线性代数(同济版) 课后习题答案 第六章

线性代数(同济版) 课后习题答案 第六章
线性代数(同济版) 课后习题答案 第六章

同济大学线性代数第六版答案(全)

第一章 行列式 1. 利用对角线法则计算下列三阶行列式: (1)3811411 02---; 解 3 811411 02--- =2?(-4)?3+0?(-1)?(-1)+1?1?8 -0?1?3-2?(-1)?8-1?(-4)?(-1) =-24+8+16-4=-4. (2)b a c a c b c b a ; 解 b a c a c b c b a =acb +bac +cba -bbb -aaa -ccc =3abc -a 3-b 3-c 3. (3)2221 11c b a c b a ; 解 2 221 11c b a c b a =bc 2+ca 2+ab 2-ac 2-ba 2-cb 2 =(a -b )(b -c )(c -a ).

(4)y x y x x y x y y x y x +++. 解 y x y x x y x y y x y x +++ =x (x +y )y +yx (x +y )+(x +y )yx -y 3-(x +y )3-x 3 =3xy (x +y )-y 3-3x 2 y -x 3-y 3-x 3 =-2(x 3+y 3). 2. 按自然数从小到大为标准次序, 求下列各排列的逆序数: (1)1 2 3 4; 解 逆序数为0 (2)4 1 3 2; 解 逆序数为4: 41, 43, 42, 32. (3)3 4 2 1; 解 逆序数为5: 3 2, 3 1, 4 2, 4 1, 2 1. (4)2 4 1 3; 解 逆序数为3: 2 1, 4 1, 4 3. (5)1 3 ? ? ? (2n -1) 2 4 ? ? ? (2n ); 解 逆序数为2) 1(-n n : 3 2 (1个) 5 2, 5 4(2个) 7 2, 7 4, 7 6(3个)

同济大学线性代数第六版答案(全)

第一章行列式 1.利用对角线法则计算下列三阶行列式: (1)3 81141102---; 解3 81141102--- =2?(-4)?3+0?(-1)?(-1)+1?1?8 -0?1?3-2?(-1)?8-1?(-4)?(-1) =-24+8+16-4=-4. (2)b a c a c b c b a ; 解b a c a c b c b a =acb +bac +cba -bbb -aaa -ccc =3abc -a 3-b 3-c 3. (3)2 22111c b a c b a ; 解2 22111c b a c b a =bc 2+ca 2+ab 2-ac 2-ba 2-cb 2 =(a -b )(b -c )(c -a ). (4)y x y x x y x y y x y x +++.

解 y x y x x y x y y x y x +++ =x (x +y )y +yx (x +y )+(x +y )yx -y 3-(x +y )3-x 3 =3xy (x +y )-y 3-3x 2y -x 3-y 3-x 3 =-2(x 3+y 3). 2.按自然数从小到大为标准次序,求下列各排列的逆序数: (1)1 2 3 4; 解逆序数为0 (2)4 1 3 2; 解 逆序数为4: 41, 43, 42, 32. (3)3 4 2 1; 解 逆序数为5: 3 2, 3 1, 4 2, 4 1, 2 1. (4)2 4 1 3; 解 逆序数为3: 2 1, 4 1, 4 3. (5)1 3 ??? (2n -1) 2 4 ??? (2n ); 解 逆序数为2 )1(-n n : 3 2 (1个) 5 2, 5 4(2个) 7 2, 7 4, 7 6(3个) ?????? (2n -1)2, (2n -1)4, (2n -1)6,???, (2n -1)(2n -2)(n -1个) (6)1 3 ??? (2n -1) (2n ) (2n -2) ??? 2.

线性代数(同济六版)知识点总结

1. 二阶行列式--------对角线法则 : |a 11 a 12 a 21 a 22 |= a 11a 22 ?a 12a 21 2. 三阶行列式 ①对角线法则 ②按行(列)展开法则 3. 全排列:n 个不同的元素排成一列。 所有排列的种数用P n 表示, P n = n ! 逆序数:对于排列p 1 p 2… p n ,如果排在元素p i 前面,且比p i 大的元素个数有t i 个,则p i 这个元素的逆序数为t i 。 整个排列的逆序数就是所有元素的逆序数之和。 奇排列:逆序数为奇数的排列。偶排列:逆序数为偶数的排列。n 个元素的所有排列中,奇偶各占一半,即n! 2 对换:一个排列中的任意两个元素对换,排列改变奇偶性. 4. 其中:j 1j 2j 3 是1,2,3的一个排列, t(j 1j 2j 3)是排列 j 1j 2j 3 的逆序数 5. 下三角行列式: 副三角跟副对角相识 对角行列式: 副对角行列式: 6. 行列式的性质: ①行列式与它的转置行列式相等. (转置:行变列,列变行)。D = D T ②互换行列式的两行(列),行列式变号。 推论 :两行(列)相同的行列式值为零。 互换两行:r i ? r j ③行列式的某一行(列)中的所有元素都乘以同一个数k ,等于用数 k 乘此行列式。第i 行乘k :r i x k 推论 :行列式中某一行(列)的公因子可以提到行列式符号外面 ④行列式中如果有两行(列)元素成比例 ,则此行列式等于0 ⑤若行列式的某一列(行)的元素都是两个元素和,则此行列式等于两个行列式之和。如: ⑥把行列式的某行(列)的各元素同一倍数后加到另一行(列)的对应元素上去,行列式的值不变。如 第j 列的k 倍加到第i 列上:c i +kc j 33 323123222113 1211a a a a a a a a a 3221312312332211a a a a a a a a a 13++=312213332112322311a a a a a a a a a ---321321233123222113 12113j 2j 1j ) j j t (j 33 a a a a a a a a a a a a 1) (∑-=n n 2211n n n 2n 1222111 ...a a a a ...a a 0a a a =O M M n ...λλλλλλ21n 21=O n 21λλλN n 2121)n(n λλλ1)(ΛΛ--=n n n j n j n 2n 12n 2j 2j 22211n 1j 1j 1211a )c (b a a a )c (b a a a )c (b a a ΛΛM M M M ΛΛΛΛ+++n n n j n 2n 12n 2j 22211n 1j 1211n n n j n 2n 12n 2j 22211n 1j 1211a c a a a c a a a c a a a b a a a b a a a b a a ΛΛ M M M M ΛΛ ΛΛΛΛM M M M ΛΛ ΛΛ+=n n n j n j n i n 12n 2j 2j 2i 211n 1j 1j 1i 11a a ka a a a a ka a a a a ka a a Λ ΛΛ M M M M ΛΛ ΛΛΛΛ+++n n n j n i n 12n 2j 2i 211n 1j 1i 11a a a a a a a a a a a a Λ Λ ΛM M M M ΛΛΛ Λ ΛΛ=

《线性代数》同济大学版-课后习题答案详解

《线性代数》同济大学版 课后习题答案详解 第一章 行列式 1. 利用对角线法则计算下列三阶行列式: (1)3811411 02---; 解 3 81141102--- =2′(-4)′3+0′(-1)′(-1)+1′1′8 -0′1′3-2′(-1)′8-1′(-4)′(-1) =-24+8+16-4=-4. (2)b a c a c b c b a 解 b a c a c b c b a =acb +bac +cba -bbb -aaa -ccc =3abc -a 3-b 3-c 3. (3)2 22111c b a c b a ; 解 2 22111c b a c b a =bc 2 +ca 2 +ab 2 -ac 2 -ba 2 -cb 2 (a -b )(b -c )(c -a ). (4)y x y x x y x y y x y x +++. 解 y x y x x y x y y x y x +++ =x (x +y )y +yx (x +y )+(x +y )yx -y 3 -(x +y )3 -x 3 =3xy (x +y )-y 3 -3x 2 y -x 3 -y 3 -x 3 =-2(x 3 +y 3 ). 2. 按自然数从小到大为标准次序, 求下列各排列的逆序数: (1)1 2 3 4; 解 逆序数为0 (2)4 1 3 2; 解 逆序数为4: 41, 43, 42, 32. (3)3 4 2 1; 解 逆序数为5: 3 2, 3 1, 4 2, 4 1, 2 1. (4)2 4 1 3; 解 逆序数为3: 2 1, 4 1, 4 3. (5)1 3 × × × (2n -1) 2 4 × × × (2n ); 解 逆序数为 2 ) 1(-n n :

同济大学线性代数第五版课后习题答案

第一章 行列式 1 利用对角线法则计算下列三阶行列式 (1)3811 411 02--- 解 3 811411 02--- 2(4)30(1)(1)118 0 132(1)8 1( 4) (1) 248164 4 (2)b a c a c b c b a 解 b a c a c b c b a acb bac cba bbb aaa ccc 3abc a 3b 3c 3 (3)2 221 11c b a c b a

解 2 221 11c b a c b a bc 2ca 2ab 2ac 2ba 2cb 2 (a b )(b c )(c a ) (4)y x y x x y x y y x y x +++ 解 y x y x x y x y y x y x +++ x (x y )y yx (x y )(x y )yx y 3(x y )3x 3 3xy (x y )y 33x 2 y x 3y 3x 3 2(x 3 y 3) 2 按自然数从小到大为标准次序 求下列各排列的逆 序数 (1)1 2 3 4 解 逆序数为0 (2)4 1 3 2 解 逆序数为4 41 43 42 32 (3)3 4 2 1

解逆序数为5 3 2 3 1 4 2 4 1, 2 1 (4)2 4 1 3 解逆序数为3 2 1 4 1 4 3 (5)1 3 (2n1) 2 4 (2n) 解逆序数为 2)1 ( n n 3 2 (1个) 5 2 5 4(2个) 7 2 7 4 7 6(3个) (2n1)2(2n1)4(2n1)6 (2n1)(2n2) (n1个) (6)1 3 (2n1) (2n) (2n2) 2 解逆序数为n(n1) 3 2(1个) 5 2 5 4 (2个) (2n1)2(2n1)4(2n1)6

同济大学线性代数第六版答案(全)

同济大学线性代数第六版答案(全) 1 利用对角线法则计算下列三阶行列式201 (1)1 4 ***** 解1 4 183 2 ( 4) 3 0 ( 1) ( 1) 1 1 8 0 1 3 2 ( 1) 8 1 ( 4) ( 1) 2 4 8 16 4 4 abc (2)bca cababc 解bca cab acb bac cba bbb aaa ccc 3abc a3 b3 c3 111 (3)abc a2b2c2111 解abc a2b2c2 bc2 ca2 ab2 ac2 ba2 cb2 (a b)(b c)(c a) xyx y (4)yx yx x yxyxyx y 解yx yx x yxy x(x y)y yx(x y) (x y)yx y3 (x y)3 x3 3xy(x y) y3 3x2 y x3 y3 x3 2(x3 y3) 2 按自然数从小到大为标准次序求下列各排列的逆序数 (1)1 2 3 4 解逆序数为0 (2)4 1 3 2

解逆序数为4 41 43 42 32 (3)3 4 2 1 解逆序数为5 3 2 3 1 4 2 4 1, 2 1 (4)2 4 1 3 解逆序数为3 2 1 4 1 4 3 (5)1 3 (2n 1) 2 4 (2n) n(n 1) 解逆序数为 2 3 2 (1个) 5 2 5 4(2个) 7 2 7 4 7 6(3个) (2n 1)2 (2n 1)4 (2n 1)6 (2n 1)(2n 2) (n 1个) (6)1 3 (2n 1) (2n) (2n 2) 2 解逆序数为n(n 1) 3 2(1个) 5 2 5 4 (2个) (2n 1)2 (2n 1)4 (2n 1)6 (2n 1)(2n 2) (n 1个) 4 2(1个) 6 2 6 4(2个) (2n)2 (2n)4 (2n)6 (2n)(2n 2) (n 1个) 3 写出四阶行列式中含有因子a11a23的项解含因子a11a23的项的一般形式为 ( 1)ta11a23a3ra4s 其中rs是2和4构成的排列这种排列共有两个即24和42 所以含因子a11a23的项分别是 ( 1)ta11a23a32a44 ( 1)1a11a23a32a44 a11a23a32a44 ( 1)ta11a23a34a42 ( 1)2a11a23a34a42 a11a23a34a42 4 计算下列各行列式 41 (1)***-*****14 2 07 41 解***-*****c2 c***** 1 ***** 104 1 10 2 122 ( 1)4 3 *****c 4 7c***** 3 1 4 4 110c2 c***** 123 142c00 2 0 1 2c***** 2 (2)31 1***** 22 4 解31 ***** c 4 c3 223 1202r 4 r ***-*****06 ***-*****

同济大学线性代数第五版课后习题答案

1 利用对角线法则计算下列三阶行列式 (1)3811 411 02--- 解 3 811411 02--- 2(4)30(1)(1)118 0 132(1)8 1( 4) (1) 248164 4 (2)b a c a c b c b a 解 b a c a c b c b a acb bac cba bbb aaa ccc 3abc a 3b 3c 3 (3)2221 11c b a c b a 解 2 221 11c b a c b a

bc 2ca 2ab 2ac 2ba 2cb 2 (a b )(b c )(c a ) (4)y x y x x y x y y x y x +++ 解 y x y x x y x y y x y x +++ x (x y )y yx (x y )(x y )yx y 3(x y )3x 3 3xy (x y )y 33x 2 y x 3y 3x 3 2(x 3 y 3) 2 按自然数从小到大为标准次序 求下列各排列的逆 序数 (1)1 2 3 4 解 逆序数为0 (2)4 1 3 2 解 逆序数为4 41 43 42 32 (3)3 4 2 1 解 逆序数为5 3 2 3 1 4 2 4 1, 2 1

(4)2 4 1 3 解逆序数为3 2 1 4 1 4 3 (5)1 3 (2n1) 2 4 (2n) 解逆序数为 2)1 ( n n 3 2 (1个) 5 2 5 4(2个) 7 2 7 4 7 6(3个) (2n1)2(2n1)4(2n1)6 (2n1)(2n2) (n1个) (6)1 3 (2n1) (2n) (2n2) 2 解逆序数为n(n1) 3 2(1个) 5 2 5 4 (2个) (2n1)2(2n1)4(2n1)6 (2n1)(2n2) (n1个)

{教育管理}工程数学线性代数课后答案同济五版

{教育管理}工程数学线性代数课后答案同济五版

第五章相似矩阵及二次型 1.试用施密特法把下列向量组正交化: (1) ; 解根据施密特正交化方法, , , . (2) . 解根据施密特正交化方法, , , . 2.下列矩阵是不是正交阵: (1); 解此矩阵的第一个行向量非单位向量,故不是正交阵. (2) . 解该方阵每一个行向量均是单位向量,且两两正交,故为正交阵. 3.设x为n维列向量,x T x=1,令H=E-2xx T,证明H是对称的正交阵.证明因为 H T=(E-2xx T)T=E-2(xx T)T=E-2(xx T)T =E-2(x T)T x T=E-2xx T,

所以H是对称矩阵. 因为 H T H=HH=(E-2xx T)(E-2xx T) =E-2xx T-2xx T+(2xx T)(2xx T) =E-4xx T+4x(x T x)x T =E-4xx T+4xx T =E, 所以H是正交矩阵. 4.设A与B都是n阶正交阵,证明AB也是正交阵. 证明因为A,B是n阶正交阵,故A-1=A T,B-1=B T, (AB)T(AB)=B T A T AB=B-1A-1AB=E, 故AB也是正交阵. 5.求下列矩阵的特征值和特征向量: (1); 解, 故A的特征值为λ=-1(三重). 对于特征值λ=-1,由 , 得方程(A+E)x=0的基础解系p1=(1,1,-1)T,向量p1就是对应于特征值λ=-1的特征值向量. (2); 解,

故A的特征值为λ1=0,λ2=-1,λ3=9. 对于特征值λ1=0,由 , 得方程Ax=0的基础解系p1=(-1,-1,1)T,向量p1是对应于特征值λ1=0的特征值向量. 对于特征值λ2=-1,由 , 得方程(A+E)x=0的基础解系p2=(-1,1,0)T,向量p2就是对应于特征值λ2=-1的特征值向量. 对于特征值λ3=9,由 , 得方程(A-9E)x=0的基础解系p3=(1/2,1/2,1)T,向量p3就是对应于特征值λ3=9的特征值向量. (3). 解, 故A的特征值为λ1=λ2=-1,λ3=λ4=1. 对于特征值λ1=λ2=-1,由 , 得方程(A+E)x=0的基础解系p1=(1,0,0,-1)T,p2=(0,1,-1,0)T,向量p1和p2是对应于特征值λ1=λ2=-1的线性无关特征值向量. 对于特征值λ3=λ4=1,由 ,

线性代数同济六版知识点总结

1。 二阶行列式——-----—对角线法则 : 2. 三阶行列式 ①对角线法则 ②按行(列)展开法则 3. 全排列:n 个不同的元素排成一列. 所有排列的种数用 表示, = n! 逆序数:对于排列 … ,如果排在元素前面,且比大的元素个数有个,则这个元素的逆序数为。 整个排列的逆序数就是所有元素的逆序数之和。 奇排列:逆序数为奇数的排列。偶排列:逆序数为偶数的排列。n 个元素的所有排列中,奇偶各占一半,即 对换:一个排列中的任意两个元素对换,排列改变奇偶性。 4. 其中: 是1,2,3的一个排列, t( )是排列 的逆序数 5。 下三角行列式: 副三角跟副对角相识 对角行列式: 副对角行列式: 6。 行列式的性质: ①行列式与它的转置行列式相等。 (转置:行变列,列变行)。D = ②互换行列式的两行(列),行列式变号。 推论 :两行(列)相同的行列式值为零。 互换两行: ③行列式的某一行(列)中的所有元素都乘以同一个数k ,等于用数 k 乘此行列式。第i 行乘k : x k 推论 :行列式中某一行(列)的公因子可以提到行列式符号外面 ④行列式中如果有两行(列)元素成比例 ,则此行列式等于0 ⑤若行列式的某一列(行)的元素都是两个元素和,则此行列式等于两个行列式之和。如: 33323123222113 12 11 a a a a a a a a a 3221312312332211a a a a a a a a a 13++=312213332112322311a a a a a a a a a ---321321233123222113 12113j 2j 1j ) j j t (j 33 a a a a a a a a a a a a 1)(∑-=n n 2211n n n 2n 1222111 ...a a a a ...a a 0a a a = n ...λλλλλλ21n 21= n 21λλλ n 2121)n(n λλλ1)( --=1n 1j 1j 1211a )c (b a a a )c (b a a +1n 1j 12111n 1j 1211a c a a a c a a a b a a a b a a

《线性代数》同济大学版-课后习题答案详解

《线性代数》同济大学版 课后习题答案详解 第一章行列式 1.利用对角线法则计算下列三阶行列式: (1)381141102---; 解3 81141102--- =2?(-4)?3+0?(-1)?(-1)+1?1?8 -0?1?3-2?(-1)?8-1?(-4)?(-1) =-24+8+16-4=-4. (2)b a c a c b c b a ; 解b a c a c b c b a =acb +bac +cba -bbb -aaa -ccc =3abc -a 3-b 3-c 3. (3)2 22111c b a c b a ; 解2 22111c b a c b a =bc 2+ca 2+ab 2-ac 2-ba 2-cb 2 =(a -b )(b -c )(c -a ). (4)y x y x x y x y y x y x +++. 解 y x y x x y x y y x y x +++ =x (x +y )y +yx (x +y )+(x +y )yx -y 3-(x +y )3-x 3 =3xy (x +y )-y 3-3x 2y -x 3-y 3-x 3 =-2(x 3+y 3). 2.按自然数从小到大为标准次序,求下列各排列的逆序数: (1)1 2 3 4; 解逆序数为0 (2)4 1 3 2; 解 逆序数为4: 41, 43, 42, 32. (3)3 4 2 1; 解 逆序数为5: 3 2, 3 1, 4 2, 4 1, 2 1. (4)2 4 1 3; 解 逆序数为3: 2 1, 4 1, 4 3. (5)1 3 ??? (2n -1) 2 4 ??? (2n ); 解 逆序数为 2 ) 1(-n n :

同济大学线性代数第六版答案(全)

同济大学线性代数第六版答案(全) 第一章 行列式 1. 利用对角线法则计算下列三阶行列式: (1)3 811411 02---; 解 3 811411 02--- =2?(-4)?3+0?(-1)?(-1)+1?1?8 -0?1?3-2?(-1)?8-1?(-4)?(-1) =-24+8+16-4=-4. (2)b a c a c b c b a ; 解 b a c a c b c b a =acb +bac +cba -bbb -aaa -ccc =3abc -a 3-b 3-c 3. (3)2221 11c b a c b a ; 解 2 221 11c b a c b a

=bc 2+ca 2+ab 2-ac 2-ba 2-cb 2 =(a -b)(b -c)(c -a). (4)y x y x x y x y y x y x +++. 解 y x y x x y x y y x y x +++ =x(x +y)y +yx(x +y)+(x +y)yx -y 3-(x +y)3-x 3 =3xy(x +y)-y 3-3x 2 y -x 3-y 3-x 3 =-2(x 3+y 3). 2. 按自然数从小到大为标准次序, 求下列各排列的逆序数: (1)1 2 3 4; 解 逆序数为0 (2)4 1 3 2; 解 逆序数为4: 41, 43, 42, 32. (3)3 4 2 1; 解 逆序数为5: 3 2, 3 1, 4 2, 4 1, 2 1. (4)2 4 1 3; 解 逆序数为3: 2 1, 4 1, 4 3.

(5)1 3 ??? (2n-1) 2 4 ??? (2n); 解逆序数为 2)1 (- n n: 3 2 (1个) 5 2, 5 4(2个) 7 2, 7 4, 7 6(3个) ?????? (2n-1)2,(2n-1)4,(2n-1)6,???,(2n-1)(2n-2) (n-1个) (6)1 3 ???(2n-1) (2n) (2n-2) ??? 2. 解逆序数为n(n-1) : 3 2(1个) 5 2, 5 4 (2个) ?????? (2n-1)2,(2n-1)4,(2n-1)6,???,(2n-1)(2n-2) (n-1个) 4 2(1个) 6 2, 6 4(2个) ?????? (2n)2, (2n)4, (2n)6,???, (2n)(2n-2) (n-1个)

《线性代数》同济大学版 课后习题答案详解

文档来源为:从网络收集整理.word 版本可编辑.欢迎下载支持. 《线性代数》同济大学版 课后习题答案详解 第一章 行列式 1. 利用对角线法则计算下列三阶行列式: (1)3 81141102---; 解 3 811411 02--- =2?(-4)?3+0?(-1)?(-1)+1?1?8 -0?1?3-2?(-1)?8-1?(-4)?(-1) =-24+8+16-4=-4. (2)b a c a c b c b a ; 解 b a c a c b c b a =acb +bac +cba -bbb -aaa -ccc =3abc -a 3-b 3-c 3. (3)2 22111c b a c b a ; 解 2 22111c b a c b a =bc 2+ca 2+ab 2-ac 2-ba 2-cb 2 =(a -b )(b -c )(c -a ). (4)y x y x x y x y y x y x +++. 解 y x y x x y x y y x y x +++ =x (x +y )y +yx (x +y )+(x +y )yx -y 3-(x +y )3-x 3 =3xy (x +y )-y 3-3x 2 y -x 3-y 3-x 3 =-2(x 3+y 3). 2. 按自然数从小到大为标准次序, 求下列各排列的逆序数: (1)1 2 3 4; 解 逆序数为0 (2)4 1 3 2; 解 逆序数为4: 41, 43, 42, 32. (3)3 4 2 1; 解 逆序数为5: 3 2, 3 1, 4 2, 4 1, 2 1. (4)2 4 1 3; 解 逆序数为3: 2 1, 4 1, 4 3. (5)1 3 ? ? ? (2n -1) 2 4 ? ? ? (2n ); 解 逆序数为2 ) 1(-n n : 3 2 (1个)

同济大学线性代数课后答案 第四章

第四章向量组的线性相关性 1.设v 1=(1,1,0)T ,v 2=(0,1,1)T ,v 3=(3,4,0)T ,求v 1?v 2及3v 1+2v 2?v 3. 解v 1?v 2=(1,1,0)T ?(0,1,1)T =(1?0,1?1,0?1)T =(1,0,?1)T . 3v 1+2v 2?v 3=3(1,1,0)T +2(0,1,1)T ?(3,4,0)T =(3×1+2×0?3,3×1+2×1?4,3×0+2×1?0)T =(0,1,2)T . 2.设3(a 1?a )+2(a 2+a )=5(a 3+a ),求a ,其中a 1=(2,5,1,3)T ,a 2=(10,1,5,10)T ,a 3=(4,1,?1,1)T . 解由3(a 1?a )+2(a 2+a )=5(a 3+a )整理得 )523(6 1321a a a a ?+=])1 ,1 ,1 ,4(5)10 ,5 ,1 ,10(2)3 ,1 ,5 ,2(36 1T T T ??+==(1,2,3,4)T . 3.已知向量组 A :a 1=(0,1,2,3)T ,a 2=(3,0,1,2)T ,a 3=(2,3,0,1)T ; B :b 1=(2,1,1,2)T ,b 2=(0,?2,1,1)T ,b 3=(4,4,1,3)T , 证明B 组能由A 组线性表示,但A 组不能由B 组线性表示. 证明由

???????????=312123111012421301402230) ,(B A ???? ?????????????971820751610402230421301 ~r ????????????????531400251552000751610421301 ~r ???? ???????????000000531400751610421301 ~r 知R (A )=R (A ,B )=3,所以B 组能由A 组线性表示. 由 ???????????????????? ???????????????=000000110201110110220201312111421402~~r r B 知R (B )=2.因为R (B )≠R (B ,A ), 所以A 组不能由B 组线性表示. 4.已知向量组A :a 1=(0,1,1)T ,a 2=(1,1,0)T ; B :b 1=(?1,0,1)T ,b 2=(1,2,1)T ,b 3=(3,2,?1)T , 证明A 组与B 组等价. 证明由 ,??? ?????????????????????????=000001122010311112201122010311011111122010311) ,(~~r r A B 知R (B )=R (B ,A )=2.显然在A 中有二阶非零子式,故R (A )≥2,又R (A )≤R (B ,A )=2,所以R (A )=2,从而R (A )=R (B )=R (A ,B ).因此A 组与B 组等价.

线性代数(同济六版)知识点总结归纳

1. 二阶行列式--------对角线法则 : 2. 三阶行列式 ①对角线法则 ②按行(列)展开法则 3. … 且比大的元素个数有个, 则。 排列中,奇偶各占一半,即 对换:一个排列中的任意两个元素对换,排列改变奇偶性4. 其中: 数 5. 下三角行列式: 副三角跟副对角相识 对角行列式: 副对角行列式: 6. 行列式的性质: ①行列式与它的转置行列式相等. (转置:行变列,列变行)。D = ②互换行列式的两行(列),行列式变号。 推论 :两行(列)相同的行列式值 33 323123 222113 1211a a a a a a a a a 3221312312332211a a a a a a a a a 13++=31 2213332112322311a a a a a a a a a ---31 2111 a a a n n 2211n n n 2n 1222111 ...a a a a ...a a 0 a a a = n ...λλλλλλ21n 21 = n 2 1 λλλ n 212 1) n(n λλλ1) ( --=

为零。 互换两行: ③行列式的某一行(列)中的所有元素都乘以同一个数k ,等于用数 k 乘此行列式。第i 行乘k : x k 推论 :行列式中某一行(列)的公因子可以提到行列式符号外面 ④行列式中如果有两行(列)元素成比例 ,则此行列式等于0 第列上:7. (下) 8. 剩下的( 的余子ij 代数余子式:记 A ij = ( ?1 ) i+j M ij 为元素 a ij 的代数余子式 。 ②重要性质,定理 1)第i 行各元素的余子式,代数余子式与第i 行元素的取值无关。 2)行列式按行(列)展开法则:行列式等于它的任意一行(列)的各元素与 其对应的代数余子式乘积之和, 即: in in i2i2i1i1A a A a A a D +++= nj nj 2j 2j 1j 1j A a A a A a D +++= 或

同济版_工程数学-线性代数第五版答案

同济版 工程数学-线性代数第五版答案 第一章 行列式 1. 利用对角线法则计算下列三阶行列式: (1)3 811411 02---; 解 3 81141102--- =2′(-4)′3+0′(-1)′(-1)+1′1′8 -0′1′3-2′(-1)′8-1′(-4)′(-1) =-24+8+16-4=-4. (2)b a c a c b c b a 解 b a c a c b c b a =acb +bac +cba -bbb -aaa -ccc =3abc -a 3-b 3-c 3. (3)2 22111c b a c b a ; 解 2 22111c b a c b a =bc 2+ca 2+ab 2-ac 2-ba 2-cb 2 (a -b )(b -c )(c -a ). (4)y x y x x y x y y x y x +++.

解 y x y x x y x y y x y x +++ =x (x +y )y +yx (x +y )+(x +y )yx -y 3-(x +y )3-x 3 =3xy (x +y )-y 3-3x 2 y -x 3-y 3-x 3 =-2(x 3+y 3). 2. 按自然数从小到大为标准次序, 求下列各排列的逆序数: (1)1 2 3 4; 解 逆序数为0 (2)4 1 3 2; 解 逆序数为4: 41, 43, 42, 32. (3)3 4 2 1; 解 逆序数为5: 3 2, 3 1, 4 2, 4 1, 2 1. (4)2 4 1 3; 解 逆序数为3: 2 1, 4 1, 4 3. (5)1 3 × × × (2n -1) 2 4 × × × (2n ); 解 逆序数为2 ) 1(-n n : 3 2 (1个) 5 2, 5 4(2个) 7 2, 7 4, 7 6(3个) × × × × × × (2n -1)2, (2n -1)4, (2n -1)6, × × ×, (2n -1)(2n -2) (n -1个) (6)1 3 × × × (2n -1) (2n ) (2n -2) × × × 2. 解 逆序数为n (n -1) : 3 2(1个) 5 2, 5 4 (2个) × × × × × × (2n -1)2, (2n -1)4, (2n -1)6, × × ×, (2n -1)(2n -2) (n -1个) 4 2(1个)

05同济大学线性代数课后答案 第五章

第五章相似矩阵及二次型 1.试用施密特法把下列向量组正交化: (1);??? ?????=931421111) , ,(321a a a 解根据施密特正交化方法, ,??? ?????==11111a b ,??? ??????=?=101],[],[1112122b b b a b a b .??? ??????=??=12131],[],[],[],[222321113133b b b a b b b b a b a b (2).???? ?????????=011101110111) , ,(321a a a 解根据施密特正交化方法, ,???? ???????==110111a b ,???? ???????=?=123131],[],[1112122b b b a b a b .???????????=??=433151],[],[],[],[222321113133b b b a b b b b a b a b

2.下列矩阵是不是正交阵: (1);?????? ???????????121312112131211解此矩阵的第一个行向量非单位向量,故不是正交阵.(2).?????? ??????????????979494949198949891解该方阵每一个行向量均是单位向量,且两两正交,故为正交阵. 3.设x 为n 维列向量,x T x =1,令H =E ?2xx T ,证明H 是对称的正交阵. 证明因为 H T =(E ?2xx T )T =E ?2(xx T )T =E ?2(xx T )T =E ?2(x T )T x T =E ?2xx T , 所以H 是对称矩阵. 因为 H T H =HH =(E ?2xx T )(E ?2xx T ) =E ?2xx T ?2xx T +(2xx T )(2xx T ) =E ?4xx T +4x (x T x )x T =E ?4xx T +4xx T

同济大学工程数学线性代数第六版答案(全)

第一章 行列式 1 利用对角线法则计算下列三阶行列式 (1)3 811 411 02--- 解 3 811411 02--- 2(4)30(1)(1)118 0 1 32(1) 81(4) (1) 24816 44 (2)b a c a c b c b a 解 b a c a c b c b a acb bac cba bbb aaa ccc 3abc a 3 b 3 c 3 (3)2 221 11c b a c b a 解 2 221 11c b a c b a

bc 2ca 2ab 2ac 2ba 2cb 2 (a b )(b c )(c a ) (4)y x y x x y x y y x y x +++ 解 y x y x x y x y y x y x +++ x (x y )y yx (x y )(x y )yx y 3(x y )3x 3 3xy (x y )y 33x 2 y x 3 y 3x 3 2(x 3 y 3) 2 按自然数从小到大为标准次序 求下列各排列的逆 序数 (1)1 2 3 4 解 逆序数为0 (2)4 1 3 2 解 逆序数为4 41 43 42 32 (3)3 4 2 1 解 逆序数为5 3 2 3 1 4 2 4 1, 2 1 (4)2 4 1 3

解逆序数为3 2 1 4 1 4 3 (5)1 3 (2n1) 2 4 (2n) 解逆序数为 2)1 ( n n 3 2 (1个) 5 2 5 4(2个) 7 2 7 4 7 6(3个) (2n1)2(2n1)4(2n1)6 (2n1)(2n2) (n1个) (6)1 3 (2n1) (2n) (2n2) 2 解逆序数为n(n1) 3 2(1个) 5 2 5 4 (2个) (2n1)2(2n1)4(2n1)6 (2n1)(2n2) (n1个) 4 2(1个)

《线性代数》同济大学版 课后习题答案详解

《线性代数》同济大学版 课后习题答案详 解 第一章 行列式 1 利用对角线法则计算下列三阶行列式 (1)3 811 411 02--- 解 3 811411 02--- 2 ( 4) 3 0( 1) ( 1) 11 8 1 3 2 ( 1)8 1 (4)(1) 24 816 4 4 (2)b a c a c b c b a 解 b a c a c b c b a acb bac cba bbb aaa ccc 3abc a 3b 3c 3 (3)2221 11c b a c b a 解 2 221 11c b a c b a bc 2ca 2ab 2ac 2ba 2cb 2 (a b )(b c )(c a )

(4)y x y x x y x y y x y x +++ 解 y x y x x y x y y x y x +++ x (x y )y yx (x y )(x y )yx y 3 (x y ) 3 x 3 3xy (x y )y 33x 2 y x 3y 3x 3 2(x 3y 3) 2 按自然数从小到大为标准次序 求下列各 排列的逆序数 (1)1 2 3 4 解 逆序数为0 (2)4 1 3 2 解 逆序数为4 41 43 42 32 (3)3 4 2 1 解 逆序数为5 3 2 3 1 4 2 4 1, 2 1 (4)2 4 1 3 解 逆序数为3 2 1 4 1 4 3 (5)1 3 (2n 1) 2 4 (2n ) 解 逆序数为 2 ) 1(-n n 3 2 (1个) 5 2 5 4(2个) 7 2 7 4 7 6(3个) (2n 1)2 (2n 1)4 (2n 1)6 (2n 1)(2n 2) (n 1个) (6)1 3 (2n 1) (2n ) (2n 2) 2

2020年同济大学线性代数第六版第五章《相似矩阵及二次型》同步练习与解析

第五章 相似矩阵及二次型 1、设a=(1 0?2),b=(?423 ),c 与a 正交,且b=λa+c,求λ和c 2. 试用施密特法把下列向量组正交化,然后再单位化: (1)??? ? ??=931421111) , ,(321a a a ; 解 根据施密特正交化方法, ??? ? ??==11111a b , ??? ? ?? -=-=101] ,[],[1112122b b b a b a b , ? ?? ? ??-=--=12131],[],[],[],[222321113133b b b a b b b b a b a b . (2)??? ? ? ??---=011101110111) , ,(321a a a . 解 根据施密特正交化方法, ??? ? ? ??-==110111a b , ? ?? ?? ??-=-=123131],[],[1112122b b b a b a b , ???? ? ??-= --=433151],[],[],[],[222321113133b b b a b b b b a b a b . 3. 下列矩阵是不是正交阵:

(1)?????? ? ??-- -1 21312112131211; 解 此矩阵的第一个行向量非单位向量, 故不是正交阵. (2)???? ?? ? ??---- --979494949198949891. 解 该方阵每一个行向量均是单位向量, 且两两正交, 故为正交阵. 4. (1)设x 为n 维列向量, x T x =1, 令H =E -2xx T , 证明H 是对称的正交阵. 证明 因为 H T =(E -2xx T )T =E -2(xx T )T =E -2(xx T )T =E -2(x T )T x T =E -2xx T , 所以H 是对称矩阵. 因为 H T H =HH =(E -2xx T )(E -2xx T ) =E -2xx T -2xx T +(2xx T )(2xx T ) =E -4xx T +4x(x T x)x T =E -4xx T +4xx T =E , 所以H 是正交矩阵. (2). 设A 与B 都是n 阶正交阵, 证明AB 也是正交阵. 证明 因为A , B 是n 阶正交阵, 故A -1 =A T , B -1 =B T , (AB)T (AB)=B T A T AB =B -1 A -1 AB =E , 故AB 也是正交阵. 5.设a 1,a 2,a 3,为两两正交的单位向量组,b 1=1 3a 1+2 3a 2+2 3a 3, b 2=2 3a 1+2 3a 2-1 3a 3,b 3=-2 3a 1+1 3a 2-2 3a 3,证明b 1,b 2,b 3,也是两两正交的单位向量组。 6. 求下列矩阵的特征值和特征向量: (1)??? ? ??----201335212;

相关文档
最新文档