低截获概率雷达综述

低截获概率雷达综述
低截获概率雷达综述

低截获概率雷达综述

早期的低截获概率雷达是尽量压缩旁瓣电平,减少旁瓣被截获的概率。而目前新的低截获概率雷达,可以“隐藏”自己的主瓣,最大限度降低对方的告警接收机做出反应的距离,甚至使之无法做出告警。

简而言之,这种低截获概率雷达,就是不容易被对方电子侦察装置、雷达告警器截获信号的雷达,使得己方雷达探测到敌方目标的距离,远远大于敌方雷达告警或者电子侦察系统的截获接收机侦测到信号的距离。

这里,首先要澄清一个误区。很多人认为,战斗机雷达一开机,就如同漆黑的夜晚打开一个手电筒,它首先会被身处暗处的人发现。严格来说,这种比喻是经不住推敲的。夜晚中打手电筒的人发现暗处人员的距离要远远小于对方发现手电筒的距离,这是基于两个原因:第一个原因,打手电的人需要看到对方人员反射的光,这个光的强度非常微弱,而对方可以看到手电筒的直射光,这个光的强度非常高。第二个原因,打手电筒的人处于强光环境下,瞳孔收缩,对光的敏感程度下降。身处黑暗的人则瞳孔放大,对光的敏感程度提高。

而对于雷达和雷达告警接收机来说,就未必是如此了。当然,雷达接收到的也是强度很弱的反射波,而雷达告警接收机接收的是直射波这一点非常相似。但是雷达接收机的敏感程度,通常是远远大于告警机的敏感程度的。一半而言,目前雷达接收机的灵敏度为-160分贝左右,而三代机上采用的告警接收机的灵敏度只有-65分贝左右。他们之间查了很多数量级。不是截获接收机做不了那么灵敏,而是如果太灵敏了,那告警器将充满噪声!

当然,在三代机上,告警接收机通常能在对方雷达探测距离的1.5倍距离以上对雷达波做出告警。但是,对于采用低截获概率技术的四代机雷达而言,三代机的雷达告警器,就有些形同虚设了。

实际上,低截获概率雷达不是一个刚刚发展起来的技术,只不过之前先进国家都高度保密,它的作用并不亚于隐身技术。

俄罗斯也在低截获概率雷达方面投入不少。

上世纪70年代美国人就开始了低截获概率雷达的理论探索。1979年,Robert.G.Siefker发表了文章《隐身雷达的截获》。同一时期,美国海军首先敏锐地认识到低截获概率雷达的作用,与西屋公司联合开展了世界上首个关于地截获概率雷达的相关技术的演示验证项目“Sneaker program”。而第一个系统性的低截获概率雷达试验项目LPIR开始于上世纪70年代中期,由美国DARPA、美国空军和海军发起,休斯飞机公司为主要承包商。

该项目对低截获概率技术在机载武器系统中的可用性给出了结论性的演示。第一架机载LPIR系统的飞行试验在1979年和1980年完成。该系统对麦克莱伦空军基地装备了AN/ALR-62雷达告警接收机的F-111飞机进行了57次飞行对抗试验。ALR-62在宽频率范围内具有360°的覆盖,其灵敏度为-65dBm,并且在这些测试中使用的ALR-62都具有检测和识别试验用的低截获概率雷达波形的能力,但关键是截获距离。

低截获概率雷达最基本的特征是要有极低的旁瓣。

在1979年11的空空试验中,LPI雷达系统可以在40km对F-111飞机探测和跟踪而不被ALR-62发现。这能带来什么优势呢?这将极大地提高具有地截获概率雷达一方的导弹命中率。之前中距雷达制导空空导弹的命中率不够理想,一个重要原因就是对方实施的反雷达机动和电子战措施。而进行反雷达机动和电子战的一个重要前提是,知道己方被瞄准,了解对方雷达的频率等特征,才能适时采取行动。而采用了低截获概率技术之后,一方的雷达告警接收机可能无法做出任何反应,这时候,战机恐怕就是待宰的羔羊了。这也是为什么美国的四代机在于三代机的模拟空战中取得高交换比的一个重要原因。

相反,如果四代机的雷达没有这项技术,那在对抗环境中,其超视距导弹的命中率可能会大大降低,整体作战效能将会大打折扣。所以说,这项技术一定程度上决定了隐身战斗机的作战效能。

由于低截获概率雷达的发展,截获接收机受到了巨大挑战。不过也带来了发展动力。F-35的航电验证机CATBird就曾在空中对抗中成功截获F-22战斗机的雷达信号,并实施了有效干扰。

最近,很多军迷的朋友圈被一则F-35完虐F-16的视频刷了屏。

视频网上很多,这里用张图示意一下。

一名记者拿着摄像机坐进了F-16的座舱,亲身感受F-16与F-35的“对抗”。结果,F-16用尽了各种手段,都没能发现F-35。F-35飞行员还通过无线电告诉F-16飞行员,他已经被瞄准了,这时候F-16的飞行员和记者仍然对F-35遍寻不见。最终,在视频里,F-35突然出现在了F-16的侧后方。

在视频中,记者问F-16飞行员是否使用了雷达,F-16的飞官很不耐烦地说,是的,我会使用……

其实对这一幕,很多朋友并不感到惊讶。毕竟,F-35战斗机是隐身飞机嘛。F-16的雷达找不到F-35也很正常。

B-2实际上就使用了低截获概率对地雷达。

不过较真的朋友可能会问了,F-16看不到F-35很正常,为什么F-35瞄准、锁定了F-16,F-16的告警器为什么不告警,其电子战系统为什么不对抗?是的,这就是问题的关键。

这之前,美国的F-22也好,F-35也罢,在空战训练中对三代机的交换比都不在一个数量级上,往往是击落数十架、上百架三代机,才会损失一架四代机。这种攻击大多数是在超视距完成的,而且能够获得非常高的命中率。而二代机、三代机的超视距导弹,却很少能获得那么高的命中率。

F-35使用的AN/AGP-81有源相控阵雷达,通过采用功率控制、捷变频、大带宽等技术,使其信号很难被传统的截获接收机侦察。

这源自于美国四代机雷达普遍采用的一项关键技术——低截获概率技术,俗称隐身雷达(可不是反隐身雷达哦)。

当然,在如此大的压力下,雷达告警接收机的性能也在不断提升。F-22和F-35的雷达告警系统实际上是一套精密的无源雷达了。在F-35研发过程中,其航电验证机CATBird在与F-22的对抗中,就成功截获了其AN/APG-77雷达信号,并实施了有效干扰。

中国空军歼-20战斗机的雷达是否采用该技术,我们不得而知,但是其有源相控阵雷达为采用低截获概率技术奠定了坚实的基础,有源相控阵雷达通过计算机控制收发单元功率,可以实现雷达的功率控制。它可以一点点的增加功率,可以做到我恰好能探测到你,而你还感觉不到我的存在。即便歼-20目前不具备这项能力,未来升级后具备这项能力也是非常可能的。具备低截获概率雷达技术的歼-20,将可完虐任何三代机和三代半战机。如果歼-10C、歼-16等机具备这项功能,也能对周边国家战机获得杀敌于无形的优势。

合成孔径雷达概述(SAR)

合成孔径雷达概述 1合成孔径雷达简介 (2) 1.1 合成孔径雷达的概念 (2) 1.2 合成孔径雷达的分类 (3) 1.3 合成孔径雷达(SAR)的特点 (4) 2合成孔径雷达的发展历史 (5) 2.1 国外合成孔径雷达的发展历程及现状 (5) 2.1.1 合成孔径雷达发展历程表 (6) 2.1.2 世界各国的SAR系统 (9) 2.2 我国的发展概况 (11) 2.2.1 我国SAR研究历程表 (11) 2.2.2 国内各单位的研究现状 (12) 2.2.2.1 电子科技大学 (12) 2.2.2.2 中科院电子所 (12) 2.2.2.3 国防科技大学 (13) 2.2.2.4 西安电子科技大学 (13) 3 合成孔径雷达的应用 (13) 4 合成孔径雷达的发展趋势 (14) 4.1 多参数SAR系统 (15) 4.2 聚束SAR (15) 4.3极化干涉SAR(POLINSAR) (16) 4.4合成孔径激光雷达(Synthetic Aperture Ladar) (16) 4.5 小型化成为星载合成孔径雷达发展的主要趋势 (17) 4.6 性能技术指标不断提高 (17) 4.7 多功能、多模式是未来星载SAR的主要特征 (18) 4.8 雷达与可见光卫星的多星组网是主要的使用模式 (18) 4.9 分布SAR成为一种很有发展潜力的星载合成孔径雷达 (18) 4.10 星载合成孔径雷达的干扰与反干扰成为电子战的重要内容 (19) 4.11 军用和民用卫星的界线越来越不明显 (19) 5 与SAR相关技术的研究动态 (20) 5.1 国内外SAR图像相干斑抑制的研究现状 (20) 5.2 合成孔径雷达干扰技术的现状和发展 (20) 5.3 SAR图像目标检测与识别 (22) 5.4 恒虚警技术的研究现状与发展动向 (25) 5.5 SAR图像变化检测方法 (27) 5.6 干涉合成孔径雷达 (31) 5.7 机载合成孔径雷达技术发展动态 (33) 5.8 SAR图像地理编码技术的发展状况 (35) 5.9 星载SAR天线方向图在轨测试的发展状况 (37) 5.10 逆合成孔径雷达的发展动态 (38) 5.11 干涉合成孔径雷达的发展简史与应用 (38)

雷达的目标识别技术

雷达的目标识别技术 摘要: 对雷达自动目标识别技术和雷达目标识别过程进行了简要回顾,研究了相控阵雷达系统中多目标跟踪识别的重复检测问题提出了角度相关区算法,分析了实现中的若干问题,通过在相控阵雷达地址系统中进行的地址实验和结果分析表明:采用角度相关区算法对重复检测的回波数据进行处理时将使识别的目标信息更精确从而能更早地形成稳定的航迹达到对目标的准确识别。 一.引言 随着科学技术的发展,雷达目标识别技术越来越引起人们的广泛关注,在国防及未来战争中扮演着重要角色。地面雷达目标识别技术目前主要有-Se方式,分别是一维距离成象技术、极化成象技术和目标振动声音频谱识别技术。 1.一维距离成象技术 一维距离成象技术是将合成孔径雷达中的距离成象技术应用于地面雷达。信号带宽与时间分辨率成反比。例如一尖脉冲信号经过一窄带滤波器后宽度变宽、时间模糊变大。其基本原理如图1所示。 2.极化成象技术 电磁波是由电场和磁场组成的。若电场方向是固定的,例如为水

平方向或垂直方向,则叫做线性极化电磁波。线性极化电磁波的反射与目标的形状密切相关。当目标长尺寸的方向与电场的方向一致时,反射系数增大,反之减小。根据这一特征,向目标发射不同极化方向的线性极化电磁波,分别接收它们反射(散射)的回波。通过计算目标散射矩阵便可以识别目标的形状。该方法对复杂形状的目标识别很困难。 3.目标振动声音频谱识别技术 根据多普勒原理,目标的振动、旋转翼旋转将引起发射电磁波的频率移动。通过解调反射电磁波的频率调制,复现目标振动频谱。根据目标振动频谱进行目标识别。 传统上我国地面雷达主要通过两个方面进行目标识别:回波宽度和波色图。点状目标的回波宽度等于入射波宽度。一定尺寸的目标将展宽回波宽度,其回波宽度变化量正比于目标尺寸。通过目标回波宽度的变化可估计目标的大小。目标往往有不同的强反射点,如飞机的机尾、机头、机翼以及机群内各飞机等,往往会在回波上形成不同形状的子峰,如图2所示。 这类波型图叫作波色图。根据波色图内子峰的形状,可获得一些目标信息。熟练的操作员根据回波宽度变化和波色图内子峰形状,进行目标识别。

雷达技术综述

雷达技术综述 Overview of Radar Technology 摘要: 雷达被广泛用于军事预警、导弹制导、民航管制、地形测量、气象、航海等众多领域。本文首先概述了雷达发展历程并总结了雷达技术发展的成因,然后对雷达的基本工作原理和基本雷达方程作了简要的介绍。最后介绍了几种实际雷达并指出了雷达的未来发展方向。 关键词: 雷达技术;工作原理;雷达应用;发展趋势 Abstract: Radar is widely used in many fields of military early warning, missile guidance, aviation control, topographic surveying, meteorology, navigation and so on.This paper outlines the development process of radar and summarizes the causes of the development of radar technology,then briefly introduces the basic principle of radar and basic radar equation.Finally, introduces several kinds of practical radar and points out the future development direction of radar. Key words: radar technology; working principles; radar applications; trend in development 引言 雷达是英文Radar的音译,源于radio detection and ranging的缩写,原意为"无线电探测和测距",即用无线电的方法发现目标并测定它们的空间位置。因此,雷达也被称为“无线电定位”。雷达最先是作为一种军事装备服务于人类,主要用来实施国土防空警戒,指挥和引导己方作战飞机以及各种地面防空武器。随着雷达技术的不断改进,如今雷达被广泛用于民航管制、地形测量、气象、航海等众多领域。随着高科技的不断发展,雷达技术将在21世纪得到更广泛的应用。 1 雷达的发展历程 雷达诞生于20世纪30年代,从美、欧等发达国家的雷达装备技术发展来看,雷达的发展历程大致经历了4个阶段:第1个阶段是从20世纪30年代到50年代,为实施国土防空警戒,指挥和引导己方作战飞机以及各种地面防空武器(高炮、高射机枪、探照灯等),西方大量研制部署米波段雷达和以磁控管为发射机的微波雷达。当时雷达探测目标的种类简单,主要是飞机,此外还有少量的飞艇和气球,雷达的典型技术特征是电子管、非相参,这种雷达被称为第1代。 第2个阶段是从20世纪50年代到80年代,防空作战对雷达提出了由粗略

低截获概率雷达

引言 现代电子对抗技术,特别是反辐射导弹(ARM )技术的高速发展,是否具有反侦察能力,已经成为决定雷达系统能否完成战斗使命甚至能否继续生存的主要因素。 电子对抗设备截获雷达辐射的射频能量,并在此基础上完成对雷达的侦察、干扰,截获雷达辐射的射频信号是电子对抗设备完成侦察、干扰使命的基础。 一般雷达系统射频信号被截获的距离远大于探测目标的威力,因而只要雷达工作,辐射的射频信号就会被敌方侦察设备首先发现而实施干扰、攻击,雷达设备尚未执行战斗使命时就已丧失了战斗能力或被摧毁。 雷达发射的射频信号不被敌方截获,或在探测目标威力范围内不被敌方截获,这就是低截获概率(LPI )雷达。LPI 雷达是一种新体制雷达,它以极低的峰值功率探测空间,完成战斗使命。由于辐射的峰值功率极低(可达常规雷达的10-4~10-6),极大地降低了被敌方侦察设备截获的概率,可以在暴露前(隐蔽状态)探测、发现目标,完成战斗使命。 LPI 雷达是反侦察、抗干扰、抗ARM 的最有效的技术之一。 LPI 雷达原理及性能特征 LPI 雷达的原理(截获因子) LPI 雷达的性能特征 a) 低截获距离 b) 低截获目标及侦察接收机 c) 增大低截获距离的途径 d) 发射功率及发射天线增益 LPI 雷达原理及性能特征 LPI 雷达的原理(截获因子) 由雷达方程知⑴,在一定的发现概率及虚警概率下,雷达的最大作用距离RRmax 为: 该雷达辐射功率被电子对抗系统侦察接收机截获的功率PEr : () 2 E 2 2 Er Re Rt Er R 4πλ G G P P ????= (2) 侦察设备最大截获距离: ()Ermin 2 2 Er Re Rt 2 Emax P 4πλG G P R ????=(3) 定义侦察设备系统灵敏度为⑵:

国外雷达技术新进展概述

国外雷达技术新进展概述 朱峥嵘 (南京电子技术研究所,江苏省南京市210039) 摘 要:雷达技术的研发与应用重点仍然集中在有源相控阵雷达、合成孔径雷达方面。有源相控阵雷达技术在机载雷达系统、舰载雷达系统及陆基雷达系统中获得到了广泛的应用。文中指出Ga N (氮化镓)单片微波集成电路功率放大器的可靠性有所提高,有望成为有源相控阵雷达的关键部件,并使有源相控阵雷达的探测距离进一步增加。为满足在无人机上的应用要求,合成孔径雷达的小型化在2009年取得了新的进展。 关键词:有源相控阵雷达;合成孔径雷达;单片微波集成电路中图分类号:T N958 收稿日期:2010205221。 0 引 言 有源相控阵是近年来正在迅速发展的雷达新技 术,它将成为提高雷达在恶劣电磁环境下对付快速、机动及隐身目标的一项关键技术。有源相控阵雷达是集现代相控阵理论、超大规模集成电路、高速计算机、先进固态器件及光电子技术为一体的高新技术产物[122] 。合成孔径雷达是一种高分辨率的二维成像雷达,由于其具有全天候、全天时的优点,特别适于大面积的地表 成像[324] 。 2009年,国外有源相控阵雷达技术与合成孔径雷达技术取得了新进展。 1 有源相控阵雷达技术 有源相控阵雷达具有机械扫描雷达不可比拟的优越性,是雷达技术的主要发展方向。2009年,欧美各国竞相发展和装备有源相控阵雷达。陆基、舰载、机载有源相控阵雷达的研制取得了重大进展,欧洲雷达集团公司研制出可旋转的有源相控阵雷达天线,使该雷达具备了对飞机身后区域的探测能力。美国诺斯罗普?格鲁曼公司开发出敏捷波束机载有源相控阵雷达,不仅能对多个空中目标进行探测,还能进行地面动目标探测,使作战飞机能完成多种作战任务。随着技术的进步,尤其是Ga N (氮化镓)单片微波集成电路在T/R 组件中的应用,有源相控阵雷达的性能将进一步提高。1.1 GaN 单片微波集成电路可靠性提高,有望成为有源相控阵雷达的关键部件 与Ga A s (砷化镓)器件相比,Ga N 器件的功率密度更高(可达40W /mm ),并具有更高的耐高温特性 (工作温度可达600℃以上)。Ga N 高电子迁移率晶 体管可以提供较好的线性功率和效率以及较高的带宽 (高频参数达230GHz )。 美国雷声公司Ga N 芯片进行了长达1000h 的可靠性测试。在长达1000h 的Ga N 单片微波集成电路功率放大器可靠性测试中,器件性能没有降低,这表明此器件向实用化方向迈出了重要的一步。该公司称此Ga N 芯片将广泛用于防空/反导系统的雷达中,它将使有源相控阵雷达的探测距离大大增加,并将使其具有更强的电子攻击能力。1.2 有源相控阵雷达技术首次应用于防空系统的火控雷达 欧洲航空防务航天公司为美、意、德联合开发的ME ADS (中程扩展防空系统)的X 波段MFCR (多功能火控雷达)提供了第一批次5000个T/R 组件及其相关电子设备。这些组件是有源相控阵雷达的关键部件,它揭开了有源相控阵雷达技术应用于防空系统火控雷达的序幕。 X 波段多功能火控雷达是一种固态有源相控阵雷达,在它的主雷达天线上集成了一个敌我识别天线,并可选择性地集成电子支援分系统、GPS 天线和数字处理器。该雷达的天线安装在一台5t 的卡车上,用液体进行冷却,冷却剂从热交换器流向T/R 组件,然后回流至热交换器。该雷达能以“点对点模式”来监视有限方位角范围,也能以“选择模式”进行360°全向扫描。它的最远探测距离达400k m ,具有引导中远程精确制导武器拦截目标的能力,能同时捕捉多个低雷达截面积目标。该雷达的运用将为导弹防御系统提供一种功能更强的火控雷达。 ? 8?第36卷第6期2010年6月 信息化研究 I nf or matizati on Research Vol .36No .6Jun .2010

雷达技术概述

雷达技术的发展历程及其在现代战争下的发展趋势研究 摘要:文章简要介绍了雷达系统和技术的发展历程,分析了雷达系统与技术发展的特点,提出了现代战争下雷达技术发展展望。 关键词:雷达技术相控阵合成孔径发展历程发展趋势 引言 自从雷达诞生至今,在70 多年的发展历程中,随着科技的不断发展、需求的不断变化,出现了多种体制的新功能雷达,雷达的技术性能、体积和重量、可靠性、维修性、抗恶劣环境的生存能力等也发生了天翻地覆的变化。特别是其在现代战争中的广泛应用,使得对雷达技术的研究具有了重要的意义。 一、雷达系统与技术的发展历程 1.20 世纪30 年代及以前 19 世纪后期,物理学家麦克斯韦、法拉第和安培等人,预言并用数学公式描述了移动电流产生的电磁波的存在情况。1935 年英国和美国科学家第一次研制出能够探测空中飞机的实用米波雷达,至此宣告了雷达的诞生。1936 年美国海军研究实验室研制了T / R (收发)开关,可使雷达系统的接收和发射分系统共用一副天线,大大简化了雷达系统结构。1939 年英国科学家发明了大功率磁控管,克服了甚高频雷达波束和频带窄的缺点,使实用雷达步入了微波频段。 2.20 世纪40 年代 20 世纪40 年代美国辐射研究室把微波新技术应用于军用机载、陆基和舰载雷达取得成功,其代表产品是SCR -270 机载雷达、SCR -584 炮瞄雷达和AN / APQ-机载轰炸瞄准相控阵雷达。20 世纪40 年代主要的雷达技术有动目标显示技术、中继技术以及单脉冲跟踪技术理论的提出。动目标显示技术应用于各型对空警戒雷达,后来应用于着陆引导、岸防等型雷达,其优势是能有效抑制地海杂波,抑制大山、建筑物、风雨雪等静止和慢动目标的干扰能将机载情报传送到地面观测站,能有效加强地空之间的信息联系。 3.20 世纪50 年代 20 世纪50 年代是雷达理论发展的鼎盛时期,雷达设计从基于工程经验阶段,进人了以理论为基础,结合实践经验的高级阶段。50 年代产生的主要理论有匹配滤波器概念、统计检测理论、模糊图理论和动目标显示理论等。各种新技术的应用,出现了诸如脉冲多普勒雷达、合成孔径雷达等新休制雷达。 4.20世纪60年代 20 世纪60 年代雷达系统发展的主要标志是数字处理技术革命和相控阵雷达的应运而生。为了探测洲际弹道导弹,为防空系统提供预测情报,产生了相控阵雷达体制。新一代雷达发展方向是全固态电扫相控阵多功能雷达。雷达信号和数据处理的数字化革命、半导体元件、大规模和超大规模集成电路的应用,使雷达技术的发展日臻完善并达到比较高的水平。

雷达空间目标识别技术综述

2006年10月第34卷 第5期 现代防御技术 MODERN DEFENCE TECHNOLOGY O ct.2006 V o.l34 N o.5雷达空间目标识别技术综述* 马君国,付 强,肖怀铁,朱 江 (国防科技大学ATR实验室,湖南 长沙 410073) 摘 要:随着人类航天活动的增加,对于卫星和碎片等空间目标进行监视变得非常重要。为了实现空间监视任务,对空间目标进行识别是非常必要的。对空间目标的轨道特性与动力学特性进行了介绍,对雷达空间目标识别技术的研究现状和发展趋势进行了详细的综述。 关键词:空间目标识别;低分辨雷达;高分辨雷达成像 中图分类号:TN957 52 文献标识码:A 文章编号:1009 086X(2006) 05 0090 05 Survey of radar space target recognition technology MA Jun guo,F U Q iang,X I AO Huai tie,Z HU Jiang (ATR L ab.,N ationa lU n i versity o f De fense T echno l ogy,Hunan Changsha410073,Ch i na) Abst ract:W ith t h e deve l o pm ent of spacefli g ht acti v ity of hum an,surveillance of space tar get such as sate llite and debris beco m es very i m portan.t In or der to i m p le m ent surveillance task,space target recogni ti o n is ver y necessary.Orb it property and dyna m ics property of space targe t are i n troduced,a deta iled sur vey is set forth about current research state and developi n g trend of radar space target recogn iti o n techno l ogy. K ey w ords:space tar get recogniti o n;lo w reso lution radar;h i g h reso lution radar i m aging 1 引 言 自从前苏联发射了第1颗人造地球卫星以来,卫星在预警、通信、侦察、导航定位、监视和气象等方面具有不可替代的优势。随着人类航天活动的增加,空间碎片日益增多,对于卫星等航天器的安全造成极大的威胁,因此对于卫星和碎片等空间目标进行监视变得非常重要。其中空间目标识别是空间监视任务中不可或缺的基本条件,空间目标识别主要是利用雷达等传感器获取空间目标的回波信号,从中提取目标的位置、速度、结构等特征信息,进而实现对空间目标的类型或属性进行识别。 2 空间目标的轨道特性与动力学特性 (1)轨道特性[1,2] 空间目标在轨道上的运动是无动力惯性飞行,本质上空间目标与自然天体的运动是一致的,故研究空间目标的运动可以用天体力学的方法。空间目标在运动时受到地球引力、月球引力、太阳及其他星体引力、大气阻力和太阳光辐射压力等的作用,轨道存在摄动。但是对轨道的实际分析表明,空间目标受到的主要力是地球引力。假设空间目标只是受到地球引力的作用,同时假设地球是一个质量均匀分布的球体,则空间目标与地球构成二体运动系统,开 *收稿日期:2005-12-15;修回日期:2006-01-23 作者简介:马君国(1970-),男,吉林长春人,博士生,主要从事目标识别与信号处理研究。 通信地址:410073 湖南长沙国防科技大学ATR实验室 电话:(0731)4576401

基于单片机的超声波倒车雷达文献综述

综合文献调研及综述 课题:基于单片机的超声波倒车雷达综述 学院 专业 年级班别 学号 学生姓名 指导教师 2015年1 月13日

一、文献调研部分 1. 中文切题期刊论文8篇 [1]刘海峰.汽车倒车雷达系统全接触[J].汽车电器,2007,12:5-8. 摘要:简要介绍倒车雷达的组成和工作原理,回顾倒车雷达的发展历程,就时下主流新车的倒车雷达安装状况以及非原车倒车雷达的性能检测结果进行报道,对倒车雷达的选购安装和使用过程中的注意事项进行总结,最后展望倒车雷达系统的未来发展。 [2]陈烁华,冯桑.倒车辅助系统的技术发展[J].城市车辆,2009,10:36-38. 摘要:倒车辅助系统,又称泊车辅助系统或可视倒车雷达,能够给驾驶员倒车、泊车操作带来极大的方便,现已越来越多配置于汽车当中。本文详细地介绍倒车辅助系统的产生背景、发展历程以及现有主流产品的种种特点;并对其缺陷做出了初步探讨,提出了新的解决思路。 [3]段现星.超声波传感器在倒车雷达上的发展[J].家电检修技术,2009,12:1. 摘要:<正>倒车雷达是汽车泊车或者倒车时的安全辅助装置,能以声音或者更为直观的视频显示告知驾驶员周围障碍物的情况,解除了驾驶员泊车、倒车和起动车辆时前后左右探视所引起的困扰,并帮助驾驶员扫除了视野死角和视线模糊的缺陷,提高驾驶的安全性。 [4]刘鑫,朱靖玉.基于单片机的倒车雷达的设计[J].电子设计工程,2012,01:94-97. 摘要:为降低汽车倒车时的碰撞事故,提出了一种基于单片机的超声波测距倒车雷达的设计方案。该设计根据超声波测距原理,采用AT89S52单片机为控制核心,设计了超声波测距倒车雷达,并对测量距离误差进行了分析。测量距离为0.1~5.0 m,其精度经过校正后可达1 cm。该设计结构简单、工作可靠,有良好的测量精度和灵敏度。 [5]吴琼,封维忠,马文杰.汽车倒车雷达系统的设计与实现[J].现代电子技术,2009,09:191-194. 摘要:为避免汽车倒车过程中发生碰撞,设计一种基于单片机AT89C51的倒车雷达系统,介绍了超声波测距的基本原理,阐述了倒车雷达系统的结构组成、硬件电路设计以及软件设计,并在数据处理部分采用温度补偿消除温度对声速的影响,提高了测距精度。倒车距离采用LCD进行实时显示,并通过语音报警电路对不同距离段做出不同的语音提示。实验表明该倒车雷达系统在30~500 cm范围内可实现准确测距,具有可靠性较高、外围电路简单、实用性强等优点。 [6]高旭,朱军.基于AT89S52单片机的超声波倒车雷达系统的设计[J].电子技术,2010,01:60-61+56. 摘要:利用超声波测距原理,出于低成本、高精度的目的,提出了一种基于AT89S52的超声波倒车雷达系统的设计方案。硬件部分采用AT89S52单片机作为控制器,主要有超声波发射电路、超声波接收电路、温度检测电路、LCD显示电路和报警电路。本文在分析超声波测距原理的基础上,给出了实现超声波倒车雷达系统的软件设计流程图和硬件设计电路图。该系统测量精度为1cm,完全能够满足汽车倒车系统的设计要求。 [7]林勇.汽车倒车防撞雷达系统原理及优化的探讨[J].电脑知识与技术,2008,33:1498-1499. 摘要:文章概述了利用单片机控制的超声波测距应用于汽车倒车防撞雷达系统的基本原理,例如当汽车倒车时,启动单片机及外部传感器实现距离测量,单片机对超声波的发射与接收通过计时进行控制,当所测得的距离小于预设的安全距离时,启动声光报警,有效避开可能对倒车造成危害的障碍物和行人。同时文章对该系统存在的弊端及其优化思路进行详细阐述。

低截获概率雷达综述

低截获概率雷达综述 早期的低截获概率雷达是尽量压缩旁瓣电平,减少旁瓣被截获的概率。而目前新的低截获概率雷达,可以“隐藏”自己的主瓣,最大限度降低对方的告警接收机做出反应的距离,甚至使之无法做出告警。 简而言之,这种低截获概率雷达,就是不容易被对方电子侦察装置、雷达告警器截获信号的雷达,使得己方雷达探测到敌方目标的距离,远远大于敌方雷达告警或者电子侦察系统的截获接收机侦测到信号的距离。 这里,首先要澄清一个误区。很多人认为,战斗机雷达一开机,就如同漆黑的夜晚打开一个手电筒,它首先会被身处暗处的人发现。严格来说,这种比喻是经不住推敲的。夜晚中打手电筒的人发现暗处人员的距离要远远小于对方发现手电筒的距离,这是基于两个原因:第一个原因,打手电的人需要看到对方人员反射的光,这个光的强度非常微弱,而对方可以看到手电筒的直射光,这个光的强度非常高。第二个原因,打手电筒的人处于强光环境下,瞳孔收缩,对光的敏感程度下降。身处黑暗的人则瞳孔放大,对光的敏感程度提高。 而对于雷达和雷达告警接收机来说,就未必是如此了。当然,雷达接收到的也是强度很弱的反射波,而雷达告警接收机接收的是直射波这一点非常相似。但是雷达接收机的敏感程度,通常是远远大于告警机的敏感程度的。一半而言,目前雷达接收机的灵敏度为-160分贝左右,而三代机上采用的告警接收机的灵敏度只有-65分贝左右。他们之间查了很多数量级。不是截获接收机做不了那么灵敏,而是如果太灵敏了,那告警器将充满噪声! 当然,在三代机上,告警接收机通常能在对方雷达探测距离的1.5倍距离以上对雷达波做出告警。但是,对于采用低截获概率技术的四代机雷达而言,三代机的雷达告警器,就有些形同虚设了。 实际上,低截获概率雷达不是一个刚刚发展起来的技术,只不过之前先进国家都高度保密,它的作用并不亚于隐身技术。

低截获概率_LPI_雷达的发展_张锡熊

低截获概率(LPI)雷达的发展* 张锡熊 (第20研究所西安710068) =摘要>论述了发展LPI雷达的几个基本问题。首先分析了雷达截获性能与目标特性、雷达特性和侦察接收机的关系,对现有几种有代表性的雷达分析了截获距离,并讨论了LPI措施及其得益,提出了LPI措施的反侦察/效益门限0的概念,并分析了扩谱的LPI得益,最后阐明了LPI雷达是雷达体制的重大变革,提出了分二步走的发展战略。 =关键词>LPI雷达,截获距离,LPI效益门限 Development of LPI Radar ZHANG X-i xiong (The20th Research Institute Xi c an710068) =Abstract>This paper describes several fundamental problems of the development of LPI radar.The LPI performances related to the characteriztics of target,radar and Elint receiver are analyzed.Then the interception range of radar radiation by Elint receiver for sev-eral representative radars is calculated.The LPI measures and its gain are commented.The concept of0LPI Effect Threshold0is pro-posed.The gain of spread spectrum technique is analyzed.In the end,It is pointed ou t that LPI Radar is an i mportant radar structural re-form and the strategy of two develop ment steps i s suggested. =Key words>LPI radar,interception range,LPI effect threshold 1引言 近年来我国雷达界一直在倡导我国应发展LPI雷达。关于如何发展LPI雷达,走什么技术途径。国内外虽发表不少有关LPI雷达论文,但存在着一些模糊观点和误解。 本文的目的是从理论上阐明有关LPI雷达的几个基本问题,从而得出发展LPI雷达正确的技术途径。 雷达是现代和未来战争中军用探测器的主体,是敌方攻击的首选目标。单基地的脉冲雷达,在现代高技术战争中,很容易被敌方干扰或精确制导武器所摧毁。这是一个严重的潜在危机,所以,发展LPI雷达是当务之急,特别是发展中的国家,面对军事强国,就更为迫切。 2LPI雷达的定义 (1)截获概率因子的定义 施里海尔为衡量雷达的被截获性能提出了截获概率因子(A)的定义 A=侦察接收机截获雷达辐射的距离(R i)雷达对带侦察接收机的平台的作用距离(R r) (2)LPI雷达的定义 对LPI雷达有各种不同的说法,我们选择一个比较通用的定义是A<1R r>R i 即雷达对平台的作用距离大于平台侦察接收机的截获距离。 (3)超低截获概率(ULPI)雷达的定义 A<1 2 R r>2R i 这时,带侦察接收机的平台已进入我方的拦击区,即使侦察到雷达信号,也来不及采取有效对策了。 国内外报导的LPI雷达都应该用这个定义去加以验证,真伪自明。 3雷达被截获性能有关因素的分析 3.1A的公式 A=1 2PR K2G t P t S r L r G r B2t L x G i B i S i L i 21/4 (1)式中:R为目标的雷达截面积;K雷达的波长;G t 雷达发射天线增益;G r雷达接收天线增益;S r雷达接收机灵敏度;P t雷达发射脉冲功率;B t雷达发射信号瞬时谱宽;L t雷达发射支路损耗;L r雷达接收支路损耗; 2003年12月现代雷达第12期*收稿日期:2002-10-28修订日期:2003-06-05

雷达抗有源干扰技术的应用现状

雷达抗有源干扰技术的应用现状 发表时间:2019-06-17T11:54:52.620Z 来源:《中国西部科技》2019年第7期作者:杨文超高金宝袁义[导读] 检测目标以及跟踪与识别目标,是现代社会应用雷达的主要目的。雷达有源干扰对上述工作的顺利开展带来极大阻碍。因此,针对复杂电磁环境下雷达抗有源干扰技术展开的探究十分必要。雷达抗有源干扰技术复杂性较强,涉及到多个环节,最明显的是雷达信号以及信息处理。在探究雷达抗有源干扰技术后可明确该项技术在体制层面、波形设计以及信号与数据处理等层面的关键点。并在客观分析其不 足的基础上制定恰当策略,对其进行逐步完善。中国人民解放军91411部队军用雷达在全新的发展背景下面临巨大挑战,加之受到雷达电子对抗技术的影响,军用雷达使用面临的问题不断增加。雷达工作电磁环境因超大规模集成电路的影响而呈现出日渐恶劣的状态。固态电路技术的不断发展以及有源干扰等都与雷达工作电磁环境之间存在直接联系。高功率、高逼真度是有源干扰的明显特征,在智能化方面也占据一定优势。这些都是影响雷达生存与使用的直接因素。应用雷达抗有源干扰技术是改善上述问题的基础与前提。 一、系统与体制层面抗干扰应用现状 1.系统层面抗有源干扰措施(1)对于大功率饱和干扰,可通过调整接收机信号动态范围防止出现饱和状态。相关的方法主要包括时间灵敏度控制、自动增益控制、快时间常数以及宽限窄接收机等技术,但该类方法将影响雷达灵敏度和线性特性。(2)通过调查可以发现,噪声调制类干扰普遍存在于跟踪雷达当中。一般需要借助装备干扰检测器的方式来检测上述干扰。在加装干扰检测器时,需要进行波门设置工作,在选定感兴趣目标后,将其恰当设置在目标两侧。雷达系统因干扰检测器的影响,而向干扰跟踪模式不断转化。波门后拖干扰是制约跟踪雷达的重要因素,现阶段已经有前沿的跟踪技术打破上述限制。保护波门技术并不是随意使用,而是在距离信息并不重要的情况下开展,这类信息虽然精确,但不在重要参数的涵盖范围内。部门会在假目标信号转移后重新开始跟踪工作,系统在此过程中发挥自身作用与价值,重置各类参数,维持对原有感兴趣目标的跟踪。真正改善雷达检测概率较差的问题,是针对系统设计层面开展抗干扰工作的基础。当干扰处于某种特定情境时可取得理想效果,例如平稳以及线性等。但该措施仍然存在一定的缺陷。干扰被大功率压制后无法使用该种措施,或者涉及到较为密集的假目标时,该类措施仍无法发挥自身作用。 2.天线极化抗干扰措施干扰机天线会利用多种方式进行极化,也正是因为这种方式,有源干扰极化状态会发生不同程度的改变,极化方式是影响有源干扰极化状态的先决条件。干扰天线极化方式与雷达天线极化方式直接存在较大差异,一般情况下不会保持在相同状态。这是将更为科学的理论提供给抗有源干扰,是极化信息发挥自身价值的直观体现。国防科技大学在天线极化抗干扰方面的研究始终处于领先水平。一般是从极化滤波器设计角度着手,开展抗有源压制干扰工作的研究。极化抗干扰会利用多种方式开始作业,最为普遍的一种方法为有源干扰,现阶段目标回波极化方式差异的应用范围也有所拓宽,作为极化抗干扰开展各项作业的有效手段。无论是在稳健性还是在可靠性方面,上述两种技术都占据一定优势,并在不断应用与实践的同时,完善自身技术体系。其应用范围不断拓宽,对空监视以及导弹制导等都可结合实际恰当应用上述两种技术,成像雷达在作业过程中也可对其进行有效使用。但上述技术在发展过程中仍然会受到一定的阻碍,最为明显的就是实施条件较窄,只能在某种特定情况下使用。因其他因素会影响到抗干扰性能,例如在全极化发射天线时,抗干扰性能的发挥就会受到破坏性影响。 二、波形设计与接收机层面抗干扰应用状态 1.发射波形管理抗干扰作为一种改进思路,分集理论可以打破雷达方在抗干扰被动的局面。脉冲分集技术不仅可以增加干扰方截获与存储雷达信号的难度,而且可以通过对发射与接收信号集的分析与处理获得干扰信息,因而被应用于雷达有源欺骗干扰抑制。设计转向慢时域、频域及其联合域分集波形设计,其结构简单且计算量相对较低。分集信号将提高雷达复杂度,影响雷达基本功能,这个缺点将严重阻碍其工程实现。 2.天线空时自适应处理抗干扰空时自适应处理技术的出现时间相当早,并且经过较长时间的使用。机载雷达的杂波抑制是最开始应用该技术的范围。科学预估有源干扰特征参数,可以说是阵列技术取得成就的直观体现。部分新体制雷达在处理特征测数时,还要接收各项数据,将多个雷达接收阵元科学设置在其中。真正改善干扰信号抑制的问题,其对消出现的可能性大幅降低。STAP类抗干扰方法通过在特定方向设置零陷,从空域滤除干扰。其缺点较为明显:由于不具有距离维的自由度,当干扰和目标同向时,将严重影响真实目标检测概率。 三、明确信号与数据处理层面抗干扰应用现状 1.信号处理层面这类方法主要利用目标回波和干扰的多域表征差异进行抗干扰。针对LFM信号,利用分数阶傅里叶变换和经验模态分解抑制压制类干扰;通过匹配滤波和小波变换对干扰进行抑制;建立映射原则,研究目标回波和干扰的典范相关分析特征向量差异性,分离出回波从而抑制干扰。通过极化滤波的方法抑制干扰,该方法能较高程度地保留目标回波信息。对于利用多域滤波与子空间分离的方法,分辨率成为影响性能的最重要因素之一。 2.信号及数据处理层面抗有源欺骗干扰现代有源欺骗干扰通常由DRFM辅助产生,通过DRFM干扰机的工作流程分析可知,干扰机对截获的雷达发射信号进行距离、多普勒调制,产生欺骗干扰。由于干扰机的频率变换环节、射频功率放大器等器件的非线性,引入的非线性失真对调制产生的信号进行二次调制,所产生的假目标带有干扰机的指纹特征,这种特征为信号层面有源欺骗干扰感知提供了依据。结语:通过深入分析雷达抗有源干扰理论可明确其关键技术与各项要点,也可通过分析国内外发展现状的方式,完善雷达在应用方面存在的多种不足。雷达抗有源干扰技术可以说是将最为坚固的物质保障提供给电子对抗领域。雷达抗有源干扰技术的发展前景与空间相当广阔,无论是在理论方面,还是在工程方面,都具备极大的发展平台。雷达工程师需要在这一过程中转变自身的研究思路与观念。从设计阶段着手,实现雷达体制设计抗干扰算法与抗干扰技术以及需求指导之间的科学转换。参考文献:

雷达目标识别

目标识别技术 2009-11-27 20:56:41| 分类:我的学习笔记| 标签:|字号大中小订阅 摘要: 针对雷达自动目标识别技术进行了简要回顾。讨论了目前理论研究和应用比较成功的几类目标识别方法:基于目标运动的回波起伏和调制谱特性的目标识别方法、基于极点分布的目标识别方法、基于高分辨雷达成像的目标识别方法和基于极化特征的目标识别方法,同时讨论了应用于雷达目标识别中的几种模式识别技术:统计模式识别方法、模糊模式识别方法、基于模型和基于知识的模式识别方法以及神经网络 模式识别方法。最后分析了问题的可能解决思路。 引言: 雷达目标识别技术回顾及发展现状 雷达目标识别的研究始于"20世纪50年代,早期雷达目标特征信号的研究工作主要是研究达目标的有效散射截面积。但是,对形状不同、性质各异的各类目标,笼统用一个有效散射面积来描述,就显得过于粗糙,也难以实现有效识别。几十年来,随着电磁散射理论的不断发展以及雷达技术的不断提高,在先进的现代信号处理技术条件下,许多可资识别的雷达目标特征信号相继被发现,从而建立起了相应的目标 识别理论和技术。 随着科学技术的飞速发展,一场以信息技术为基础、以获取信息优势为核心、以高技术武器为先导的军事领域的变革正在世界范围内兴起,夺取信息优势已成为夺取战争主动权的关键。电子信息装备作为夺取信息优势的物质基础,是推进武器装备信息化进程的重要动力,其总体水平和规模将在很大程度上反 映一个国家的军事实力和作战能力。 雷达作为重要的电子信息装备,自诞生起就在战争中发挥了极其重要的作用。但随着进攻武器装备的发展,只具有探测和跟踪功能的雷达也已经不能满足信息化战争的需要,迫切要求雷达不仅要具有探测和跟踪功能,而且还要具有目标识别功能,雷达目标分类与识别已成为现代雷达的重要发展方向,也是未来雷达的基本功能之一。目标识别技术是指:利用雷达和计算机对遥远目标进行辨认的技术。目标识别的基本原理是利用雷达回波中的幅度、相位、频谱和极化等目标特征信息,通过数学上的各种多维空间变换来估算目标的大小、形状、重量和表面层的物理特性参数,最后根据大量训练样本所确定的鉴别函数,在分类器中进行识别判决。目标识别还可利用再入大气层后的大团过滤技术。当目标群进入大气层时,在大气阻力的作用下,目标群中的真假目标由于轻重和阻力的不同而分开,轻目标、外形不规则的目标开始减 速,落在真弹头的后面,从而可以区别目标。 所谓雷达目标识别,是指利用雷达获得的目标信息,通过综合处理,得到目标的详细信息(包括物理尺寸、散射特征等),最终进行分类和描述。随着科学技术的发展,武器性能的提高,对雷达目标识别 提出了越来越高的要求。 目前,目标识别作为雷达新的功能之一,已在诸如海情监控系统、弹道导弹防御系统、防空系统及地球物理、射电天文、气象预报、埋地物探测等技术领域发挥出很大威力。为了提高我国的军事实力,适应未来反导弹、反卫、空间攻防、国土防空与对海军事斗争的需要,急需加大雷达目标识别技术研究的力度雷达目标识别策略主要基于中段、再入段过程中弹道导弹目标群的不同特性。从结构特性看,飞行中段

信号截获与分析

雷达是一种利用电磁波对目标进行探测、定位以及跟踪的无线电探测装置, 具有全天时、全天候和远距离探测的优点【l】。自二战期间在英国发明以来,雷达在 军事上发挥着越来越重要的作用,被誉为现代国防“千里眼”。然而,随着科技的 发展,现代战场电磁环境日趋复杂,各种反雷达措施曾出不穷,雷达的生存空间 也受到了严峻的威胁和挑战【2】。目前,针对于雷达威胁主要来源于现代电子干扰、电子攻击以及反辐射导弹(削时田,并以删尤为严重【31。 从近代发生的几场战争中可以看出,电子对抗越来越激烈,雷达与反雷达之 间不断进行着拉锯战,此消彼长。在1961.1975年的越南战争期间,美军出动“B.52” 等作战飞机数万架次狂轰滥炸,为了打击美军飞机,越南装备了近30个营的苏制 “萨姆”第一、二代地空导弹。据不完全统计,在1964年8月至1968年11月间 的4年时间里,美军损失了915架飞机,其中94.85%是被“萨姆.2”等地空导弹 击落的。1972年12月18日,美军在越南实施地毯式轰炸,结果有30架“B.52” 轰炸机被击落,其中29架是“萨姆.2”所为!而在1991年的海湾战争中,多国部 队平均每天出动约2600架次的飞机,不仅每架战斗机上携带电子干扰设备,还出 动了EA-6B电子干扰飞机100多架,进行远距离干扰支援,大大增强了空中突防 能力。此次战役中,伊军的雷达几乎全部失效,找不到任何飞行目标。由于美军 掌握了全面的制空权,法国的“响尾蛇”雷达根本没有机会连续开机搜索,因为 那样很快就会被美军电子战飞机摧毁。据统计,在此次战争所损失了大量的雷达, 其中60%是被AI洲所摧毁的。在1999年的科索沃战争中,由于电子战飞机的数 量限制,南联盟防空部队用苏联和捷克共同研制的“维拉”雷达与“萨姆.3”防空 导弹相搭档,将脱离了EA-6B保护的F.117A隐身飞机击落,打破了美国“F.117" 无法被发现和击中的神话。这样看来,隐身兵器并非无懈可击,而是对电子对抗 手段有着强烈的依赖性;但南联盟的雷达损失也相当惨重。据统计,科索沃战争中损失的雷达约占2/3,其中90%是由删所摧毁,另外幸存的l/3也是由于在 战争后期不开机才幸免于难。 由此可见,抗ARM技术已成为雷达生存与发展的关键。虽然雷达的抗A蹦技 术有了一定的进展(例如,加装雷达诱饵,加装删告警装置,适时关机,采用 雷达组网等)MJ,但其效果并不理想,对其他精确打击武器的防护也缺乏有效措 施。为避免遭受敌方的电磁干扰或ARM等精确制导武器的摧毁,提升雷达“四抗” 能力¨J,迫切需要发展雷达的隐身技术。现阶段,隐身雷达通常分为三类:被动雷

浅谈雷达干扰与反干扰技术

浅谈雷达干扰与抗干扰技术 近年来,由于电子对抗技术的不断进步,干扰与抗干扰之间的斗争亦日趋激烈。面对日益复杂的电子干扰环境,雷达必须提高其抗干扰能力,才能在现代战争中生存,然后才能发挥其正常效能,为战局带来积极影响。 一、雷达干扰技术 1、对雷达实施干扰的目的和方法 雷达干扰的目的是使敌方雷达无法获得探测、跟踪、定位及识别目标的信息,或使有用的信息淹没在许多假目标中,以致无法提取真正的信息。 根据雷达工作原理,雷达是通过辐射电磁波在空间传播至目标,由目标散射回波被雷达接收实现探测目标。因此对雷达实施干扰可以从传播空间和目标这两处着手。具体来说就是辐射干扰信号,反射雷达信号,吸收雷达信号三个方面。 为了实现对雷达实现有效的干扰,一般需要满足下面几个条件。空间上,干扰方向必须对准雷达,使得雷达能够接收到干扰信号。频域上,干扰频率必须覆盖雷达工作频率或者和雷达工作频点相同。能量上,干扰的能量必须足够大,使得雷达接收机接收的能量大于其最小可接收功率(灵敏度)。极化方式上,干扰电磁波的极化方式应当和雷达接收天线的极化方式尽量接近,使得极化损失最小。信号形式上,干扰的信号形式应当能够对雷达接收机实施有效干扰,增加其信号处理的难度。 2、雷达干扰分类 雷达面临的复杂电子干扰可分为有意干扰和无意干扰两大类,这两者又分别包括有源和无源干扰,具体如下图所示。

有意干扰无意干扰有源干扰无源干扰有源干扰 无源干扰遮盖性干扰欺骗性干扰自然界的人为的欺骗性干扰遮盖性干扰自然界的人为的噪声调频干扰复合调频干扰噪声调相干扰随机脉冲干扰距离欺骗干扰角度欺骗干扰速度欺骗干扰等箔条走廊干扰箔条区域干扰反雷达伪装雷达诱饵宇宙干扰雷电干扰等工业干扰友邻干扰等鸟群干扰等 人工建筑干扰 地物、气象干扰 {友邻物体干扰{{{{{{{{{{{{{{ 雷达干扰 二、雷达抗干扰技术 雷达抗干扰的主要目标是在与敌方电子干扰对抗中保证己方雷达任务的顺利完成。雷达抗干扰措施可分为两大类:(1)技术抗干扰措施;(2)战术抗干扰措施。技术抗干扰措施又可分为两类:一类是使干扰不进入或少进入雷达接收机中;另一类是当干扰进入接收机后,利用目标回波和干扰的各自特性,从干扰背景中提取目标信息。这些技术措施都用于雷达的主要分系统如天线、发射机、接收机、信号处理机中。 1、与天线有关的抗干扰技术 雷达通过天线发射和接收目标信号,但同时可能接收到干扰信号,可以通过在天线上采取某些措施尽量减少干扰信号进入接收机。如提高天线增益,可提高雷达接收信号的信干比;控制天线波束的覆盖与扫描区域可以减少雷达照射干扰机;采用窄波束天线不仅可以获得高的天线增益,还能增大雷达的自卫距离、提高能量密度,还可以减少地面反射的影响,减小多径的误差,提高跟踪精度;采用低旁瓣天线可以将干扰限制在主瓣区间,还可以测定干扰机的角度信息,并能利用多站交叉定位技术,测得干扰机的距

相关文档
最新文档