3-Hard turning with variable micro-geometry PcBN tools

3-Hard turning with variable micro-geometry PcBN tools
3-Hard turning with variable micro-geometry PcBN tools

Hard turning with variable micro-geometry PcBN tools T.O¨zel a,*,Y.Karpat b,A.Srivastava(3)c

a Department of Industrial and Systems Engineering,Rutgers University,NJ,USA

b Department of Industrial Engineering,Bilkent University,Ankara,Turkey

c TechSolve Inc.,Cincinnati,OH,USA

Submitted by B.Kaftanoglu(1),Middle East Technical University,Ankara,Turkey

1.Introduction

Hard turning is a more?exible,more environmentally benign and higher throughput alternative to grinding.However,process reliability and surface quality is still behind grinding[1].In hard turning,polycrystalline cubic boron nitride(PcBN)cutting tools with various edge preparation(chamfer,radius,oval or waterfall edges,see Fig.1)are preferred to protect the cutting edge from chipping[1,2].Edge preparation must be carefully selected for a given application because it affects the surface integrity of the machined workpiece[3].Heat generated during hard turning is also affected by edge preparation due to change in work material ?ow around the cutting edge.For example,a chamfered face provides excessive negative angle to the cutting action and results in high heat generation.PcBN tools rapidly wear out during hard turning at high cutting speeds mainly due to attained temperatures[4].While a constant uncut chip thickness to edge radius ratio(l=t u/r e)should be maintained along the engagement area between PcBN insert and the workpiece,most edge preparations are applied uniformly all around the corner radius of the PcBN inserts.A uniform edge micro-geometry along the corner radius of the insert creates a very low edge radius to uncut chip thickness at the minor cutting edge.This causes more ploughing than shearing at the minor cutting edge resulting in excessive heat built-up and rapid wear.A variable edge micro-geometry along the corner radius of the insert has the potential to reduce this heat built-up at the cutting edge enabling hard turning at higher cutting speeds and feeds with less tool wear[5] (see Fig.2).

This paper aims to investigate the in?uence of variable edge micro-geometry insert edge design in hard turning both experi-mentally and via?nite element analysis(FEA).2.Variable micro-geometry edge design

While uniform edge preparation strengthens tool cutting edge, it makes cutting less ef?cient especially when the ratio of uncut chip thickness to tool radius decreases.This is especially true when friction factor increases with decreasing uncut chip thickness to edge radius ratio.The work material is trapped near end of the uncut chip geometry along the corner radius.Inef?cient cutting results in increased strains in the workpiece which in turn increases mechanical and thermal loads and results in high temperatures.Fig.2demonstrates the chip load of a uniform edge insert during cutting.The thickness of the chip varies from a maximum value,which is equal to feed(f),to a minimum value on the tool’s corner radius.

A CAD model of a variable edge design tool insert is given in Fig.3. It can be seen that edge radius at point A is greater than that of at point

B and C.The edge radii at point A,B and

C are r e A>r e B>r e C.

In Section A-A which is major(leading)cutting edge,uncut chip thickness is greater than the edge radius which indicates regular cutting.In Section B-B,at the end of the major(leading)edge,the uncut chip thickness is equal to the edge radius where the rubbing action becomes more dominant than shearing.In Section C-C,at the minor(trailing)cutting edge,the edge radius is larger than the thickness of the uncut chip and work material is rubbed against the workpiece.This rubbing action which results in increased temperatures on the tool and workpiece surfaces is believed to hinder the performance of the tool.

3.Experimental procedure

In this study,turning of annealed and hardened AISI4340steel (40HRc)using PcBN inserts(50%CBN+40%TiC+6%WC)with four different micro-geometries(uniform chamfer with0.1mm chamfer height and208angle,uniform hone with50m m(and40m m)edge radius,waterfall(WF)hone with r e=30:60m m radii,variable hone edge with r e A=50m m,r e B=10m m radii)were considered.Turning

CIRP Annals-Manufacturing Technology57(2008)73–76

A R T I C L E I N F O

Keywords:

Hard machining

Tool

Edge geometry A B S T R A C T

This paper presents investigations on hard turning with variable edge design PcBN inserts.Turning of hardened AISI4340steel with uniform and variable edge design PcBN inserts is conducted,forces and tool wear are measured.3D?nite element modelling is utilized to predict chip formation,forces, temperatures and tool wear on uniform and variable edge micro-geometry tools.Predicted forces and tool wear contours are compared with experiments.The temperature distributions and tool wear contours demonstrate the advantages of variable edge micro-geometry design.

?2008CIRP.

*Corresponding author.

Contents lists available at ScienceDirect

CIRP Annals-Manufacturing Technology journal homepage:https://www.360docs.net/doc/b42166021.html,/cirp/default.asp

0007-8506/$–see front matter?2008CIRP. doi:10.1016/j.cirp.2008.03.063

experiments were conducted using a cylindrical bar specimen with a

diameter of 71mm and length of 305mm.Solid top PcBN inserts (TNG-423)were used with a MTGNR-123B right hand tool holder that provided 08lead,à58side rake,and à58back rake angles.The cutting forces were measured with a force dynamometer (Type 9121)mounted on the turret disk of the CNC lathe.It must be noted that the corner radius of the PcBN inserts (TNG-423)used in experiments is R =1.2mm which means that the cutting has been performed by the corner radius of the inserts (d

The effect of edge micro-geometry is apparent on measured radial (thrust)forces (F t ).For the cutting condition of V =125m/min,f =0.15mm/rev,d =1mm,waterfall hone edge with 30:60m m edge radii yielded the lowest radial forces (F t )followed by variable hone 50m m edge radius.The variable edge design produced higher tangential (cutting)forces (F c )than other edge micro-geometry designs.Decreasing feed rate (f =0.1mm/rev)resulted in lower tangential https://www.360docs.net/doc/b42166021.html,rgest radial (thrust)force was measured when turning with the chamfered insert whereas variable honed insert resulted in lowest radial force.These results may imply that more ef?cient cutting has been performed due to variable edge micro-geometry design that resulted in lower radial forces but slightly higher tangential forces.

Measured forces are ?tted in log-linear models as function of cutting conditions and micro-geometry design parameters (r e 1and r e 2).Thrust,feed and cutting force expressions are given in Eqs.(1)–(3)with R-sq =96.1,99.5,and 99.8%,respectively.F t ?3789:5d

0:258

V à0:437f

0:466

r e 0:08291

r e 0:199

2(1)F z ?2670:4d 1:14

V à0:327f

0:327

r e 0:04781

r e 0:1122(2)F c ?6568d

0:895

V à0:160f

0:695

r e 0:01451

r e 0:00532(3)

4.Finite element modeling of 3D turning

Earlier ?nite element (FE)modelling studies have provided essential information about the in?uence of edge preparation on the process variables such as chip formation,forces,temperatures and stresses [6,7].However,FE studies on 3D hard turning are very limited.Klocke and Kratz [4]utilized 3D FE modelling to investigate chamfer edge design in wiper inserts particularly identifying high temperature zones ‘‘hot-spots’’on the tool face.More recently,Aurich and Bil [8]introduced 3D ?nite element modelling for segmented chip formation.In this study,a ?nite element modeling software (Deform 3D)is used to study the effects of uniform and variable micro-geometry edge design on process variables.This FEM software is based on an implicit Lagrangian computational routine with continuous adaptive remeshing.The workpiece is modeled as rigid-perfectly plastic material where the material constitutive model of this deformable body is represented with Johnson–Cook material model (see Eq.(4))where A =1504MPa,B =569MPa,n =0.22,C =0.003,m =0.9,T melt =14268C are the parameters for AISI 4340steel as given by Gray et al.[9].ˉs ??A tB eˉe Tn

1tC ln ˙ˉ

e ˙ˉ

e 0 1àT àT 0T melt àT 0 m

(4)

The workpiece is represented by a curved model with 70mm

diameter which is consistent with the experimental

conditions.

Fig.1.Waterfall (r e 1:r e 2)and round (r e )hone micro-geometry edge

design.

Fig.2.Uniform vs.variable micro-geometry

design.

Fig.3.CAD model of the variable hone edge

design.

Fig.4.Measured forces in turning of AISI 4340steel.

Table 1

Heat conduction coef?cient p [MPa]

030180300420600h [kW m à2K à1]

5

18

87

222

410

500

T.O

¨zel et al./CIRP Annals -Manufacturing Technology 57(2008)73–7674

Only a segment (158)of the workpiece was modeled in order to keep the size of mesh elements small.Workpiece model includes 200,000elements.The bottom surface of the workpiece is ?xed in all directions.The cutting tool is modeled as a rigid body which moves at the speci?ed cutting speed by using 125,000elements.A very ?ne mesh density is de?ned at the tip of the tool and at the cutting zone to obtain ?ne process output distributions.The minimum element size for the workpiece and tool mesh was set to 0.025and 0.009mm,respectively.Thermal boundary conditions are de?ned accordingly in order to allow heat transfer from workpiece to cutting tool.The heat conduction coef?cient,h ,is de?ned as a function of pressure as given in Table 1.Other thermo-mechanical properties are given in Table 2.

All simulations were run at the same cutting condition (V =300m/min,f =0.15mm/rev,d =1mm).In 3D FE modeling,constant shear friction factor,m and pressure-dependent shear friction factor,m =f (p ),have been benchmarked to identify the friction between micro-geometry tool and workpiece.Pressure-dependent shear friction models used in simulations are given in Table 3.

FE simulation results for various friction values are given in Table 4.Pressure-dependent shear friction resulted in best force predictions (highlighted as bold).Especially,a reduced shear friction was observed in variable hone micro-geometry PcBN insert.

The comparison of experimental and simulated forces (F c ,cutting force,F t ,thrust force and F z ,feed force)are shown in Fig.5.The simulated cutting forces are found to be in close agreements with the experimental ones.

Predicted temperature distributions on the tool are shown in Fig.6for three different micro-geometry inserts.These distribu-tions depict that smallest hot zone formed on the variable honed tool and maximum temperatures of 853,724,664and 6268C were predicted for uniform chamfered,uniform waterfall (WF 30:60),uniform honed (Hone 40)and variable honed (Var.Hone 50)inserts,respectively.Due to the more uniform uncut chip thickness to the edge radius ratio along the variable micro-geometry insert,the cutting temperature at the same cutting condition is found to

be signi?cantly lower than other uniform micro-geometry

(chamfered,honed and waterfall)inserts.In addition,the heat is seen more uniformly distributed along the cutting edge of the variable micro-geometry insert.

Predicted chip geometries and strain ?elds (see Fig.7)indicate the effect of micro-geometry edge design on the plastic strain induced on the https://www.360docs.net/doc/b42166021.html,rge edge micro-geometry insert has induced greater effective strain hence greater thermo-mechanical load to the workpiece.This creates higher heat generation and higher temperatures on the tool cutting edge.

Finite element simulations are also utilized to predict tool wear.The distributions of the process variables such as effective stresses,temperatures and sliding velocities allow the simulation of the tool wear onthe tool rake and ?ank faceswhen combined witha toolwear model.The tool wear rate models describe the rate of volume loss on the tool rake and ?ank faces per unit area per unit time.There are many different tool wear rate models proposed in literature depen-ding on the type of tool wear,i.e.adhesive,diffusive,etc.Among those,the tool wear rate model based on the adhesive wear proposed by Usui et al.[10],given in Eq.(5),uses interface temperature,normal stress,and sliding velocity at the contact surfaces as inputs and yields tool wear rate for a given location on the tool surface.d VB

d t

?c 1s n V s e eàc 2=T T(5)

Table 2

Thermomechanical properties of work and tool materials

AISI 4340

PcBN Density [kg m à3]

78504280Modulus of elasticity [GPa]205587Poisson’s ratio

0.290.13Speci?c heat [J kg à1K à1]

475750Thermal conductivity [W m à1K à1]44.544Thermal expansion [m m/m K à1]

12.3

4.7

Table 3

Pressure-dependent shear friction factor p [MPa]5001000

1500

2000

2500

m 10.40.70.80.9 1.0m 2

0.2

0.35

0.4

0.5

0.7

Fig.6.Temperature

distributions.

https://www.360docs.net/doc/b42166021.html,parison of measured and simulated forces.

Table 4

The effect of friction factor on process outputs m F t [N]F c [N]F z [N]Tool [8C]

Chamfer 0.752997002361020m 1

386

775335853WF,r e 1=30m m,r e 2=60m m 0.3342782225836m 1360690310724Uniform Hone,r e =40m m m 2354835276623m 1324675336664Var.Hone,r e A =50,r e B =10m m m 1390800352693m 2285

690

258

638

T.O

¨zel et al./CIRP Annals -Manufacturing Technology 57(2008)73–7675

where d VB /d t is the volumetric wear rate,c 1and c 2are the

constants,T is the temperature,V s is the sliding velocity,and s n is the normal stress applied to the tool surface.In this study,the wear constants c 1and c 2for PcBN are found to be as c 1=1?10à6and c 2=0.9?102by trial-and-error with FE simulations.Fig.8shows the simulated tool wear zones on the tool for uniform chamfer,uniform hone r e =40m m and variable hone r e A =50m m,r e C =10m m inserts.Variable micro-geometry edge design has the lowest wear rate under the same cutting conditions.5.Conclusions

In this paper,experimental and FE modelling investigations on hard turning with variable edge design PcBN inserts are presented.The results revealed that the variable edge prepara-tion inserts perform better than uniform edge preparation counterparts if the variable edge is properly designed for the given cutting conditions.Speci?cally,the following conclusions can be made:

Variable micro-geometry tool design reduces the heat generation along the tool cutting edge.

Variable micro-geometry insert cutting edge induces less plastic strain on the machined workpiece.

Tool wear is decreased with the use of a variable micro-geometry insert.

Acknowledgement

B.Kaftanoglu acknowledges support from Ministry of Industry and Trade-Turkey,SANTEZ:00028.STZ.2007-1.

References

[1]Klocke F,Brinksmeier E,Weinert K (2005)Capability Pro?le of Hard Cutting

and Grinding Processes.Annals of the CIRP 54(2):557–580.

[2]Matsumoto Y,Hashimoto F,Lahoti G (1999)Surface Integrity Generated by

Precision Hard Turning.Annals of the CIRP 48(1):59–62.

[3]Poulachon G,Moison A,Jawahir IS (2001)On Modeling Chip Formation During

Hard Turning of 100Cr6Bearing Steel.Annals of the CIRP 50(1):31–36.

[4]Klocke F,Kratz H (2005)Advanced Tool Edge Geometry for High Precision Hard

Turning.Annals of the CIRP 54(1):47–50.

[5]Shaffer W (2000)Getting A Better Edge.Cutting Tool Engineering 52(3):44–48.[6]Yen YC,Jain A,Altan T (2004)A Finite Element Analysis of Orthogonal

Machining Using Different Tool Edge Geometry.Journal of Materials Processing Technology 146:72–81.

[7]Chen L,El Wardany TI,Nasr M,Elbestawi MA (2006)Effects of Edge Prepara-tion and Feed When Hard Turning A Hot Work Die Steel With Polycrystalline Cubic Boron Nitride Tools.Annals of the CIRP 55(1):88–92.

[8]Aurich JC,Bil H (2006)3D Finite Element Modelling of Segmented Chip

Formation.Annals of the CIRP 55(1):47–50.

[9]Gray GT,Chen SR,Wright W,Lopez MF (1994)Constitutive Equations for

Annealed Metals Under Compression at High Strain Rates and High Temperatures .Los Alamos https://www.360docs.net/doc/b42166021.html,-12699-MS.

[10]Usui E,Hirota A,Masuko M (1978)Analytical Prediction of 3D Cutting Process.

Part 3.Cutting Temperature and Crater Wear of Carbide Tool.Journal of Engineering for Industry

100:236–243.

https://www.360docs.net/doc/b42166021.html,parison of tool wear experiments with

simulations.

Fig.7.Simulated chip formation and strain ?elds.

T.O

¨zel et al./CIRP Annals -Manufacturing Technology 57(2008)73–7676

各国插头标准尺寸

中国标准电源插头 227IEC42(RVB)2×0.5mm2 6A250V 227IEC42(RVB)2×0.75mm2 6A250V 227IEC52(RVV)2×0.5mm2 6A250V 227IEC52(RVV)2×0.75mm2 6A250V 227IEC52(RVV) 2×0.75mm2 6A250V 227IEC53(RVV) 2×0.75mm2 6A250V 227IEC53(RVV) 2×1.0mm210A250V 227IEC42(RVB)2×0.5mm26A250V 227IEC42(RVB)2×0.75mm26A250V 227IEC52(RVV)2×0.5mm26A250V 227IEC52(RVV)2×0.75mm26A250V

227IEC52(RVV)3×0.5mm26A250V 227IEC52(RVV)3×0.75mm26A250V 227IEC53(RVV)3×0.75mm26A250V 227IEC53(RVV)3×1.0mm210A250V 227IEC52(RVV)3×0.5mm26A250V 227IEC52(RVV)3×0.75mm26A250V 227IEC53(RVV)3×0.75mm26A250V 227IEC53(RVV)3×1.0mm210A250V RX 300/300V 3×0.75mm26A250V RX 300/300V 3×1.0mm210A250V 欧洲标准电源插头

H03VVH2 -F2X0.5mm210/16A250V H03VVH2 -F2X0.75mm210/16A250V H03VV-F2X0.5mm210/16A250V H03VV-F2X0.75mm210/16A250V H05VVH2 -F2X0.75mm210/16A250V H05VVH2 -F2X1.0mm210/16A250V H05VV-F2X0.75mm210/16A250V H05VV-F2X1.0mm210/16A250V H03VVH2 -F2X0.5mm2 2.5A250V H03VVH2 -F2X0.75mm2 2.5A250V H03VV-F2X0.5mm2 2.5A250V H03VV-F2X0.75mm2 2.5A250V H05VVH2 -F2X0.75mm210A250V H05VVH2 -F2X1.0mm210A250V H05VV-F2X0.75mm210A250V H05VV-F2X1.0mm210A250V H03VVH2 -F2X0.5mm2 2.5A250V H03VVH2 -F2X0.75mm2 2.5A250V H03VV-F2X0.5mm2 2.5A250V H03VV-F2X0.75mm2 2.5A250V H05VVH2 -F2X0.75mm210A250V H05VVH2 -F2X1.0mm210A250V H05VV-F2X0.75mm210A250V H05VV-F2X1.0mm210A250V

常用贴片元件封装尺寸图

常用贴片元件封装尺寸图 目录 1 TO-268AA 41 D-7343 2 TO-26 3 D2PAK 42 C-6032 3 TO-263-7 43 B-3528 4 TO-263- 5 44 A-3216 5 TO-263-3 45 SOT883 6 TO-252 DPAK 46 SOT753 7 TO-252-5 47 SOT666 8 TO252-3 48 SOT663 9 2010 49 SOT552-1 10 4020 50 1SOT523 11 0603 51 SOT505-1 12 0805 52 SOT490-SC89 13 01005 53 SOT457 SC74 14 1008 54 SOT428 15 1206 55 SOT416/SC75 16 1210 56 SOT663 SMD 17 1406 57 SOT363 SC706L 18 1812 58 SOT353/sc70 5L 19 1808 59 SOT346/SC59 20 1825 60 SOT343 SMD 21 2010 61 SOT323/SC70-3 SMD 22 2225 62 SOT233 SMD 23 2308 63 SOT-223/TO-261AA SMD 24 2512 64 SOT89/TO243AA SC62 SMD 25 DO-215AB 65 SOT23-8 26 DO-215AA 66 SOT23-6 27 DO-214AC 67 SOT23-5 28 DO-214AB 68 SOT23 29 DO-214AA 69 SOT143/TO253 SMD 30 DO-214 31 DO-213AB 32 DO-213AA 33 SOD123H 34 SOD723 35 SOD523 36 SOD323 37 SOD-123F 38 SOD123 39 SOD110 40 DO-214AC SOD106

各国电源线标准及插头规格电压表(附彩图)

各国电源线标准及所使用插头规格、电压表 一、电源线及插头篇 1. 中国电源线标准及所用插头规格 227IEC42(RVB)2×0.5mm2 6A250V 227IEC42(RVB)2×0.75mm2 6A250V 227IEC52(RVV)2×0.5mm2 6A250V 227IEC52(RVV)2×0.75mm2 6A250V ------------------------------------------------------------------------------ 227IEC52(RVV) 2×0.75mm2 6A250V 227IEC53(RVV) 2×0.75mm2 6A250V 227IEC53(RVV) 2×1.0mm2 10A250V -------------------------------------------------------------------------- 227IEC42(RVB)2×0.5mm2 6A250V 227IEC42(RVB)2×0.75mm2 6A250V

227IEC52(RVV)2×0.5mm2 6A250V 227IEC52(RVV)2×0.75mm2 6A250V ---------------------------------------------------------------------------- 227IEC52(RVV)3×0.5mm2 6A250V 227IEC52(RVV)3×0.75mm2 6A250V 227IEC53(RVV)3×0.75mm2 6A250V 227IEC53(RVV)3×1.0mm2 10A250V ----------------------------------------------------------------------- 227IEC52(RVV)3×0.5mm2 6A250V 227IEC52(RVV)3×0.75mm2 6A250V 227IEC53(RVV)3×0.75mm2 6A250V 227IEC53(RVV)3×1.0mm2 10A250V -----------------------------------------------------------------------

常用元器件封装尺寸大小

封装形式图片国际统一简称 LDCC LGA LQFP PDIP TO5 TO52 TO71 TO71 TO78 PGA Plastic PIN Grid Array 封装形式图片国际统一简称 TSOP Thin Small OUtline Package QFP Quad Flat Package PQFP 100L QFP Quad Flat Package SOT143 SOT220 Thin Shrink Qutline Package uBGA Micro Ball Grid Array uBGA Micro Ball Grid Array PCDIP

PLCC LQFP LQFP 100L TO8 TO92 TO93 T099 EBGA 680L QFP Quad Flat Package TQFP 100L ZIP Zig-Zag Inline Packa SOT223 SOT223 SOT23 SOT23/SOT323 SOT25/SOT353 SOT26/SOT363 FBGA FDIP SOJ

SBGA LBGA 160L PBGA 217L Plastic Ball Grid Array SBGA 192L TSBGA 680L CLCC SC-705L SDIP SIP Single Inline Package SO Small Outline Package SOP EIAJ TYPE II 14L SSOP 16L SSOP SOJ 32L Flat Pack HSOP28 ITO220 ITO3P TO220 TO247

2020最新世界各国安规插头尺寸标准(WORD版)

Appendix 1 H G I J Error! Reference source not found. page 1 of 1 (澳规)Australia integrated plug according to AS/NZS 3112:2000 for AU type

Appendix 1 Error! Reference source page 2 of 2 not found. (澳规)Australia integrated plug according to AS/NZS 3112:2000 for AU type

Appendix 2 page 1 of 1 Error! Reference source not found. (英规)British integrated plug according to BS 1363 for UK type

Appendix 2 Error! Reference source page 2 of 2 not found. (英规)British integrated plug according to BS 1363 for UK type

Appendix 3 page 1 of 1 Error! Reference source not found. (欧规)European integrated plug according to EN 50075 for EU type

Appendix 3 Error! Reference source page 2 of 2 not found. (欧规)European integrated plug according to EN 50075 for EU type

PCB中常见的元器件封装大全参考word

PCB中常见的元器件封装大全 一、常用元器件: 1.元件封装电阻 AXIAL 2.无极性电容 RAD 3.电解电容 RB- 4.电位器 VR 5.二极管 DIODE 6.三极管 TO 7.电源稳压块78和79系列 TO-126H和TO-126V 8.场效应管和三极管一样 9.整流桥 D-44 D-37 D-46 10.单排多针插座 CON SIP 11.双列直插元件 DIP 12.晶振 XTAL1 电阻:RES1,RES2,RES3,RES4;封装属性为axial系列 无极性电容:cap;封装属性为RAD-0.1到rad-0.4 电解电容:electroi;封装属性为rb.2/.4到rb.5/1.0 电位器:pot1,pot2;封装属性为vr-1到vr-5 二极管:封装属性为diode-0.4(小功率)diode-0.7(大功率) 三极管:常见的封装属性为to-18(普通三极管)to-22(大功率三极管)to-3(大功率达林 顿管) 电源稳压块有78和79系列;78系列如7805,7812,7820等;79系列有7905,7912,7920等.常见的封装属性有to126h和to126v 整流桥:BRIDGE1,BRIDGE2: 封装属性为D系列(D-44,D-37,D-46) 电阻:AXIAL0.3-AXIAL0.7 其中0.4-0.7指电阻的长度,一般用AXIAL0.4 瓷片电容:RAD0.1-RAD0.3。其中0.1-0.3指电容大小,一般用RAD0.1 电解电容:RB.1/.2-RB.4/.8 其中.1/.2-.4/.8指电容大小。一般<100uF用RB.1/.2,100uF-470uF用RB.2/.4,>470uF用RB.3/.6 二极管:DIODE0.4-DIODE0.7 其中0.4-0.7指二极管长短,一般用DIODE0.4 发光二极管:RB.1/.2 集成块:DIP8-DIP40, 其中8-40指有多少脚,8脚的就是DIP8

常用贴片元件封装尺寸图

目录 TO-268AA贴片元件封装形式图片 (3) TO-263 D2PAK封装尺寸图 (4) TO-263-7封装尺寸图 (5) TO-263-5封装尺寸图 (6) TO-263-3封装尺寸图 (7) TO-252 DPAK封装尺寸图 (8) TO-252-5封装尺寸图 (9) TO252-3封装尺寸图 (10) 0201封装尺寸 (11) 0402封装尺寸图片 (12) 0603封装尺寸图 (13) 0805封装尺寸图 (14) 01005封装尺寸图 (15) 1008封装尺寸图 (16) 1206封装尺寸图 (17) 1210封装尺寸图 (18) 1406封装尺寸图 (19) 1812封装尺寸图 (20) 1808封装尺寸图 (21) 1825封装尺寸图 (22) 2010封装尺寸图 (23) 2225封装尺寸图 (24) 2308封装尺寸图 (25) 2512封装尺寸图 (26) DO-215AB封装尺寸图 (27) DO-215AA封装尺寸图 (28) DO-214AC封装尺寸图 (29) DO-214AB封装尺寸图 (30) DO-214AA封装尺寸图 (31) DO-214封装尺寸图 (32) DO-213AB封装尺寸图 (33) DO-213AA封装尺寸图 (34) SOD123H封装图 (35) SOD723封装尺寸图 (36) SOD523封装尺寸图 (37) SOD323封装尺寸图 (38) SOD-123F封装尺寸图 (39) SOD123封装尺寸图 (40) SOD110封装尺寸图 (41) DO-214AC SOD106封装尺寸图 (42) D-7343封装尺寸图 (43)

各国插头标准尺寸

227IEC42(RVB)2×2 6A250V 227IEC42(RVB)2×2 6A250V 227IEC52(RVV)2×2 6A250V 227IEC52(RVV)2×2 6A250V 227IEC52(RVV) 2×2 6A250V 227IEC53(RVV) 2×2 6A250V 227IEC53(RVV) 2×2 10A250V 227IEC42(RVB)2×2 6A250V 227IEC42(RVB)2×2 6A250V 227IEC52(RVV)2×2 6A250V 227IEC52(RVV)2×2 6A250V 227IEC52(RVV)3×2 6A250V 227IEC52(RVV)3×2 6A250V 227IEC53(RVV)3×2 6A250V 227IEC53(RVV)3×2 10A250V 227IEC52(RVV)3×2 6A250V 227IEC52(RVV)3×2 6A250V 227IEC53(RVV)3×2 6A250V 227IEC53(RVV)3×2 10A250V 227IEC52(RVV)3×2 6A250V 227IEC52(RVV)3×2 6A250V 227IEC53(RVV)3×2 6A250V 227IEC53(RVV)3×2 10A250V

RX 300/300V 3×2 6A250V RX 300/300V 3×2 10A250V 欧洲标准电源插头 H03VVH2 -F2 10/16A250V H03VVH2 -F210/16A250V H03VV-F2 10/16A250V H03VV-F210/16A250V H05VVH2 -F210/16A250V H05VVH2 -F210/16A250V H05VV-F210/16A250V H05VV-F210/16A250V H03VVH2 -F2 H03VVH2 -F2 H03VV-F2 H03VV-F2 H05VVH2 -F210A250V H05VVH2 -F210A250V H05VV-F210A250V H05VV-F210A250V H03VVH2 -F2 H03VVH2 -F2

各国插头标准尺寸

中国标准电源插头 227IEC42(RVB)2×0.75mm2 6A250V? 227IEC 227IEC42(RVB)2×0.5mm2 6A250V? 52(RVV)2×0.5mm26A250V?227IEC52(RVV)2×0.75mm2 6A250V 227IEC53(RVV) 2×0.75mm2 6A250V 227IEC52(RVV) 2×0.75mm2 6A250V? 227IEC53(RVV) 2×1.0mm210A250V 227IEC42(RVB)2×0.5mm26A250V?227IEC42(RVB)2×0.75mm26A250V?227IE 227IEC52(RVV)2×0.75mm26A250V C52(RVV)2×0.5mm26A250V? 227IEC53(RV 227IEC52(RVV)3×0.75mm2 6A250V? 227IEC52(RVV)3×0.5mm2 6A250V? V)3×0.75mm2 6A250V 227IEC53(RVV)3×1.0mm2 10A250V

227IEC52(RVV)3×0.5mm26A250V 227IEC52(RVV)3×0.75mm26A250V 227IEC53(RVV)3×1.0mm210A250V 227IEC53(RVV)3×0.75mm26A250V? 227IEC52(RVV)3×0.5mm26A250V 227IEC53(RVV)3×0.75mm26A250V227IEC52(RVV)3×0.75mm26A250V? 227IEC53(RVV)3×1.0mm210A250V RX300/300V 3×0.75mm26A250V RX300/300V 3×1.0mm210A250V 欧洲标准电源插头 H03VVH2-F2X0.5mm210/16A250V H03VVH2 -F2X0.75mm210/16A250V H03VV-F2X0.5mm210/16A250V H03VV-F2X0.75mm210/16A250V

(整理)常用PCB封装图解

常用集成电路芯片封装图 doc文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。 PCB 元件库命名规则2.1 集成电路(直插)用DIP-引脚数量+尾缀来表示双列直插封装尾缀有N 和W 两种,用来表示器件的体宽N 为体窄的封装,体宽300mil,引脚间距2.54mm W 为体宽的封装, 体宽600mil,引脚间距 2.54mm 如:DIP-16N 表示的是体宽300mil,引脚间距2.54mm 的16 引脚窄体双列直插封装 2.2 集成电路(贴片)用SO-引脚数量+尾缀表示小外形贴片封装尾缀有N、M 和W 三种,用来表示器件的体宽N为体窄的封装,体宽150mil,引脚间距 1.27mm M 为介于N 和W 之间的封装,体宽208mil,引脚间距1.27mm W 为体宽的封装, 体宽300mil,引脚间距 1.27mm 如:SO-16N 表示的是体宽150mil,引脚间距1.27mm 的16 引脚的小外形贴片封装若SO 前面跟M 则表示为微形封装,体宽118mil,引脚间距0.65mm 2.3 电阻 2.3.1 SMD 贴片电阻命名方法为:封装+R 如:1812R 表示封装大小为1812 的电阻封装2.3.2 碳膜电阻命名方法为:R-封装如:R-AXIAL0.6 表示焊盘间距为0.6 英寸的电阻封装 2.3.3 水泥电阻命名方法为:R-型号如:R-SQP5W 表示功率为5W 的水泥电阻封装 2.4 电容 2.4.1 无极性电容和钽电容命名方法为:封装+C 如:6032C 表示封装为6032 的电容封装 2.4.2 SMT 独石电容命名方法为:RAD+引脚间距如:RAD0.2 表示的是引脚间距为200mil 的SMT 独石电容封装 2.4.3 电解电容命名方

世 界 各 国 电 压 及 插 头 规 格 一 览 表

世界各國電壓及插頭規格一覽表國( 地區) 名週率電壓插頭 國( 地區) 名週率電壓插頭 英文中文HZ VOLT AGE PLUG 英文中文HZ VOLT AGE PLUG ALGERIA 阿爾及利 亞 50127.220EP.BP3,BP KENYA肯亞50230BP3,BP ARGENTIN A 阿根廷50220BP2,BP KOREA韓國60100EP AUSTRALI A 澳洲50240AP3 KVWAIT科威特50240CP2 AUSTRIA奧地利50220CP2 LEBANON黎巴嫩50110CP2 BELGIUM 比利時50127.220BP3 LIBYA利比亞50125BP3 BOLIVLA波利維亞50.60220EP,BP3 LUXEMBOURG盧森堡50110,220CP2 BRAZIL巴西60220CP2 MALAYSIA 馬來西亞50230,240BP3,BP BULGARIA保加利亞50220CP2 MEXICO墨西哥60.50120EP MYANMAR緬甸50230CP2 MONACO摩納哥50127,220CP2 CANADA加拿大60120EP,BP MOROCCO摩洛哥50110,220CP2 CHILE智利50220CP2 NETHERLAND荷蘭50220CP2 COLOMBIA可倫比亞60115EP NEW ZEALAND紐西蘭50230AP3 CONGO剛果50220CP2 NICARAGUA尼加拉瓜60120EP COSTARIC A 哥斯大黎 加 60110EP NIGERIA奈及利亞50230BP3,BP2 CUBA古巴60115.120CP2 NORWAY挪威50230CP2 CYPRUS塞普路斯50220BP2 OKINAWA琉球60110EP

最新SMT常见贴片元器件封装类型和尺寸资料

1、SMT表面封装元器件图示索引(完善)

2、SMT物料基础知识 一. 常用电阻、电容换算: 1.电阻(R): 电阻:定义:导体对电流的阻碍作用就叫导体的电阻。 无方向,用字母R表示,单位是欧姆(Ω),分:欧(Ω)、千欧(KΩ)、兆欧(MΩ)1MΩ=1000KΩ=1000000Ω 1).换算方法: ①.前面两位为有效数字(照写),第三位表示倍数10n次方(即“0”的个数) 103=10*103=10000Ω=10KΩ 471=47*101=470Ω 100=10*100=10Ω 101=10×101=100Ω 120=12×100=12Ω ②.前面三位为有效数字(照写),第四位表示倍数倍数10n次方(即“0”的个数). 1001=100*101=1000Ω=1KΩ 1632=163*102=16300Ω=16.3KΩ 1470=147×100=147Ω 1203=120×103Ω=120KΩ 4702=470×102Ω=47KΩ

2.电容(C): 电容的特性是可以隔直流电压,而通过交流电压。它分为极性和非极性,用C表示。 2.1三种类型:电解电容钽质电容有极性, 贴片电容无极性。 用字母C表示,单位是法(F),毫法(MF),微法(UF),纳法(NF)皮法(PF) 1F=103MF=106UF=109NF=1012PF 2.2换算方法: 前面两位为有效数字(照写),第三位倍数10n次方(即“0”的个数) 104=10*104=100000PF=0.1UF 100=10*100=10PF 473=47×103=47000pF=47nF=0.047uF 103=10×103=10000pF=10nF=0.01uF 104=10×104=100000pF=10nF=0.1uF 221=22×101=220pF 330=33×100=33pF 2.3钽电容: 它用金属钽或者铌做正极,用稀流酸等配液做负极,用钽或铌表面生成的氧化膜做成介质制成,其特点是体积小、容量大、性能稳定、寿命长、绝缘电阻大、温度特性好,用在要求较高的设备中。钽电容表面有字迹表明其方向、容值,通常有一条横线的那边标志钽电容的正极。钽电容规格通常有:A型、B型、C型、P型。 2.4 电容的误差表示 2.4.1常用钽电容代换参照表. 1UF:105、A6、CA6 2.2UF:225 3.3UF:335、AN6、CN6、JN6、CN69 4.7UF:475、JS6 10UF:106、JA7、AA7、GA7 22UF:226、GJ7、AJ7、JJ7 47UF:476 3. 电感(L)

常用元件库及原器件封装

常用的原理图符号 一、“Miscellaneous Devices.DDB”原理图符号库,该原理图符号库中包含了常用的普通元器件,如电阻、电容、二极管、三极管、开关及插接件等。 二、Protel DOS Schematic Libraries.lib原理图符号库,该原理图符号库中主要包含的是集成电路芯片,如CMOS,TTL数字集成电路芯片,AD,DA芯片,比较器,放大器微处理器芯片以及存储器芯片等。Protel DOS Schematic Libraries.lib原理图符号库包含14个子库。 1.Protel DOS Schematic 4000CMOS.lib原理图符号库,该原理图 符号库主要包含4000系列的CMOS数字集成芯片。 (4011,4013,4023,4043,4052等) 2.Protel DOS Schematic Analog digital.lib原理图符号库,该原理 图符号库主要包含AD,DA芯片。(DAC0800,ADC0800等)3.Protel DOS Schematic Comparator.lib原理图符号库,该原理 图符号库主要包含比较器芯片。(LM193,CA139,TL331,LF111等) 4.Protel DOS Schematic Intel.lib原理图符号库,该原理图符号 库主要包含Intel公司生产的微处理芯片。(8031,8051,8755等) 5.Protel DOS Schematic Linear.lib原理图符号库,该原理图符号 库主要包含一些线性原件。(555,4N25,LM135H等)

6.Protel DOS Schematic Memory.lib原理图符号库,该原理图符 号库主要包含一些存储芯片。(6164,2716,27128等) 7.Protel DOS Schematic Motorola.lib原理图符号库,该原理图 符号库主要包含Motorola公司生产的一些元器件 (6800,68701,8T26等) 8.Protel DOS Schematic NEC.lib原理图符号库,该原理图符号 库主要包含NEC公司生产的一些元器件(UPD7800, MC430P,UPD550等) 9.Protel DOS Schematic Operational Amplifiers.lib原理图符号 库,该原理图符号库主要包各类运算放大器芯片。(LM741,LM1458,TL084等) 10.Protel DOS Schematic Synertek.lib原理图符号库,该原理 图符号库主要包含Synertek公司生产的一些元器件 (SY64CX13,SY65C51,SYE6522等) 11.Protel DOS Schematic TTL.lib原理图符号库,该原理图符号 库主要包含74系列数字集成电路芯片。 (74ALS00,74HC73,74F373等) 12.Protel DOS Schematic Voltage.lib原理图符号库,该原理图 符号库主要包各类线性稳压块 (LM79L05ACZ,LM109H,LM7812CK等) 13.Protel DOS Schematic Western.lib原理图符号库,该原理图 符号库主要包含Western公司生产的一些元器件(FD1771,

世界各国电源插头标准型号

产品展示 >> 电线插头系列 >> 所有小类共有 15 个产品 产品名称:英式三扁插 产品规格:BS-1363 产品类别:电线插头系列→英国标准插头 产品信息: 产品名称:中弯三扁插 产品规格:T-222 产品类别:电线插头系列→中国标准插头 产品信息: 产品名称:英式三扁插 产品规格:H-288 产品类别:电线插头系列→英国标准插头 产品信息: 产品名称:以色列三圆插 产品规格:AL-018 产品类别:电线插头系列→以色列标准插头 产品信息: 产品名称:品字尾插/电脑尾 产品规格:H-233 产品类别:电线插头系列→中国标准插头 产品信息: 产品名称:美式三插 产品规格:AL-022 产品类别:电线插头系列→美国标准插头 产品信息: 产品名称:极性插 产品规格:AL-021 产品类别:电线插头系列→美国标准插头

V O L T A G E G U I D E A B C D E Country : A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Country Plug Voltage System Freq./Hz. Afghanistan(阿富汗)E220Pal-B50 Albania(阿尔巴尼亚)B22050 Algeria(阿尔及利亚)B, E127/220Pal-B50 American Samoa(美属萨摩亚)A, B, C120/22060 Angola(安哥拉)B220Pal-I50 Anguilla(安圭拉岛)D24050 Antigua/Barbuda(安提拉及巴布达)A, D230Pal-N60 Argentina(阿根廷)B, C220Pal-N50 Armenia(亚美尼亚)B22050 Aruba A, B11560 Australia(澳大利亚)C240Pal-BG50 Austria(奥地利)B23050 Azerbaijan(阿塞拜疆)B22050 Azores(亚速尔群岛)B, E220Pal-B50 Bahamas(巴哈马)A12060 Bahrain(巴林)D, E220Pal-B50 Bali(巴厘岛)B22050 Bangladesh(孟加拉共和国)B, E220Pal-B50 Barbados(巴巴多斯)A115NTSC-M50 Belarus(白俄罗斯)B22050 Belgium(比利时)B23050 Belize(伯利兹)A11060 Benin(贝宁)E220SECAM-K50 Bermuda(百慕大)A12060 Bhutan((不丹)B, D22050 Bolivia(玻利维亚)A, B110/220NTSC50 Bosnia-Herzegovina(波斯尼亚)B220Pal-I50 Botswana(博茨瓦纳)D, E220Pal-I50 Brazil(巴西)A, B110/220Pal-M60 Bulgaria(保加利亚)B220SECAM-D50 Burkina(布基那法索国)B220SECAM-K50 Burma (Myanmar)D, E230NTSC50 Burundi(布隆迪)B220SECAM-K50

常见元件的封装形式.

常见元件的封装形式 对于集成电路芯片来说,常见的封装形式有DIP(即双列直插式),根据封装材料的不同,DIP封装又可以分为PDIP(塑料双列直插式)和CDIP(陶瓷双列直插式); SIP(即单列直插式);SOP(即小尺寸封装);PQFP(塑料四边引脚扁乎封装);PLCC(塑料有引线芯片载体封装)和LCCC(陶瓷无引线芯片载体封装);PGA(插针网格阵列)、BGA(球形网格阵列)等。对于具体型号的集成电路芯片来说,其封装形式是固定的,如74系列集成电路芯片,一般采用DIP 封装形式,只有个别芯片生产厂家提供两种或两种以上封装形式。 对于分立元件(如电阻、电容、电感)来说,元件封装尺寸与元件大小、耗散功率、安装方式等因素有关。 1.电阻器常用的封装形式 电阻器常用的封装形式是AXIALO·3~AXIALl·0,对于常用的1/81r小功率电阻来说,可采用AXlALO·3或AXIALO·4(即两引线孔间距为0·762~1·016cm):对于1/4W电阻来说,可采用AXlALO·5(即两引线孔间距为1·27cm),但当采用竖直安装时,可采用AXlALO·3。 2.小容量电解电容的封装形式 小容量电解电容的封装形式一般采用RB·2/.4(两引线孔距离为0·-2英寸,而外径为0.4英寸)到RB.5/1·0(两引线孔距离为O·5英寸,而外径为1·0英寸)。对于大容量电容,其封装尺寸应根据实际尺寸来决定。 3.普通二极管封装形式 普通二极管封装形式为DIODEO·4~DIODEO·7。 4.三极管的封装形式 三极管的封装形式由三极管型号决定,常见的有T0-39、T0-42、T0-54、TO-92A、TO-92B、T0-220等。 对于小尺寸设备,则多采用表面安装器件,如电阻、电容、电感等一股采用SMC线封装方式;对于三极管、集成电路来说,多采用SMD封装方式。 进行电原理图编辑和印制板设计时,器件型号完全确定后,可以从器件手册查到封装形式和尺寸,或测绘后用PCBLib编辑器创建元件的封装图。 当用户实在无法确定时,也可以在PCB编辑器窗口内,单击元件“放置工具",再 单击“测览”按钮,从Advpcb·ddb元件封装图形库中找出所需元件的封装形式。

各国电源线标准及所使用插头规格

各国电源线标准及所使用插头规格(转摘)2008-06-13 23:20 1. 中国电源线标准及所用插头规格 227IEC42(RVB)2×0.5mm2 6A250V 227IEC42(RVB)2×0.75mm2 6A250V 227IEC52(RVV)2×0.5mm2 6A250V 227IEC52(RVV)2×0.75mm2 6A250V ------------------------------------------------------------------------------ 227IEC52(RVV) 2×0.75mm2 6A250V 227IEC53(RVV) 2×0.75mm2 6A250V

227IEC53(RVV) 2×1.0mm2 10A250V -------------------------------------------------------------------------- 227IEC42(RVB)2×0.5mm2 6A250V 227IEC42(RVB)2×0.75mm2 6A250V 227IEC52(RVV)2×0.5mm2 6A250V 227IEC52(RVV)2×0.75mm2 6A250V ---------------------------------------------------------------------------- 227IEC52(RVV)3×0.5mm2 6A250V 227IEC52(RVV)3×0.75mm2 6A250V 227IEC53(RVV)3×0.75mm2 6A250V 227IEC53(RVV)3×1.0mm2 10A250V

世界各国电源插头型号一览

亚太地区日本Japan; 中国China; 韩国Korea; 香港Hong-Kong; 澳门Macau; 澳大利亚Australia; 新西兰New-Zealand; 越南Vietnam; 泰国Thailand; 马来西亚Malaysia; 新加坡Singapore; 菲律宾Philippines; 印度尼西亚Indonesia; 印度India; 中东地区俄罗斯Russia; 白俄罗斯Ukraine; 沙特阿拉伯Saudi Arabia; 约旦Jordan; 伊拉克Iraq; 叙利亚Syria; 黎巴嫩Lebanon; 科威特Kuwait 以色列Israel; 巴林Bahrain; 杜拜Dubai; 土耳其Turkey; 北美地区美国United States; 加拿大Canada; 中南美地区墨西哥Mexico; 尼加拉瓜Nicaragua; 萨尔瓦多El Salvador; 洪都拉斯Honduras; 尼加拉瓜Nicaragua; 哥斯达黎加Costa Rica; 巴拿马Panama; 海地Haiti; 多米尼加Dominican Rep.; 哥伦比亚Columbia; 委内瑞拉Venezuela; 厄瓜多尔Ecuador; 巴西Brazil; 秘鲁Peru; 玻利维亚Bolivia; 巴拉圭Paraguay 乌拉圭Uruguay; 阿根廷Argentina; 智利Chile; 欧洲地区意大利Italy; 奥地利Austria; 捷克Czech Rep.; 波兰Poland; 匈牙利Hungary; 希腊Greece; 比利时Belgium; 荷兰Netherlands; 卢森堡Luxembourg; 英国United Kingdom; 爱尔兰Ireland; 法国France; 瑞士Switzerland; 西班牙Spain; 葡萄牙Portugal; 德国Germany; 挪威Norway; 芬兰Finland; 丹麦Denmark; 瑞典Sweden; 拉脱维亚Latvia 斯洛伐克Slovak Rep.; 南非Rep. South Africa; 毛里求斯Mauritius; 马拉维Malawi; 布基纳法索Burkina Faso; 斯威士兰Swaziland; 塞内加尔Senegal; 甘比亚Gambia; 查德Chad; 加蓬Gabon; 加纳Ghana; 赤道几内亚Equatorial Guinea; 尼日利亚Nigeria; 喀麦隆 Cameroon

各国电源线标准及插头规格

各国电源线标准及插头规格1. 中国电源线标准及所用插头规格 227IEC42(RVB)2×0.5mm2 6A250V 227IEC42(RVB)2×0.75mm2 6A250V 227IEC52(RVV)2×0.5mm2 6A250V 227IEC52(RVV)2×0.75mm2 6A250V ------------------------------------------------------------------------------ 227IEC52(RVV) 2×0.75mm2 6A250V 227IEC53(RVV) 2×0.75mm2 6A250V 227IEC53(RVV) 2×1.0mm2 10A250V -------------------------------------------------------------------------- 227IEC42(RVB)2×0.5mm2 6A250V 227IEC42(RVB)2×0.75mm2 6A250V 227IEC52(RVV)2×0.5mm2 6A250V 227IEC52(RVV)2×0.75mm2 6A250V ----------------------------------------------------------------------------

227IEC52(RVV)3×0.75mm2 6A250V 227IEC53(RVV)3×0.75mm2 6A250V 227IEC53(RVV)3×1.0mm2 10A250V ----------------------------------------------------------------------- 227IEC52(RVV)3×0.5mm2 6A250V 227IEC52(RVV)3×0.75mm2 6A250V 227IEC53(RVV)3×0.75mm2 6A250V 227IEC53(RVV)3×1.0mm2 10A250V ----------------------------------------------------------------------- 227IEC52(RVV)3×0.5mm2 6A250V 227IEC52(RVV)3×0.75mm2 6A250V 227IEC53(RVV)3×0.75mm2 6A250V 227IEC53(RVV)3×1.0mm2 10A250V RX 300/300V 3×0.75mm2 6A250V RX 300/300V 3×1.0mm2 10A250V ------------------------------------------------------------------------ 2. 欧洲电源线标准及所对应插头规格 -------------------------------------------------------------------------

贴片元器件封装尺寸

【SMD贴片元件的封装尺寸】 公制:3216——2012——1608——1005——0603——0402 英制:1206——0805——0603——0402——0201——01005 注意: 0603有公制,英制的区分 公制0603的英制是英制0201, 英制0603的公制是公制1608 还要注意1005与01005的区分, 1005也有公制,英制的区分 英制1005的公制是公制2512 公制1005的英制是英制0402 像在ProtelDXP(Protel2004)及以后版本中已经有SMD贴片元件的封装库了,如 CC1005-0402:用于贴片电容,公制为1005,英制为0402的封装 CC1310-0504:用于贴片电容,公制为1310,英制为0504的封装 CC1608-0603:用于贴片电容,公制为1608,英制为0603的封装 CR1608-0603:用于贴片电阻,公制为1608,英制为0603的封装,与CC16-8-0603尺寸是一样的,只是方便识别。 【贴片电阻规格、封装、尺寸】 英制(inch) 公制 (mm) 长(L) (mm) 宽(W) (mm) 高(t) (mm) a (mm) b (mm) 0201 0603 0.60±0.05 0.30±0.05 0.23±0.05 0.10±0.05 0.15±0.05 0402 1005 1.00±0.10 0.50±0.10 0.30±0.10 0.20±0.10 0.25±0.10 0603 1608 1.60±0.15 0.80±0.15 0.40±0.10 0.30±0.20 0.30±0.20 0805 2012 2.00±0.20 1.25±0.15 0.50±0.10 0.40±0.20 0.40±0.20 1206 3216 3.20±0.20 1.60±0.15 0.55±0.10 0.50±0.20 0.50±0.20 1210 3225 3.20±0.20 2.50±0.20 0.55±0.10 0.50±0.20 0.50±0.20 1812 4832 4.50±0.20 3.20±0.20 0.55±0.10 0.50±0.20 0.50±0.20 2010 5025 5.00±0.20 2.50±0.20 0.55±0.10 0.60±0.20 0.60±0.20 2512 6432 6.40±0.20 3.20±0.20 0.55±0.10 0.60±0.20 0.60±0.20 国内贴片电阻的命名方法:

相关文档
最新文档