装载机液压系统工作原理

装载机液压系统工作原理
装载机液压系统工作原理

50 装载机液压系统工作原理

(培训资料)

一:应用及分类

装载机是一种广泛用于公路、铁路、建筑、水电、港口、矿山等建设工程的土石方施式机械,它主要用于铲装土壤、砂石、石灰、煤炭等散状物料,也可对矿石、硬土等作轻度铲挖作业。换装不同的辅助工作装置还可进行推土、起重和其他物料如木材的装卸作业。在道路、特别是在高等级公路施工中,装载机用于路基工程的填挖、沥青混合料和水泥混凝土料场的集料与装料等作业。此外还可进行推运土壤、刮平地面和牵引其他机械等作业。由于装载机具有作业速度快、效率高、机动性好、操作轻便等优点,因此它成为工程建设中土石方施工的主要机种之一。

装载机按行走系统机构的不同,可分为轮式装载机和带式装载机。

二:液压系统工作原理

ZL50型l轮式装载机,该装载机可实现工作装置(铲斗)的铲装,提升,保持,倾卸和转向机构的转向等动作。液压传动系统如图:

液压传动系统包括工作装置和转向系统。工作装置系统又包括动臂升降液压缸工作回路和转斗液压缸工作回路,两者构成串并联回路。当转斗液压缸换向阀3—离开中位,即切断了通往动臂升降液压缸换向阀11—的油路。欲使动臂升降液压缸动作必须使转斗液压缸换向阀3回到中位。因此,动臂与铲斗不能进行复合动作,所以各液压缸的推力较大,这是转载机广泛采用的液压系统形式。

根据装载机作业要求,液压传动系统应该完成下述工作循环:铲斗翻转升起(铲装)→动臂提升锁紧(转运)→铲斗前倾(卸载)→动臂下降.

1.铲斗收起与前倾

铲斗的收起与前倾由转斗液压缸工作回路实现.当操纵手动换向阀3使其右位工作时,铲斗液压缸活塞杆伸出,并通过摇臂斗杆带动铲斗翻转收起进行铲装.其油路为:

进油路:液压泵2(液压泵1)→手动换向阀3右位→铲斗液压缸无杆腔。

回油路:铲斗液压缸有杆腔→手动换向阀3右位→精过滤器6→油箱。

当操纵手动换向阀3使其左位工作时,铲斗液压缸活塞杆缩回,并通过摇臂斗杆带动铲斗前倾进行卸载。其油路为:

进油路:液压泵2(液压泵1)→手动换向阀3左位→铲斗液压缸有杆腔。

回油路:铲斗液压缸无杆腔→手动换向发3左位→精过滤器6→油箱。

当铲斗在收起与前倾的过程中,若转向液压泵17输出流量正常,则流量转换阀18中的流量分配阀工作在左位,使辅助液压泵1与主液压泵2形成并联供油(动臂升降回路也是如此)。当操纵手动换向阀3使其处于中位时,铲斗液压缸进,出油口被封闭,依靠换向阀的锁紧作用,铲斗在某一位置处于停留状态。

在铲斗液压缸的无杆腔油路中还没有双作用安全阀10。在动臂升降的过程中,铲斗的连杆机构由于动作不相协调而受到某中程度的干涉,即在提升动臂时铲斗液压缸的活塞杆有被拉出的趋势,而在动臂下降时活塞杆又被强制压回。而这时手动换向阀3处于中位,转斗液压缸的油路不通,因此,这种情况回造成铲斗液压缸回路出现过载或产生真空。为了防止这种情况的发生,系统中设置了双作用安全阀10,它可以起到缓冲和补油的作用。当铲斗液压缸有杆腔受到干涉而使压力超过双作用安全阀10的调定压力时,该阀回被打开,使多余的液压油流回油箱,液压缸得到缓冲。当真空时,可由单向阀从油箱补油。铲斗液压缸的无杆腔也应该设置双作用安全阀,使液压缸两腔的缓冲和补油过程彼此协调的更为合理。

2.动臂升降

动臂的升降由动臂升降液压缸工作回路实现。当操纵手动换向阀11使其工作在右位时,动臂升降液压缸的活塞杆伸出,推动动臂上升,完成动臂提升动作。其油路为:

进油路:液压泵2(液压泵1)→手动换向阀3中位→手动换向阀11右位→动臂升降液压缸无杆腔。

回油路:动臂升降有杆腔→手动换向阀11→精过滤器6→油箱。当动臂提升到转运位置时,操纵手动换向阀11使其工作在中位,此时动臂升降液压缸的进出油路被封闭,依靠换向阀的紧锁作用使动臂固定以便运转。

当铲斗前倾卸载后,操纵手动换向阀11使其工作在左位时,动臂升降液压缸的活塞杆缩回,带动动臂下降。其油路为:

进油路:液压泵2(液压泵1)→手动换向阀3中位→手动换向阀11左位→动臂升降液压缸有杆腔。

回油路:动臂升降无杆腔→手动换向阀11中→精过滤器6→油箱。

当操纵手动换向阀11使其工作在左位时,动臂升降液压缸处于浮动状态,以便于在坚硬的地面上铲取物料或进行铲推作业。此时动臂能随地面状态自由浮动,提高作业技能。另外,还能实现空斗迅速下降,并且在发动机熄火的情况下亦能降下铲斗。

装载机动臂要求具有较快的升降速度和良好的低速微调性能。动臂升降液压缸由主液压泵2和辅助液压泵1并联供油,流量总和可达320L/min。动臂升降时的速度可以通过控制手动换向阀11的阀口开口大小来进行调节,并通过加速踏板的配合,已达到低速微调的目的。3,转载机铰接车架折腰转向

轮式装载机的车架采用前,后车铰接机构,因此其转向机构采用交接车架进行折腰转向。装载机铰接车架折腰转向过程是由转向液压缸工作回路来实现的,并要求具有稳定的转向速度(即要求进入转向液压缸的油液流量恒定)。转向液压缸的油液主要来自转向液压泵17,在发动机额定转速(1600r/min)下转向液压泵的流量为77L/min当发动机受其他负荷影响而转速下降时,就会影响转向速度的稳定性。这时就需要从辅助液压泵1通过流量换向阀18补入转向泵17所减少的流量,以保证转向油路的流量稳定。当流量换向阀18在相应位置时,也可将辅助液压泵多余的或全部液压油共给工作装置油路,以加快动臂升降液压缸和铲斗液压缸的动作速度,缩短作业循环时间和提高生产效率。

装载机转向机构要求转向灵活,因此,转向随动阀13采取负封闭式的转向过渡形式,这样还能防止突然转向时使系统压力突然升高。同时还设置了一个紧锁阀14来防止转向液压缸发生窜动。若操纵转向盘使转向随动阀13工作在左为和右为时,系统的压力升高,立即打开紧锁阀14,使油液进入转向液压缸以驱动活塞伸缩,使车辆转向。同时,前车架上的反馈杆随着前,后车架的相对偏转而通过出齿轮齿条传动使转向随动阀的阀体同时移动并关闭阀口,使转向动作停止。当转向盘停止在某一角度上时,转向液压缸也停止在相应位置上,装载机便动作沿着相应的转向半径运动。若继续转动转向盘,随动阀的阀口将始终打开,转向过程也将继续进行。

因此,前,后车架的相对转角始终随着转向盘的转角。锁紧阀14的作用是在装载机直线行驶时防止转向液压缸窜动时产生液压冲击,造成管路系统损坏。另外,当转向液压泵1和辅助液压泵1出现故障或管路发生损坏时,锁紧阀14将复位并关闭转向液压缸的油路,从而保证装载机不摆头。

4 :换挡

换挡的工作原理:蓄能器端部的活塞装在活塞缸内,右端顶在弹簧上,大小弹簧右端分别顶在主压力阀和壳体的凸台上。活塞左端与端部的螺塞间形成油室,并通过油道与换向阀的连通油道相通。在这段油道上装有单向阀和节流孔。换挡时油路的液压流入换挡离合器的油缸,

从而使油路中油压降低,蓄能器油室的油室经单向阀补充油液,使制动器或离合器迅速结合。同时由于油室的油流出,在主压力阀控制油道的作用下,阀杆左移使系统的油压下降,当主、从动盘贴紧时,油缸停止移动,油压上升,一部分油液经节流孔流向油室,油室的压力逐渐升高,推动活塞右移,压缩弹簧,主压力阀的阀杆右移,这样系统的油压便逐渐升高,使主、从动部件结合平稳,实现平稳可*换挡。

单向阀的作用在于及时向换挡制动器或离合器的油缸补油,使换挡迅速。同时在补油后,使主压力阀的阀杆左移,降低换挡开始时系统的压力。节流孔的作用在于换挡后使系统的压力逐渐地上升,从而换挡制动器或离合器的主、从动摩擦片逐渐压紧,使换挡柔和无冲击。5:自动限为装置

为了提高生产效率和避免液压缸活塞达到极限位置而造成安全阀的频繁启闭,在工作装置和换向阀上装有自动限位装置,以实现工作中铲斗的自动放平。在动臂后铰点和转斗液压缸处装有自动限位行程开关。当动臂举升到高位置或铲斗随动臂下降到与停机面最好水平的位置时,触点碰到行程开关,发出信号使电磁换向阀8动作,使其右位工作。这时,气动系统接通气路,储气筒内的压缩空气进入换向阀11或3的端部,松开弹跳定位钢球。阀心便在弹簧的作用下回到中位,液压缸停止动作。当行程开关脱开触点时,电磁换向阀断电而使其回到常位,这时进气通道被关闭,阀体内的压缩空气从放气孔排出。

三:系统常见故障及排除方法

(1)动臂提升力不足或转斗力不足。主要是:1、安全阀调整不当系统压力低,按规定值重新调整系统工作压力;2、吸油管及滤油器堵塞,清洗换油;3、油泵、油缸、管路内漏,更换油泵、并按自然沉降量检查系统密封性;4、多路阀过度、阀杆与阀体配合间隙超过规定,更换多路阀。

(2)系统工作性能降低或不稳定。主要是:1、工作油变质,更换油;2、异物堵塞管路,清洗液压系统和油箱;3、滤油器堵塞或损坏,清洗或更换;4、系统内有空气,检查供油系统有无漏气。

(3) 动臂举升后自行下沉。主要是:1、动臂油缸内漏,更换或拆修油缸;2、多路阀阀杆间隙过大,拆修或更换。

(4) 油温过高。主要是:1、重负荷工作时间过长,停机休息或减少负荷;2、油量不足,加油到规定油位。

(5) 方向盘回位后继续转向。主要是:1、转向器内四位弹簧垫损坏,拆修更换簧片;2、配油

常见故障中还有液压系统的泄漏,一般都是在使用一段时间后产生。从表面现象看,多为密封件失效、损

坏、挤出,或密封表面被拉伤等造成。主要原因有:油液污染、密封表面粗糙度不当、密封沟槽不合格,管接头松动、配合件间隙增大、油温过高、密封圈变质或装配不良等。

(1)管接头的泄漏与连接处的加工精度、紧固强度及毛刺是否被除掉等因素有关。主要表现是选用管接头的类型与使用条件不符;管接头的结构设计不合理;管接头的加工质量差,不起密封作用;压力脉动引起管接头松动,螺栓蠕变松动后未及时拧紧;管接头拧紧力矩过大或不够。

(2)密封件引起的泄漏与密封件的损坏或失效有关。主要表现是密封件的材料或结构

类型与使用条件不符;密封件失效、压缩量不够、老化、损伤、几何精度不合格、加工质量低劣、非正规产品;密封件的硬度、耐压等级、变形率和强度范围等指标不合要求;密封件的安装不当、表面磨损或硬化,以及寿命到期但未及时更换。

(3)由元件结合面引起的泄漏与设计、加工和安装都有关。主要表现是密封的设计不符合规范要求,密封沟槽的尺寸不合理,密封配合精度低、配合间隙超差;密封表面粗糙度和平面度误差过大,加工质量差;密封结构选用不当,造成变形,使接合面不能全面接触;装配不细心,接合面有沙尘或因损伤而产生较大的塑性变形。

(4)壳体的泄漏主要发生在铸件和焊接件的缺陷上,在液压系统的压力脉动或冲击振动的作用下逐渐扩大。

(5)系统自身泄漏的主要原因是,系统装配粗糙,缺乏减振、隔振措施;系统超压使用;未做到按规定对系统适时检查及处理;易损件寿命到期但未及时更换。

四:液压系统泄漏的防治

(1)防止油液污染

液压泵的吸油口应安装粗滤器,且吸油口处应距油箱底部一定距离;出油口处应安装高压精滤器,且过滤效果应符合系统的工作要求,以防污物堵塞而引起液压系统故障;液压油箱隔板上应加装过滤网,以除去回油过滤器未滤去的杂质。液压缸上应安装金属防护圈,以防污物被带进缸内,并可防止泥水和光辐射对液压缸侵蚀而引起泄漏;液压元器件安装前应检查、清理干净其内部的铁屑及杂质;定期检查液压油,一旦发现油液变质、泡沫多、沉淀物多、油水分离等现象后应立即清洗系统并换油。新油加入油箱前应经过静置沉淀,过滤后方可加入,必要时可设中间油箱以进行新油的沉淀和过滤,确保油液的清洁。

(2)密封表面的粗糙度要适当

液压系统相对运动副表面的粗糙度过高或出现轴向划伤时将产生泄漏;粗糙度过低,达到镜面时密封圈的唇边会将油膜刮去,使油膜难以形成,密封刃口产生高温,加剧磨损,所以密封表面的粗糙度不可过高也不能过低。与密封圈接触的滑动面一定好有较低的粗糙度,液压缸、滑阀等动密封件表面的粗糙度应在Ra0.2~0.4дm之间,以保证运动时滑动面上的油膜不被破坏。当液压缸、滑阀的杆件上出现轴向划伤时,轻者可用金相砂纸打磨,重者应电镀修复。

(3)合理设计和加工密封沟槽

液压缸密封沟槽的设计或加工的好坏,是减少泄漏、防止油封过早损坏的先决条件。如果活塞与活塞杆的静密封处沟槽尺寸偏小,密封圈在沟槽内没有微小的活动余地,密封圈的底部就会因受反作用力的作用使其损坏而导致漏油。密封沟槽的设计(主要是沟槽部位的结构形状、尺寸、形位公差和密封面的粗糙度等),应严格按照标准要求进行。

防止油液由静密封件处向外泄漏,须合理设计静密封件密封槽尺寸及公差,使安装后的静密封件受挤压变形后能填塞配合表面的微观凹坑,并能将密封件内应力提高到高于被密封的压力。当零件刚度或螺栓预紧力不够大时,配合表面将在油液压力作用下分离,造成间隙过大,随着配合表面的运动,静密封就变成了动密封。

(4)减少冲击和振动

液压系统的冲击主要产生于变压、变速、换向的过程中,此时管路内流动的液体因很快的换向和阀口的突然关闭而瞬间形成很高的压力峰值,使连接件、接头与法兰松动或密封圈挤入间隙损坏等而造成泄漏。为了减少因冲击和振动而引起的泄漏,可以采取以下措施:

①用减振支架固定所有管子以便吸收冲击和振动的能量。

②采用带阻尼的换向阀、缓慢开关阀门、在液压缸端部设置缓冲装置(如单向节流阀)。

③使用低冲击阀或蓄能器来减少冲击。

④适当布置压力控制阀来保护系统的所有元件。

⑤尽量减少管接头的使用数量,且管接头尽量用焊接连接。

⑥使用螺纹直接头、三通接头和弯头代替锥管螺纹接头。

⑦尽量用回油块代替各个配置。

⑧针对使用的最高压力,规定安装时使用的螺栓扭距和堵头扭距,防止接合面和密封件被损坏。

(5)减少动密封件的磨损

液压系统中大多数动密封件都经过精确设计,如果动密封件加工合格、安装正确、使用合理,均可保证长时间无泄漏。从设计角度来讲,可以采用以下措施来延长动密封件的寿命:

①消除活塞杆和驱动轴密封件上的径向载荷。

②用防尘圈、防护罩和橡胶套保护活塞杆,防止粉尘等杂质进入。

③设计、选取合适的过滤装置和便于清洗的油箱,以防止粉尘在油液中累积。

④使活塞杆和轴的速度尽可能低。

(6)合理设计安装板

当装载机液压系统阀组或底板用螺栓固定在安装面上时,为了得到满意的初始密封和防止密封件被挤出沟槽与被磨损,安装面要平直,密封面要求精加工,表面粗糙度要小于Ra0.8μm,平面度误差要小于0.01/100mm;表面不能有径向划痕,连接螺钉的预紧力要足够大,以防止表面分离。

(7)要正确装配密封圈

装配密封圈时应在其表面涂油,若须通过轴上的键槽、螺纹等开口部位,应使用引导工具,不要用螺丝刀等金属工具,否则会划伤密封圈而造成漏油。对于有方向性的密封圈(如V、Y和Yx等型密封圈),装配时应将唇口对着压力油腔,注意保护唇口,避免被零件的锐边、毛刺等划伤。对旋转接触的密封面(如液压泵主动齿轮轴端),应选用双唇密封圈。安装组合密封件前应将密封件放在液压油中煮到一定温度;安装时应使用专用的导套和收口工具,并严格遵守厂家对密封件的安装说明。

(8)控制油温防止密封件变质

密封件过早变质的一个重要原因是油温过高。多数情况下,当油温经常超过60℃时,油液黏度大大下降,密封圈膨胀、老化、失效,结果导致液压系统产生泄漏。据研究表明,油温每升高10℃则密封件的寿命就会减半,所以应使油液温度控制在65℃以内。为此,应将油箱内部的出油管与回油管用隔板隔开,减少油箱到执行机构(缸或马达)之间的距离,管路上尽量少用直角弯头;另外,应注意油液与密封材料的相容性问题,须按使用说明书或有关手册选用液压油和密封件的型式与材质。

(9)重视修理装配工艺

应强化防漏治漏的修理工艺,如阀杆、活塞表面、缸内壁的整体或局部均可采用电刷镀、静电喷涂增厚后,再经车床切削加工至所需尺寸。安装带螺纹的管接头时,应在螺纹上缠绕聚四氟乙烯生料带。铸造件或焊接件在安装前应进行探伤检查和耐压试验,耐压试验的压力相当于其最高工作压力的150%~200%。油封装入座孔时,应用专用工具导入.

你问这个问题太专业,我只好摘抄了一下相关资料。具体哪方面不明白的,可以继续讨论。

液压系统基本结构及工作原理

液压系统基本结构与工作原理 一、概述 液路系统主要包括主油泵,液压油箱,滤清器,减压阀,溢流阀,起升液缸,伸缩液缸,吊钳液缸,支腿液缸,液压马达,及各种液压操作阀等部件。设备出厂前溢流阀、减压阀及各种压力阀的压力已调定,确保液压系统安全运行,用户在使用中不得轻率更改。 液压系统包括主液压系统和转向液压系统,两个系统共用一液压油箱。 1、主液压系统 主液压系统为钻机车在设备调整和钻修作业时提供液压动力,配置有各种阀件,控制操作各液压机具正确安全运行。 2、转向液压系统 转向液压系统为车辆前部车桥的液压助力转向提供液压动力,配置有各种阀件,控制液压系统压力、流向和稳定最高流量,确保车辆转向轻便灵活,安全可靠。 二、结构特点 液压系统由以下组成: ?主液压系统 ?转向液压系统 1、主液压系统 由以下部件组成: 1)液压油箱:存储、冷却、沉淀和过滤液压油。油箱安装有: ●人孔盖,安装在油箱顶部,设置有两个,其中在油箱回油区的人孔盖上安 装液压空气滤清器; ●液压空气滤清器,过滤油箱流通空气,油箱加油时过滤油液; ●液位计,2个,安装在油箱的前侧面,设置有高低两个液位计,高位液位 计,显示井架降落后的油面;低位液位计,显示井架竖起后油面; ●油温表,安装在油箱的前侧面,测量油箱内油温,正常工作油温在30~ 70℃;主回油口,2个,设置在油箱的底板上,配置单向阀,分别连接主

回油管和溢流阀回油口;单向阀在维修液压管路时自动关闭,防止油箱中 的油液流失; ●排泄油口,设置在油箱的底板上,用堵头封堵;打开堵头可排放油箱液压 油; ●主油泵吸油口,设置在油箱的前侧面,安装主吸油滤清器; ●转向油泵吸油口,设置在油箱的前侧面,安装转向吸油滤清器; ●转向系统回油口,设置在油箱的底板上,配置单向阀,单向阀在维修液压 管路时自动关闭,防止油箱中的油液流失; 2)液压油泵:单联齿轮结构,2台,分别安装在两台液力变速箱取力箱上, 由变矩器泵轮驱动,发动机转动,取力箱就可驱动油泵。取力箱配置有液压离合器,当需要液压动作时,可操作司钻控制箱“液泵离合”手柄,置“油泵I合”位,油泵I结合,输出工作压力油液;手柄置“油泵II合” 位,油泵II结合,输出工作压力油液;。手柄置中位,两油泵均脱离停转。 3)溢流阀:先导式结构,2台,分别安装在主液压油泵的出油口端。调定系 统压力,防止系统过载,保护系统及元件安全。 溢流阀的结构原理:由先导阀和主滑阀组成,先导阀部分包括阀体,滑阀,调压弹簧等零件。主阀滑阀上开有一个小孔a,使进口压力油能进入滑阀上腔B,当作用在锥阀上的液压力小于弹簧的预紧力时,先导阀锥阀在弹簧力的作用下关闭,因为阀体内没有油液流动,滑阀上下两端油腔液压力相等。因此,滑阀在上端弹簧的作用下处于下端的极限位置。溢流阀的进出油口被滑阀切断,溢流阀不溢流;当作用在锥阀上的液压力因溢流阀进口压力的升高而增大到等于弹簧力时,锥阀被顶开,滑阀上腔B的油液经回油口b和滑阀中心通孔流入阀的出油口,然后溢流回油箱,这时溢流阀进油口的压力油从小孔a,向上补充到B腔,因为油液经小孔a时存在压力损失,因此B腔的压力低于进油口压力,滑阀上下两端出现压力差。 于是,在上下两端压力差的作用下滑阀克服弹簧力,滑阀自重以及摩擦力向上移动,打开溢流阀的进回油口,油液流回油箱,滑阀开启后,受液动力的影响,进口的压力P还要继续上升,滑阀继续上移,到某一位置滑阀受力平衡时,溢流阀进口压力稳定在一定值,该值称为溢流阀的调定压力。

ZL50轮胎式装载机液压系统设计

机电工程系 液压与气压传动 课程设计 题目:ZL50轮胎式装载机液压系统设计 专业:机械设计制造及自动化 班级:机制 姓名: 学号: 指导教师: 2010.6.1 一.液压传动课程设计任务书 (1) (一)、主要任务与目标 1 (二)、主要内容 1 (三)、工作量要求1 二:装载机的简介 (2) (一)简介2 (二)液压传动系统的优缺点:2 (三)装载机液压系统的设计方法与要求2 三:液压传动系统工作原理图 (3)

四:ZL-50液压传动系统工作原理 (4) (一)动臂液压缸工作回路。 4 (二)转斗液压缸工作回路。 4 (三)自动限位装置4 (四)转向液压缸工作回路4 五:各元件参数计算 (5) (一)查阅资料整理得表5 (二)铲斗液压分析计算6 (三)动臂液压分析计算9 (四)转向液压缸液压分析计算12 六、设计小结 (20) 七、参考文献 (20) 八、心得体会 (21)

一.液压传动课程设计任务书(一)、主要任务与目标 任务: ZL50铰接式轮胎装载机液压系统设计 转载机是用来装卸成堆散料作业的机械,装载机的举重量为5吨。装载机的基本动作是:将铲斗插入物料向后翻转铲斗,保持载荷, 提升物料到一定高度,将物料运输到预定地点卸料。如此循环作业。装载机露天工作,对液压系统要求如下:1.工作性能好。2.寿命长,可靠性高。3.操纵性能好。4.便于维修和保养。 目标:通过本题目的课程设计,使学生对所学的《液压与气压传动》课程知识有一个全面深刻的认识,熟悉液压系统设计的基本方法和过程;提高学生的动手能力和工程实践能力。 (二)、主要内容 (1)熟悉设计任务,明确设计及目标。 (2)根据设计要求和已学过的设计流程,拟定系统工作原理图。 (3)计算各元件的参数并验算。 (4)元件选型。 (5)编制文件,绘制速度、负载图谱。 (三)、工作量要求 完成规定的任务,总字数3000~4000字。 设计内容设计说明及计算过程 备 注

轮式装载机液压系统原理介绍

装载机液压系统 液压传动的工作原理 1.基本概念 传动——在工程机械上,传动是指能量或动力由发动机向工作装置的传递,通过各种不同的传递方式使发动机的转动转变为工作装置各种不同形式的运动。如:车架的转动、推土机铲刀的升降、装载机动臂的升降、铲斗的收放等等。 传动的分类(按工作介质): 机械传动 液体传动:以液体为工作介质 气体传动 电力传动 液体传动分为: 液力传动:利用液体动能。如:由泵轮——涡轮组成的变矩器 液压传动:利用密闭液体压力能。如:千斤顶 2.液压传动的定义: 液压传动——用封闭在回路里的有压液体作为介质,把液压能转化为机械能,或反之,或其组合的技术。 或:以液体为传动介质,靠处于密闭容器内的液体静压力来传递动力,按容积变化 相等的原则来传递速度的传动方式 3.液压传动的原理: 液压传动应用了液体的两个重要特性:(1)假定液体不可压缩;(2)液体中压力向各个方向作同样的传播(帕斯卡原理)。 帕斯卡原理:在密闭容器内,处于平衡状态的液体对施加于它表面的压力,能以等 值在液体内向各个方向传递。 例1:P=P0+γh γ=0.8~0.9kg/cm3,管路布置很少超过10m,而 P0往往很大,所以P≈P1≈P2≈P3≈P4≈P0 例2:千斤顶原理(液压杠杆) 作用力=压力×作用面积:F=P×S F/S1=W/S2,即W=S2/S1×F 4.液压传动参数 两个主要参数:P与Q 压力与负载的关系:负载决定压力 流量与速度的关系;流量决定速度V=Q/S (压力损失与流量损失)

●液压传动系统的基本组成 1.基本组成: 动力元件——液压泵:将机械能转变为液压能。 控制元件——阀装置:控制系统中油液的压力、流量及流动方向等。 执行元件——油缸、油马达:将机械能转变为液压能。 其它辅助元件:邮箱、油管、滤油器、冷却器、蓄能器…… 2.元件符号: 泵与马达: 溢流阀与减压阀: ●液压传动系统的分类 ●装载机工作液压系统 1.系统组成及原理 1)直接操纵液压系统(ZL50C、ZL40B、ZL30E、ZL30G) 工作泵、分配阀(手动)、动臂油缸、转斗油缸、油箱(滤油器)…以下为ZL50C工作液压系统及转向液压系统原理图: 特点:手动式或先导式、串并联优先转斗、动臂滑阀为四位六通

装载机液压系统设计模板

6.0000图文 2.1原系统工作原理及节流损失分析 2.1.1装载机工作装置动臂部分概述 下图为装载机工作装置动臂部分的结构简图。就当前国内大部分装载机而言, 其工作装置的结构几乎一样, 只是在多路阀控制上的区别。 动臂液压缸换向阀2用来控制动臂液压缸的运动方向, 使动臂能停在某一位置, 并能够经过控制换向阀的开度来获得液压缸的不同速度。动臂液压缸换向阀是四位六通滑阀, 它可控制动臂上升、下降、固定和浮动等四个动作。动臂浮动位置可使装载机在平地堆积作业时, 工作装置能随地面情况自由浮动, 在铲掘矿石作业时可使铲斗刃避开大块矿石进行铲掘, 提高作业效率。当动臂举升的时候多路换向阀执行图示B位置的机能, 液压缸无杆腔进油, 有杆腔回油, 上升阶段的速度靠控制节流口开度, 油液经过节流口有能量损失。

当动臂下降的时候多路换向阀执行图示A位置的机能, 液压缸有杆腔进油, 无杆腔回油, 为了控制铲斗下降的速度, 液压油要经过多路阀节流口返回油箱,铲斗和重物靠自身的重力就可下落, 而工作泵在这个过程中并不泄荷, 依然不断的给系统供油提供压力和流量, 这部分压力能经过节流口转变为热能,严重影响液压系统热平衡。 2.1.2能量损失部位分析 装载机的液压系统能量损失主要体现在压力能的损失上, 在工作时压力损失主要体现在液压油经过多路换向阀时的压力损失以及当工作油缸工作腔压力达到或超过工作压力时而引起的溢流损失 1, 溢流阀功率损失是很大的, 为了减少溢流损失应该在系统中安装限位阀, 当系统运动到快限位时, 限位阀配合系统动作, 使多路阀回到中位, 而且使工作泵卸荷, 这样就能够减少经过溢流阀的能量损失。 2, 换向阀节流引起的损失: 为了控制工作装置的运动速度, 换向阀要对油液进行节流控制, 装载机工作装置液压控制系统所用的多路换向阀实际上就是比例方向阀, 能对进口和出口同时进行节流控制。换向阀的节流使油液流经换向阀时造成能量损失, 引起发热, 使系统效率降低, 严重时会造成阀不能正常工作。特别是当动臂下降时, 是靠自重下降的, 动臂下降很快, 为了控制速度稳定, 多路换向阀经过节流产生很大背压, 来保持下降速度稳定。动臂从顶

ZL50型装载机液压系统浅析及维护

*****大学毕业(设计)论文 论文题目:ZL50型载机液压系统分析及 维护 专业班级:机械0901 学生姓名:田海东 指导教师:孙立峰 完成日期:

目录 目录 (2) 摘要 (3) 前言 (5) 第一章装载机液压系统分析 (4) 1.1概述 (4) 1.2油的作用源 (4) 1.3转向阀的作用 (4) 1.4工作装置液压回路 (4) 第二章工程机械液压系统故障的特点 (6) 第三章工程机械液压系统的故障检查方法 (8) 1.直观检查法 (8) 2.对换诊断法 (8) 3.仪表测量检查法 (8) 4.原理推理法 (8) 第四章工程机械液压系统维护 (9) 1 选择适合的液压油 (9) 2 定期保养注意事项 (9) 3 防止固体杂质混入液压系统 (10) 4防止空气和水入侵液压系统 (10) 第五章作业中注意事项 (11) 致谢 (15) 参考文献 (16)

摘要 对装载机液压系统进行正确的检修与保养,首先必须做好装载机日常保养和维护工作,在作业前后要按规定对装载机进行检查、保养和维护。在作业过程中,要注意装载机运行中有无不正常情况发生,如杂音、异味、振动等,发现问题及时做好必要的调整和修理工作,避免由于小故障的恶化而造成严重后果。 对筑路机械的检修与保养已有不少人提过,但仍有很多操作人员误以为只要勤换油及滤芯就万事大吉,以致液压系统出点小问题就不知所措。据查,当前因液压问题而瘫痪的筑路机械中有80%是装载机,且国产为多。 液压技术在装载机中应用日益完善,但客户对系统的可靠性要求也越来越高,为了保证装载机对液压系统各项技术指标和工作性能的要求,特别是对液压系统的检修与保养,必须对液压系统进行全面地分析,并掌握测试液压元件和系统的方法,进一步提高可维性和效率。 关键词:装载机液压系统维护

轮式装载机液压系统设计

开题报告

摘要 装载机主要用来装卸散状物料,也能进行轻度的铲掘工作,并且具有良好的机动性能,是工程机械中保有量较大的品种之一。 装载机液压系统设计是装载机设计的一个重要环节,它对装载机的使用性能和装载机在市场上的竞争力有着很大的影响。装载机性能的优劣和作业效率的发挥,离不开液压系统的设计,而且在很大程度上取决于液压系统的工作效率。 装载机的工作装置和转向机构都采取液压传动,本文通过对工作装置及转向机构工作要求和载荷分析对液压系统进行设计。主要包括对执行元件,控制元件辅助元件的选择、设计。 本文的设计,能够使读者对液压系统设计进一步加深了解,同时从中可以体会到一些设计理念,为以后从事此类工作得到一些帮助。 关键词:装载机液压传动液压系统设计

ABSTRACT The loader is mainly used for loading and unloading bulk materials, but also for light excavation work, and has good maneuverability, is the construction machinery to maintain a larger variety of one. The hydraulic system design of the loader is an important part of the loader design. It has a decisive influence on the performance of the loader and the competitiveness of the loader in the market. The performance of the loader and the operational efficiency of the play, can not be separated from the hydraulic system design, and to a large extent depends on the hydraulic system efficiency. The working device of the loader and the steering mechanism are taken hydraulic drive, this paper through the work device and steering mechanism requirements and load analysis of the hydraulic system design. Mainly include the implementation of components, control components of the selection of components, design. The design of this paper can make the reader to further deepen the understanding of the hydraulic system design, at the same time from which you can experience some of the design concept for the future to engage in such work to get some help. Key words: loader hydraulic transmission hydraulic pressure system

3t装载机液压系统的设计(转斗油缸设计)

3t装载机液压系统的设计——转斗油缸设计 摘要 装载机是一种应用广泛的工程机械。其工作装置的结构和性能直接影响工程机械整机的工作尺寸和性能参数,工作装置的合理性直接影响整机的工作效率、生产负荷、动力与运动特性、不同工况下的作业效果、工作循环的时间、外形尺寸和发动机功率等。装载机在国内外不论是品种或是在产量方面都得到迅速发展,成为工程机械的主要品种之一。而合理的工作装置结构更能起到事半功倍之成效,通过研究设计使装载机的工作装置结构更加合理,从而达到提高装载机作业生产率的目的。本设计的主要内容:装载机工作装置包括铲斗,动臂,摇臂及它们相对应的油缸,连杆,并对它们进行设计计算。 关键词:装载机工程机械工作装置设计

3t loader Hydraulic system design -turn fights oil cylinder design Abstract Loader is a kind of engineer machine that is widely applied in engineer project. Device structure and performance of work directly affects the work of construction machinery machine size and performance parameters, the reasonableness of the work machine direct impact on equipment efficiency, production capacity, power and motion characteristics, effects of different conditions of operation, duty cycle time, such as dimensions and engine power.Loader at home and abroad in the yield of varieties or whether it is rapidly developing, become one of the main types of the engineering machinery. And the more reasonable equipment structure can have the effectiveness of the half, through the study design of loader working device structure more reasonable, so as to improve the productivity of the loader purpose Homework . The design of the main content,Working mechanism of loader, including bucket loaders, boom, arm and their corresponding cylinders, connecting rods, and their design calculations. Keywords:Loader, Engineering machinery,Working mechanism,design

轮式装载机液压系统原理介绍

装载机液压系统 ●液压传动的工作原理 1.基本概念 传动——在工程机械上,传动是指能量或动力由发动机向工作装置的传递,通过各种不同的传递方式使发动机的转动转变为工作装置各种不同形式的运动。如:车架的转动、推土机铲刀的升降、装载机动臂的升降、铲斗的收放等等。 传动的分类(按工作介质): 机械传动 液体传动:以液体为工作介质 气体传动 电力传动 液体传动分为: 液力传动:利用液体动能。如:由泵轮——涡轮组成的变矩器 液压传动:利用密闭液体压力能。如:千斤顶 2.液压传动的定义: 液压传动——用封闭在回路里的有压液体作为介质,把液压能转化为机械能,或反之,或其组合的技术。 或:以液体为传动介质,靠处于密闭容器内的液体静压力来传递动力,按容积变化 相等的原则来传递速度的传动方式 3.液压传动的原理: 液压传动应用了液体的两个重要特性:(1)假定液体不可压缩;(2)液体中压力向各个方向作同样的传播(帕斯卡原理)。 帕斯卡原理:在密闭容器内,处于平衡状态的液体对施加于它表面的压力,能以等 值在液体内向各个方向传递。 +γh 例1:P=P γ=0.8~0.9kg/cm3,管路布置很少超过10m,而 P0往往很大,所以P≈P1≈P2≈P3≈P4≈P0 例2:千斤顶原理(液压杠杆) 作用力=压力×作用面积:F=P×S F/S1=W/S2,即W=S2/S1×F 4.液压传动参数 两个主要参数:P与Q 压力与负载的关系:负载决定压力 流量与速度的关系;流量决定速度V=Q/S (压力损失与流量损失) ●液压传动系统的基本组成 1.基本组成:

动力元件——液压泵:将机械能转变为液压能。 控制元件——阀装置:控制系统中油液的压力、流量及流动方向等。 执行元件——油缸、油马达:将机械能转变为液压能。 其它辅助元件:邮箱、油管、滤油器、冷却器、蓄能器…… 2. 元件符号: 泵与马达: 溢流阀与减压阀: ● 液压传动系 统的分类 ● 装载机工作液压系统 1. 系统组成及原理 1) 直接操纵液压系统(ZL50C 、ZL40B 、ZL30E 、ZL30G ) 工作泵、分配阀(手动)、动臂油缸、转斗油缸、油箱(滤油器)… 以下为ZL50C 工作液压系统及转向液压系统原理图: 特点:手动式或先导式、串并联优先转斗、动臂滑阀为四位六通 2) 先导操纵液压系统(ZL50G 、ZL40G 、ZL80G 、ZL100C 等) 工作泵、分配阀(先导)、动臂油缸、转斗油缸、先导阀、组合阀、油箱(滤油器)

液压系统工作原理

液压系统工作原理 1) 启动 电磁铁全部不得电,主泵输出油液通过阀6、21中位卸载。 2) 主缸快速下行 电磁铁1Y、5Y 得电,阀6 处于右位,控制油经阀8 使液控单向阀9 开启。 进油路:泵1-阀6右位-阀13-主缸上腔。 回油路:主缸下腔-阀9-阀6右位-阀21中位-油箱。 主缸滑块在自重作用下迅速下降,泵1 虽处于最大流量状态,仍不能满足其需要,因此主缸上腔形成负压,

上位油箱15 的油液经充液阀14 进入主缸上腔。 3) 主缸慢速接近工件、加压 当主缸滑块降至一定位置触动行程开关2S 后,5Y 失电,阀9 关闭,主缸下腔油液经背压阀10、阀6 右位、阀21 中位回油箱。这时,主缸上腔压力升高,阀14 关闭,主缸在泵1 供给的压力油作用下慢速接近工件。接触工件后阻力急剧增加,压力进一步提高,泵1 的输出流量自动减小。 4) 保压 当主缸上腔压力达到预定值时,压力继电器7发信号,使1Y失电,阀6回中位,主缸上下腔封闭,单向阀13 和充液阀14 的锥面保证了良好的密封性,使主缸保压。保压时间由时间继电器调整。保压期间,泵经阀6、21的中位卸载。 5) 泄压,主缸回程保压结束,时间继电器发出信号,2Y 得电,阀6 处于左位。由于主缸上腔压力很高,液动滑阀12 处于上位,压力油使外控顺序阀11 开启,泵1输出油液经阀11 回油箱。泵1 在低压下工作,此压力不足以打开充液阀14 的主阀芯,而是先打开该阀的卸载阀芯,使主缸上腔油液经此卸载阀芯开口泄回上位油箱,压力逐渐降低。 当主缸上腔压力泄到一定值后,阀12 回到下位,阀11关闭,泵1 压力升高,阀14完全打开,此时进油路:泵1-阀6左位-阀9-主缸下腔。回油路:主缸上腔-阀14-上位油箱15。实现主缸快速回程。 6) 主缸原位停止 当主缸滑块上升至触动行程开关1S,2Y失电,阀6 处于中位,液控单向阀9将主缸下腔封闭,主缸原位停止不动。泵1 输出油液经阀6、21中位卸载。 7) 下缸顶出及退回 3Y得电,阀21 处于左位。进油路:泵1-阀6中位-阀21左位-下缸下腔。回油路:下缸上腔-阀21 左位-油箱。下缸活塞上升,顶出。 3Y失电,4Y得电,阀21 处于右位,下缸活塞下行,退回。 8) 浮动压边

装载机液压系统

关于装载机液压系统的说明 1.装载机产品的工作液压系统主要控制工作装置的动臂完成举升、下降、中位、浮动功能以及铲斗的收斗、中位、卸载等动作。主要有手动操纵(LW521F、LW321F、LW421F、LW500F)和液压先导操纵(ZL50G、ZL60G、ZL80G、LW400K)两种结构形式。 (手动软轴操纵) (液压先导操纵)

ZL50G等产品采用的液压先导操纵结构原理:推动先导阀的操纵杆,从先导泵来的先导油通过先导阀,推动多路换向阀阀芯的移动,从而实现工作装置的运动。手动操纵是靠手动操纵软轴来实现多路换向阀阀芯移动。手动操纵结构主要特点是价格便宜,结构简单、可靠,但操纵力大、操纵比例性能不好;液压先导操纵结构主要优特点是操纵力小,控制比例性能好,大大降低了司机的劳动强度,但系统较复杂、制造成本偏高。 现在国内装载机厂家采用的先导操纵原理都是一样的,元件也几乎都采用浙江临海海宏公司的产品,在高档出口车上部分采用了进口的先导阀和多路换向阀。 2.转向液压系统主要控制装载机的行驶方向。5吨产品主要有全液压大排量转向系统(541F)、负荷传感型同轴流量放大转向系统(521F)以及流量放大转向系统(50G、60G、80G)。全液压大排量转向系统的特点是结构简单、可靠、转向平稳,但操纵力大、系统发热量大,现采用较少;负荷传感型同轴流量放大转向系统的特点是操纵轻便、灵活、操纵力小、可靠、节能,但转向平稳性不好;流量放大转向系统的特点是以低压小流量来控制高压大流量,操纵力小,转向灵活、可靠。 1).ZL50G等产品采用的先导型流量放大转向原理:转向时,从先导泵来的低压小流量的先导油通过转向器,推动流量放大阀主阀芯移动,来控制转向泵过来的较大流量的压力油进入转向油缸,完成转向动作。由于通过转向器的油液是低压小流量的,转向器的排量较小,

铲车起重部分液压系统及工作原理分析

铲车起重部分液压系统及工作原理分析 1.液压系统图 图5—2一l为起重部分液压系统图(职能式) 2.液压元件 油泵——叶片泵,构造、工作原理如前所述。它用来供给压力油到系统中,以推动起升、倾斜油缸工作。 油缸——升降油缸为单作用式,倾斜油缸为双作刚式,构造、工作原理如前所述.它用来带动起重架、货叉进行工作。 单向节流阀一一构造、工作原理如前所述。货物起月‘时要求速度较快,货物下降时要求速度较慢。它用来控制升降速度。 手动换向滑阀——构造、工作原理如前所述。它用来操纵升降油缸及倾斜汕缸工作,实现速度快慢变化及运动方向的变换。实际上是将几个换向精捌集中组合成一体使用,这样可以便于操作,简化油路,缩小体积。这种集中的多路换向滑闷又叫做液压分配器。铲车上的液压分配器结构见图5—2—2。

3.液压传动统工作原理分析 见图5—2—1 泵4将压力油送入系统,通过油管进入分配器3,由分配器的换向滑阀送入工作油缸1或2进行工作。回油时从工作油缸经分配器返回油箱。 夸档位置(中位): 两换向阀处于中间位置(图示位置)。油缸中各油腔断开无通路。泵4打出的油从油管到分配器再经滤油器直接流回油箱。升降或倾斜油缸停止在任何位置静止不动。 升降油缸的工作: 操纵滑阀A,使之在图示上边位置,这时空档时的直通回油道断开,油缸的进油道接通压力油,经单向节流阀进入升降油缸,货物起升,此时节流阀不起节流作用。操纵滑阀A使之在图示下边位置时,压力油道断开,回油道接通,油缸中的油在重物压迫下,经单向节流阀返回油箱。回油时单向节流阀起节流作用。 倾斜油缸的工作: 操纵滑阀B,使之在图示上边位置时,空档时的直通回油道断开,压力油通入倾斜油缸后腔,前腔油道与回油管相通,则活塞向前移动,反之,操纵滑阀向后,使之在图示下边位置时,压力油通入油缸前腔,后腔油道通油箱,油流反向,活塞向后移动。活塞前后移动,由活塞杆拉动起重框架完成前后1项斜运动。 安全与调速: 当超负荷或某处卡住时,油液压力升高而达到Nc的调整极限压力时,压力油经C返 回油箱。在此,阀C起安全阀作用。 当起升(或倾斜)要求慢速动作时,靠换向滑阀的肩部调节进油口开度大小,实现慢速

液压站组成及工作原理

液压站又称液压泵站,是独立的液压装置,它按驱动装置(主机)要求供油,并控制油流的方向、压力和流量,它适用于主机与液压装置可分离的各种液压机械下。用户购买后只要将液压站与主机上的执行机构(油缸和油马达)用油管相连,液压机械即可实现各种规定的动作、工作循环。 液压站是由泵装置、集成块或阀组合、油箱、电气盒组合而成。各部件功用如下: 泵装置——上装有电机和油泵,它是液压站的动力源,将机械能转化为液压油的动力能。 集成块——是由液压阀及通道体组合而成。它对液压油实行方向、压力、流量调节。 阀组合——是板式阀装在立板上,板后管连接,与集成块功能相同。 油箱——是钢板焊的半封闭容器,上还装有滤油网、空气滤清器等,它用来储油、油的冷却及过滤。 电器盒——分两种形式。一种设置外接引线的端子板;一种是配置了全套控制电器。 液压站的工作原理如下: 电机带动油泵旋转,泵从油泵中吸油后打油,将机械能转化为液压油的压力能,液压油通过集成块(或阀组合)被液压阀实现了方向、压力、流量调节后经外接管路传输到液压机械的油缸或油马达中,从而控制了液动机方向的变换、力量的大小及速度的快慢,推动各种液压机械做功。 二、液压站结构形式及主要技术参数: 液压站的结构形式,主要以泵装置的结构形式、安装位置及冷却方式来区分,按泵装置的机构形式安装位置可分三种: 1、上置立式:泵装置立式安装在油箱盖板上,主要用于定量泵系统一思想。 2、上置卧式:泵装置卧式安装在油箱盖板上,主要用于变量泵系统,以便于流量调节。 3、旁置式:泵装置卧式安装在油箱旁单独的基础上,旁置式可装备备用泵,主要用于油箱容量大250升,电机功率7.5千瓦以上的系统。 按站的冷却方式可分为两种: 1、自然冷却:靠油箱本身与空气热交换冷却,一般用于油箱容量小于250升的系统一思想。 2、强迫冷却:采取冷却器进行强制冷却,一般用于油箱容量大于250升的系统

ZL50轮胎式装载机液压系统设计

一、主要任务与目标 任务: ZL50铰接式轮胎装载机液压系统设计 转载机是用来装卸成堆散料作业的机械,装载机的举重量为5吨。装载机的基本动作是:将铲斗插入物料向后翻转铲斗,保持载荷, 提升物料到一定高度,将物料运输到预定地点卸料。如此循环作业。装载机露天工作,对液压系统要求如下:1.工作性能好。2.寿命长,可靠性高。3.操纵性能好。4.便于维修和保养。 目标:通过本题目的课程设计,使学生对所学的《液压与气压传动》课程知识有一个全面深刻的认识,熟悉液压系统设计的基本方法和过程;提高学生的动手能力和工程实践能力。 二、主要内容 (1)熟悉设计任务,明确设计及目标。 (2)根据设计要求和已学过的设计流程,拟定系统工作原理图。(3)计算各元件的参数并验算。 (4)元件选型。 (5)编制文件,绘制速度、负载图谱。 三、工作量要求 完成规定的任务,总字数3000~4000字。 四、时间要求 本课程设计于2011-6-25前完成

目录 一.液压传动课程设计任务书 (1) 二:装载机的简介 (2) 三:液压传动系统工作原理图 (3) 四:ZL-50液压传动系统工作原理 (4) 五:各元件参数计算 (6) 六、设计小结 (19) 七、感想 (20) 八、参考文献 (21)

(一)液压与气压传动课程设计任务书 一、主要任务与目标 任务: ZL50铰接式轮胎装载机液压系统设计 转载机是用来装卸成堆散料作业的机械,装载机的举重量为5吨。装载机的基本动作是:将铲斗插入物料向后翻转铲斗,保持载荷, 提升物料到一定高度,将物料运输到预定地点卸料。如此循环作业。装载机露天工作,对液压系统要求如下:1.工作性能好。2.寿命长,可靠性高。3.操纵性能好。4.便于维修和保养。 目标:通过本题目的课程设计,使学生对所学的《液压与气压传动》课程知识有一个全面深刻的认识,熟悉液压系统设计的基本方法和过程;提高学生的动手能力和工程实践能力。 二、主要内容 (1)熟悉设计任务,明确设计及目标。 (2)根据设计要求和已学过的设计流程,拟定系统工作原理图。(3)计算各元件的参数并验算。 (4)元件选型。 (5)编制文件,绘制速度、负载图谱。 三、工作量要求 完成规定的任务,总字数3000~4000字。 四、时间要求 本课程设计于2011-6-25前完成

装载机液压系统分析

0引言 装载机可以被用于硬土以及矿石的轻度铲挖作业,尤其在高速公路路基填挖、沥青混合料的装料等方面。同时,装载机还可以被应用至牵引其他机械设备以及推运土壤过程。装载机具备较高的工作效率,且运行速度较快,操作简单。装载机的主要动力来源于内燃机,其通过燃油将动力转换为压力。经过几十年的发展,柴油机与液压元件的效率指标达到了较高水平,但不同液压元件具备不同的系统性能,且能耗差别较大。为了更好的改善燃油性能,企业应选择适当的液压系统。装载机液压系统具备中位开芯多路阀与齿轮泵定量系统,下面具体分析。 1定量系统原理分析 中位开芯多路阀机构以及定量泵等均属于定量系统的组成部分,且系统不工作时处于低压大流量运行状态,此时功率损耗为压力损失与系统流量的乘积。实际运行期间,为了满足执行机构的运行速度要求,应根据溢流阀确定系统压力,但此时溢流阀会出现高压溢流的问题,造成功率损耗问题。为了满足调整执行机构运行速度的目的,用户应控制铲斗与动臂的运行速度。不同负载情况下,操作控制阀在具备相同行程时,铲斗与动臂的运行速度各不相同,且负载越大,调速范围越窄。定量系统组成简单,且成本较低,得到了广泛采用。且工作人员调整了机型基础,比如将分流阀增加至液压转向系统中,实现了工作泵与转向泵的流量合并。并使用双泵合流系统,确保高压单泵低速运行以及低压双泵高速运行,满足节能需求[1]。2变量系统原理性能分析 负载敏感变量柱塞以及负载敏感闭芯多路阀为变量系统的主要组成元件,且具备以下特点,一是负载敏感变量柱塞泵具备压力补偿器,确保柱塞泵在低压运行下可以输出少量的流量,不会出现全流量通过多路阀的问题,降低了能耗。且某片阀执行工作时,补偿器可以结合系统的流量需求及时调整工作速度。当没有启动发动机时,此时泵没有输出流量,柱塞泵处于最大排量位置,之后启动发动机,换向阀处于中位体,负载敏感多路阀中立位属于封闭状态,液压油不能通过开芯油路进行回油,此时补偿器压力升高,补偿阀位于左边。由此可知,液压泵主要通过补偿器进入变量系统,此时压力为补偿器的调定压力,柱塞泵属于低压待机状态,泵输出量较小,且压力较低,不会产生过多的能耗。多路阀动作时,P2不存在压力,当打开多路阀开口时,连通了P1与P2,节流口存在压差,在弹簧会作用于补偿阀芯的另一端,且在弹簧力的影响下,补偿阀会移动至右边位置。在P1的作用下,补偿阀会移动至左位,此时变量停止,节流的开口增大,此时没有增加泵流量。且负载决定P2,P1会降低,此时打破了补偿阀的平衡状态,在弹簧力与P2的作用下,补偿阀会回到右位,控制变量的增加会改变泵排量,节流口前后产生的压力差可以 —————————————————————— —作者简介:孙建林(1987-),男,山东潍坊人,设计工程师,本科, 主要从事装载机相关覆盖件的设计与开发,英轩重工有限公司;訾成伟(1986-),男,山东潍坊人,工艺工程师,本科,主要从事涂装工艺的设计与规划,英轩重工有限公司;雷杨(1991-),女,山东潍坊人,工艺工程师,专科,主要从事装配工艺的技术与规划,英轩重工有限公司。 装载机液压系统分析 孙建林;訾成伟;雷杨 (英轩重工有限公司,潍坊262499) 摘要:作为土石方作业期间采用的非路面机械车辆,装载机被广泛采用至各种类型的建筑施工期间。当前装载机的销售数量不断 减少,增大了市场的竞争压力,为了提升产品的竞争实力,企业应做好液压系统性能的改善工作,以提升动臂的操纵性能与燃油的经济性能。本文便基于此分析了装载机液压系统的几种类型,分析了负载敏感系统的工作原理。 关键词:装载机;液压系统;常见 图1液压系统工作原理 图

装载机液压系统工作原理

50 装载机液压系统工作原理 (培训资料) 一:应用及分类 装载机是一种广泛用于公路、铁路、建筑、水电、港口、矿山等建设工程的土石方施式机械,它主要用于铲装土壤、砂石、石灰、煤炭等散状物料,也可对矿石、硬土等作轻度铲挖作业。换装不同的辅助工作装置还可进行推土、起重和其他物料如木材的装卸作业。在道路、特别是在高等级公路施工中,装载机用于路基工程的填挖、沥青混合料和水泥混凝土料场的集料与装料等作业。此外还可进行推运土壤、刮平地面和牵引其他机械等作业。由于装载机具有作业速度快、效率高、机动性好、操作轻便等优点,因此它成为工程建设中土石方施工的主要机种之一。 装载机按行走系统机构的不同,可分为轮式装载机和带式装载机。 二:液压系统工作原理 ZL50型l轮式装载机,该装载机可实现工作装置(铲斗)的铲装,提升,保持,倾卸和转向机构的转向等动作。液压传动系统如图: 液压传动系统包括工作装置和转向系统。工作装置系统又包括动臂升降液压缸工作回路和转斗液压缸工作回路,两者构成串并联回路。当转斗液压缸换向阀3—离开中位,即切断了通往动臂升降液压缸换向阀11—的油路。欲使动臂升降液压缸动作必须使转斗液压缸换向阀3回到中位。因此,动臂与铲斗不能进行复合动作,所以各液压缸的推力较大,这是转载机广泛采用的液压系统形式。 根据装载机作业要求,液压传动系统应该完成下述工作循环:铲斗翻转升起(铲装)→动臂提升锁紧(转运)→铲斗前倾(卸载)→动臂下降. 1.铲斗收起与前倾 铲斗的收起与前倾由转斗液压缸工作回路实现.当操纵手动换向阀3使其右位工作时,铲斗液压缸活塞杆伸出,并通过摇臂斗杆带动铲斗翻转收起进行铲装.其油路为: 进油路:液压泵2(液压泵1)→手动换向阀3右位→铲斗液压缸无杆腔。 回油路:铲斗液压缸有杆腔→手动换向阀3右位→精过滤器6→油箱。 当操纵手动换向阀3使其左位工作时,铲斗液压缸活塞杆缩回,并通过摇臂斗杆带动铲斗前倾进行卸载。其油路为: 进油路:液压泵2(液压泵1)→手动换向阀3左位→铲斗液压缸有杆腔。 回油路:铲斗液压缸无杆腔→手动换向发3左位→精过滤器6→油箱。 当铲斗在收起与前倾的过程中,若转向液压泵17输出流量正常,则流量转换阀18中的流量分配阀工作在左位,使辅助液压泵1与主液压泵2形成并联供油(动臂升降回路也是如此)。当操纵手动换向阀3使其处于中位时,铲斗液压缸进,出油口被封闭,依靠换向阀的锁紧作用,铲斗在某一位置处于停留状态。 在铲斗液压缸的无杆腔油路中还没有双作用安全阀10。在动臂升降的过程中,铲斗的连杆机构由于动作不相协调而受到某中程度的干涉,即在提升动臂时铲斗液压缸的活塞杆有被拉出的趋势,而在动臂下降时活塞杆又被强制压回。而这时手动换向阀3处于中位,转斗液压缸的油路不通,因此,这种情况回造成铲斗液压缸回路出现过载或产生真空。为了防止这种情况的发生,系统中设置了双作用安全阀10,它可以起到缓冲和补油的作用。当铲斗液压缸有杆腔受到干涉而使压力超过双作用安全阀10的调定压力时,该阀回被打开,使多余的液压油流回油箱,液压缸得到缓冲。当真空时,可由单向阀从油箱补油。铲斗液压缸的无杆腔也应该设置双作用安全阀,使液压缸两腔的缓冲和补油过程彼此协调的更为合理。

装载机液压系统热平衡分析

装载机液压系统热平衡分析 发表时间:2019-04-17T09:43:54.903Z 来源:《防护工程》2018年第36期作者:兰忠 [导读] 为装载机的工作特性和液压系统的热特性进行数据支持,为我国装载机技术的发展提供较为准确的优化方向。 中铁二局第二工程有限公司四川成都 610091 摘要:随着工程机械的快速发展,装载机由于具有作业效率高、灵活机动、操作轻便及负载能力高等优点,在建筑业及矿业中得到广泛应用。本文在对装载机液压系统热特性的分析过程中,通过对装载机主要元件的产热和散热情况的研究,建立了装载机运行过程中的液压热平衡模型,基于计算机软件和程序分别将装载机工作装置的动力学和液压系统合成仿真模型。 关键词:装载机;液压系统;热平衡分析 引言 装载机属于典型的机、电、液一体化设备。主要由机械本体、液压系统、电气控制系统组成。本文对装载机液压系统热平衡进行分析,通过数学建模的形式为今后的设备安全和优化提供一定的依据。 1装载机液压系统油温过高的危害 油温过高,会使油液粘度降低,泄漏增大,运动元件之间的油膜变薄或被破坏,运动阻力增大,磨损加剧;橡胶密封件变形,提前老化失效,造成泄漏;加速油液氧化变质,降低油液使用寿命,并析出沥青物质,堵塞阻尼小孔和阀口,导致压力阀调压失灵、流量阀流量不稳定和方向阀卡死不换向;油的空气分离压力降低,空气逸出,产生气穴,从而导致装载机工作性能降低。 2装载机压系统热平衡建模阐述 首先,对于容性元件可以根据能量守恒定律以及流体焓的定义转化该类型元件的产热量数据。公式如下: 其中,qg表示经过管道流体流量的数据,ξ表示沿程阻力系数,v表示液压系统内部流体的流动速度,l表示液压管道的长度,λ表示阻力元件产生的损失热量系数,d表示液压系统的管道直径。 3液压系统热平衡计算 3.1液压系统系统发热功率计算 发热功率的计算,可采用两种方法:一种是通过元件的功率损失计算发热量,这种方法直接分析发热源,可采取针对性措施减少发热量;另一种是通过系统的输入功率和执行元件的有效输出功率来计算发热量,这种方法不需要考虑每一个发热源,但需要掌握系统工况随时间变化的特性。 3.1.1按元件功率损失计算 (1)液压泵功率损失引起的发热功率:H1=P(1-η)。其中:P—液压泵的总功率,P=pq/η;η—液压泵的总效率,一般在0.7~0.85之间,常取0.8;p—液压泵实际出口压力;q-液压泵实际流量。 (2)液压阀功率损失引起的发热功率:H2=p1q1。其中:p1—通过阀的压力损失,根据测试数据统计,一般取阀口压降为1.4MPa;q1—流经该阀的流量。 (3)管路及其他功率损失引起的发热功率:H3=(0.03~0.05)P。此项功率损失,包括很多复杂的因素,由于其值较小,加上管路散热的关系,在计算时一般取全部能量的0.03~0.05倍。 (4)系统总的发热功率损失:H=∑Hi=H1+H2+H3。 3.1.2按系统输入功率和执行元件有效输出功率计算 当把液压系统当作能量整体,电动机向液压泵输入能量和执行元件向外输出能量的差值即为系统的损失即系统的发热量。系统的发热

装载机液压操作系统设计

摘要 装载机主要用来装卸散状物料,也能进行轻度的铲掘工作,并且具有良好的机动性能,广泛使用于工厂、矿山、建筑、水电上程、道路、码头、农田乃至家庭,是工程机械中保有量较大的品种之一。 装载总体方案设计是装载机设计的一个重要环节,它对装载机的设计质量、使用性能和装载机在市场上的竞争力有着决定性的影响。装载机性能的优劣和作业效率的发挥,不仅与相关总成及部件的工作性能有着密切关系,而且在很大程度上取决于各有关总成及部件间的协调和参数匹配,取决于装载机的总体布置。装载机的工作装置和转向机构都采取液压传动,本文通过对工作装置及转向机构工作要求和载荷分析对液压系统进行设计。主要包括对执行元件,控制元件辅助元件的选择、设计。 本文的设计,能够使读者对工程机械总体方案设计及液压系统设计进一步加深了解,同时能从中理会一些设计理念,为以后更好从事设计工作提供了帮助。 关键词:装载机;液压系统;液压系统设计;

Abstract Loader is primarily utilized to load and unload piles of balk cargo and also do some light excavations. It has good mobility, applied widely in factory, mine construction, water and electricity, road, dock, farmland even house, and it is a most machinery. The design of overall project of wheel loader is a important link in designing of wheel loader itself, which has vital impact on the quality, working property and competition in market. The property is superior or inferior and its affect rate is brought into play, which have relationship with the property of relative components and are determined not only by the matching of parameter, the coordination between switchboard and the relative components, also by the total decoration of wheel loader. Working device and the steering mechanism of the loader all adopt fluid drive system. The article carries though the design of the fluid drive system though the working demand on working device and the load analysis. It mainly includes the selection and design toward the executive component, the control component and the assistant component. The design the author chosen in this article can make readers know much about the total designing project of engineering mechanism and the systematic design of liquid-press, at the same time comprehend some designing concept, which will provide helpness to further work later. Key words:loader;hydraulic transmission;hydraulic pressure system; important model of construction

相关文档
最新文档