字段既表示包含在帧数据字段中的 MAC 客户机数据大小,也表示帧类型ID。

Data -是一组 n(46=< n =<1500)字节的任意值序列。帧总值最小为64字节。

Frame Check Sequence(FCS)- 4字节。该序列包括32位的循环冗余校验(CRC)值,由发送 MAC 方生成,通过接收 MAC 方进行计算得出以校验被破坏的帧。

1、时间的单位

1s(秒)=10^3 ms(毫秒) =10^6 μ s(微秒)=10^9 ns(纳秒)

2、光信号在光纤中的传输速度

光信号在光纤中与接近光速来传输的。光速为3×10^8 m/s.换算单位后约为3.4μs/m;而光信号在光纤中的传输速度一般认为是5ns /m 。

3、信号传输延迟的计算

信号从一个节点(node1)传输到另外一个节点(node1),启动一次传输网络延迟包括2部分,第一部分,就是第一个电平信号从node1经过介质传输到node2的延迟,另外一部分网络中所描述的速率传输时间。(这部分内容在通信学科中有个详细的公式和名称,不过忘了具体说法)例如线路速率为10mb/s, 信号传输速率为200μs/km,介质长度为100km,那么传输20MB数据的时间如下计算:

20MB *8=160 mb.(大小b转换)

160mb / 10 (mb/s)=16s

100km * 200 (μ s/km)*2= 40ms=0.04s (长度算2倍,因为信号一来一回走一遍)

则总传输时间为:16s+0.04s=16.04s

4、光纤实际效果

激光在光纤之中的延迟为5ns /m(光传输). 因此, 10公里连接所产生的延迟为100微秒.

10km=(10*10^3m) * (5ns/m)*2(来回)= 10^5ns=100 ms

FCP协议中,一个帧frame为2K,在速率为1Gbps(100MB/s)的链路上,传输一个帧的延迟为:2KB/(100MB/s)=20ms.

如果需要充分使用链路,必须保证整个链路是一直有帧在传输,也就是同时可以有100ms/20ms=5个帧,那么bb_credit至少应该有5个。同理,如果50km,则需要25个bb_credit。

推算出BB_Credit的计算公式:

距离×光信号传播速率

IO size×链路速率

根据已有经验,帧的大小也对I/O性能有很大影响. 例如, 50km的最佳I/O大小为50KB(25信用数*2KB). 还有一个需要特别注意的是, 某些数据库应用只能提供

2KB和4KB的I/O 。

以太网的发展历史

以太网的发展史及趋势 12级计科1班 齐闯 201490663 刘金成 201490664 蒋伟201242358 冯雪201242310 IEEE正在以惊人的速度推动以太网的发展。2010年,40/100G以太网标准获批;预计2015年兆兆位以太网也将面世。这里,我们通过一个时间表,来展示一下以太网发展历史当中的关键里程碑。 1973当时,在施乐公司研究中心工作的Bob Metcalfe被老板告知,要求将公司中数以百计的电脑和新买的激光打印机进行共享连接。后来他就画了这个图,给老板写了一篇有关以太网潜力的备忘录。(当时用的是3Mbps同轴电缆。) 1976 Metcalfe和他的助手David Boggs发表了一篇名为《以太网:局域计算机网络的分布式包交换技术》的文章。文章里面介绍了具有冲突检测的多点数据通信系统。 1979 Metcalfe离开了施乐公司,并创立了3COM公司。次年,他发表了10Mbps以太网标准的第一个版本DIX V1。(DIX即DEC、Intel和施乐Xerox公司的首字母。) IEEE成为发布以太网标准的官方机构。开放标准有助于使以太网保持主导地位。 IEEE发布了10Base5 以太网标准,也称为粗缆以太网,因为它是一个黄色的铜缆,看起来像是一个花园中的水管。 1989 Kalpana推出了首款以太网交换机,它取代了网桥和集线器。猜到Kalpana现在如何了吗?没错,它被思科收购啦。 1991 IEEE发布批准通过了10Base-T以太网CAT-3双绞线布线标准,并成为了局域网部署标准。 1995 IEEE通过了10BaseF数据中心使用的光纤以太网标准,在100Mbps以太网标准被IEEE采用后,它被称为快速以太网标准快速以太网出现了,解决了交换问题,速度也提高到100兆,开始进入校园网 1998 1000Base-T千兆以太网标准获批 1999 以太网速度提升到1G,开始进入城域网,像网通这样的新兴运营商则采用在光纤网上直接走以太网的模式; 现在以太网提升到10G,又可以应用于广域网,业界新传输设备已经同时支持10G以太网和SDH。接入网以太网化也已是大势所趋: 有线电视、无线局域网和VDSL等都是以太网的应用领域。中国在居民区推广以太网接入,这在世界上也是领先的。 2002预标准的产品是在2001年面世的,但是万兆以太网的标准是在2002年获批的2015 40/100Gb以太网在2010年发布,IEEE表示,他们将会投入到兆兆位以太网标准的研发当中,预计在2015年发布

华为OSN2500设备以太网透传单板

华为OSN2500设备以太网透传单板 华为OSN2500提供了多种以太网透传功能的单板,实现不同的以太网业务需求。以下以EFT4单板为例说明。 华为OSN2500以太网单板EFT4基本功能为4路FE透明传送,其接口类型支持 10Base-T/100Base-TX,满足IEEE802.3u标准。配合出线板是采用面板直接出线。EFT4工作模式支持100M全双工、10M全双工和自协商。 ETF4单板帧长范围支持1518Byte~1535Byte报文长度设置,支持最大不超过 9600Byte的Jumbo帧。绑定带宽为12xVC-3或者63xVC-12+9xVC-3;映射方式为VC-3、VC-12、VC-12-Xv(X≤63)和VC-3-Xv(X≤3)。 华为OSN2500设备EFT4单板VCTRUNK规格数量为4,配置特点:① 同一个VCTRUNK只能绑定一种级别的通道,不能既绑定VC-12通道,又绑定VC-3通道。② 第4

个VC-4既能绑定为VC-3通道也能绑定为VC-12通道,其他VC-4只能绑定为VC-3通道。③ 每个VCTRUNK最多可以绑定3个VC-3或63个VC-12。④ 对于所有的VCTRUNK,1~63号VC-12不允许与10~12号VC-3同时配置。 华为OSN2500设备EFT4不支持TPS保护,但可以实现带宽的动态增加、动态减少和保护功能,满足ITU-T G.7042标准,支持点到点LPT,满足ITU-T G.7042标准。环回能力支持内环回以太网端口PHY层及以太网端口MAC层,VC-4及VC-12级别不支持,VC-3级别支持内环回和外环回。并可提供丰富的告警和性能事件,便于传输设备的管理和维护。

工业以太网的特色技术及其应用选择

工业以太网的特色技术及其应用选择 发布时间:2007-05-15 浏览次数:105 | 我要说几句 | ?? 用户解决方案2012优秀论文合订本 ?? NIDays2012产品演示资料套件 ?? 《提高测量精度的七大技巧》资源包 ?? LabVIEW 2012评估版软件 关键词:工业以太网实时特色技术 编者按:工业以太网成为自动化领域业界的技术热点已有时日,其技术本身尚在发展之中,还没有走向成熟,还存在许多有待解决的问题。究竟什么是工业以太网,它有哪些特色技术,如何应用与选择适合自己需求的工业以太网技术与产品,依然是今天人们所关心的问题。 一什么是工业以太网 工业以太网技术,是以太网或者说是互联网系列技术延伸到工业应用环境的产物。前者源于后者又不同于后者。以太网技术原本不是为工业应用环境准备的。经过对工业应用环境适应性的改造,通信实时性改进,并添加了一些控制应用功能后,形成了工业以太网的技术主体。因此,工业以太网是一系列技术的综称。 二工业以太网涉及企业网络的各个层次

企业网络系统按其功能划分,一般称为以下三个层次:企业资源规划层(Enterprise Resource Plan NI ng, ERP)、制造执行层(Manufacturing Excurtion System, MES)和现场控制层(Field Control System,FCS)。通过各层之间的网络连接与信息交换,构成完整的企业信息系统。( 见图1) 图中的ERP与MES功能层属于采用以太网技术构成信息网络。这个层次的工业以太网,其核心技术依然是信息网络中原本的以太网以及互联网系列技术。工业以太网在该层次的特色技术是对其实行的工业环境适应性改造。而现场控制层FCS中,基于普通以太网技术的控制网络、实时以太网则属于该层次中工业以太网的特色技术范畴。可以把工业以太网在该层的特色技术看作是一种现场总线技术。除了工业环境适应性改造的内容之外,通信实时性、时间发布与同步、控制应用的功能与规范,则成为工业以太网在该层次的技术核心。

工业以太网专业术语

工业以太网专业术语 一、拓扑结构 拓扑是网络中电缆的布置。众所周知,EIA-485或CAN 采用总线型拓扑。但在工业以太网中,由于普遍使用集线器或交换机,拓扑结构为星型或分散星型。 二、接线 工业以太网专题">工业以太网使用的电缆有屏蔽双绞线(STP)、非屏蔽双绞线(UTP)、多模或单模光缆。10Mbps 的速率对双绞线没有过高的要求,而在100Mbps 速率下,推荐使用五类或超五类线。 光纤链接时需要一对,常用的多模光纤波长为62.5/125μm 或50/125μm。与多模光纤的内芯相比,单模光纤的内芯很细,只有10μm 左右。通常,10Mbps 使用多模光纤,100Mbps下,单模、多模光纤都适用。 三、接头和连接 双绞线接头中RJ-45 较常见,共两对线,一对用于发送,另一对用于接收。在媒介相关接口(MDI)的定义中,这四个信号分别标识为RD+,RD-,TD+,TD-。 一条通信链路由DTE(数据终端设备,如工作站)和DCE(数据通讯设备,如中继器或交换机)组成。集线器端口标识为MDI-X 端口表明DTE 和DCE 可以使用直通电缆相连。假如是两个DTE或两个DCE相连?可以采用电缆交叉的方法或直接利用集线器提供的上连端口(电缆不要交叉)。 光纤接头有两种,ST 接头用于10Mbps 或100Mbps;SC接头专用于100Mbps。单模纤通常使用SC接头。DTE 与DCE 之间的连接只需依照端口的TX、RX 标识即可。 四、工业以太网与普通商用以太网产品 什么是工业以太网?技术上,它与IEEE802.3 兼容,但设计和包装兼顾工业和商业应用的要求。工业现场的设计者希望采用市场上可以找到的以太网芯片和媒介,兼顾考虑工业现场的特殊要求。首先考虑的是高温、潮湿、震动。第二看是否能方便地安装在工业现场控制柜内。第三是电源要求。许多控制柜内提供的电源都是低压交流或直流。墙装式电源装置有时不能适应。电磁兼容性(EMC)的要求随工业环境对EMI(工业抗干扰)和ESD (工业抗震)要求的不同而变化。现场的安全标准与办公室的完全不同。有时需要的是恶劣环境的额定值。工厂里采用的可能是工业控制柜标准而楼宇系统采用的往往是烟雾标准。显然低价的商用以太网集线器和交换机无法达到这些要求。 五、速度和距离 讨论共享型以太网的距离,不能忽略碰撞域(Collision Domain)的概念。 共享型以太网或半双工以太网的媒体访问是由载波侦听多路访问/碰撞检测(CSMA/CD)确定的。在半双工的通讯方式下,发送和接收不能同时进行,否则数据会发生碰撞。站点发送前,首先要看是否有空闲的信道。发送时,站点还会在一段时间内收听,确保在这一时间内没有其它站点在进行同步传送,最终本站发送成功。反之,发生碰撞,

以太网概念

以太网技术的最初进展来自于施乐帕洛阿尔托研究中心的许多先锋技术项目中的 一个。人们通常认为以太网发明于1973年,当年罗伯特.梅特卡夫(Robert Metcalfe)给他PARC的老板写了一篇有关以太网潜力的备忘录。但是梅特卡夫本人认为以太网是之后几年才出现的。在1976年,梅特卡夫和他的助手David Boggs发表了一篇名为《以太网:局域计算机网络的分布式包交换技术》的文章。 1979年,梅特卡夫为了开发个人电脑和局域网离开了施乐,成立了3Com公司。3com对迪吉多, 英特尔, 和施乐进行游说,希望与他们一起将以太网标准化、规范化。这个通用的以太网标准于1980年9月30日出台。当时业界有两个流行的非公有网络标准令牌环网和ARCNET,在以太网大潮的冲击下他们很快萎缩并被取代。而在此过程中,3Com也成了一个国际化的大公司。 梅特卡夫曾经开玩笑说,Jerry Saltzer为3Com的成功作出了贡献。Saltzer在一篇与他人合著的很有影响力的论文中指出,在理论上令牌环网要比以太网优越。受到此结论的影响,很多电脑厂商或犹豫不决或决定不把以太网接口做为机器的标准配置,这样3Com才有机会从销售以太网网卡大赚。这种情况也导致了另一种说法“以太网不适合在理论中研究,只适合在实际中应用”。也许只是句玩笑话,但这说明了这样一个技术观点:通常情况下,网络中实际的数据流特性与人们在局域网普及之前的估计不同,而正是因为以太网简单的结构才使局域网得以普及。梅特卡夫和Saltz er曾经在麻省理工学院MAC项目(Project MAC)的同一层楼里工作,当时他正在做自己的哈佛大学毕业论文,在此期间奠定了以太网技术的理论基础。 它不是一种具体的网络,是一种技术规范。 该标准定义了在局域网(LAN)中采用的电缆类型和信号处理方法。以太网在互联设备之间以10~100Mbps的速率传送信息包,双绞线电缆10 Base T以太网由于其低成本、高可靠性以及10Mbps的速率而成为应用最为广泛的以太网技术。直扩的无线以太网可达11Mbps,许多制造供应商提供的产品都能采用通用的软件协议进行通信,开放性最好。 [编辑本段] 以太网的分类和发展 一、标准以太网 开始以太网只有10Mbps的吞吐量,使用的是带有冲突检测的载波侦听多路访问(CSMA/CD,Carrier Sense Multiple Access/Collision Detection)的访问控制方法,这种早期的10Mbps以太网称之为标准以太网。以太网可以使用粗同轴电缆、细同轴电缆、非屏蔽双绞线、屏蔽双绞线和光纤等多种传输介质进行连接,并且在I EEE 802.3标准中,为不同的传输介质制定了不同的物理层标准,在这些标准中前面的数字表示传输速度,单位是“Mbps”,最后的一个数字表示单段网线长度(基准单位是100m),Base表示“基带”的意思,Broad代表“带宽”。

工业以太网的发展与前景

工业以太网的发展与前景 摘要:随着以太网技术的成熟,交换技术的应用,高速以太网的发展等在工业自动化领域上正迅速增长,几乎所有的现场总线系统最终可以都连接到以太网。 关键词:工业,以太网,发展,瓶颈,前景,DCS , TCP/IP 1.分散型控制系统DCS及其发展 现代意义的工业控制网络体系是出现在上世纪七十年代,即最初的分散型控制系统 DCS(也称集散控制系统),它有着明显的缺点:首先,结构是多级主从关系,现场设备之间相互通信必须经过主机,使得主机负荷重、效率低,且主机一旦发生故障,整个系统就会崩溃;其次,它还使用大量的模拟信号,很多现场仪表仍然使用传统的4—20mA电流模拟信号,传输可靠性差,不易于数字化处理;第三,各系统设计厂家的DCS制定独立的标准,通讯协议不开放,极大的制约了系统的集成与应用,不利于现代跨国公司的进一步发展。 为了克服DCS系统的技术瓶颈,进一步满足工业现场的需要,现场总线技术应运而生。经过四十年的发展,出现了过多的现场总线标准种类,且各有自己的优势和适用范围,用户如何取舍是比较棘手的问题;其次,控制系统中如果有多种现场总线同时存在,由于总线通信协议的多样性。这样会使控制任务无限复杂化,另外在本质安全、系统可靠性、数据传输速度等方面存在一些技术瓶颈或不符合现代企业对信息的要求。为了解决这些问题而出现了以TCP/IP协议为基础的工业以太网技术。下面对工业以太网技术进行详细介绍。 2. 工业以太网的前世今生 用于办公室和商业的以太网伴随着现场总线大战硝烟已悄悄地进入了控制领域,近年来以太网更是走向前台,发展迅速,颇引人注目。究其原因,主要由于工业自动化系统正向分布化、智能化的实时控制方面发展,其中通信已成为关键,用户对统一的通信协议和网络的要求日益迫切。另一方面,Intranet/Internet等信息技术的飞速发展,要求企业从现场控制层到管理层能实现全面的无缝信息集成,并提供一个开放的基础构架,而目前的现场总线尚不能满足这些要求。 现场总线的出现确实给工业自动化带来一场深层次的革命,但多种现场总线互不兼容,不同公司的控制器之间不能实现高速的实时数据传输,信息网络存在协议上的鸿沟,导致“自动化孤岛”现象的出现,促使人们开始寻求新的出路并关注到以太网。同时现场总线的传输速率也远远不如工业以太网传输速率快。 以太网是当今现有局域网采用的最通用的通信协议标准。该标准定义了在局域网(LAN)中采用的电缆类型和信号处理方法。以太网在互联设备之间以10~100Mbps的速率传送信息包,双绞线电缆型号为10 Base T。以太网由于其低成本、高可靠性以及10Mbps的速率而成为应用最为广泛的以太网技术。直扩的无线以太网可达11Mbps,许多制造供应商提供的产品都能采用通用的软件协议进行通信,开放性好。普通以太网应用到工业控制系统,这种网络叫工业以太网。 3. 以太网与工业以太网 以太网: (1)具有相当高的数据传输速率(目前已达到100Mbps),能提供足够的带宽; (2)由于具有相同的通信协议,Ethernet和TCP/IP很容易集成到IT(信息技术)世界;(3)能在同一总线上运行不同的传输协议,从而能建立企业的公共网络平台或基础构架;(4)在整个网络中,运用了交互式和开放的数据存取技术; (5)沿用多年,已为众多的技术人员所熟悉,市场上能提供广泛的设置、维护和诊断工具,成为事实上的统一标准;

工业以太网总述

为用户带来的利益 ----市场占有率高达80%,以太网毫无疑问是当今LAN(局域网)领域中首屈一指的网络。以太网优越的性能,为您的应用带来巨大的利益: 通过简单的连接方式快速装配。 通过不断的开发提供了持续的兼容性,因而保证了投资的安全。 通过交换技术提供实际上没有限制的通讯性能。 各种各样联网应用,例如办公室环境和生产应用环境的联网。 公司之间的通讯

通过接入WAN(广域网)可实现公司之间的通讯,例如,ISDN 或Internet 的接入。 ----SIMATIC NET基于经过现场应用验证的技术,SIMATIC NET已供应多于400,000个节点,遍布世界各地,用于严酷的工业环境,包括有高强度电磁干扰的区域。 工业以太网络的构成 ----一个典型的工业以太网络环境,有以下三类网络器件: 网络部件 连接部件: FC 快速连接插座 ELS(工业以太网电气交换机) ESM(工业以太网电气交换机) SM(工业以太网光纤交换机) MC TP11(工业以太网光纤电气转换模块) 通信介质: 普通双绞线,工业屏蔽双绞线和光纤 SIMATIC PLC控制器上的工业以太网通讯处理器。用于将SIMATIC PLC连接到工业以太网。 PG/PC 上的工业以太网通讯处理器。用于将PG/PC连接到工业以太网。 工业以太网重要性能

----为了应用于严酷的工业环境,确保工业应用的安全可靠,SIMATIC NET 为以太网技术补充了不少重要的性能: 工业以太网技术上与IEEE802.3/802.3u兼容,使用ISO和TCP/IP 通讯协议 10/100M 自适应传输速率 冗余24VDC 供电 简单的机柜导轨安装 方便的构成星型、线型和环型拓扑结构 高速冗余的安全网络,最大网络重构时间为0.3 秒 用于严酷环境的网络元件,通过EMC 测试 通过带有RJ45 技术、工业级的Sub-D 连接技术和安装专用屏蔽电缆的Fast Connect连接技术,确保现场电缆安装工作的快速进行 简单高效的信号装置不断地监视网络元件 符合SNMP(简单的网络管理协议) 可使用基于web 的网络管理 使用VB/VC 或组态软件即可监控管理网络 工业以太网的技术特点 工业以太网技术具有价格低廉、稳定可靠、通信速率高、软硬件产品丰富、应用广泛以及支持技术成熟等优点,已成为最受欢迎的通信网络之一。近些年来,随着网络技术的发展,以太网进入了控制领域,形成了新型的以太网控制网络技术。这主要是由于工业自动化系统向分布化、智能化控制方面发展,开放的、透明的通讯协议是必然的要求。以太网技术引入工业控制领域,其技术优势非常明显:

以太网速度发展现状

以太网速度发展现状 以太网联盟主席、戴尔首席技术官办公室以太网传播总负责人 John D’Ambrosia 2013年,以太网行业迎来了以太网40岁生日以及以太网标准诞生30年。以太网的速度进展一直是可预测的——以10倍的增量从最初的10Mb/s到100Mb/s,到1Gb/s,再到10 Gb/s,这几乎无可争议。不过,40GbE和100GbE的同时推出有效终结了这一传统。 40GbE 和100 GbE的发展基于一个根本假设,即:计算与网络带宽的增长率存在相当大的差异,因此两种速度具有同时存在的必要性。在计算领域,带宽能力每24个月翻一倍,而网络应用程序则每18个月翻一倍。网络这种可预测的增长率后来同样被IEEE 802.3以太网带宽评估特别小组确认。据其预测,平均下来,到2015年,网络必须支持TB每秒的能力,到2020年,必须支持10TB每秒的能力。下图显示了这两个应用领域可预测的带宽能力,这是由IEEE 802.3更高速以太网研究小组(后来发展成为开发40 GbE和100GbE的任务小组)在2007年底所做的预测。那么到了2013年,这一预测的准确程度如何呢? 图注:较早时候的以太网带宽发展预测在现实中,支持和反对这一预测的说法都是可以成立的,但是否认同其精确度却取决于做出这一预测的思考角度。如果从电信运营商的角度来看,人们可能会认为这相当准确,因为100GbE在电信运营商领域产生了极大的影响,并且正在健康发展。但是在数据中心领域,却可以得出反对这一预测的结论,因为100GbE并没有在数据中心网络中产生同样大的影响——相反,40 GbE端口却在这里稳步健康发展。这种新兴部署场景提出了一些需要考虑的问题:首先,为什么数据中心网络中部署的是40GbE,而不是100GbE?首先应该注意的是:数据中心之所以部署40GbE,是因为通过将4个10 Gb/秒运行的4个通道捆绑可以实现总共40 Gb/秒的聚合链路。这是一个重要的发现,因为40GbE端口与并行导体或光纤结合使用,就可以实现更高的四倍密度10GbE端口配置。这就提出了一个有趣的问题——我们是否应将整个数据中心看作一个计算应用呢?如果我们考虑到40GbE部署的时机,并且看一看上图,就会发现,数据中心带宽需求似乎证明了那些最初认为40GbE 适用于服务器的想法。如果我们接受这种推理,那么按照计算应用预测,意味着我们将在2017年~2018年看到数据中心部署100GbE。这一现象还提出了一个关于突破性功能的重大问题,这将对400G以太网的发展产生影响。因此,当我们庆祝以太网40岁生日的活动进入尾声时,显然会得出结论,以太网将继续向前演进,尤其是在速度提升方面。这一判断提出了许多需要思考的问题,整个行业仍需要注重达成共识,以此推进以太网向前发展。英文原文:The State of Ethernet's Rate by John D’Ambrosia, Chair of the Ethernet Alliance,Chief Ethernet Evangelist, Dell Networking CTO Office In 2013 the Ethernet industry has been celebrating 40 years of Ethernet and 30 years of Ethernet standards. Ethernet's rate progression had been fairly predictable, 10x increments from its initial 10 Mb/s to 100 Mb/s to 1 Gb/s to 10 Gb/s with little to no controversy. The simultaneous introduction of 40 GbE and 100 GbE effectively ended this legacy. The development of 40 GbE and 100 GbE was based on the fundamental assumption that the growth rates between computing and networking were sufficiently different to justify the two rates. For the computing space, bandwidth capabilities were doubling every 24 months, while network applications were doubling every 18 months. The predicted growth rate for networking was later re-confirmed by the IEEE 802.3 Ethernet Bandwidth Assessment Ad hoc, which forecasted that on average, networks would need to support terabit per second capacities by 2015 and 10 terabit per second capacities by 2020. Figure 1 shows the predicted bandwidth capacities of the two application spaces, which was made in late 2007 by the then IEEE 802.3 Higher Speed Ethernet Study Group (which

华为单板描述

For personal use only in study and research; not for comm ercial use 1. 单板简介 1.1 单板分类 S9300 支持的单板包括主控板(S9312 和S9306 为SRU,S9303 为MCU)和接口板LPU 等。 S9300 中单板的名称、类型和描述如下所示。 单板种类单板名称描述 SRU SRUA主控处理板(用于S9312 和S9306),交换容量单向 为256Gbit/s SRUB主控处理板(用于S9312 和S9306),交换容量单向 为512Gbit/s MCU MCUA主控处理板(用于S9303) CKM CKMA 时钟扣板-1588 CMU CMUA 集中监控板,S9312 和S9306 设备上用于监控设备工 作状态的单板,板上有RS485 和MON 两个接口 SPU VAMPA增值业务板 FSU FSUA SRU 上的灵活业务子卡,用于对主控单元的业务增 强 VSU VSTSA SRU 上的堆叠插卡,用于支持设备的堆叠功能 LPU●G24CA ●G24SA ●X12SA ●G48SA ●G48SBC ●G48SC ●G48SD ●G48SFA ●F48SA ●F48SC ●G48TA ●G48TBC ●G48TC ●G48TFA ●G48TD ●G48VA ●G48CEAT ●F48TA ●F48TC ●F48TFA ●S24XA LPU 板分为S 系列以太网接口板、E 系列以太网接口板、F 系列以太网接口板、B 系列以太网接口板、EPON 板和POS 接口板,其中: ◆S 系列LPU 包含SA 板。例如:24 端口百兆/千兆 以太网光接口板(SA,SFP)-32K MAC ◆ E 系列LPU 包括EA、EC 和ED 板。例如:48 端口 百兆以太网光接口板(EA,SFP)-32K MAC ◆ F 系列LPU 包括FA 和FC 板。例如:48 端口千兆 以太网电接口板(FA, RJ45)-32K MAC ◆ B 系列LPU 包括BC 板。例如:48 端口百兆/千兆 以太网光接口板(BC, SFP)-128K MAC ◆EPON 单板即12 端口千兆EPON 光接口和12 端口 百兆/千兆光接口板(SFP)。 ◆POS 接口板即WAN 接口板及其灵活插卡

工业以太网与CAN总线的比较

工业以太网与CAN现场总线的比较 方健 摘要:工业以太网和现场总线是工业控制现场中的两大主要网络通信形式。本文分别简要介绍了工业以太网和CAN总线的内容,并对两者在优缺点、通信协议、在工业信息化网络的应用和通信方案进行了分析和比较。 关键词:CAN现场总线;工业以太网;通信协议;工业控制;通信方案 A comparison between industrial Ethernet and CAN bus Fang Jian (Hubei Normal University school of mechanical electrical and control engineering Hubei, Huangshi,453002) Abstract:Both industrial ethernet and fieldbus are the two primary forms of network communication in the field of industrial control.In this paper ,the content of industrial ethernet and fieldbus are both briefly introduced.And It presents the analysis and comparison between the industrial Ethernet and the fieldbus on relative merits, communication protocol , Industrial information network and communication scheme. Key words:CAN bus;industrial ethernet; communication protocol;industrial control 1、引言 现场总线是应用在生产现场,在微机化测量控制设备之间实现双向串行多节点数字通信的系统。由于其表现出的强大的功能,现场总线已经成为工业生产中不可或缺的核心部分。发展比较成熟的现场总线有FF-Foundation Fieldbus,Lonworks,PROFIBUS,HART,CAN 等等。CAN(Controller Area Net)即控制器局部网依靠各自的优良特性和可靠性,被公认为最有前途的现场总线之一,应用范围遍及从高速网络到低成本的多线路网络。由于各个总线的采用的通信协议完全不同,实现这些总线的兼容和互操作是十分困难的,应用受到了限制,主要应用于低速产品。而具有广泛性和技术先进性的以太网,可以作为现场总线的中高层通信网络,并开始逐步应用到工业控制现场。国内外的许多研究机构都致力于工业以太网的研究,使得工业以太网得到了快速的发展和很好的应用。 2、CAN总线和工业以太网 2.1、CAN总线的简介 CAN(Controller Area Network)-控制器局域网。它是一种有效支持分布式控制或实时控制的串行通信网络。CAN总线最早是由德国Bosch公司在80年代初为解决现代汽车中众多的控制与测试仪器之间的数据交换而开发的一种串行数据通信协议,它是一种多主总线,通信介质可以是双绞线、同轴电缆、光导纤维,通信速率可达1Mbps[1]。 CAN 总线通信接口中集成了CAN 协议的物理层,数据链路层功能,可完成对通信数据的成帧处理,包括位填充,数据块编码,循环冗余校验,优先级判别等项工作。CAN 的高性能和可靠性已被认同,并被广泛地应用于工业自动化、船舶、医疗设备、工业设备等方面。

工业以太网简介

工业以太网简介: 工业以太网就是基于IEEE 802、3 (Ethernet)得强大得区域与单元网络。利用工业以太网,SIMATIC NET 提供了一个无缝集成到新得多媒体世界得途径。 企业内部互联网(Intranet),外部互联网(Extranet),以及国际互联网(Internet) 提供得广泛应用不但已经进入今天得办公室领域,而且还可以应用于生产与过程自动化。继10M波特率以太网成功运行之后,具有交换功能,全双工与自适应得100M波特率快速以太网(Fast Ethernet,符合IEEE 802、3u 得标准)也已成功运行多年。采用何种性能得以太网取决于用户得需要。通用得兼容性允许用户无缝升级到新技术。 为用户带来得利益 :市场占有率高达80%,以太网毫无疑问就是当今LAN(局域网)领域中首屈一指得网络。以太网优越得性能,为您得应用带来巨大得利益: 通过简单得连接方式快速装配。 通过不断得开发提供了持续得兼容性,因而保证了投资得安全。 通过交换技术提供实际上没有限制得通讯性能。 各种各样联网应用,例如办公室环境与生产应用环境得联网。 通过接入WAN(广域网)可实现公司之间得通讯,例如,ISDN 或Internet 得接入。 SIMATIC NET基于经过现场应用验证得技术,SIMATIC NET已供应多于400,000个节点,遍布世界各地,用于严酷得工业环境,包括有高强度电磁干扰得区域。 工业以太网络得构成 :一个典型得工业以太网络环境,有以下三类网络器件: ◆网络部件 连接部件: ?FC 快速连接插座 ?ELS(工业以太网电气交换机) ?ESM(工业以太网电气交换机) ?SM(工业以太网光纤交换机) ?MC TP11(工业以太网光纤电气转换模块) 通信介质:普通双绞线,工业屏蔽双绞线与光纤 ◆ SIMATIC PLC控制器上得工业以太网通讯外理器。用于将SIMATIC PLC连接到工 业以太网。 ◆ PG/PC 上得工业以太网通讯外理器。用于将PG/PC连接到工业以太网。 工业以太网重要性能:为了应用于严酷得工业环境,确保工业应用得安全可靠,SIMATIC NET 为以太网技术补充了不少重要得性能: ?工业以太网技术上与IEEE802、3/802、3u兼容,使用ISO与TCP/IP 通讯协议?10/100M 自适应传输速率 ?冗余24VDC 供电 ?简单得机柜导轨安装 ?方便得构成星型、线型与环型拓扑结构 ?高速冗余得安全网络,最大网络重构时间为0、3 秒 ?用于严酷环境得网络元件,通过EMC 测试 ?通过带有RJ45 技术、工业级得Sub-D 连接技术与安装专用屏蔽电缆得Fast Connect连接技术,确保现场电缆安装工作得快速进行 ?简单高效得信号装置不断地监视网络元件 ?符合SNMP(简单得网络管理协议) ?可使用基于web 得网络管理 ?使用VB/VC 或组态软件即可监控管理网络。 工业以太网冗余原理

各种不同以太网帧格式

各种不同以太网帧格式 利用抓包软件的来抓包的人,可能经常会被一些不同的Frame Header搞糊涂,为何用的Frame的Header是这样的,而另外的又不一样。这是因为在Ethernet中存在几种不同的帧格式,下面我就简单介绍一下几种不同的帧格式及他们的差异。 一、Ethernet帧格式的发展 1980 DEC,Intel,Xerox制订了Ethernet I的标准; 1982 DEC,Intel,Xerox又制订了Ehternet II的标准; 1982 IEEE开始研究Ethernet的国际标准802.3; 1983迫不及待的Novell基于IEEE的802.3的原始版开发了专用的Ethernet帧格式; 1985 IEEE推出IEEE 802.3规范; 后来为解决EthernetII与802.3帧格式的兼容问题推出折衷的Ethernet SNAP 格式。 (其中早期的Ethernet I已经完全被其他帧格式取代了所以现在Ethernet只能见到后面几种Ethernet的帧格式现在大部分的网络设备都支持这几种Ethernet 的帧格式如:cisco的路由器在设定Ethernet接口时可以指定不同的以太网的帧格式:arpa,sap,snap,novell-ether) 二、各种不同的帧格式 下面介绍一下各个帧格式 Ethernet II 是DIX以太网联盟推出的,它由6个字节的目的MAC地址,6个字节的源MAC地址,2个字节的类型域(用于表示装在这个Frame、里面数据的类型),以上为Frame Header,接下来是46--1500 字节的数据,和4字节的帧校验) Novell Ethernet 它的帧头与Ethernet有所不同其中EthernetII帧头中的类型域变成了长度域,后面接着的两个字节为0xFFFF用于标示这个帧是Novell Ether类型的Frame,由于前面的0xFFFF站掉了两个字节所以数据域缩小为44-1498个字节,帧校验不变。

万兆以太网技术发展及应用

万兆以太网技术发展及应用摘要:随着互联网技术的更新与发展,万兆以太网(10GBase-T)技术将在不久的将来成为网络应用的主流,本文综合阐述了10GBase-T技术、市场及应用。应用10GBase-T铜缆布线解决方案构建高性能网络核心成为行业发展趋势。 关键字:万兆以太网802.3ae10GE标准10GBase-T铜缆布线线性传输性能 一以太网技术的发展 以太网(Ethernet)技术由施乐公司(Xerox)于1973年提出并实现,它采用“载波监听多路访问/冲突检测CSMA/CD(Carrier Sense Multiple Access/Collision Detection)”的共享访问方案,将多个工作站都连接在一条总线上,所有的工作站都不断向总线发出监听信号。但在同一时刻,只能有一个工作站在总线上传输,其它工作站必须等待传输结束后,再开始自己的传输。由于以太网技术具有共享性、开放性、加上设计技术上的一些优势(如结构简单、算法简洁、良好的兼容性和平滑升级)以及关键的传输速率的大幅提升,它不但在局域网领域站稳了脚跟,而且在城域网甚至广域网范围内都得到了进一步的应用。 最早的以太网传输速率为10Mbps。采用CSMA/CD介质访问控制方式的局域网技术,由Xerox公司于1975年研制成功。而在1979年7月至1982年间,当时的DEC、Intel和Xerox三家公司共同制定了以太网的技术规范DIX。在这个技术规范的基础上,形成了IEEE802.3以太网标准,并在1989年正式成为一种以太网技术的国际标准。在20多年中,以太网

技术经历了不断发展,成为迄今最广泛应用的局域网技术。 千兆以太网技术作为一种高速以太网技术,给用户带来了提高核心网络的有效解决方案。它继承了传统以太网技术价格便宜的特点,采用与10M 以太网相同的帧格式、帧结构、网络协议、全/半双工工作方式、流控模式以及布线系统。由于这项技术可以不用改变传统以太网的桌面应用和操作系统,因此可与10M或100M的以太网很好地配合工作。在升级到千兆以太网时,不必改变网络应用程序、网管部件和网络操作系统,能够最大程度地保护用户投资,所以这项技术的市场前景十分被用户看好。 再发展就进入到以太网的万兆时代。万兆以太网使用IEEE 802.3以太网介质接入控制(MAC)协议、IEEE 802.3以太网帧格式和IEEE 802.3帧格式,不需要修改以太网介质接入控制(MAC)协议或分组格式。所以,能够支持所有网络的上层服务,包括在OSI七层模型的第二/三层或更高层次上运行的智能网络服务,具有高可用性、多协议标记交换(MPLS)、含IP语音(VoIP)在内的服务质量(QoS)、安全与策略实施、服务器负载均衡(SLB)和Web高速缓存等特点。 二10GBase-T万兆以太网技术 万兆以太网技术(10GBase-T)始于2002年6月802.3ae10GE标准的正式发布。在物理层,802.3ae大致分为两种类型,一种为与传统以太网连接速率为10Gbps的“LANPHY”,另一种为连接SDH/SONET速率为9.58464Gbps的“WANPHY”;WANPHY与SONETOC-192帧结构的融合,可以与OC-192电路和SONET/SDH设备一起运行,保护了传统基础设施投资,使运营商能够在不同地区中通过城域网提供端到端以太网。

配置以太网单板的内部端口

配置以太网单板的内部端口 当网元通过以太网板内部端口(即VCTRUNK)将以太网业务传输到SDH侧时,需配置VCTRUNK端口的各种属性,以便配合对端网元的以太网单板,实现以太网业务在SDH网络中的传输。 前提条件 用户具有“网元操作员”及以上的网管用户权限。 已创建以太网单板。 注意事项 注意:错误的配置绑定通道,可能会导致业务中断。 操作步骤 1.在网元管理器中选择以太网单板,在功能树中选择“配置 > 以太网接口管理 > 以太 网接口”。 2.选择“内部端口”。 3.配置内部端口的TAG属性。 a.选择“TAG属性”选项卡。 b.配置内部端口的TAG属性。 c.单击“应用”。 4.配置内部端口的网络属性。 a.选择“网络属性”选项卡。 b.配置内部端口的网络属性。

图1支持QinQ功能的以太网单板的内部端口属性 图2支持MPLS功能的以太网单板的内部端口属性 c.单击“应用”。 5.配置内部端口使用的封装映射协议。 a.选择“封装/映射”选项卡。 b.配置内部端口使用的封装协议及各参数。 说明:传输线路两端的以太网单板的VCTURNK的“映射协议”和协议参数应保 持一致。 c.单击“应用”。 6.配置内部端口的LCAS功能。 a.选择“LCAS”选项卡。

b.设置“LCAS使能”以及LCAS其他参数。 说明:传输线路两端的以太网单板的VCTURNK的“LCAS使能”和LCAS协议参 数应保持一致。 c.单击“应用”。 7.设置端口的绑定通道。 a.选择“绑定通道”选项卡,单击“配置”,出现“绑定通道配置”对话框。 b.在“可配置端口”中选择VCTRUNK端口作为配置端口,在“可选绑定通道”中 选择承载层时隙。单击。 c.单击“确定”,单击“是”。出现“操作结果”对话框,提示操作成功。

工业以太网与现场总线的优缺点(精)

工业以太网与现场总线的优缺点1引言用于办公室和商业的以太网伴随着现场总线大战硝烟已悄悄地进入了控制领域,近年来以太网更是走向前台,发展迅速,颇引人注目。究其原因,主要由于工业自动化系统正向分布化、智能化的实时控 制方面发展,其中通信已成为关键,用户对统一的通信协议和网络的要求日益迫切。另一方面,Intran et/l nternet等信息技术的飞速发展,要求企业从现场控制层到管理层能实现全面的无缝信息集成,并提供一个开放的基础构架,而目前的现场总线尚不能满足这些要求。现场总线的出现确实给工业自动化带来一场深层次的革命,但多种现场总线互不兼容,不同公司的控制器之间不能实现高速的实时数据传输,信息网络存在协议上的鸿沟,导致自动化孤岛”现象的出现,促使人们开始寻求新的出路并关注到以太网。同时现场总线的传输速率也远远不如工业以太网 传输速率快。2以太网与工业以太网2.1什么是以太网与工业以太网以太网是当今现有局域网采用的最通用的通信协议标准。该标准定义了在局域网(LAN)中采用的电缆类型和信号处理方法。以太网在互联设备之间以10?100Mbps的速率传 送信息包,双绞线电缆型号为10 Base T。以太网由于其低成本、高可靠性以及10Mbps 的速率而成为应用最为广泛的以太网技术。直扩的无线以太网可达11Mbps,许多制造供应商提供的产品都能采用通用的软件协议进行通信,开放性好。普通以太网应用到工业控制系统,这种网络叫工业以太网。 2.2以太网具有的优点(1)具有相当高的数据传输速率(目前已达到100Mbps),能提供足够的带宽;(2)由于具有相同的通信协议,Ethernet和TCP/IP很容易集成到IT (信息技术)世界;(3)能在同一总线上运行不同的传输协议,从而能建立企业的公共网络平台或基础构架;(4)在整个网络中,运用了交互式和开放的数据存取技术; (5)沿用多年,已为众多的技术人员所熟悉,市场上能提供广泛的设置、维护和诊断工具,成为事实上的统一标准;(6)允许使用不同的物理介质和构成不同的拓扑结构。2.3工业以太网的优点(1)基于TCP/IP的以太网采用国际主流标准,协议开放、完善不同厂商设备,容易互连具有互操作性;(2)可实现远程访问, 远程诊断;(3)不同的传输介质可以灵活组合,如同轴电缆、双绞线、光纤等; (4)网络速度快,可达千兆甚至更快;(5)支持冗余连接配置,数据可达性 强,数据有多条通路抵达目的地;(6 )系统容易几乎无限制,不会因系统增大而出现不可预料的故障,有成熟可靠 的系统安全体系;(7)可降低投资成本。3主流应用层协议-工业以太网协议由于商用计算机普遍采用的应用层协议不能适应工业过程控制领域现场设备之间的实时通信,所以必须在以太网和TCP/IP协议的基础上,建立完整有效的通信服务模型,制定有效的实时通信服务机制,协调好工业现场控制系统中实时与非实时信息的传输,形成被广泛接受的应用层协议,也就是所谓的工业以太网协议。目前已经制定的工业以太网协议有MODBUS/TCP,HSE, EtherNet/IP, ProfiNet等。MODBUS/TCP协议是法国施耐德公司1999年公布的协议,以一种非常简单的方

相关文档
最新文档