利用MATLAB_SIMULINK对汽油机进行建模与仿真_嵇国金

利用MATLAB_SIMULINK对汽油机进行建模与仿真_嵇国金
利用MATLAB_SIMULINK对汽油机进行建模与仿真_嵇国金

文章编号:1000-0925(2006)02-051-03

270033

利用MATLAB/SIMULINK 对汽油机进行建模与仿真

嵇国金,王艳敏,王 磊

(同济大学,上海200092)

Modelling and Simulating Gasoline Engines by MATLAB /S IMULINK

JI Guo -jin ,WANG Yan -min ,WANG Lei

(Tong ji University ,Shang hai 200092,China )

A bstract :The mean value engine model is mainly used in developing gasoline engine control system s.This

paper introduced and analy zed the mean value engine model developed by D.Dodbole and S.Karaban.A gasoline en -gine model was made in MATLAB /SIM ULINK based on the mean value engine model.The simulation results in

const load throat zero load and sine load were given.They present that the model is reasonable.

摘要:汽油机平均值模型在汽油机机控制系统开发上具有重要的作用。对由D.Dodbole 和S.Karaban 建立的汽油机平均值模型进行了介绍与分析,按照模块化思想利用M AT -LAB /SIM U LINK 对该模型进行快速建模。给出了该模型在节气门角度为常数外部负载为零以及负载为正弦输入时的仿真结果。结果表明模型是合理的。关键词:内燃机;汽油机;平均值模型;建模与仿真

Key Words :I.C.Engine ;Gasoline Engine ;M ean Value Engine M odel ;M odeling

and Simulation

中图分类号:T K 411

文献标识码:A

1 概述

发动机建模与仿真已经成为发动机设计尤其是发动机控制系统设计的必要途径。在发动机控制系统的设计中,基于平均值模型的发动机模型已经得到

广泛应用。本文利用MATLAB /SIMULINK 对电控汽油机平均值模型进行建模与仿真。模型由进气模块、燃油模块与动力输出模块组成,主要应用在以下几个方面[1~4]:(1)作为非实时发动机模型来测试发动机控制算法;(2)作为实时发动机模型作硬件在环测试;(3)作为系统模型评估发动机传感器和执行器模型;(4)作为动力系统或车辆动态模型的子系统。2 汽油机平均值模型的建立

本文利用文献[5]建立的汽油机平均值模型。

收稿日期:2004-08-03

基金项目:上海汽车工业基金(0333)

作者简介:嵇国金(1971-),男,讲师,主要研究方向为智能测量与控制、实时系统仿真,E -mail :jiguojin @https://www.360docs.net/doc/bb1682199.html, 。

该模型由进气模块、燃油模块和动力输出模块组成(图1),废气再循环模块未包含在该模型中

图1 汽油机平均值模型

2.1 燃油模块

计算进入发动机燃烧室的燃油量。其中所用的

 第27卷第2期 内 燃 机 工 程 V o l.27No.2 2006年4月 Chinese I nter nal Co mbustio n Engine Engineering A pr.2006

52内 燃 机 工 程 2006年第2期 

T f =0.1065 v e +15.10

(18)I e v

e =T i -T

f -T a

(19)

式中,I e 为发动机有效惯量;T i 为发动机标称扭矩;T f 为发动机摩擦扭矩;T a 为附加扭矩。

该发动机平均值模型有三个状态参数(m a ,m

fi ,v e ),两控制参数(β,S A )以及一控制变量(α)。下表给出对6缸、2.7L 汽油机进行仿真所需的参数值。

表 仿真参数值

MAX 0.1843kg /s V m 0.0038m 3

V e 0.0027m 3I e 0.1454

kg /m 2

C T 498636N m /(k g s -1)Δt it 5.48/v e s Δt s t 1.3/ωv s T m 300K

M a 28.84g /m ol R

8314.3J /(m ol K )

3 仿真

利用MA TLAB /SIM U LINK 建立的汽油机平均值模型,可以进行各种类型的仿真。这里仅对发动

机开环动力学进行仿真。

首先,进行了外部扭矩为零,节气门开度为常数时的发动机速度瞬态响应仿真,如图2所示。

图2 单位节气门角度下发动机速度响应输出

速度瞬态响应表明在仿真开始时有一定时间的延迟,稳态速度约为620r /min 。初始时间延迟反映了方程(14)中时间延迟系数的存在。

当节气门开度α=0.6rad ,外部扭矩为10sin t 时发动机速度瞬态响应(图3)。该仿真显示稳态速度约为370r /min ,并且由于外部负载变化发动机速度有一定的波动。因此,为了降低速度输出对外部负载

变化的敏感性,有必要采用某种反馈控制策略。

 图3 α=0.6rad ,外部负载为10sin t 时发动机速度响应输出

4 结论

本文用M AT LAB /SIM ULINK 对汽油机平均值模型进行模块化建模。并给出该模型在空载及正旋负载下的响应结果。结果表明该模型是合理,具有较好的应用价值。参考文献:

[1] M os kw a J J.Automotive engine m odeling for real -time control

[D ].US A :M IT ,1998.

[2] Silverlind D.M ean valu e engine m odeling with modelica [D ].

Lin koeping s Univers itet ,2001.

[3] W eeks RW ,M oskw a J J.Au tomotive engine modeling for real -time control u sing M AT LAB /S IM ULINK [C ].S AE 950417.[4] Chang C F ,Fekete N P ,Pow ell J D.Engine air -fuel ratio con -trol using an even t -based obser [C ].S AE 930766.

[5] Godbole D ,Karaban S.Automotive powertrain modeling ,s im -ulation and control using in tegrated system 's case tools [M ].In -teg rated Sys tems ,In.S an ta C lara ,CA.

[6] Cho D ,H edrick J K.Automotive powertrain m odeling for con -trol [J ].ASM E J.of Dynamic Systems ,M easurement an d Con -trol ,1988,114(4):568~576.[7] 孙

磊,吴

昊,黄海燕,等.汽油机平均值模型在硬件再环仿真

中的应用[J ].车用发动机,2002(4):27~29.

(编 辑:孔 毅)

53 2006年第2期 内 燃 机 工 程

工业电力系统动态建模和仿真分析

工业电力系统动态建模和仿真分析 (Industrial power system dynamic modeling and simulation analysis) 一、概述 工业电力系统: 大型电力系统复杂性:本身有发电机、电动机 中型工业电力系统:即使无发电机,也包括大量中压电动机 意义、内容: 1、确定通过动态建模与仿真分析验证: 1、机组的暂态稳定(极限切除时间) 2、特定的大容量电动机的电压稳定 3、校验电流电压型保护的定植 4、确定低频减载与孤网运行 二、介绍原件与组成: (一)、同步电机实用模型: 1、意义:对于dq0坐标下同步电机方程,如果单独考虑与定子d绕组、q绕组相独立的零轴绕组,则在计及d,q,f,D,Q5个绕组的电磁过渡过程(以绕组磁链或电流为状态量)以及转子机械过渡过程(以ω及δ为状态量)时,电机为七阶模型。对于一个含有上百台发电机的多机电力系统,若再加上其励磁系统、调速器和原动机的动态方程,则将会出现“维数灾”给分析计算带来极大的困难。因此在实际工程问题中,常对同步电机的数学模型作不同程度的简化,以便在不同的场合下使用。 2、对派克方程中的转子变量 若,则 可用定子侧等效量取代原来的转子量,得到用这些实用等效量表示的同步电机实用方程。原派克方程中的定子量,保留易测量及计算的和及和,而消去和两个变量。 3、三阶实用模型 其简单而又能计算励磁系统动态,因而广泛的应用于精度要求不十分高,但仍需计及励磁系统动态的电力系统动态分析中,较适用于凸极机。 模型导出基于: (1)、忽略定子d绕组、q绕组的暂态,即定子电压方程中取P=P=0 (2)、在定子电压方程中,设ω≈(p.u.)在速度变化不大的过渡过程中,其引起的误差很小。 (3)、忽略D绕组、Q绕组,其作用可在转子运动方程补入阻尼项来近似考虑。 及以下三个定子侧等效实用变量: 为消除转子励磁绕组的变量 、 定子励磁电动势 电机(q轴)空载电动势 电机瞬变电动势 (二)、励磁系统数学模型: 描述同步发电机励磁系统(包括励磁调节器)物理过程的数学方程。是电力系统机电暂态过程数学模型的重要组成部分,主要应用于电力系统稳定计算。

Matlab Simulink 仿真步骤

MATLAB基础与应用简明教程 张明等编著 北京航空航天大学出版社(2001.01) MATLAB软件环境是美国New Mexico大学的Cleve Moler博士首创的,全名为MATrix LABoratory(矩阵实验室)。它建立在20世纪七八十年代流行的LINPACK(线性代数计算)和ESPACK(特征值计算)软件包的基础上。LINPACK和ESPACK软件包是从Fortran语言开始编写的,后来改写为C语言,改造过程中较为复杂,使用不便。MA TLAB是随着Windows环境的发展而迅速发展起来的。它充分利用了Windows环境下的交互性、多任务功能语言,使得矩阵计算、数值运算变得极为简单。MA TLAB语言是一种更为抽象的高级计算机语言,既有与C语言等同的一面,又更为接近人的抽象思维,便于学习和编程。同时,它具有很好的开放性,用户可以根据自己的需求,利用MA TLAB提供的基本工具,灵活地编制和开发自己的程序,开创新的应用。 本书重点介绍了MA TLAB的矩阵运算、符号运算、图形功能、控制系统分析与设计、SimuLink仿真等方面的内容。 Chap1 MATLAB入门与基本运算 本章介绍MATLAB的基本概念,包括工作空间;目录、路径和文件的管理方式;帮助和例题演示功能等。重点介绍矩阵、数组和函数的运算规则、命令形式,并列举了可能得到的结果。由于MA TLAB的符号工具箱是一个重要分支,其强大的运算功能在科技领域有特殊的帮助作用。 1.1 MATLAB环境与文件管理 1.2 工作空间与变量管理 1.2.1 建立数据 x1=[0.2 1.11 3]; y1=[1 2 3;4 5 6]建立一维数组x1和二维矩阵y1。分号“;”表示不显示定义的数据。 MATLAB还提供了一些简洁方式,能有规律地产生数组: xx=1:10 %xx从1到10,间隔为1 xx=-2:0.5:1 %xx从-2到1,间隔为0.5 linespace命令等距离产生数组,logspace在对数空间中等距离产生数组。对于这一类命令,只要给出数组的两端数据和维数就可以了。 xx=linespace(d1,d2,n) %表示xx从d1到d2等距离取n个点 xx=logspace(d1,d2,n) %表明xx从10d1到10d2等距离取n个点 1.2.2 who和whos命令 who: 查看工作空间中有哪些变量名 whos: 了解这些变量的具体细节 1.2.3 exist命令 查询当前的工作空间内是否存在一个变量,可以调用exist()函数来完成。 调用格式:i=exist(…A?); 式中,A为要查询的变量名。返回的值i表示A存在的形式: i=1 表示当前工作空间内存在一个变量名为A的矩阵; i=2 表示存在一个名为A.m的文件; i=3 表示MATLAB的工作路径下存在一个名为A.mex的文件;

基于MATLAB的变压器仿真 与分析

于MATLAB_Simulink的牵引变压器建模与仿真 基于MATLAB/Simulink的牵引变压器建模与仿真徐(西安铁路局安康供电段新陕西汉中 723000)摘要:针对多种牵引变压器接线方式,建立数学模型,基于Matlab/Simulink仿真软件,建立牵引变压器的仿真模型,并验证数学模型和仿真模型的一致性。利用所建立仿真模型对不同接线形式牵引变压器在不同条件下对公用电网产生的谐波和负序影响进行仿真试验,对研究各种类型的牵引变压器特性在我国电气化铁路的应用提供条件。关键词:牵引变压器;数学模型;仿真模型;Matlab/Simulink 中图分类号:U223.6 文献标识码:A 文章编号:1671-7597(2011)0610061-03 牵引变压器按其特性可分为平衡接线和不平衡接线。其中不平衡接线有单相接线、Vv接线和YNd11接线;平衡接线是试图实现三相两相对称变换而提出的,主要代表方式有Scott,Leblanc、Kubler、Wood-bridge、阻抗匹配接线等。本次主要总结了常用牵引变压器的特点并建立数学模型,包括每种牵引变压器的原理结构、原次边电气量关系等,基于Matlab/Simulink软件建立牵引变压器仿真模型,并对牵引变压器在不同条件下的负序、谐波特性的进行了研究. 1 牵引变压器数学模型研究 1.1 YNd11接线 YNd11变压器接线原理如下图所示,如果忽略激磁电流及其漏阻抗压降,二次侧绕组ac相与一次侧绕组A相同相,cb相与C相同相。由于变压器一次侧绕组A,B,C相与电力系统的相序一致,A相滞后C相,对应的二次侧ac也滞后cb相[2]。其中Z为牵引端口对应变压器漏抗,和β相的端口电压。 1.2 Vv接线 Vv接线牵引变压器接线原理如图2所示。为二次侧空载相即α相图2 Vv接线牵引变压器设Vv接线变压器一次侧、二次侧绕组匝数分别为可得电流输入输出关系[3]:和,电压输入输出关系如下:图1 YNd11接线牵引变压器设YNd11接线变压器一次侧、二次侧绕组匝数分别为和假设变压器原边中性点接地,可以得出一次侧三相电流。,其中为牵引端口对应变压器漏抗,为二次侧空载相即α相和β相的端口电压。 1.3 Scott接线 Scott接线变压器(又称T形接法变压器)属于能完成三相-两相变换的平衡变压器,Scott接线牵引变压器接线原理如图3所示。图3 Scott牵引变压器接线原理图 1 61 设一次侧绕组BC的匝数为次侧绕组AD的匝数为,记,二次的绕组ad、bc的匝数为,则一。可得电流输入输出关系[4]:把一次侧绕组电流用相电流替换,即为:式中,为从三相端子流进变压器的电流。输出端口电压方程为:图6 YNd11接线牵引变压器两供电臂输出电压波形从电压输出波形中可以得到α供电臂电压波形超前β供电臂电压波形120°,在对称阻性负载下,两臂电流输出波形幅值相同,相位相差120°,满足理论值。 2.2 Vv接线牵引变压器 Vv 接线牵引变压器是由两个单相牵引变压器并联而成,仿真模型如图7所示.在仿真模型中牵引变压器T1和T2的原、次边变比设置为110kV/27.5kV。对,于

电力系统建模及仿真课程设计

某某大学 《电力系统建模及仿真课程设计》总结报告 题目:基于MATLAB的电力系统短路故障仿真于分析 姓名 学号 院系 班级 指导教师

摘要:本次课程设计是结合《电力系统分析》的理论教学进行的一个实践课程。 电力系统短路故障,故障电流中必定有零序分量存在,零序分量可以用来判断故障的类型,故障的地点等,零序分量作为电力系统继电保护的一个重要分析量。运用Matlab电力系统仿真程序SimPowerSystems工具箱构建设计要求所给的电力系统模型,并在此基础上对电力系统多中故障进行仿真,仿真波形与理论分析结果相符,说明用Matlab对电力系统故障分析的有效性。实际中无法对故障进行实验,所以进行仿真实验可达到效果。 关键词:电力系统;仿真;短路故障;Matlab;SimPowerSystems Abstract: The course design is a combination of power system analysis of the theoretical teaching, practical courses. Power system short-circuit fault, the fault current must be zero sequence component exists, and zero-sequence component can be used to determine the fault type, fault location, the zero-sequence component as a critical analysis of power system protection. SimPowerSystems Toolbox building design requirements to the power system model using Matlab power system simulation program, and on this basis, the power system fault simulation, the simulation waveforms with the theoretical analysis results match, indicating that the power system fault analysis using Matlab effectiveness. Practice can not fault the experiment, the simulation can achieve the desired effect. Keywords: power system; simulation; failure; Matlab; SimPowerSystems - 1 - 目录 一、引言 ............................................ - 3 -

MATLAB及在数学建模中的应用

第1讲MATLAB及 在数学建模中的应用 ? MatLab简介及基本运算?常用计算方法 ?应用实例

一、 MatLab简介及基本运算 1.1 MatLab简介 1.2 MatLab界面 1.3 MatLab基本数学运算 1.4 MatLab绘图

1.1 MatLab简介?MATLAB名字由MATrix和 LABoratory 两词组成。20世纪七十年代后期, 美国新墨西哥大学计算机科学系主任Cleve Moler教授为减轻学生编程负担,为学生设计了一组调用LINPACK和EISPACK库程序的“通俗易用”的接口,此即用FORTRAN编写的萌芽状态的MATLAB。

?经几年的校际流传,在Little的推动下,由Little、Moler、Steve Bangert合作,于1984年成立了MathWorks公司,并把MATLAB正式推向市场。从这时起,MATLAB的内核采用C语言编写,而且除原有的数值计算能力外,还新增了数据图视功能。

?1997年春,MATLAB5.0版问世,紧接着是5.1、5.2、5.3、6.0、6.1、6.5、7.0版。现今的MATLAB拥有更丰富的数据类型和结构、更友善的面向对象、更加快速精良的图形可视、更广博的数学和数据分析资源、更多的应用开发工具。 ?20世纪九十年代的时候,MATLAB已经成为国际控制界公认的标准计算软件。

?MATLAB具有用法简易、可灵活运用、程式结构强又兼具延展性。以下为其几个特色: ①可靠的数值运算和符号计算。在MATLAB环境中,有超过500种数学、统计、科学及工程方面的函 数可使用。 ②强大的绘图功能。 MATLAB可以绘制各种图形,包括二维和三维图形。 ③简单易学的语言体系。 ④为数众多的应用工具箱。

MATLAB Simulink系统建模与仿真 实验报告

MATLAB/Simulink 电力系统建模与仿真 实验报告 姓名:****** 专业:电气工程及其自动化 班级:******************* 学号:*******************

实验一无穷大功率电源供电系统三相短路仿真 1.1 无穷大功率电源供电系统仿真模型构建 运行MATLAB软件,点击Simulink模型构建,根据电路原理图,添加下列模块: (1)无穷大功率电源模块(Three-phase source) (2)三相并联RLC负荷模块(Three-Phase Parallel RLC Load) (3)三相串联RLC支路模块(Three-Phase Series RLC Branch) (4)三相双绕组变压器模块(Three-Phase Transformer (Two Windings)) (5)三相电压电流测量模块(Three-Phase V-I Measurement) (6)三相故障设置模块(Three-Phase Fault) (7)示波器模块(Scope) (8)电力系统图形用户界面(Powergui) 按电路原理图连接线路得到仿真图如下: 1.2 无穷大功率电源供电系统仿真参数设置 1.2.1 电源模块 设置三相电压110kV,相角0°,频率50Hz,接线方式为中性点接地的Y形接法,电源电阻0.00529Ω,电源电感0.000140H,参数设置如下图:

1.2.2 变压器模块 变压器模块参数采用标幺值设置,功率20MVA,频率50Hz,一次测采用Y型连接,一次测电压110kV,二次侧采用Y型连接,二次侧电压11kV,经过标幺值折算后的绕组电阻为0.0033,绕组漏感为0.052,励磁电阻为909.09,励磁电感为106.3,参数设置如下图: 1.2.3 输电线路模块 根据给定参数计算输电线路参数为:电阻8.5Ω,电感0.064L,参数设置如下图: 1.2.4 三相电压电流测量模块 此模块将在变压器低压侧测量得到的电压、电流信号转变成Simulink信号,相当于电压、电流互感器的作用,勾选“使用标签(Use a label)”以便于示波器观察波形,设置电压标签“Vabc”,电流标签“Iabc”,参数设置如下图:

PSCAD的电力系统仿真大作业3

仿真计算 1、在PSCAD中建立典型的同步发电机模型,对同步发电机出口三相短路进行仿真研究。要求: (1)运行“同步发电机短路”模型,截取定子三相短路电流波形,并对波形进行分析,验证与理论分析中包含的各种分量是否一致; 图一同步发电机短路模型

图二、定子三相短路电流 定子三相短路电流中含有直流分量和交流分量,其中周期分量会衰减。三相短路电流直流分量大小不等,但衰减规律相同,均按指数规律衰减,衰减时间常数为Ta,由定子回路电阻和等值电感决定,大约在0.2s。交流分量也按指数规律衰减,它包括两个衰减时间常数,分为次暂态过程、暂态过程和稳态过程。 (2)修改电抗参数Xd(Xd’,X’’d),增加或者减小,截取定子三相电流,并与第一步结果对比分析; 图一是Xd`=0.314 p.u,Xd``=0.280 p.u情况下的定子电流波形;图二是Xd`=0.514 p.u, Xd``=0.280 p.u情况下的定子电流波形。显然,随着Xd`的增大定子的电流在减少。

图三、定子三相短路电流 (3)修改时间常数Td(Td’,T’’d),增加或者减小,截取定子三相电流,并与第一步结果对比分析。 参数Td’=6.55s ,Td”=0.039s时定子电流如图一所示;当参数变为Td’=3.55s ,Td”=0.039s是定子电流如图三所示,显然

图四、定子三相短路电流 2、利用暂态仿真软件对下面的简单电网进行建模,对模型中各元件参数进行详细说明,并进行短路计算。将故障点的电流电压波形及线路M端的电流电压波形、相量图粘贴到课程报告上。 要求:

(1)短路类型为①三相故障;②A相接地;③BC两相故障。 (2)两端系统电势夹角取15o δ=。 (3)故障点设置为线路MN中点(25km处)。 (4)仿真结果包括M、N两侧和短路点处的三相电压、电流的瞬时值波形和短路发生后时刻的三相电压、电流相量图。 三、课程学习心得 通过本课程的学习,你有哪些体会和心得,请写出来。可以从以下几个方面考虑,但不局限于这些方面:通过课程你学到了哪些知识;学会了哪些方法;对电力系统的认识;对课程的建议等。 课程的开始复习了一下简单的电力系统稳态分析部分,然后就进行了课程的重点就是电力系统的暂态分析,其中包括PARK变换、标么值下的磁链方程和电压方程、同步发电机各种电势的表达式、发电机阻抗的概述、(次)暂态电抗和(次)暂态电势、发电机三相短路电流、对称分量法、叠加定理、电力系统简单故障分析。学习了几种电力系统分析中的方法,例如分析同步发电机短路时PARK变换将静止三相坐标系的量转化为旋转坐标系dq0的量,还有分析不对称故障时对称分量法转化到相对简单的对称故障分析中。

基于MATLABsimulink的船舶电力系统建模与故障仿真【开题报告】

开题报告 电气工程及其自动化 基于MATLAB/simulink的船舶电力系统建模与故障仿真 一、综述本课题国内外研究动态,说明选题的依据和意义 1、本课题国内外研究动态 船舶电力系统是一个独立的、小型的完整电力系统,主要由电源设备、配电系统和负载组成。船舶电站是船上重要的辅助动力装置,供给辅助机械及全船所需电力。它是船舶电力系统的重要组成部分,是产生连续供应全船电能的设备。船舶电站是由原动机、发电机和附属设备(组合成发电机组)及配电板组成的。最近几年,船舶电站采用电子技术、计算机控制技术,实现船舶电站自动化和船舶电站的全自动控制,实现无人值班机舱。船舶自动化技术正朝着微机监控、全面电气、综合自动化方向发展。船舶电站运行的可靠性、经济性及其自动化程度对保证船舶的安全运营具有极其重要的意义。 国外的某些造船业发达的国家在二十世纪中叶就着手船舶电力系统领域的探索,在船舶电力系统稳态、暂态过程等方面进行了细致的研究。近些年来,挪威挪控公司困.R.co咖l)、英国船商公司(TRANSS)、德国西门子公司(SIEMENS)、-日本三菱公司(MITSUBISHD等大公司开始进行船舶电力系统的建模与分析方面的研究工作。国内针对船舶电力系统的研究起步相对较晚,虽然取得了一定成果,但在理论先进性、系统完整性等方面还存在一定差距,这也在一定程度上导致了目前国产船电设备与世界主要造船国家船电设备存在一定差距、装船率偏低等一系列问题。 目前,国内外最常用的建模软件有四中:分别是:matlab、lingo、Mathematica 和SAS。MATLAB用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。Matlab开发效率高,自带很多数学计算函数,对矩阵支持好。Lingo可以用于求解非线性规划,也可以用于一些线性和非线性方程组的求解等,功能十分强大,是求解优化模型的最佳选择。Mathematica是一款科学计算软件,很好地结合了数值和符号计算引擎、图形系统、编程语言、文本系统、和与其他应用程序的高级连接。SAS 是一个模块化、集成

数学建模matlab例题参考及练习

数学实验与数学建模 实验报告 学院: 专业班级: 姓名: 学号: 完成时间:年月日

承 诺 书 本人承诺所呈交的数学实验与数学建模作业都是本人通过学习自行进行编程独立完成,所有结果都通过上机验证,无转载或抄袭他人,也未经他人转载或抄袭。若承诺不实,本人愿意承担一切责任。 承诺人: 年 月 日 数学实验学习体会 (每个人必须要写字数1200字以上,占总成绩的20%) 练习1 一元函数的图形 1. 画出x y arcsin =的图象. 2. 画出x y sec =在],0[π之间的图象. 3. 在同一坐标系中画出x y =,2x y =,3 x y = ,3x y =,x y =的图象. 4. 画出3 2 3 2)1()1()(x x x f + +-=的图象,并根据图象特点指出函数)(x f 的奇偶性. 5. 画出)2ln(1++=x y 及其反函数的图象. 6. 画出3 21+=x y 及其反函数的图象.

练习2 函数极限 1.计算下列函数的极限. (1) x x x 4 cos 1 2 sin 1 lim 4 - + π → . 程序: sym x; f=(1+sin(2*x))/(1-cos(4*x)); limit(f,x,pi/4) 运行结果: lx21 ans = 1 (2). 程序: sym x; f=(1+cos(x))^(3*sec(x)); limit(f,x,pi/2) 运行结果: lx22 ans = exp(3) (3) 2 2 ) 2 ( sin ln lim x x x - π π → . 程序: sym x; f=log(sin(x))/(pi-2*x)^2; limit(f,x,pi/2) 运行结果: lx23 ans = -1/8 (4) 2 1 2 lim x x e x →. 程序: x x x sec 3 2 ) cos 1( lim+ π →

MATLAB的建模和仿真

课程设计说明书 题目:基于Matlab的IIR滤波器设计与仿真班级:2012 级电气五班 姓名:王璐 学号:201295014178 指导教师:张小娟 日期:2015年 1 月12日

课程设计任务书

基于MATLAB的IIR滤波器设计与仿真 前言 数字信号处理(digital signal processing,DSP)是从20世纪60年代以来,随着信息学科和计算机学科的高速发展而迅速发展起来的一门新兴学科。数字信号处理是把信号用数字或符号表示的序列,通过计算机或通用(专用)信号处理设备,用数字的数值计算方法处理(例如滤波、变换、压缩、增强、估计、识别等),以达到提取有用信息便于应用处理的目的。数字信号处理系统有精度高、灵活性高、可靠性高、容易大规模集成、时分复用、可获得高性能指标、二维与多维处理等特点。正是由于这些突出的特点,使得它在通信、语音、雷达、地震测报、声呐、遥感、生物医学、电视、仪器中得到愈来愈广泛的应用。在数字信号处理中起着重要的作用并已获得广泛应用的是数字滤波器(DF,Digital Filter),根据其单位冲激响应函数的时域特性可分为两类:无限冲激响应IIR(Infinite Impulse Response)滤波器和有限冲激响应FIR(Finite Impulse Response)滤波器。MATLAB的基本数据单位是矩阵,它的指令表达式与数学、工程中常用的形式十分相似,故用MATLAB来结算问题要比用C,FORTRAN等语言完成相同的事情简捷得多,并且MATLAB也吸收了像Maple等软件的有点,使MATLAB成为一个强大的数学软件,在新的版本中也加入了对C,FORTRAN,C++,JA V A的支持。可以直接调用,用户也可以将自己编写的实用程序导入到MATLAB函数库中方便自己以后调用。 1 数字滤波器概述 数字滤波器是对数字信号实现滤波的线性时不变系统。数字滤波实质上是一种运算过程,实现对信号的运算处理。输入数字信号(数字序列)通过特定的运算转变为输出的数字序列,因此,数字滤波器本质上是一个完成特定运算的数字计算过程,也可以理解为一台计算机。描述离散系统输出与输入关系的卷积和差分方程只是给数字信号滤波器提供运算规则,使其按照这个规则完成对输入数据的处理。时域离散系统的频域特性:Y(eωj)=X(eωj)H(eωj) 其中Y(eωj)、X(eωj)分别是数字滤波器的输出序列和输入序列的频域特性(或称为

电力系统仿真作业(电子版)

电 力 系 统 仿 真 作 业 论 文 电控学院 电气0903 刘娟 0906060301

离散可编程三相电压源PLL和可变频率正序电压和功率测量 the Discrete 3-Phase Programmable Voltage Source PLL and Variable-Frequency Positive-Sequence Voltage and Power Measurements 线路图: 线路结构: 一个25KV,100MVA的短路等效电路网络给一个5MW,5Mvar的负载供电。电源的内部电压通过离散的三相可编程电压源装置来提供。三相电压电流测量装置用来检测三个负载电压和电流。 离散的三相PLL装置用来测量频率,也产生一个基于频率变化的系统电压信号。PLL用来驱动两个测量装置,并把变化的频率考虑在内。其中一个用来计算正序负载电压的标幺值,另外一个用来计算负载的有功和无功功率。这两个装置和PLL必须初始化,以保证初始处在稳态。 PLL和两个测量装置分别在Extras/Discrete in the Control Block 和 Extras/Discrete Measurements中可以找到。 整个系统(包括网络,PLL和测量装置)以50us的采集时间来离散。仿真时间4.0秒,仿真参数ode45(Dormand-Prince)。

基本原理: PLL的概念 PLL其实就是锁相环路,简称为锁相环。许多电子设备要正常工作,通常需要外部的输入信号与内部的振荡信号同步,利用锁相环路就可以实现这个目的。锁相环路是一种反馈控制电路,简称锁相环(PLL)。目前锁相环主要有模拟锁相环,数字锁相环以及有记忆能力(微机控制的)锁相环。 PLL的特点 锁相环的特点是:利用外部输入的参考信号控制环路内部振荡信号的频率和相位。因锁相环可以实现输出信号频率对输入信号频率的自动跟踪,所以锁相环通常用于闭环跟踪电路。锁相环在工作的过程中,当输出信号的频率与输入信号的频率相等时,输出电压与输入电压保持固定的相位差值,即输出电压与输入电压的相位被锁住,这就是锁相环名称的由来。 PLL的组成 锁相环通常由鉴相器(PD)、环路滤波器(LF)和压控振荡器(VCO)三部分组成,锁相环组成的原理框图如下图所示。 锁相环中的鉴相器又称为相位比较器,它的作用是检测输入信号和输出信号的相位差,并将检测出的相位差信号转换成uD(t)电压信号输出,该信号经低通滤波器滤波后形成压控振荡器的控制电压uC(t),对振荡器输出信号的频率实施控制。

simulink-matlab仿真教程

simulink matlab 仿真环境教程 Simulink 是面向框图的仿真软件。 演示一个Simulink 的简单程序 【例1.1】创建一个正弦信号的仿真模型。 步骤如下: (1) 在MATLAB 的命令窗口运行simulink 命令,或单击工具栏中的图标,就可以打开Simulink 模块库浏览器 (Simulink Library Browser) 窗口,如图1.1所示。 (2) 单击工具栏上的图标或选择菜单“File ”——“New ”——“Model ”,新建一个名为“untitled ”的空白 模型窗口。 (3) 在上图的右侧子模块窗口中,单击“Source ”子模块库前的“+”(或双击Source),或者直接在左侧模块和工具箱栏单击Simulink 下的Source 子模块库,便可看到各种输入源模块。 (4) 用鼠标单击所需要的输入信号源模块“Sine Wave ”(正弦信号),将其拖放到的空白模型窗口“untitled ”,则“Sine Wave ”模块就被添加到untitled 窗口;也可以用鼠标选中“Sine Wave ”模块,单击鼠标右键,在快捷菜单中选择“add to 'untitled'”命令,就可以将“Sine Wave ”模块添加到untitled 窗口,如图1.2 所示。 图7.1 Simulink 界面

(5) 用同样的方法打开接收模块库“Sinks”,选择其中的“Scope ”模块(示波器)拖放到“untitled”窗口中。 (6) 在“untitled”窗口中,用鼠标指向“Sine Wave”右侧的输出端,当光标变为十字符时,按住鼠标拖向“Scope”模块的输入端,松开鼠标按键,就完成了两个模块间的信号线连接,一个简单模型已经建成。如图1.3所示。 (7) 开始仿真,单击“untitled”模型窗口中“开始仿真”图标,或者选择菜单“Simulink”——“Start”,则仿真开始。双击“Scope”模块出现示波器显示屏,可以看到黄色的正弦波形。如图1.4所示。 (8) 保存模型,单击工具栏的图标,将该模型保存为“Ex0701.mdl”文件。 1.2 Simulink的文件操作和模型窗口 1.2.1 Simulink的文件操作 1. 新建文件 新建仿真模型文件有几种操作: ?在MATLAB的命令窗口选择菜单“File”“New”“Model”。 图7.2 Simulink界面 图7.3 Simulink模型窗口 图7.4 示波器窗口

matlab在数学建模中的应用

Matlab在数学建模中的应用 数学建模是通过对实际问题的抽象和简化,引入一些数学符号、变量和参数,用数学语言和方法建立变量参数间的内在关系,得出一个可以近似刻画实际问题的数学模型,进而对其进行求解、模拟、分析检验的过程。它大致分为模型准备、模型假设、模型构成、模型求解、模型分析、模型检验及应用等步骤。这一过程往往需要对大量的数据进行分析、处理、加工,建立和求解复杂的数学模型,这些都是手工计算难以完成的,往往在计算机上实现。在目前用于数学建模的软件中,matlab 强大的数值计算、绘图以及多样化的工具箱功能,能够快捷、高效地解决数学建模所涉及的众多领域的问题,倍受数学建模者的青睐。 1 Matlab在数学建模中的应用 下面将联系数学建模的几个环节,结合部分实例,介绍matlab 在数学建模中的应用。 1.1 模型准备阶段 模型准备阶段往往需要对问题中的给出的大量数据或图表等进行分析,此时matlab的数据处理功能以及绘图功能都能得到很好的应用。 1.1.1 确定变量间关系 例1 已知某地连续20年的实际投资额、国民生产总值、物价指数的统计数据(见表),由这些数据建立一个投资额模型,根据对未来国民生产总值及物价指数的估计,预测未来的投资额。

表1 实际投资额、国民生产总值、物价指数的统计表 记该地区第t年的投资为z(t),国民生产总值为x(t),物价指数为y(t)。 赋值: z=[90.9 97.4 113.5 125.7 122.8 133.3 149.3 144.2 166.4 195 229.8 228.7 206.1 257.9 324.1 386.6 423 401.9 474.9 424.5]' x=[596.7 637.7 691.1 756 799 873.4 944 992.7 1077.6 1185.9 1326.4 1434.2 1549.2 1718 1918.3 2163.9 2417.8 2631.6 2954.7 3073]' y=[0.7167 0.7277 0.7436 0.7676 0.7906 0.8254 0.8679 0.9145 0.9601 1 1.0575 1.1508 1.2579 1.3234 1.4005 1.5042 1.6342 1.7842 1.9514 2.0688]' 先观察x与z之间,y与z之间的散点图 plot(x,z,'*') plot(y,z,'*') 由散点图可以看出,投资额和国民生产总值与物价指数都近似呈

Matlab通信系统建模与仿真例题源代码-第三章

% ch3example1A.m clear; f_p=2400; f_s=5000; R_p=3; R_s=25; % 设计要求指标 [n, fn]=buttord(f_p,f_s,R_p,R_s, 's'); % 计算阶数和截止频率 Wn=2*pi*fn; % 转换为角频率 [b,a]=butter(n, Wn, 's'); % 计算H(s) f=0:100:10000; % 计算频率点和频率范围 s=j*2*pi*f; % s=jw=j*2*pi*f H_s=polyval(b,s)./polyval(a,s); % 计算相应频率点处H(s)的值 figure(1); subplot(2,1,1); plot(f, 20*log10(abs(H_s))); % 幅频特性 axis([0 10000 -40 1]); xlabel('频率Hz');ylabel('幅度dB'); subplot(2,1,2); plot(f, angle(H_s)); % 相频特性 xlabel('频率Hz');ylabel('相角rad'); figure(2); freqs(b,a); % 也可用指令freqs直接画出H(s)的频率响应曲线。 % ch3example1B.m clear; f_p=2400; f_s=5000; R_p=3; R_s=25; % 设计要求指标 [n, fn]=ellipord(f_p,f_s,R_p,R_s,'s'); % 计算阶数和截止频率 Wn=2*pi*fn; % 转换为角频率 [b,a]=ellip(n,R_p,R_s,Wn,'s'); % 计算H(s) f=0:100:10000; % 计算频率点和频率范围 s=j*2*pi*f; % s=jw=j*2*pi*f H_s=polyval(b,s)./polyval(a,s); % 计算相应频率点处H(s)的值 figure(1); subplot(2,1,1); plot(f, 20*log10(abs(H_s))); % 幅频特性 axis([0 10000 -40 1]); xlabel('频率Hz');ylabel('幅度dB'); subplot(2,1,2); plot(f, angle(H_s)); % 相频特性 xlabel('频率Hz');ylabel('相角rad'); figure(2); freqs(b,a); % 也可用指令freqs直接画出H(s)的频率响应曲线。 % ch3example2A.m f_N=8000; % 采样率 f_p=2100; f_s=2500; R_p=3; R_s=25; % 设计要求指标 Ws=f_s/(f_N/2); Wp=f_p/(f_N/2); % 计算归一化频率 [n, Wn]=buttord(Wp,Ws,R_p,R_s); % 计算阶数和截止频率 [b,a]=butter(n, Wn); % 计算H(z) figure(1); freqz(b,a, 1000, 8000) % 作出H(z)的幅频相频图, freqz(b,a, 计算点数, 采样率)

matlab数学建模实例

第四周 3. 中的三个根。 ,在求8] [0,041.76938.7911.1-)(2 3=-+=x x x x f function y=mj() for x0=0:0.01:8 x1=x0^3-11.1*x0^2+38.79*x0-41.769; if (abs(x1)<1.0e-8) x0 end end 4.分别用简单迭代法、埃特金法、牛顿法求解方程,并比较收敛性与收敛速度(ε分别取10-3、10-5、10-8)。 简单迭代法: function y=jddd(x0) x1=(20+10*x0-2*x0^2-x0^3)/20; k=1; while (abs(x1-x0)>=1.0e-3) x0=x1; x1=(20+10*x0-2*x0^2-x0^3)/20;k=k+1; end x1 k 埃特金法: function y=etj(x0) x1=(20-2*x0^2-x0^3)/10; x2=(20-2*x1^2-x1^3)/10; x3=x2-(x2-x1)^2/(x2-2*x1+x0); k=1; while (abs(x3-x0)>=1.0e-3) x0=x3; x1=(20-2*x0^2-x0^3)/10; x2=(20-2*x1^2-x1^3)/10; x3=x2-(x2-x1)^2/(x2-2*x1+x0);k=k+1; end 2 ,020102)(023==-++=x x x x x f

x3 k 牛顿法: function y=newton(x0) x1=x0-fc(x0)/df(x0); k=1; while (abs(x1-x0)>=1.0e-3) x0=x1; x1=x0-fc(x0)/df(x0);k=k+1; end x1 k function y=fc(x) y=x^3+2*x^2+10*x-20; function y=df(x) y=3*x^2+4*x+10; 第六周 1.解例6-4(p77)的方程组,分别采用消去法(矩阵分解)、Jacobi迭代法、Seidel迭代法、松弛法求解,并比较收敛速度。 消去法: x=a\d 或 [L,U]=lu(a); x=inv(U)inv(L)d Jacobi迭代法: function s=jacobi(a,d,x0) D=diag(diag(a)); U=-triu(a,1); L=-tril(a,-1); C=inv(D); B=C*(L+U); G=C*d; s=B*x0+G; n=1; while norm(s-x0)>=1.0e-8 x0=s; s=B*x0+G;

电力系统仿真及建模课程设计任务书(v)

昆明学院 《电力系统建模及仿真》课程设计 任务书 适用于:电气工程及其自动化专业 (电气工程方向) 自动控制与机械工程学院电子电气教研室 2015年6月

一、课程设计的目的 该课程设计是在完成《电力系统分析》的理论教学之后安排的一个实践教学环节。其目的在于巩固和加深对电力系统潮流和短路电流计算基本原理的理解,学习和掌握应用计算机进行电力系统设计和计算的方法,培养学生独立分析和解决问题的能力。 二、课程设计的基本要求 掌握电力系统等值模型和参数计算,以及潮流和短路计算的基本原理,学会应用计算机计算系统潮流分布和短路电流的方法。 三、课程设计选题原则 该课程设计是根据电力系统分析课程内容,结合实际工程和科研的电力系统网络进行系统的潮流和短路电流计算。 四、课程设计的任务及要求 1、基本要求 (1)用Matlab中Simulink组件的SimPowerSystems工具箱构建设计要求所给的电力系统模型,在所给电力系统中K处选取不同故障类型(三相短路、单相接地短路、两相短路、两相接地短路进行仿真,比较仿真结果,给出自己的结论。(电力系统接线图见附录1,选做一题) (2)基于Matlab/Simulink,搭建附录2所示电力网络模型,并进行潮流计算。 2、课程设计论文编写要求 纸张A4、要求书写整齐,字数不少于2000字。 (1)封面包括:《电力系统建模与仿真课程设计》总结报告、专业、班级、学号、姓名、指导教师(具体格式附后) (2)论文包括目录、摘要、正文、参考文献、心得体会等。 要求:画出完整电路图、参数标注清楚;按照具体项目要求,完成仿真内容并记录仿真结果,给出自己的结论。 五、时间分配 1、查阅资料、熟悉Matlab中Simulink组件的SimPowerSystems工具箱(1天); 2、基于Matlab/Simulink的电力系统短路故障的仿真与分析(3天);

MATLAB及其在数学建模中的应用

Modeling and Simulation 建模与仿真, 2015, 4(3), 61-71 Published Online August 2015 in Hans. https://www.360docs.net/doc/bb1682199.html,/journal/mos https://www.360docs.net/doc/bb1682199.html,/10.12677/mos.2015.43008 Study of MATLAB and Its Application in Mathematical Modeling Chuanqi Qin, Ting Wang, Yuanfeng Jin School of Science, Yanbian University, Yanji Jilin Email: yfkim@https://www.360docs.net/doc/bb1682199.html, Received: Jul. 22nd, 2015; accepted: Aug. 11th, 2015; published: Aug. 18th, 2015 Copyright ? 2015 by authors and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). https://www.360docs.net/doc/bb1682199.html,/licenses/by/4.0/ Abstract This article firstly introduces the development and the features of MATLAB software. And then the concept and the process of mathematical modeling are explained. After, the article briefly intro-duces some MATLAB solution methods of mathematical modeling problems, giving several in-stances of some methods. At the last of this article, through a relatively complete example, it fo-cuses on the application of MATLAB in mathematical modeling. It has been found that the applica-tion of MATLAB in mathematical modeling can improve the efficiency and quality of mathematical modeling, enrich the means and methods of mathematical modeling, and play a very important role in the teaching of mathematical modeling course. Keywords MATLAB, Mathematical Modeling, Mathematic Model MATLAB及其在数学建模中的应用 秦川棋,王亭,金元峰 延边大学理学院,吉林延吉 Email: yfkim@https://www.360docs.net/doc/bb1682199.html, 收稿日期:2015年7月22日;录用日期:2015年8月11日;发布日期:2015年8月18日

相关文档
最新文档