浅谈医学大数据

浅谈医学大数据
浅谈医学大数据

浅谈医学大数据

陈遵秋和陈漪伊夫妇是美籍华人,现在美国定居。其二人是目前研究医疗大数据及生物样本大数据真正的专家。现将两位的文章进行公开发表,与大家一起探讨。

现在无论国内外均出现了移动医疗热,所有的创业团队和投资公司均把商业模式指向了最后的医疗大数据分析。但是可以很负责任的说,90% 以上的人都不知道医疗大数据分析是什么东西,因此这是一篇扫盲贴,但是仅供专业人士。文中分析了医疗大数据、它的维度、方法和成本,以及需要的专业人才。本文无论是对创业团队还是投资机构都是非常有指导意义的。

大数据定义及其特征

大数据顾名思义就是数量极其庞大的数据资料。从上世纪80 年代开始,每隔40 个月世界上储存的人均科技信息量就会翻倍(Hibert & Lopez, 2011)。2012 年,每天会有2.5EB 量的数据产生(Andrew & Erik, 2012)。现在,2014 年,每天会有2.3ZB 量的数据产生(IBM, 2015)。这是一个什么概念?现在一般我们电脑的硬盘大小都以GB,或者TB 为单位了。1GB 的容量可以储存约5.4 亿的汉字,或者170 张普通数码相机拍摄的高精度照片,或者

300-350 首长度为5-6 分钟的MP3 歌曲。那GB 和TB, EB,ZB 的关系又是怎样?

1ZB=1024EB=10242PB=10243TB=10244GB。如果你有一台1TB 硬盘容量的电脑,那1ZB 就是大致等于10 亿台电脑的容量, 远远超出了我们一般的想象。

早期,IBM 定义了大数据的特性有3 个:大量性(Volume), 多样性(Variety), 快速性(Velocity)(Zikopoulos, Eaton, deRooos, Deutsch, & Lapis, 2012)。后来又有学者把价值(Value)加到大数据的特性里。随着时间的推移和人们思考的进一步完善,又有三个大数据的特性被提出:易变性(Variability),准确性(Veracity) 和复杂性(Complexity)。

作者认为价值本质上是数据被分析后体现出来的有用信息知识的程度,和其他几个特性有根本区别。其他几个特性可以说是数据工作者具体实践中面临的挑战,而价值则是征服这些挑战后获得的回报。

大数据的6个特性描述如下:

大量性:一般在大数据里,单个文件大量性的级别至少为几十,几百GB 以上,一调查(Russom, 2013) 显示相当多的机构拥有的数据总量在10 到99TB 之间。用我们传统的数据库软件,1GB 已经可以储存千万条有着几百个变量的数据记录了。

多样性:泛指数据类型及其来源的多样化(Troester, 2012),进一步可以把数据结构归纳为结构化(structured),半结构化(semi-structured),和非结构化(unstructured) (SAS, 2014) 。

快速性:反映在数据的快速产生及数据变更的频率上。比如一份哈佛商学院的研究报告称在2012 年时,谷歌每天就需要要处理20PB 的数据(Harvard Business Review, 2012)。

易变性:伴随数据快速性的特征,数据流还呈现一种波动的特征。不稳定的数据流会随着日,季节,特定事件的触发出现周期性峰值(Troester, 2012)。

准确性:又称为数据保证(data assurance)。不同方式,渠道收集到的数据在质量上会有很大差异。数据分析和输出结果的错误程度和可信度在很大程度上取决于收集到的数据质量的高低(W.Raghupathi & Raghupathi, 2014)。所谓“垃圾进,垃圾出”。没有数据保证,大数据分析就毫无意义。

复杂性:复杂性体现在数据的管理和操作上。IT 时代,随着数据来源及数据量的爆发,各种不同渠道数据的大量涌现,数据的管理和操作已经变得原来越复杂。如何抽取,转换,加载,连接,关联以把握数据内蕴的有用信息已经变得越来越有挑战性。

医疗大数据的爆发

早期,大部分医疗相关数据是纸张化的形式存在,而非电子数据化存储,比如官方的医药记录,收费记录,护士医生手写的病例记录,处方药记录,X 光片记录,磁共振成像(MRI)记录,CT 影像记录等等。

随着强大的数据存储,计算平台,及移动互联网的发展,现在的趋势是医疗数据的大量爆发及快速的电子数字化。以上提到的医疗数据都在不同程度上向数字化转化。

有报告显示,2011 年,单单美国的医疗健康系统数据量就达到了150EB。照目前的增长速度,ZB(约1021GB)和YB(约1021GB)的级别也会很快达到(IHTT, 2013)。Kaiser Permanente,一个在加州发展起来的医疗健康网络系统, 就有9 百万的会员,被认为拥有26.5 到44PB 的电子健康记录(IHTT, 2013)。

IT 时代涌现的还有各种网络社交媒体数据,比如曾经Google 用来预测流感的数据。基因数据也是非常庞大的存在,一次全面的基因测序,产生的个人数据则达到300GB (Leah, 2014)。公开发布的基因DNA 微阵列达到50 万之多,每一阵列包含数万的分子表达值。在生物医药方面,功能性磁共振影像的数据量也达到了数万TB 级别,每一幅影像包含有5 万像素值(Fan, Han, & Liu, 2014)。

此外,各种健身,健康可穿戴设备的出现,使得血压、心率、体重,血糖,心电图(EKG)等的监测都变为现实和可能,信息的获取和分析的速度已经从原来的按“天”计算,发展到了按“小时”,按“秒”计算。比如,一家名为Blue Spark 的科技公司已经生产出能24 小时实时监测体温的新型温度计贴片temptraq。

这种数据的扩展速度和覆盖范围是前所未有的,数据的格式也五花八门,可能是无格式文件(flat file),CSV,关系表,ASCII/ 纯文本文件等等。

同时,数据的来源也纷繁复杂,可能来自不同的地区,不同的医疗机构,不同的软件应用。不可否认,一旦理顺了多格式,多源头,呈爆炸性成长的大数据的整合和分析,医疗大数据将对提高医疗质量,强化患者安全,降低风险,降低医疗成本等方面发挥无与伦比的巨大作用。

医疗大数据的优势和应用场景

有效的整合和利用数字化的医疗大数据对个体医生,康宝中心,大型医院,和医疗研究机构都有着显著的好处。

潜在的利益包括(W.Raghupathi & Raghupathi, 2014):

1)更多更准确的数据使得疾病能在早期被监测到,从而使治疗更容易和有效。

2)通过对特定个体或人群的健康管理,快速有效地监测保健诈骗。

3)基于大量的历史数据,预测和估计特定疾病或人群的某些未来趋势,比如:预测特定病人的住院时间,哪些病人会选择非急需性手术,哪些病人不会从手术治疗中受益,哪些病人会更容易出现并发症,等等。麦肯锡估计,单单就美国而言,医疗大数据的利用可以为医疗开支节省出3 千亿美元一年。

医疗大数据的利用可以从以下几方面减少浪费和提高效率(Manyika, 以及其

他人, 2011):

临床操作:相对更有效的医学研究,发展出临床相关性更强和成本效益更高的方法用来诊断和治疗病人。

研究和发展:在药品和医疗器械方面,建立更低磨损度,更精简,更快速,更有针对性的研发产品线。统计工具和算法方面,提高临床试验设计和患者的招募,使得治疗方法可以更好地匹配个体患者的病症,从而降低临床试验失败的可能和加快新的治疗方法推向市场。分析临床试验和病人的病历,以确定后续的迹象,并在产品进入市场前发现病人对药物医疗方法的不良反应。

公共卫生:分析疾病模式和追踪疾病暴发及传播方式途径,提高公共卫生监测和反应速度。更快更准确地研制靶向疫苗,例如:开发每年的流感疫苗。

此外,医疗大数据的分析还有利于以下几方面的发展(W.Raghupathi & Raghupathi, 2014):

循证医学:结合和分析各种结构化和非结构化数据,电子病历,财务和运营数据,临床资料和基因组数据用以寻找与病症信息相匹配的治疗,预测疾病的高危患者或提供更多高效的医疗服务。

基因组分析:更有效和低成本的执行基因测序,使基因组分析成为正规医疗保健决策的必要信息并纳入病人病历记录。

提前裁定欺诈分析:快速分析大量的索赔请求,降低欺诈成功率,减少浪费和滥用。

设备/远程监控:从住院和家庭医疗装置采集和分析实时大容量的快速移动数据,用于安全监控和不良反应的预测。

病人的个人资料分析:全面分析病人个人信息(例如,分割和预测模型)从中找到能从特定健保措施中获益的个人。例如,某些疾病的高危患者(如糖尿病)可以从预防措施中受益。这些人如果拥有足够的时间提前有针对性的预防病情,那么大多数的危害可以降到最低程度,甚至可以完全消除。

然而,根据一份针对美国和加拿大333 家医疗机构及10 家其他机构的调查(IHTT, 2013),2013 年,医疗机构累积的数据量比2011 年多出了85%,但77% 的医疗健康行政人员对自己机构在数据管理方面的能力评价为“C”。此外,仅有34% 报告他们能从电子健康记录(EHR)中获取数据用来帮助病人,而有43% 报告他们不能收集到足够多的数据来帮助病人。由此可见,在北美的

医疗系统中,医疗大数据的管理使用准备工作还有一大段路要走。中国也是处在起步阶段。

数据分析框架(传统数据分析框架,大数据分析框架)

医疗大数据有着前面第一节提到的所有特征。在医疗大数据带来各种优势的同时,大数据随之带来的各种特性使得传统的数据处理和数据分析方法及软件捉襟见肘,问题多多。在大数据时代出现之前,受限于数据量的可获得性和计算能力的有限性,传统的数据管理和分析采用着不同的思路和流程。传统上,对于问题的研究建立在假设的基础上进行验证,进而研究事物的相关因果性,希望能回答“为什么”。

而在大数据时代,海量数据的涌现提供了从不同角度更细致更全面观察研究数据的可能,从而打开了人们的好奇心,探索欲望,人们想知道到数据告诉了我什么,而不仅仅是我的猜想是否被数据验证了。人们越来越多地用大数据挖掘各种感兴趣的关联,非关联等相关性,然后再进一步比较,分析,归纳,研究(“为什么”变成一个选项而不是唯一终极目标)。大数据与传统数据思路上的不同导致了分析流程的不同,如图一所示:

图一

面对海量的数据和不同的分析思路,大数据的管理和分析与传统数据分析的差异日益加大。回答特定问题的单一预设结构化数据库明显不能完全胜任处理大数据的海量及混杂等问题。数据的混杂多样性具体可以从一些调查数据中表现出来。SAS 的一份调查报告显示机构内的非结构化数据最多可以占到总数据量的85%,而这些非数字,非结构化的数据却必须被量化分析和用到决策分析中(Troester, 2012)。

另一份2013 年进行的SAS 调查报告显示在461 个提供完整反馈信息的机构中只有26% 的机构表示他们所拥有的大数据是结构化的(Russom, 2013)。此外,在机构中,分析的数据一般不会只有一个单一的来源。Alteryx 的调查报告显示在200 家被调查的机构中只有6% 的机构表示他们的数据是只有一个来源,最为普遍的情况是5-10 个来源, 具体分布如图二(Alteryx, 2014)。

调查中还显示90% 的被调查样本表示有数据整合问题,37% 表示需要等其他小组提供数据,30% 表示不能得到他们想要的数据,一般估计是一个数据分析师的60% 到80% 的时间是花在数据处理准备阶段上的(Alteryx, 2014)。

图二

由此可见有效的数据管理,数据库建立及数据分析流程的重要性。传统的数据管理的过程包括抽取(Extraction),转换(Transformation)和载入(load)。通过ETL,可以赋予数据一种合适恰当的结构用于特定的分析发现。具体数据准备分析流程如图三所示:1)抽取单个或多个来源的数据。2)净化,格式化,标准化,聚合,添加,或遵循其他特定的数据处理规则。3)载入处理完的数据到特定的数据库或储存为特定的文件格式。4)采用各种方法进行数据分析。

图三

ETL 的中心内容仍旧适用于大数据,但由于大数据的大量性和多样性对数据库和数据管理及处理方法的要求越来越高,也越来越复杂,这样线性处理整个数据变得相当耗费人力,物力,和时间。

此外,大数据的快速性,易变性也使得把数据储存在单一的中央数据库变的不太可行。在这种情况下,最流行的思路是把数据分割处理,也就是把数据储存到多个储存节点(比如网络数据库),在每个节点单独处理数据(甚至处理完就接着进行初步分析, 但处理的程度依客户具体问题而调整),然后再汇总整合到一起,提供给单个或多个数据库,接着根据需要选择合适的分析方法获取有用结果。ETL 贯穿于整个大数据管理分析的流程中。图四演示了大致的大数据管理分析流程及一些大数据处理分析平台工具的名字。

图四

SAS的数据仓库研究院(TDWI)针对现今存在的大数据处理分析平台工具进行了一项调查以帮助人们在选择软硬件进行大数据分析时能做出更好的决策。针对大数据技术,特点,和使用者操作,调查提供了三个选择:1)现在使用中,并且会继续使用。2)会在三年中开始使用。3)没有计划使用。图五左侧显示了对于各种大数据分析平台工具,被调查人员的回复比例。图五的右侧显示了平台工具可能的潜在成长和对采用此工具做出承诺的被调查人员比例。

图五

根据潜在成长和承诺的综合考量,此调查还进一步把大数据分析平台, 工具分成4 组:第一组为适度的承诺,中度到强的成长潜力;第二组为中度至强有力的承诺,适度增长潜力;第三组为弱到中度的承诺,适度增长潜力;第四组为中度至强有力的承诺,弱增长潜力。图六显示了这些组别的内容分布。限于篇幅,本文不详细介绍所列的每一平台工具的具体内容,感兴趣的读者可以参考文献获取更详细的介绍。

图六

图五和图六都显示了最流行的平台和数据处理方式为开源免费的Hadoop 和MapReduce。伴随着他们的潜在成长和承诺程度,可以预见,Hadoop 和MapReduce 正在并会继续推动和促进大数据的处理和应用。

在此,我们简单介绍一下Hadoop 和MapReduce 的概念。Hadoop 是一種基于Java 的分散式数据处理框架。它可以提供对储存在多个硬件设备上的数据进行高吞吐率的读写。更重要的是,它对大数据具有高容错性和对并行应用程序的高可用性。Hadoop 框架结构由若干名字节点(NameNode)和数据节点

(DataNode)组成。一份数以万计,百万计的大数据文件会被分割成更小的文件信息块储存在多个数据节点里,可以是任何计算机硬件设备。

有关这些文件的数据属性资料信息称作metadata 则被存储在名字节点里(NameNode). NameNode 主要管理文件系统的命名空间和客户端对文件的访问操作记录。Hadoop 的框架结构如图七:

图七

当访问和操作数据文件时,客户端会联系名字节点提取文件信息块的属性信息比如位置,文件名等。然后根据这些属性信息,客户端直接从相应的数据节点同时读取数据块。Hadoop 本身具有冗余和复制功能,保证在单个硬件储存设备出现故障时数据仍旧能被恢复而没有任何损失,比如每个数据节点默认拥有3 个备份之类。

此外,在有新数据节点添加到框架中时,Hadoop 还可以自动平衡每个数据节点的数据载有量。同样,名字节点也可以拥有冗余和复制功能,用于在单个储存数据属性信息的名字节点出现故障时可以恢复相应的数据属性信息。

MapReduce 则是一种可以用来并行处理大数据的编程模型。同一程序在Hadoop 的框架下可以用各种不同的语言(Java,Ruby,Python 等)按MapReduce 的编程模型进行编写和运行。其关键就在于三个词:map,reduce, 和并行处理。我们通过一个例子来理解MapReduce 的大致工作原理。比如我们有一30 个字的字符串“开落花缠落花绕缠开绕笑瓜夜村村舍舍瓜夜藤绕下下藤绕嬉嬉笑娃娃”,任务是计算每个字出现的次数。

最简单的方法是按序读取每一个字建立标识索引并计算出现的次数值存入内存,如果是新字,值为1,如果是出现过的字则次数值累加上去。此种方式是按串行的方式进行的,所花的时间会随着字符串的长度和复杂度程线性增长。当字符串是以万计百万计时,比如基因组数据,所花的时间将是相当惊人的。并行处理则能节约相当多的时间。

我们先把原文件分割到几个小文件块,然后对每个小文件块进行字的标识索引和附加数值(这儿不进行累计,只是简单的单次点数),然后再排序重组把相同字放在一起,然后我们再用缩减法计算出字及其相应的出现次数值。图八显示了具体的例子步骤:

图八

大数据特性对统计应用上的际遇和冲击

大数据的独特性对传统的统计方法发出了挑战,刺激着新的,适用于大数据分析的统计方法的发展。本文提到的一些际遇和问题,一部分是作者自己的观点,一部分摘自其他文章( (Fan, Han, & Liu, 2014) (Wang & Wang, 2014)。

相较于统计文章的专业写作手法,作者试图用更浅显易懂的说法来介绍这些问题,让一般的读者对此也能有一定的了解并对此产生兴趣。传统数据一般来说是样本量远远大于感兴趣的因素,比如一数据有200条记录关于个人是否有心血管病,可能相关因素为性别,年龄,血压。这儿只有4个因素,但样本量为200(200>>4)。

而大数据则拥有海量的样本及相当多的因素。还是用心血管的例子,现在比如我们有了几万条记录的样本量,但同时也拥有了上百个的因素,各种以前没法收集的因素都收集了,

像运动与否,运动量如何,运动类型,饮食习惯,饮食内容,喝酒与否,喝什么酒,喝酒习惯次数等等。这使统计中对数据的研究应用得到了新的际遇同时也面临了新的挑战。

数据异质性(heterogeneity)

数据异质性,可以简单理解成一个大样本数据里有很多小样本,每个小样本有着不同的数据特征,比如小样本的平均值有高有低,离散程度有密有疏,就好象海洋中有着不同温度,不同密度的各种洋流一样。我们不能简单的只在大样本的层面进行统计分析,这样得出的结果如果被用于对小样本或样本中的个体的估计或预测时就会出现偏差,因为每个小样本可能有着一些它自己独特的特征。

在数据样本小的时候,里面的小样本相应的就更小。这种情况下小样本里的数据记录可能只有一,两个,它们只能被当作异常值处理,无法分析。而在大数据里,这种具有独特特征的数据记录收集出现多了,就拥有了被统计分析的条件,从而使我们更好地探究特定因素的关联性,理解这些数据异质性。比如有些只在特定人群里发生的极其罕见的疾病,大数据使我们得以研究发病原因,发病风险因素;理解为什么有些治疗方法对某些人群有利,而同样的方法对另一人群却有害,等等。

同样,由于海量样本和巨多的因素存在于大数据里,信息的复杂度也会增加不少,受复杂度的影响,可能导致统计上的过度拟合(overfitting)。过度拟合就是指我们建立了一个复杂的统计模型,它能很好的描述现有数据的情况,但当我们想把这模型应用到预测新数据时,它的表现却相当差。比如图九所示:

图九

图九左边上的曲线是我们针对蓝点(当作现有数据)做出的模型,基本上能很好的描述蓝点的分布及曲线和蓝点的吻合度较高。用这曲线去描述黄点(当作新数据),吻合度也还

不错。图九右边的曲线则完全通过了每一蓝点,吻合度极高,完全描述了蓝点的复杂特性。然而,它在描述黄点时,吻合度就差多了,偏差就比左边的曲线大不少。简单来说,数据越复杂,需要考虑的因素越多,建立普遍有效的统计模型的难度就越大。

偏差识别(Bias accumulation)

分析数据时,我们需要估计或测试很多参数用以建立可靠的统计数据模型。期间不可避免会产生偏差,这些估计中产生的偏差积累,很大程度上受着数据量大小及参数多寡的影响。在一般小数据时,这问题可以并不显著。但在大数据的情况下,这问题就变的相当值得注意。我们用一简化的例子来说明这个问题。

假设我们有两组数据A和B,A组数据收集估算时没有偏差,所有样本数值都为1000。B组数据,实际所有样本数值也是1000,但存在偏差,而且偏差随收集样本量的增加呈指数式成长(为了说明情况,偏差指数式成长是一个很极端的例子)。每增加一个记录,偏差增长公式为:

这样B组第一个记录包含偏差为1.001=1.0011. B组第一个值为1000 1.001=1001. B 组第二个记录包含偏差为1.002001=1.0012. B组第一个值为1000 1.002001=1002.001. B 组第十个值为1000 1.01004512=1010.045.这样如果是小数据n=10, A组数据其实和B组数据比起来相差是不大的。B组内的每一个数字增加的偏差不足以引起注意,如果2%以内的偏差都可以接受的话。

然而当我们收集了1万个数据记录后,情况就发生了很大的变化。我们来看最后10个数据相差情况已经相当相当大了。

A组数据和B组数据,在拥有海量的数据样本的情况下,相差已是十万八千里了。图十显示了偏差随样本量增加的变化情况。在样本数量为4236左右,偏差的增加还不明显。一过4236,偏差则出现了惊人的增长。

图十

医疗大数据分析报告

大数据的意义在于提供“大见解”:从不同来源收集信息,然后分析信息,以揭示用其他方法发现不了的趋势。在利用大数据发掘价值的所有行业中,医疗行业有可能实现最大的回报。凭借大数据,医疗服务提供商不仅可以知道如何提高盈利水平和经营效率,还能找到直接增进人类福祉的趋势。以下是大数据在医疗行业的一些常见用途,包括商业运作和健康管理: 1.分析电子病历:医生共享电子病历可以收集和分析数据,寻找能够降低医疗成本的方法。 医生和医疗服务提供商之间共享患者数据,能够减少重复检查,改善患者体验。但目前,大部分的电子病历都无法共享,这在很大程度上是出于安全和合规的考虑,但找到一个安全的方法来挖掘患者数据,这能改善医护质量并降低医疗成本。 关键词:患者数据共享、信息安全、提高医疗质量、降低医疗成本 2.分析医院网络系统:不妨想想我们在分析入院治疗的趋势时获得的好处。例如,对儿科 病房医疗设备的统合分析可以更早地识别潜在的婴儿感染趋势。或者,再想想减少术后葡萄球菌感染的好处。通过利用大数据,医院可以知道,医生在术后开的抗生素能否有效地防止感染。 关键词:入院治疗趋势分析 3.管理数据用于公共健康研究:医务人员会被铺天盖地的数据所淹没。诊所和医院会提交 关于健康状况和免疫接种的数据,但没有大数据的话,这些数据毫无意义。大数据分析能够对患者的原始数据进行标准化整合,用以充实公共健康记录,而丰富多样的公共健康记录能催生更合理的法规,并提供更好的医疗。 关键词: 公共健康记录、患者数据 4.循证医学:大多数医院和急诊室都实行“食谱化医学”,也就是说,医生对收治的病人 采用同一套检查项目来确定病因。而利用循证医学,医生可以将病人的症状与庞大的患者数据库进行比对,从而更快地做出准确诊断。在这里,大数据扮演的角色是从不同来源采集信息,并对数据实施标准化。在这种情况下,带有“高血压”的记录就可以映射到另一条带有“血压升高”的记录。 关键词:循证、患者数据库

临床医学数据分析报告

案例二 最近小编阅读的文献中很多都是与医学研究挂钩,比如肿瘤病人的数据分析、肿瘤亚型分类、肿瘤药物治疗与寿命关联研究等等。发现有趣的现象是,这些文章的分析思路用到很多专业的生物信息学的方法。小编本人是学生物信息学的,对医学专业不甚了解,但是看了这些医学研究文章,顿时豁然明了,原来还可以从生物信息学角度分析疾病。那么,作为专业医生,小编认为也没必要努力学习专业的生物信息学,能够看懂和阐述分析结果就可以。至于如何分析,可以自学使用免费生物学软件,没时间也可花钱请专业公司分析下。医生若能有效将医学和生物信息结合利用起来,那么发表一篇文章完全不是问题。必须提的是,云生信平台多个生物信息分析模块就可以帮你完成专业医学相关数据分析。虽然,打广告不可少,但这是货真价实的数据分析平台,现在还是可以免费使用。 现在向大家介绍一篇研究肾细胞癌亚型分类的文章,该文章2010年发表在Genes & cancer上,截止目前引用率达到106次,该文章是很有研究和学习价值的。 文献引用: Brannon A R, Reddy A, Seiler M, et al. Molecular stratification of clear cell renal cell carcinoma by consensus clustering reveals distinct subtypes and survival patterns[J]. Genes & cancer, 2010, 1(2): 152-163. 该文章使用的数据是基因癌症样本中表达值,但是癌症样本未区分开。研究目的是将癌症样本分为2个亚型,即ccA和ccB,以及比较ccA和ccB样本中基因的不同。文献提供的流程图如下。该流程分为两个模块:首先将癌症样本分类、然后比较不同类别的基因表达水平差异。这个流程思路很有参考价值,有样本数据的可以尝试下哦。此外,这个思路可以利用云生信模块做一下,现在来看看云生信是如何实现的,将其分为4步。

医学大数据重塑整个精准医疗体系

医学大数据重塑整个精准医疗体系医学大数据的架构具有很强的扩展性,在获取人体的基本数据以后,不仅可以构建人体的解剖结构和生理结构,而且可以从分子层面去构建微观模型。例如,基于一些复杂的数学模型,可以从DNA序列推演到mRNA结构,最后构建这段DNA序列表达的蛋白结构。近年来包括医学在内的多种学科不断交叉融合,学术界的交流以及创业公司都在努力推动多种技术的融合。在医学上不仅仅牵涉到临床医学,同时涉及生物学、分子生物学、细胞生物学、化学等等,以及自动化,包括检测、统计、分析、影像等方面都会涉及。当然,数学肯定是最基础的,建立数学模型、复杂的算法都跟数学基础息息相关。新兴的大数据即数据科学,也离不开基础的计算机科学。所以,未来医学是众多学科融合的综合科学,大数据的价值是众多领域量化的数据融合,这就是技术趋势 市场需求是重要驱动 去解决实际临床问题更多依赖于医生的经验,不论是生理层面还是分子层面许多都还没有被完全的量化,而是记录在医生的经验当中。医院也已经采集到很多数据,存放在不同的计算机系统中,但是基本以数据孤岛的形式存在,并没有被充分利用和挖掘,而这些其实就是做基础研究最重要的数据 医学大数据发展有三大价值驱动力,首先是生活质量的提高,人们对生命质量或者是健康质量的不断追求和高标准的要求,其次是在高品质生命健康需求下促使成的生命科学技术的进步,最后是基于生命科学技术进步的临床手段不断丰富,临床治疗质量不断提高,这就是整个医学大数据价值驱动的核心。此外,巨大的患者人体组织器官替换的市场需求也是重要的驱动因素 整个再生医学行业的大背景是全球每年大概有8000多万的各种组织器官的需求,包括脏器器官、软骨、胰、颅颌面、眼膜等,目前只能通过捐献满足,而捐献所

大数据在医疗行业的应用

大数据在医疗行业的应用 医疗行业很早就遇到了海量数据和非结构化数据的挑战。在互联网大框架的结构下,大圣众包威客平台为你解读,作为一个行业的流行语,互联网+医疗的个性化服务,能给医疗保健工作者和消费者带来哪些真正的福利呢? 据相关专项研究指出,如果能排除体制障碍,大数据分析可以帮助美国医疗服务业一年创造3000亿美元的附加价值,重点集中于医疗服务业4大领域:临床业务、付款定价、研发、新商业模式、公众健康,涵盖了十多项应用场景。 领域一:临床操作 1.比较效果研究:大数据分析获取最佳性价比治疗方案

通过全面分析病人特征数据和疗效数据,然后比较多种干预措施的有效性,可以找到针对特定病人的最佳治疗途径。研究表明,对同一病人来说,医疗服务提供方不同,医疗护理方法和效果不同,成本上也存在很大差异。医疗护理系统实现CER,将有可能减少过度治疗(比如避免那些副作用比疗效明显的治疗方式),以及治疗不足。 2.临床决策支持系统:提高准确性,减少医疗事故率 临床决策支持系统可提高工作效率和诊疗质量。临床决策支持系统分析医生输入条目,比较其与医学指引不同地方,提醒医生防止潜在的错误,如药物不良反应。医疗服务提供方可以降低医疗事故率和索赔数,尤其是那些临床错误引起的医疗事故。大数据分析技术将使临床决策支持系统更智能,如可以使用图像分析和识别技术,识别医疗影像(X光、CT、MRI)数据,或者挖掘医疗文献数据建立医疗专家数据库,从而给医生提出诊疗建议。 3.医疗数据透明度:实现高效管理,降低成本

提高医疗过程数据的透明度,可以使医疗从业者、医疗机构绩效更透明,间接促进医疗服务质量提高。数据分析可以带来业务流程的精简,通过精益生产降低成本,找到符合需求的工作更高效的员工,从而提高护理质量并给病人带来更好的体验,也给医疗服务机构带来额外的业绩增长潜力。公开发布医疗质量和绩效数据还可以帮助病人做出更明智的健康护理决定,这也将帮助医疗服务提供方提高总体绩效,从而更具竞争力。 4.远程病人监控:慢性病患者高效照护 根据统计,中国各类慢性病患者超过3亿人,尤其是我国进入老龄化时代以后,将存在非常大的照护缺口,远程病人监护系统对治疗慢性病患者非常有用。远程病人监护系统包括家用心脏监测设备、血糖仪,甚至还包括芯片药片,芯片药片被患者摄入后,实时传送数据到电子病历数据库。更多的好处是,通过对远

医学设计研究的数据管理和分析选择题

1. 医学统计学研究的对象是 A. 医学中的小概率事件 B. 各种类型的数据 C. 动物和人的本质 D. 疾病的预防与治疗 E.有变异的医学事件 2. 用样本推论总体,具有代表性的样本指的是 A.总体中最容易获得的部分个体 B.在总体中随意抽取任意个体 C.挑选总体中的有代表性的部分个体 D.用配对方法抽取的部分个体 E.依照随机原则抽取总体中的部分个体 3. 下列观测结果属于等级资料的是 A.收缩压测量值 B.脉搏数 C.住院天数 D.病情程度 E.四种血型 4. 随机误差指的是 A. 测量不准引起的误差 B. 由操作失误引起的误差 C. 选择样本不当引起的误差 D. 选择总体不当引起的误差 E. 由偶然因素引起的误差 5. 收集资料不可避免的误差是 A. 随机误差 B. 系统误差 C. 过失误差 D. 记录误差 E.仪器故障误差 答案: E E D E A 1. 某医学资料数据大的一端没有确定数值,描述其集中趋势适用的统计指标是 A. 中位数 B. 几何均数 C. 均数 D. P百分位数 95 E. 频数分布 2. 算术均数与中位数相比,其特点是 A.不易受极端值的影响 B.能充分利用数据的信息 C.抽样误差较大 D.更适用于偏态分布资料 E.更适用于分布不明确资料 3. 一组原始数据呈正偏态分布,其数据的特点是 A. 数值离散度较小 B. 数值离散度较大 C. 数值分布偏向较大一侧 D. 数值分布偏向较小一侧 E. 数值分布不均匀 4. 将一组计量资料整理成频数表的主要目的是

A.化为计数资料 B. 便于计算 C. 形象描述数据的特点 D. 为了能够更精确地检验 E. 提供数据和描述数据的分布特征 5. 6人接种流感疫苗一个月后测定抗体滴度为 1:20、1:40、1:80、1: 80、1:160、1:320,求平均滴度应选用的指标是 A. 均数 B. 几何均数 C. 中位数 D. 百分位数 E. 倒数的均数 答案: A B D E B 1. 变异系数主要用于 A.比较不同计量指标的变异程度 B. 衡量正态分布的变异程度 C. 衡量测量的准确度 D. 衡量偏态分布的变异程度 E. 衡量样本抽样误差的大小 2. 对于近似正态分布的资料,描述其变异程度应选用的指标是 A. 变异系数 B. 离均差平方和 C. 极差 D. 四分位数间距 E. 标准差 3. 某项指标95%医学参考值范围表示的是 A. 检测指标在此范围,判断“异常”正确的概率大于或等于95% B. 检测指标在此范围,判断“正常”正确的概率大于或等于95% C. 在“异常”总体中有95%的人在此范围之外 D. 在“正常”总体中有95%的人在此范围 E. 检测指标若超出此范围,则有95%的把握说明诊断对象为“异常” 4.应用百分位数法估计参考值范围的条件是 A.数据服从正态分布 B.数据服从偏态分布 C.有大样本数据 D.数据服从对称分布 E.数据变异不能太大 5.已知动脉硬化患者载脂蛋白B的含量()呈明显偏态分布,描述其个体差异的统计指标应使用 A.全距 B.标准差 C.变异系数 D.方差 E.四分位数间距 答案:A E D B E 1. 样本均数的标准误越小说明 A. 观察个体的变异越小 B. 观察个体的变异越大 C. 抽样误差越大 D. 由样本均数估计总体均数的可 靠性越小 E. 由样本均数估计总体均数的可靠性越大

大数据+精准医疗

大数据+精准医疗 2012年全国居民慢性病死亡率为533/10万,占总死亡人数的86.6%。心脑血管病、癌症和慢性呼吸系统疾病为主要死因,占总死亡的79.4%,其中心脑血管病死亡率为271.8/10万,癌症死亡率为144.3/10万(前五位分别是肺癌、肝癌、胃癌、食道癌、结直肠癌),慢性呼吸系统疾病死亡率为68/10过标化处理后,除冠心病、肺癌等少数疾病死亡率有所上升外,多数慢性病死亡率呈下降趋势。慢性病的患病、死亡与经济、社会、人口、行为、环境等因素密切相关。一方面,随着人们生活质量和保健水平不断提高,人均预期寿命不断增长,老年人口数量不断增加,我国慢性病患者的基数也在不断扩大;另一方面,随着深化医药卫生体制改革的不断推进,城乡居民对医疗卫生服务需求不断增长,公共卫生和医疗服务水平不断提升,慢性病患者的生存期也在不断延长。慢性病患病率的上升和死亡率的下降,反映了国家社会经济条件和医疗卫生水平的发展,是国民生活水平提高和寿命延长的必然结果。当然,我们也应该清醒地认识到个人不健康的生活方式对慢性病发病所带来的影响,综合考虑人口老龄化等社会因素和吸烟等危险因素现状及变化趋势,我国慢性病的总体防控形势依然严峻,防控工作仍面临着巨大挑战。 大数据的分析和应用都将在医疗行业发挥巨大的作用,提高医疗效率和医疗效果。 一、临床操作 在临床操作方面,有5个主要场景的大数据应用: 1.比较效果研究 通过全面分析病人特征数据和疗效数据,然后比较多种干预措施的有效性,可以找到针对特定病人的最佳治疗途径。 基于疗效的研究包括比较效果研究(Comparative Effectiveness Research, CER)。研究表明,对同一病人来说,医疗服务提供方不同,医疗护理方法和效果不同,成本上也存在着很大的差异。精准分析包括病人体征数据、费用数据和疗效数据在内的大型数据集,可以帮助医生确定临床上最有效和最具有成本效益的治疗方法。医疗护理系统实现CER,将有可能减少过度治疗(比如避免那些副作用比疗效明显的治疗方式),以及治疗不足。从长远来看,不管是过度治疗还是治疗不足都将给病人身体带来负面影响,以及产生更高的医疗费用。 2.临床决策支持系统 临床决策支持系统可以提高工作效率和诊疗质量。目前的临床决策支持系统分析医生输入的条目,比较其与医学指引不同的地方,从而提醒医生防止潜在的错误,如药物不良反应。通过部署这些系统,医疗服务提供方可以降低医疗事故率和索赔数,尤其是那些临床错误引

大数据分析及其在医疗领域中的应用-图文(精)

第7期 24 2014年4月10日 计算机教育 ComputerEducation ◆新视点 文章编号:1672.5913(2014)07—0024-06 中图分类号:G642 大数据分析及其在医疗领域中的应用 邹北骥 (中南大学信息科学与工程学院,湖南长沙410083) 摘要:互联网和物联网技术的快速发展给数据的上传与下载带来了前所未有的便利,使得互联网上 的数据量急剧增长,由此产生了针对大数据的存储、计算、分析、处理等新问题,尤其是对大数据的挖掘。文章分析当前大数据产生的背景,阐述大数据的基本特征及其应用,结合医疗领域,论述医疗 大数据分析的目的、意义和主要方法。 关键词:大数据;物联网;医疗;大数据挖掘 1 大数据早已存在,为何现在称之为大

数据时代 计算与数据是一对孪生姐妹,计算需要数据,数据通过计算产生新的价值。数据是客观事 物的定量表达,来自于客观世界并早已存在。例 如,半个世纪前,全球的人口数量就有数十亿,与之相关的数据就是大数据;但是在那个时代,由于技术的局限性,大数据的采集、存储和处理 还难以实现。 互联网时代之前,采集世界各地的数据并让它们快速地进入计算系统几乎是一件不可想象的 事情。20世纪80年代兴起的互联网技术在近30 年里发生了翻天覆地的变化,彻底地改变了人们的工作和生活方式【l】。通过互联网人们不仅可以下载到新闻、小说、论文等各类文字数据,而且可以轻而易举地下载到音乐、图像和视频等多媒体数据,这使得互联网上的数据流量急剧增长。据统计,现在互联网上每分钟流人流出的数 据量达到1 000 PB,即10亿 GBt21。 推动大数据产生的另一个重要因素是物联网技术。近几年发展起来的物联网技 术通过给每个物品贴上标签 并应用RFID等技术实现了

肿瘤的精准医疗:概念、技术和展望

肿瘤的精准医疗:概念、技术和展望 杭渤1,2,束永前3,刘平3,魏光伟4,金健1,郝文山5,王培俊2,李斌1,2,毛建华1 摘要精准医疗是指与患者分子生物病理学特征相匹配的个体化诊断和治疗策略。肿瘤为一复杂和多样性疾病,在分子遗传上具有很大异质性,即使相同病理类型的癌症患者,对抗癌药物反应迥异,因此肿瘤学科成为精准医疗的最重要领域之一。组学大数据时代的来临和生物技术的迅速发展奠定了精准医疗的可行性。本文介绍精准和个体化医疗的概念、基础和意义,简述近年来在此领域的最新进展,以及对实施精准医疗的方法和技术进行分析和归纳,首次将其分为间接方法(生物标志物检测及诊断)和直接方法(病人源性细胞和组织在抗癌药物直接筛选的应用),最后扼要阐述精准医疗的前景和面临的挑战。 关键词:精准医疗个体化医疗分子组学生物标志物检测病人源性细胞和组织 Precision cancer medicine: Concept, technology and perspectives HANG Bo1,2, SHU Yongqian3, LIU Ping3, WEI Guangwei4, JIN Jian1, HAO Wenshan5, WANG Peijun2, LI Bin1,2, MAO Jianhua1 Abstract Precision medicine is defined as an approach to personalized diagnosis and treatment, based on the omics information of patients. Human cancer is a complex and intrinsically heterogeneous disease in which patients may exhibit similar symptoms, and appear to have the same pathological disease, for entirely different genetic reasons. Such heterogeneity results in dramatic variations in response to currently available anti- cancer drugs. Therefore, oncology is one of the best fields for the practice of precision medicine. The availability of omics- based big data, along with rapid development of biotechnology, paves a way for precision medicine. This article describes the concept, foundation and significance of precision medicine, and reviews the recent progresses in methodology development and their clinical application. Then, various current available biotechniques in precision medicine are evaluated and classified into indirect (biomarker-based detection and prediction) and direct (patient-derived cells and tissues for direct anti-cancer drug screening) categories. Finally, perspectives of precision medicine as well as its facing challenge are briefly discussed. Key words: precision medicine personalized medicine omics biomarker detection patient-derived cells and tissue 2011年,美国国家科学院在“迈向精准医疗:构建生物医学研究知识网络和新的疾病分类体系”报告中,对“精准医疗(precision medicine)”的概念和措施做了系统的论述[1]。报告探讨了一种新的疾病命名的可能性和方法,该方法基于导致疾病的潜在的分子诱因和其他因素,而不是依靠传统的病人症状和体征。报告建议通过评估患者标本中的组学(omics)信息,建立新的数据网络,以促进生物医学研究及其与临床研究相整合。美国总统奥巴马在2015年1月20日的国情咨文中正式将“精准医疗计划”作为美国新的国家研究项目发布,致力于治愈癌症和糖尿病等疾病,让每个人获得个性化的信息和医疗,从而“引领一个医学新时代”。此举措很快得到了美国政府研究机构和医学界的热烈响应[2, 3],当然也包括来自医学界和社会的争议。 1 精准医疗与个体化医疗1.1 定义 什么是精准医疗(又称精确医学),其与通常所讲的个体化医疗(personalized medicine)又是什么关系?精准医疗就是与患者分子生物病理学特征,如基因组信息,相匹配的个体化诊断和治疗策略。个体化医疗利用诊断性工具去检测特定的生物标志物,尤其是遗传性标志物,然后结合患者的病史和其他情况,协助决定哪一种预防或治疗干预措施最适用于特定的患者。通俗地讲,个体化医疗就是考虑患者本身的个体差异,药物治疗因人而异,为理想化的治疗。而精准医疗着眼于一组病患或人群(图1),相对于个性化医疗针对个体病患的情况更为宽泛,更可行。两者有共同的内涵。也有医疗和研究机构将这两个概念放在一起,如杜克大学的“精准和个体化医疗中心”。 图1精准医疗的核心Fig. 1 Heart of precision medicine

浅谈医学大数据复习过程

浅谈医学大数据 陈遵秋和陈漪伊夫妇是美籍华人,现在美国定居。其二人是目前研究医疗大数据及生物样本大数据真正的专家。现将两位的文章进行公开发表,与大家一起探讨。 现在无论国内外均出现了移动医疗热,所有的创业团队和投资公司均把商业模式指向了最后的医疗大数据分析。但是可以很负责任的说,90% 以上的人都不知道医疗大数据分析是什么东西,因此这是一篇扫盲贴,但是仅供专业人士。文中分析了医疗大数据、它的维度、方法和成本,以及需要的专业人才。本文无论是对创业团队还是投资机构都是非常有指导意义的。 大数据定义及其特征 大数据顾名思义就是数量极其庞大的数据资料。从上世纪80 年代开始,每隔40 个月世界上储存的人均科技信息量就会翻倍(Hibert & Lopez, 2011)。2012 年,每天会有2.5EB 量的数据产生(Andrew & Erik, 2012)。现在,2014 年,每天会有2.3ZB 量的数据产生(IBM, 2015)。这是一个什么概念?现在一般我们电脑的硬盘大小都以GB,或者TB 为单位了。1GB 的容量可以储存约5.4 亿的汉字,或者170 张普通数码相机拍摄的高精度照片,或者 300-350 首长度为5-6 分钟的MP3 歌曲。那GB 和TB, EB,ZB 的关系又是怎样? 1ZB=1024EB=10242PB=10243TB=10244GB。如果你有一台1TB 硬盘容量的电脑,那1ZB 就是大致等于10 亿台电脑的容量, 远远超出了我们一般的想象。

早期,IBM 定义了大数据的特性有3 个:大量性(Volume), 多样性(Variety), 快速性(Velocity)(Zikopoulos, Eaton, deRooos, Deutsch, & Lapis, 2012)。后来又有学者把价值(Value)加到大数据的特性里。随着时间的推移和人们思考的进一步完善,又有三个大数据的特性被提出:易变性(Variability),准确性(Veracity) 和复杂性(Complexity)。 作者认为价值本质上是数据被分析后体现出来的有用信息知识的程度,和其他几个特性有根本区别。其他几个特性可以说是数据工作者具体实践中面临的挑战,而价值则是征服这些挑战后获得的回报。 大数据的6个特性描述如下: 大量性:一般在大数据里,单个文件大量性的级别至少为几十,几百GB 以上,一调查(Russom, 2013) 显示相当多的机构拥有的数据总量在10 到99TB 之间。用我们传统的数据库软件,1GB 已经可以储存千万条有着几百个变量的数据记录了。 多样性:泛指数据类型及其来源的多样化(Troester, 2012),进一步可以把数据结构归纳为结构化(structured),半结构化(semi-structured),和非结构化(unstructured) (SAS, 2014) 。 快速性:反映在数据的快速产生及数据变更的频率上。比如一份哈佛商学院的研究报告称在2012 年时,谷歌每天就需要要处理20PB 的数据(Harvard Business Review, 2012)。 易变性:伴随数据快速性的特征,数据流还呈现一种波动的特征。不稳定的数据流会随着日,季节,特定事件的触发出现周期性峰值(Troester, 2012)。

Miseq数据分析

MiSeq System Highlights ? Exceptional Data Quality Highest-quality data demonstrated through peer-reviewed, scientific comparison ? Simple and Intuitive Instrument Workflow Highly automated system features a simple, easy-to-use instrument interface ? Fastest Turnaround Time Most rapid sequencing and variant detection for time-critical studies ? Extensive Suite of Applications Adjustable read length and flow cell options provide ultimate flexibility across a broad range of applications Introduction The MiSeq System offers the first end-to-end sequencing solution, integrating cluster generation, amplification, sequencing, and data analysis into a single instrument. Its small footprint—approximately 2 square feet—fits easily into virtually any laboratory environment (Figure 1). The MiSeq System leverages Illumina sequencing by synthesis technology (SBS), the most widely used, next-generation sequencing chemistry. With over 750 publications to date, the MiSeq System is the ideal platform for rapid and cost-effective genetic analysis. Exceptional Data Quality Illumina SBS chemistry is the most widely adopted next-generation sequencing technology. Exceptional data quality is achieved by SBS chemistry: a proprietary, reversible terminator-based method that detects single bases as they are incorporated into massively parallel DNA strands. Fluorescent terminator dyes are imaged as each dNTP is added and then cleaved to allow incorporation of the next base. With all 4 reversible, terminator-bound dNTPs present during each cycle, natural competition minimizes incorporation bias. Base calls are made directly from signal intensity measurements during each cycle, greatly reducing raw error rates compared to other technologies.1–5 The result is highly accurate base-by-base sequencing that virtually eliminates sequence context-specific errors, even within repetitive sequence regions or homopolymers. Illumina sequencing delivers the highest yield of error-free data for the most sensitive or complex sequencing samples (Figure 3).Simple and Intuitive Instrument Workflow The MiSeq System offers straightforward, easy-to-follow instrument control software. Perform simple instrument operations with an intuitive touch screen interface, use plug-and-play reagent cartridges with RFID tracking, consult on-screen video tutorials, and enjoy step-by-step guides throughout each sequencing workflow. All MiSeq Systems include onboard data analyis and access to BaseSpace?— the Illumina genomic analysis platform. BaseSpace provides real-time data uploading, simple data analysis tools, internet-based run monitoring, and a secure, scalable storage solution. A suite of data analysis tools, and a growing list of third-party BaseSpace Apps, empowers researchers to perform their own informatics. BaseSpace also enables fast and easy data sharing with colleagues or customers. To learn more, visit https://www.360docs.net/doc/b4895799.html,/basespace. Fast Turnaround Time For results in hours rather than days, the combination of rapid library preparation and the MiSeq System delivers a simple, accelerated turnaround time (Figure 2). Prepare your sequencing library in just 90 minutes with Nextera? library prep reagents, then move to automated clonal amplification, sequencing, and quality-scored base calling in as little as 4 hours on the MiSeq instrument. Sequence alignment can be completed directly on the onboard instrument computer with MiSeq Reporter software or through the BaseSpace platform within 3 hours. MiSeq? System Focused power. Speed and simplicity for targeted resequencing and small-genome sequencing. Figure 1: MiSeq System The compact MiSeq System is well suited for rapid, cost-effective next- generation sequencing.

关于循证医学精准医学和大数据研究的几点看法

关于循证医学、精准医学和大数据研究的几点看法 转自:中华流行病学微平台 唐金陵1, 李立明2.1. 999077 中国香港中文大学公共卫生及基层医疗学院;2. 100191 北京大学公共卫生学院摘要循证医学仍是当今最好的医学实践模式。需要注意的是,证据本身不等于决策,决策还必须考虑现有资源和人们的价值取向。证据显示,绝大多数患者不会因使用降血压、降血脂、降血糖、抗癌药而预防重要并发症或死亡,说明现代医学的很多诊断和治疗都不精准,找到那几个为数不多的对治疗有反应的患者就成了现代医学的梦。精准医学应运而生,但它并不是新概念,也不等于孤注一掷的基因测序。精准医学依赖的大队列多因素研究由来已久,也不是新方法。医学一直在寻求精准,而且在人类认知的各个层面都有所建树,如疫苗和抗体、血型与输血、影像对病灶的定位以及白内障晶体替换手术。基因不是达到精准的唯一途径,只是提供了新的可能性。但是多数基因和疾病关联强度很低,说明基因精准指导防治的价值可能不大,利用大数据和其他预测因素是精准医学的必经之路。在使用大数据问题上,强调拥有总体、大样本、关联关系而淡化因果关系,是严重的误导。科学从来不会待考察了总体后才进行推论;研究需要的样本量恰恰与效果大小成反比;否定因果关系就是对流行病学科学原理和方法的否定,放弃了对真实性的保障,最终会导致防治的无效。

因此,在确认疗效上,基于大数据的现实世界观察性结果不能取代随机对照试验的实验性证据。本文谨希望以怀疑和批评的方式,激发出精准医学和大数据蕴藏的真正潜力。关键词: 循证医学;精准医学;大数据;现实世界研究;流行病学方法一循证医学中的情与理 循证医学呼吁医学实践须基于现有最好的应用型(而不是基础型)研究证据[1-2]。没有循证医学的敦促,医学研究就多会停留在理论上;没有循证医学的反馈,医学研究可能会偏离正确的轨道;没有循证医学这张盾牌,资本就会更肆无忌惮地让医学为利润服务。然而,在肯定证据在医学决策中重要性的同时,还必须强调证据本身并不是决策,决策还必须兼顾现有资源的多寡、患者的需要和价值取向。 如果把证据称为理,证据以外可以影响决策的因素就是情。如果理是科学发现的客观事实(如一个药物被证明有效),情就是人们如何利用这些事实的主观情感和好恶。医学决策,情与理缺一不可。在20世纪90年代循证医学初期,人们对医学应用型(主要是流行病学)研究及其产生的科学证据认识不足、重视不够,有必要特别突出证据在决策中的重要性。但是在证据和指南被视为“绑架”了医学实践的今天,有必要重申或特别关注其他因素在决策中不可或缺的作用,尽管目前还有很多医学指南和实践并非基于证据。 研究证明一个药物有效,这是理。理是中性的、稳定的,具

医学临床试验数据分析要点(GCP)

临床试验数据分析要点 5.3.1分析对象的数据集 5.3.1.1 全样本分析(Full analysis set) 计划治疗原则(intention-to-treat)是指主要分析应当包括所有进入随机化的遵循这一原则需要对所有随机受试者完成随访得到试验结果。由于各种理由,这在实际上是难以达到的,因此,全样本分析是尽可能接近于包括所有随机受试者,在分析中保留最初的随机化对于防止偏差和提供安全的统计检验基础很重要。在许多场合,它提供的对治疗效果的估算很可能反映了以后的实际观察结果。 从分析中剔除已随机受试者的情况不多:包括不符合重要入选标准,一次也没有用药,随机化后没有任何数据。从分析中剔除不符合入选条件受试者必须不致引起偏差:入选标准的测定是在随机化之后;违反合格标准的检测是完全客观的;所有受试者都受到同样的合格性调查;各组实行同样的入选标准,凡违反者均被排除。 5.3.1.2 遵循研究设计对象(Per Protocol Set) "Per Protocol"对象组,有时称之为"有效病例"、"有效样本"或"可评价受试者样本;定义为全部分析样本中较好遵循设计书的一个受试者亚组: ·完成预先说明的确定治疗方案暴露。 ·得到主要变量的测定数据。 ·没有违反包括入选标准在内的重要试验设计。 从"有效受试者"组中剔除受试者的精确理由应当在揭盲前就充分限定并有文件记载。 为得到"有效受试者"而排除对象的原因和其他一些违反研究设计的问题,包括对象分配错误、试验中使用了试验方案规定不能用的药物、依从性差、出组和数据缺失等,应当在不同治疗组之间对其类型、发生频率和发生时间进行评价。 5.3.1.3不同的分析(受试者)组的作用 在验证性试验中,通常进行全样本和"有效受试者"两种分析。这样可以对两者之间的任何差别进行明白的讨论和解释。有时候可能需要计划进一步探究结论对于选择分析受试者组的敏感程度。两种分析得到基本一致的结论时,治疗结果的可信度增加。但是要记住,需要?quot;有效受试者"中排除相当数量受试者会对试验的总有效性留下疑点。 在优越性(Superiority trial,证明新药比标准对照药物优越)试验、等效性试验或不差于(non-inferiority trial,确证新产品与对照药物相当)试验中,这两种分析有不同的作用。在优越性试验中,全样本分析用于主要的分析可以避免"有效受试者"分析对疗效的过于乐观的估算;全样本分析所包括的不依从受试者一般会缩小所估算的治疗作用。但是,在等效性或不差于试验中使用全样本分析通常是不谨慎的,对其意义应当非常仔细考虑。 5.3.2缺失值和线外值(包括异常值) 缺失值代表临床试验中一个潜在的偏差来源。因此,在实施临床试验时应当尽最大努力符合试验方案对于数据收集和数据管理的要求。对于缺失值并没有通用的处理办法,但只要处理方法合理,特别是如果处理缺失值方法在试验方案中预先写明,则不会影响试验的有效性。当缺失值数目较大时,要考虑分析结果对于处理缺失值方法的敏感程度。线外值(包括异常值)的统计学定义在某种程度上带有随意性。除了统计学判断之外加上医学判断以鉴别一个线外值(包括异常值)是最可信的方法。同样,处理线外值(包括异常值)的程序应当在方案中列出,且不可事先就有利于某一个治疗组。 5.3.3数据的类型、显著性检验和可信限 在临床试验中,对每个受试者可收集3种数据:所接受的治疗、对治疗的反应(Re-sponse)和进入试验时影响预后因子的基线值。接受同样治疗的受试者构成统计分疗组。对治疗的反应基本上有3类。 ①定性反应。根据预定的评价标准将受试者分为若干类别,如高血压治疗的"有效"。"无效";淋巴细胞瘤化疗的"完全缓解"、"部分缓解"、"无变化"。 ②定量反应。当存在一种可靠测定方法时,受试者的治疗结果最好采用实际数值,如舒张压。但最好同时记录其基线值,以便评价治疗前后的变化量值。 ③到某事件发生的时间。如使用避孕药受试者从开始治疗到意外妊娠的时间。 5.3.3.1数据的描述性统计

精准医学大数据汇交与共享政策研究

精准医学大数据汇交与共享政策研究 精准医学作为医学科技发展的前沿方向,现已成为世界各国新一轮科技竞争的战略制高点。为加快重大疾病防控技术突破、占据未来医学及相关产业发展主导权、打造我国生命健康产业发展的新驱动力,我国积极加强精准医学研究布局,将其纳入国家“十三五”规划,并将“精准医学研究”列为国家重点研发计划重点专项之一。伴随我国精准医学计划的实施,将产生海量多源异构的精准医学大数据。这些数据既是各精准医学研究项目的重要成果产出,也是日后开展医学研究工作宝贵的知识来源,如不能及时汇交并且合理共享,将难以发挥其 最大价值,造成人力、物力、财力的极大浪费。但精准医学大数据汇交与共享是一项复杂的活动,不能单靠技术的进步而实现,还需要运 用政策的强制手段进行保障和规范。我国至今尚未发布针对精准医学大数据的政策性文件,势必影响数据的管理与成果转化。而国外在精准医学大数据管理方面已出台相关政策,可以为我国政策制定提供借鉴。基于此,本研究将在广泛调研和分析国内外典型精准医学相关数据政策的基础上,以目前我国资助的精准医学研究中层次最高、影响力最大的国家重点研发计划“精准医学研究”重点专项为例,分析其数据汇交与共享要求、各利益相关方的利益诉求以及主要利益相关方的政策建议。通过对现存政策和我国实际需求的分析,尝试提出适用于我国实际情况的精准医学大数据汇交与共享政策建议。本研究就最终完成的工作包括:(1)系统梳理了国内外不同层面科学数据政策的 相关研究,借鉴其研究思路及政策内容分析框架,总结现有研究的局

限性,包括:①对精准医学细分领域数据政策的探索不足;②重共享、轻汇交,对汇交部分政策内容研究不足;③政策建议趋于宏观层面,微观层面对具体内容的建议有待加强;(2)调研了国内外科研资助机构典型科学数据汇交与共享的相关政策,并从基本特征以及具体内容两方面对政策进行了分析,借鉴有益经验,为后续研究提供参考;(3)立足我国实际,以目前我国资助的精准医学研究中层次最高、影响力最大的“精准医学研究”重点专项为例,总结其数据汇交与共享要求、可能涉及到的数据汇交、管理和使用主体,并对其中部分利益相关方的权益和政策建议进行分析和调研,为精准医学大数据汇交与共享政策的制定提供现实依据;(4)结合政策调研和我国实际情况,提出了我国精准医学大数据汇交与共享政策制定的建议,包括宏观和微观两个层面:宏观层面的建议包括:①加强国家统筹,健全政策制度体系;②注重权益保护,优化利益权衡机制;③建立监管部门,完善监督管理体制;④强化质量建设,统一数据标准规范。微观层面对数据汇交与共享的具体环节进行了细化,重点对数据汇交、数据保存与管理、数据共享、数据汇交与共享计划、利益相关方职责、权益保护以及监督与奖惩机制7个方面的政策内容进行详细界定。

相关文档
最新文档