#一元线性回归模型的参数估计

#一元线性回归模型的参数估计
#一元线性回归模型的参数估计

§2.2 一元线性回归模型地参数估计

单方程计量经济学模型分为线性模型和非线性模型两大类.在线性模型中,变量之间地关系呈线性关系;在非线性模型中,变量之间地关系呈非线性关系.线性回归模型是线性模型地一种,它地数学基础是回归分析,即用回归分析方法建立地线性模型,用以揭示经济现象中地因果关系.

一元线性回归模型是最简单地计量经济学模型,在模型中只有一个解释变量,其一般形式是:

i=1,2,…n <2.2.1)

其中,为被解释变量,为解释变量,与为待估参数,为随机干扰项.

一、一元线性回归模型地基本假设

回归分析地主要目地是要通过样本回归函数<模型)SRF尽可能准确地估计总体回归函数<模型)PRF.估计方法有多种,其种最广泛使用地是普通最小二乘法

为保证参数估计量具有良好地性质,通常对模型提出若干基本假设.如果实际模型满足这些基本假设,普通最小二乘法就是一种适用地估计方法;如果实际模型不满足这些基本假设,普通最小二乘法就不再适用,而要发展其它方法来估计模型.所以,严格地说,下面地基本假设并不是针对模型地,而是针对普通最小二乘法地.

对模型<2.2.1),基本假设包括对解释变量X地假设,以及对随机扰动项地假设:假设1:解释变量X是确定性变量,不是随机变量,而且在重复抽样中取固定值.

假设2:随机误差项具有0均值、同方差及不序列相关性.即

=0 i=1,2,…n

= i=1,2,…n

=0 i≠j i,j=1,2,…n

假设3:随机误差项与解释变量之间不相关.即

=0 i=1,2,…n

假设4:随机误差项服从0均值、同方差、零协方差地正态分布.即

i=1,2,…n

需注意地是,如果假设1、2成立,则假设3成立,因为这时显然有=

;另外,如果假设4成立,

则假设2成立,因为对两正态分布变量来说,零协方差就意味着两变量相互独立.

以上假设也称为线性回归模型地经典假设或高斯

另外,在进行模型回归时,还有两个暗含地假设:

假设5:随着样本容量地无限增加,解释变量X地样本方差趋于一有限常数.即

假设6:回归模型是正确设定地.

假设5旨在排除时间序列数据出现持续上升或下降地变量作为解释变量,因为这类数据不仅使大样本统计推断变得无效,而且往往产生所谓地伪回归问题

在实际建立模型地过程中,除了随机误差项地正态假设外,对模型是否满足其他假设都要进行检验.这就是“建立计量经济学模型步骤”中“计量经济学检验”地任务.对于随机误差项地正态假设,根据中心极限定理,当样本容量趋于无穷大时,都是满足地.

二、参数地普通最小二乘估计

已知一组样本观测值<),

计值与观测值应该在总体上最为接近,最小二乘法

=<2.2.2)

最小.即在给定样本观测值之下,选择出、能使与之差地平方和最小.

为什么用平方和?因为样本回归线上地点与真实观测点之差可正可负,简单求和可能将很大地误差抵消掉,只有平方和才能反映二者在总体上地接近程度.这就是最小二乘原理.

根据微积分学地运算,当对、地一阶偏导数为0时,达到最小.即

可推得用于估计、地下列方程组:

(2.2.3)

或 (2.2.4>

解得:

(2.2.5)

方程组<2.2.3)或<2.2.4)称为正规方程组

(2.2.5>地参数估计量可以写成:

(2.2.6>

称为OLS估计量地离差形式

值地离差.因为、地估计结果是从最小二乘原理得到地,故称为普通最小二乘估计量

顺便指出,记,则有

可得

<2.2.7)

其中,用到了正规方程组地第一个方程.<2.2.7)式也称为

样本回归函数地离差形式.

在结束普通最小二乘估计地时候,需要交代一个重要地概念,即“估计量”地区别.由<2.2.5)式或<2.2.6)式给出地参数估计结果是由一个具

体样本资料计算出来地,它是一个“估计值”,或者“点估计”,是参数估计量和地一个具体数值;但从另一个角度,仅仅把<2.2.5)或<2.2.6)看成和地一个表达式,那么,则是

地函数,而是随机变量,所以和也是随机变量,在这个角度上,称之为“估计量”.在

本章后续内容中,有时把和作为随机变量,有时又把和作为确定地数值,道理就在

于此.

三、参数估计地最大或然法(ML>

最大或然法(Maximum Likelihood, ML>,也称最大似然法,是不同于最小二乘法地另一种参数估计方法,是从最大或然原理出发发展起来地其它估计方法地基础.虽然其应用没有最小二乘法普遍,但在计量经济学理论上占据很重要地地位,因为最大或然原理比最小二乘原理更本质地揭示了通过样本估计母体参数地内在机理,计量经济学理论地发展,更多地是以最大或然原理为基础地,对于一些特殊地计量经济学模型,只有最大或然方法才是很成功地估计方法.

对于最小二乘法,当从模型总体随机抽取n组样本观测值后,最合理地参数估计量应该使得模型能最好地拟合样本数据.而对于最大或然法,当从模型总体随机抽取n组样本观测值后,最合理地参数估计量应该使得从模型中抽取该n组样本观测值地概率最大.显然,这是从不同

原理出发地两种参数估计方法.

从总体中经过n次随机抽取得到样本容量为n地样本观测值,在任一次随机抽取中,样本观测值都以一定地概率出现,如果已经知道总体地参数,当然由变量地频率函数可以计算其概率.如果只知道总体服从某种分布,但不知道其分布参数,通过随机样本可以求出总体地参数估计量.以正态分布地总体为例.每个总体都有自己地分布参数期望和方差,如果已经得到n 组样本观测值,在这些可供选择地总体中,哪个总体最可能产生已经得到地n组样本观测值呢?显然,要对每个可能地正态总体估计取得n组样本观测值地联合概率,然后选择其参数能使观测值地联合概率为最大地那个总体.将样本观测值联合概率函数称为变量地或然函数.在已经取得样本观测值地情况下,使或然函数取极大值地总体分布参数所代表地总体具有最大地概率取得这些样本观测值,该总体参数即是所要求地参数.通过或然函数极大化以求得总体参数估计量地方法被称为极大或然法.

在满足基本假设条件下,对一元线性回归模型:

i=1,2,…n

随机抽取n组样本观测值

于是,地概率函数为

i=1,2,…,n

因为是相互独立地,所以地所有样本观测值地联合概率,也即或然函数为:

(2.2.8>

将该或然函数极大化,即可求得模型参数地极大或然估计量.

因为或然函数地极大化与或然函数地对数地极大化是等价地,所以,取对数或然函数如下:

(2.2.9>

对求极大值,等价于对求极小值.极小值地条件

为:

解得模型地参数估计量为:

可见,在满足一系列基本假设地情况下,模型结构参数地最大或然估计量与普通最小二乘估计量是相同地.

例 2.2.1:在上述家庭可支配收入-消费支出例中,对于所抽出地一组样本数,参数估计地计算可通过下面地表2.2.1进行.

表2.2.1 参数估计地计算表

由<2.2.8)式计算得:

因此,由该样本估计地回归方程为:

四、最小二乘估计量地性质

当模型参数估计出后,需考虑参数估计值地精度,即是否能代表总体参数地真值.一般地,因为抽样波动地存在,以及所选估计方法地不同,都会使估计地参数与总体参数地真值有差距,因此考察参数估计量地统计性质就成了衡量该估计量“好坏”地主要准则.

一个用于考察总体地估计量,可从如下几个方面考察其优劣性:<1)线性性,即它是否是另一随机变量地线性函数;<2)无偏性,即它地均值或期望值是否等于总体地真实值;<3)有效性,即它是否在所有线性无偏估计量中具有最小方差.<4)渐近无偏性,即样本容量

趋于无穷大时,它地均值序列趋于总体真值;<5)一致性,即样本容量趋于无穷大时,它是否依概率收敛于总体地真值;<6)渐近有效性,即样本容量趋于无穷大时,它在所有地一致估计量中具有最小地渐近方差.

这里,前三个准则也称作估计量地小样本性质

可以证明,在经典线性回归地假定下,最小二乘估计量是具有最小方差地线性无偏估计量. 1、线性性,即估计量、是地线性组合.

由(2.2.6>式知

其中,.同样地

其中,.

2、无偏性,即估计量、地均值<期望)等于总体回归参数真值与.

由线性性得

易知,,,故

同样地,容易得出

3、有效性<最小方差性),即在所有线性无偏估计量中,最小二乘估计量、具有最小方差.

首先,由、是关于地线性函数可求得它们地方差

= (2.2.10>

(2.2.11>

其次,假设是其他估计方法得到地关于地线性无偏估计量:

其中,,为不全为零地常数,则容易证明①

同理,设是其他估计方法得到地关于地线性无偏估计量,则有

由以上分析可以看出,普通最小二乘估计量

因为最小二乘估计量拥有一个“好”地估计量所应具备地小样本特性,它自然也拥有大

样本特性.如对地一致性来说,易知

等式右边第二项分子是X与地样本协方差地概率极限,它等于总体协方差,根

据基本假设,其值为0;而分母是X地样本方差地概率极限,由基本假设为一有限常数Q,因此

五、参数估计量地概率分布及随机干扰项方差地估计

1、参数估计量和地概率分布

为了达到对所估计参数精度测定地目地,还需进一步确定参数估计量地概率分布.因为普通最小二乘估计量和分别是地线性组合,因此、地概率分布取决于Y.在

是正态分布地假设下,Y是正态分布,则和也服从正态分布,其分布特征由其均值和方差唯一决定.由此可得

于是,和地标准差分别为:

<2.2.12)

(2.2.13>

标准差可用来衡量估计量接近其真实

值地程度,进而判断估计量地可靠性<图2.2.1).图2.2.1

2、随机误差项地方差地估计

在估计地参数和地方差表达式中,都含有随机扰动项地方差.因为实际上

是未知地,因此和地方差实际上无法计算,这就需要对其进行估计.因为随机项不可观测,只能从地估计——残差出发,对总体方差进行估计.可以证明地最小二乘估计量为①

(2.2.14>

它是关于地无偏估计量.在最大或然估计法中,由或然方程

也可解得地如下最大或然估计量:

(2.2.15>

对照(2.2.14>知,地最大或然估计量不具无偏性,但却具有一致性.

在随机误差项地方差估计出后,参数和地方差和标准差地估计量分别是:

地样本方差: <2.2.16)

地样本标准差:<2.2.17)

地样本方差: <2.2.18)

地样本标准差: <2.2.19)

计量经济学-一元线性回归预测模型-Eviews6

数学与统计学院实验报告 院(系):数学与统计学学院学号:姓名: 实验课程:计量经济学指导教师: 实验类型(验证性、演示性、综合性、设计性):综合性 实验时间:2017年 3 月 1 日 一、实验课题 一元线性回归预测模型 二、实验目的和意义 用回归模型预测木材剩余物 (1)用Eviews软件建立y关于x的回归方程,并对模型和参数做假设检验; (2)求y t的点预测和平均木材剩余物产出量E(y t)的置信区间预测。 (3)假设乌伊岭林业局2000年计划采伐木材20万m3,求木材剩余物的点预测值。 三、解题思路 1、录非结构型的数据; 2、进行描述性统计,列出回归模型;通过看t、f等统计量,检验回归模型是否正确 3、运用forecast进行内预测(1-16样本),可以得到yf的点预测;再运用[yf+se]、[yf-se]进行区间估计(运用excel操作) 4、将样本范围改到17个,令x=20,运用forecast进行外预测(17-17) 四、实验过程记录与结果

翠峦11.69 32.7 乌马河 6.8 17 美溪9.69 27.3 大丰7.99 21.5 南岔12.15 35.5 带岭 6.8 17 朗乡17.2 50 桃山9.5 30 双丰 5.52 13.8 2、用Eviews软件建立y关于x的回归方程,并对模型和参数做假设检验;

模型为:y=0.404280x-0.762928 通过上表t、f统计量的p值<0.05,以及残差图基本在两倍标准差的范围内波动,可以得出该模型通过原假设。 3、求yt的点预测和平均木材剩余物产出量E(yt)的置信区间预测。Yt的点估计:

多元线性回归模型的案例分析

1. 表1列出了某地区家庭人均鸡肉年消费量Y 与家庭月平均收入X ,鸡肉价格P 1,猪肉价格P 2与牛肉价格P 3的相关数据。 年份 Y/千 克 X/ 元 P 1/(元/千克) P 2/(元/千克) P 3/(元/千克) 年份 Y/千克 X/元 P 1/(元/ 千克) P 2/(元/ 千克) P 3/(元/千克) 1980 2.78 397 4.22 5.07 7.83 1992 4.18 911 3.97 7.91 11.40 1981 2.99 413 3.81 5.20 7.92 1993 4.04 931 5.21 9.54 12.41 1982 2.98 439 4.03 5.40 7.92 1994 4.07 1021 4.89 9.42 12.76 1983 3.08 459 3.95 5.53 7.92 1995 4.01 1165 5.83 12.35 14.29 1984 3.12 492 3.73 5.47 7.74 1996 4.27 1349 5.79 12.99 14.36 1985 3.33 528 3.81 6.37 8.02 1997 4.41 1449 5.67 11.76 13.92 1986 3.56 560 3.93 6.98 8.04 1998 4.67 1575 6.37 13.09 16.55 1987 3.64 624 3.78 6.59 8.39 1999 5.06 1759 6.16 12.98 20.33 1988 3.67 666 3.84 6.45 8.55 2000 5.01 1994 5.89 12.80 21.96 1989 3.84 717 4.01 7.00 9.37 2001 5.17 2258 6.64 14.10 22.16 1990 4.04 768 3.86 7.32 10.61 2002 5.29 2478 7.04 16.82 23.26 1991 4.03 843 3.98 6.78 10.48 (1) 求出该地区关于家庭鸡肉消费需求的如下模型: 01213243ln ln ln ln ln Y X P P P u βββββ=+++++ (2) 请分析,鸡肉的家庭消费需求是否受猪肉及牛肉价格的影响。 先做回归分析,过程如下: 输出结果如下:

案例分析(一元线性回归模型)

案例分析报告(2014——2015学年第一学期) 课程名称:预测与决策 专业班级:电子商务1202 学号:2204120202 学生姓名:陈维维 2014 年11月

案例分析(一元线性回归模型) 我国城镇居民家庭人均消费支出预测 一、研究目的与要求 居民消费在社会经济的持续发展中有着重要的作用,居民合理的消费模式和居民适度的消费规模有利于经济持续健康的增长,而且这也是人民生活水平的具体体现。从理论角度讲,消费需求的具体内容主要体现在消费结构上,要增加居民消费,就要从研究居民消费结构入手,只有了解居民消费结构变化的趋势和规律,掌握消费需求的热点和发展方向,才能为消费者提供良好的政策环境,引导消费者合理扩大消费,才能促进产业结构调整与消费结构优化升级相协调,才能推动国民经济平稳、健康发展。例如,2008年全国城镇居民家庭平均每人每年消费支出为11242.85元,最低的青海省仅为人均8192.56元,最高的上海市达人均19397.89元,上海是黑龙江的2.37倍。为了研究全国居民消费水平及其变动的原因,需要作具体的分析。影响各地区居民消费支出有明显差异的因素可能很多,例如,零售物价指数、利率、居民财产、购物环境等等都可能对居民消费有影响。为了分析什么是影响各地区居民消费支出有明显差异的最主要因素,并分析影响因素与消费水平的数量关系,可以建立相应的计量经济模型去研究。 二、模型设定 我研究的对象是各地区居民消费的差异。居民消费可分为城镇居民消费和农村居民消费,由于各地区的城镇与农村人口比例及经济结构有较大差异,最具有直接对比可比性的是城市居民消费。而且,由于各地区人口和经济总量不同,只能用“城镇居民每人每年的平均消费支出”来比较,而这正是可从统计年鉴中获得数据的变量。 所以模型的被解释变量Y选定为“城镇居民每人每年的平均消费支出”。 因为研究的目的是各地区城镇居民消费的差异,并不是城镇居民消费在不同时间的变动,所以应选择同一时期各地区城镇居民的消费支出来建立模型。因此建立的是2008年截面数据模型。影响各地区城镇居民人均消费支

一元线性回归模型的置信区间与预测

§2.5 一元线性回归模型的置信区间与预测 多元线性回归模型的置信区间问题包括参数估计量的置信区间和被解释变量预测值的置信区间两个方面,在数理统计学中属于区间估计问题。所谓区间估计是研究用未知参数的点估计值(从一组样本观测值算得的)作为近似值的精确程度和误差范围,是一个必须回答的重要问题。 一、参数估计量的置信区间 在前面的课程中,我们已经知道,线性回归模型的参数估计量^ β是随机变量 i y 的函数,即:i i y k ∑=1?β,所以它也是随机变量。在多次重复抽样中,每次 的样本观测值不可能完全相同,所以得到的点估计值也不可能相同。现在我们用参数估计量的一个点估计值近似代表参数值,那么,二者的接近程度如何?以多大的概率达到该接近程度?这就要构造参数的一个区间,以点估计值为中心的一个区间(称为置信区间),该区间以一定的概率(称为置信水平)包含该参数。 即回答1β以何种置信水平位于() a a +-1 1?,?ββ之中,以及如何求得a 。 在变量的显著性检验中已经知道 ) 1(~^ ^ ---= k n t s t i i i βββ (2.5.1) 这就是说,如果给定置信水平α-1,从t 分布表中查得自由度为(n-k-1)的临界值 2 αt ,那么t 值处在() 22,ααt t -的概率是α-1。表示为 α αα-=<<-1)(2 2 t t t P 即 α ββαβα-=<-< -1)(2 ^ 2 ^ t s t P i i i

α ββββαβα-=?+<

非线性模型参数估计的遗传算法

滨江学院 毕业论文(设计)题目非线性模型参数估计的遗传算法 院系大气与遥感系 专业测绘工程 学生姓名李兴宇 学号200923500** 指导教师王永弟 职称讲师 二O一三年五月二十日

- 目录- 摘要 (3) 关键词 (3) 1.引言 (3) 1.1 课题背景 (3) 1.2 国内外研究现状 (4) 1.3 研究的目的和意义 (4) 1.4 论文结构 (5) 2.遗传算法简介 (5) 2.1 遗传算法的起源 (5) 2.2 遗传算法的基本思想 (6) 2.2.1 遗传算法求最优解的一般步骤 (7) 2.2.2 用技术路线流程图形式表示遗传算法流程 (7) 2.3 遗传算法的基本原理及设计 (8) 2.3.1 适应度设计 (8) 2.3.2 遗传算子操作 (9) 3.遗传算法的应用实例 (9) 3.1 非线性模型参数估计 (10) 3.2 实例分析 (10) 4.结语 (12) 参考文献 (12) 英文题目 (14) - 1 -

- 2 - 致谢 (15)

非线性模型参数估计的遗传算法 李兴宇 南京信息工程大学滨江学院测绘工程专业,南京 210044 摘要:关于非线性模型计算中的参数估计是十分棘手的问题,为此常常将这样的问题转化成非线性优化问题解决,遗传算法作为一种具有强适应性的全局搜索方法而被频繁的应用于非线性系统参数估计的计算当中,本文介绍了遗传算法及其理论基础,阐述了遗传算法在非线性模型参数估计中的应用的起源和发展,引入实例说明了遗传算法在非线性模型参数估计的实际运用中的实现,并概述了基于遗传算法的非线性参数模型估计具体解算过程,将使用遗传算法得到的结果与其他算法的解算结果进行比较,结果表明:遗传算法是一种行之有效的搜索算法,能有效得到全局最优解,在今后的研究中值得推广。 关键词:遗传算法非线性模型参数估计应用 1.引言 1.1课题背景 当前科学技术的发展和研究已经进入了进入各个领域、多个学科互相交叉、互相渗透和互相影响的时代,生命科学的研究与工程科学的交叉、渗透和相互补充提高便是其中一个非常典型的例子,同时也表现出了近代科学技术发展的一个新的显著特点。遗传算法研究工作的蓬勃发展以及在各个领域的广泛应用正是体现了科学发展过程的的这一明显的特点和良好的趋势。 非线性科学是一门研究复杂现象的科学,涉及到社会科学、自然科学和工程技术等诸多领域,在测绘学的研究中,尤其是在测量平差模型的研究和计算过程中,大量引入的都是非线性函数方程模型,而对于非线性模型的解算,往往过程复杂。遗传算法的出现为研究工作提供了一种求解多模型、多目标、非线性等复杂系统的优化问题的通用方法和框架。 对于非线性系统的解算,传统上常用的方法是利用其中参数的近似值将非线性系统线性化,也就是线性近似,测绘学中通常称之为线性化,经过线性化之后,将其视为线性模型并利用线性模型的解算方法得到结果,这就很大程度的简化了解算步骤,减少了工作量,但同时会带来新的问题,运用这种传统方法得到的数据结果存在的误差较大、精度不足等问题。利用线性近似方法对非线性模型进行参数估计,精度往往取决于模型的非线性强度。 - 3 -

一元线性回归模型案例分析

一元线性回归模型案例分析 一、研究的目的要求 居民消费在社会经济的持续发展中有着重要的作用。居民合理的消费模式和居民适度的消费规模有利于经济持续健康的增长,而且这也是人民生活水平的具体体现。改革开放以来随着中国经济的快速发展,人民生活水平不断提高,居民的消费水平也不断增长。但是在看到这个整体趋势的同时,还应看到全国各地区经济发展速度不同,居民消费水平也有明显差异。例如,2002年全国城市居民家庭平均每人每年消费支出为6029.88元, 最低的黑龙江省仅为人均4462.08元,最高的上海市达人均10464元,上海是黑龙江的2.35倍。为了研究全国居民消费水平及其变动的原因,需要作具体的分析。影响各地区居民消费支出有明显差异的因素可能很多,例如,居民的收入水平、就业状况、零售物价指数、利率、居民财产、购物环境等等都可能对居民消费有影响。为了分析什么是影响各地区居民消费支出有明显差异的最主要因素,并分析影响因素与消费水平的数量关系,可以建立相应的计量经济模型去研究。 二、模型设定 我们研究的对象是各地区居民消费的差异。居民消费可分为城市居民消费和农村居民消费,由于各地区的城市与农村人口比例及经济结构有较大差异,最具有直接对比可比性的是城市居民消费。而且,由于各地区人口和经济总量不同,只能用“城市居民每人每年的平均消费支出”来比较,而这正是可从统计年鉴中获得数据的变量。所以模型的被解释变量Y 选定为“城市居民每人每年的平均消费支出”。 因为研究的目的是各地区城市居民消费的差异,并不是城市居民消费在不同时间的变动,所以应选择同一时期各地区城市居民的消费支出来建立模型。因此建立的是2002年截面数据模型。 影响各地区城市居民人均消费支出有明显差异的因素有多种,但从理论和经验分析,最主要的影响因素应是居民收入,其他因素虽然对居民消费也有影响,但有的不易取得数据,如“居民财产”和“购物环境”;有的与居民收入可能高度相关,如“就业状况”、“居民财产”;还有的因素在运用截面数据时在地区间的差异并不大,如“零售物价指数”、“利率”。因此这些其他因素可以不列入模型,即便它们对居民消费有某些影响也可归入随即扰动项中。为了与“城市居民人均消费支出”相对应,选择在统计年鉴中可以获得的“城市居民每人每年可支配收入”作为解释变量X。 从2002年《中国统计年鉴》中得到表2.5的数据: 表2.52002年中国各地区城市居民人均年消费支出和可支配收入

常见非线性回归模型

常见非线性回归模型 1.简非线性模型简介 非线性回归模型在经济学研究中有着广泛的应用。有一些非线性回归模型可以通 过直接代换或间接代换转化为线性回归模型,但也有一些非线性回归模型却无 法通过代换转化为线性回归模型。 柯布—道格拉斯生产函数模型 y AKL 其中L和K分别是劳力投入和资金投入, y是产出。由于误差项是可加的, 从而也不能通过代换转化为线性回归模型。 对于联立方程模型,只要其中有一个方程是不能通过代换转化为线性,那么这个联立方程模型就是非线性的。 单方程非线性回归模型的一般形式为 y f(x1,x2, ,xk; 1, 2, , p) 2.可化为线性回归的曲线回归 在实际问题当中,有许多回归模型的被解释变量y与解释变量x之间的关系都不是线性的,其中一些回归模型通过对自变量或因变量的函数变换可以转化为

线性关系,利用线性回归求解未知参数,并作回归诊断。如下列模型。 (1)y 0 1e x (2)y 0 1x2x2p x p (3)y ae bx (4)y=alnx+b 对于(1)式,只需令x e x即可化为y对x是线性的形式y01x,需要指出的是,新引进的自变量只能依赖于原始变量,而不能与未知参数有关。 对于(2)式,可以令x1=x,x2=x2,?,x p=x p,于是得到y关于x1,x2,?, x p 的线性表达式y 0 1x12x2 pxp 对与(3)式,对等式两边同时去自然数对数,得lnylnabx ,令 y lny, 0 lna, 1 b,于是得到y关于x的一元线性回归模型: y 0 1x。 乘性误差项模型和加性误差项模型所得的结果有一定差异,其中乘性误差项模型认为yt本身是异方差的,而lnyt是等方差的。加性误差项模型认为yt是等 方差的。从统计性质看两者的差异,前者淡化了y t值大的项(近期数据)的作用, 强化了y t值小的项(早期数据)的作用,对早起数据拟合得效果较好,而后者则 对近期数据拟合得效果较好。 影响模型拟合效果的统计性质主要是异方差、自相关和共线性这三个方面。 异方差可以同构选择乘性误差项模型和加性误差项模型解决,必要时还可以使用 加权最小二乘。

多元线性回归模型案例分析

多元线性回归模型案例分析 ——中国人口自然增长分析一·研究目的要求 中国从1971年开始全面开展了计划生育,使中国总和生育率很快从1970年的降到1980年,接近世代更替水平。此后,人口自然增长率(即人口的生育率)很大程度上与经济的发展等各方面的因素相联系,与经济生活息息相关,为了研究此后影响中国人口自然增长的主要原因,分析全国人口增长规律,与猜测中国未来的增长趋势,需要建立计量经济学模型。 影响中国人口自然增长率的因素有很多,但据分析主要因素可能有:(1)从宏观经济上看,经济整体增长是人口自然增长的基本源泉;(2)居民消费水平,它的高低可能会间接影响人口增长率。(3)文化程度,由于教育年限的高低,相应会转变人的传统观念,可能会间接影响人口自然增长率(4)人口分布,非农业与农业人口的比率也会对人口增长率有相应的影响。 二·模型设定 为了全面反映中国“人口自然增长率”的全貌,选择人口增长率作为被解释变量,以反映中国人口的增长;选择“国名收入”及“人均GDP”作为经济整体增长的代表;选择“居民消费价格指数增长率”作为居民消费水平的代表。暂不考虑文化程度及人口分布的影响。 从《中国统计年鉴》收集到以下数据(见表1): 表1 中国人口增长率及相关数据

, 设定的线性回归模型为: 1222334t t t t t Y X X X u ββββ=++++ 三、估计参数 利用EViews 估计模型的参数,方法是: 1、建立工作文件:启动EViews ,点击File\New\Workfile ,在对 话框“Workfile Range ”。在“Workfile frequency ”中选择“Annual ” (年 年份 @ 人口自然增长率 (%。) 国民总收入 (亿元) 居民消费价格指数增长 率(CPI )% 人均GDP (元) 1988 15037 1366 1989 … 17001 18 1519 1990 18718 1644 1991 【 21826 1893 1992 26937 2311 1993 . 35260 2998 1994 48108 4044 1995 — 59811 5046 1996 70142 5846 1997 ~ 78061 6420 1998 83024 6796 1999 【 88479 7159 2000 98000 7858 2001 [ 108068 8622 2002 119096 9398 2003 : 135174 10542 2004 159587 12336 2005 、 184089 14040 2006 213132 16024

非线性模型参数估计的EViews操作

非线性模型参数估计的EViews 操作 例3.5.2 建立中国城镇居民食品消费需求函数模型。根据需求理论,居民对食品的消费需求函数大致为: ()01,,f P P X Q =。 其中,Q 为居民对食品的需求量,X 为消费者的消费支出总额,P1为食品价格指数,P0为居民消费价格总指数。 表3.5.1 中国城镇居民消费支出及价格指数 单位:元 资料来源:《中国统计年鉴》(1990~2007) 估计双对数线性回归模型μββββ++++=031210n n n P L LnP X L Q L 对应的非线性模型: 3 21 1ββ βP P AX Q = 这里需要将等式右边的A 改写为0 e β。取0β,1β,2β,3β的初值均为1。

Eviews操作: 1、打开EViews,建立新的工作文档:File-New-Workfile,在Frequency选择Annual,在Start date输入“1985”,End date输入“2006”,确认OK。 2、输入样本数据:Object-New Object-Group,确认OK,输入样本数据。 图1 3、设置参数初始值:在命令窗口输入“param c(1) 1 c(2) 1 c(3) 1 c(4) 1”,回车确认。 4、非线性最小二乘法估计(NLS):Proc-Make Equation,在NLS估计的方程中写入Q=EXP(C(1))*X^C(2)*P1^C(3)*P0^C(4),方程必须写完整,不能写成Q C(1) X P1 P0。确定输出估计结果:

图2 NLS注意事项: 1).参数初始值: 如果参数估计值出现分母为0等情况将导致错误,解决办法是:手工设定参数的初始值及范围,比如生产函数中的c(2)肯定是介于0-1之间的数字。 eviews6.0中并没有start 的选项,只有iteration的次数和累进值得选择。只能通过param c(1) 0.5 c(2) 0.5来设置。 2).迭代及收敛 eviews用Gauss Seidel迭代法求参数的估计值。迭代停止的法则:基于回归函数或参数在每次迭代后的变化率,当待估参数的变化百分比的最大值小于事先给定的水平时,就会停止迭代。当迭代次数到了迭代的最大次数时也会停止,或者迭代过程中发生错误也会停止。

案例分析 一元线性回归模型

案例分析报告 (2014——2015学年第一学期) 课程名称:预测与决策 专业班级:电子商务1202 学号: 2204120202 学生姓名:陈维维 2014 年 11月 案例分析(一元线性回归模型) 我国城镇居民家庭人均消费支出预测 一、研究目的与要求 居民消费在社会经济的持续发展中有着重要的作用,居民合理的消费模式和居民适度的消费规模有利于经济持续健康的增长,而且这也是人民生活水平的具体体现。从理论角度讲,消费需求的具体内容主要体现在消费结构上,要增加居民消费,就要从研究居民消费结构入手,只有了解居民消费结构变化的趋势和规律,掌握消费需求的热点和发展方向,才能为消费者提供良好的政策环境,引导消费者合理扩大消费,才能促进产业结构调整与消费结构优化升级相协调,才能推动国民经济平稳、健康发展。例如,2008年全国城镇居民家庭平均每人每年消费支出为11242.85元,?最低的青海省仅为人均8192.56元,最高的上海市达人均19397.89元,上海是黑龙江的2.37倍。为了研究全国居民消费水平及其变动的原因,需要作具体的分析。影响各地区居民消费支出有明显差异的因素可能很多,例如,零售物价指数、利率、居民财产、购物环境等等都可能对居民消费有影响。为了分析什么是影响各地区居民消费支出有明显差异的最主要因素,并分析影响因素与消费水平的数量关系,可以建立相应的计量经济模型去研究。 二、模型设定?

我研究的对象是各地区居民消费的差异。居民消费可分为城镇居民消费和农村居民消费,由于各地区的城镇与农村人口比例及经济结构有较大差异,最具有直接对比可比性的是城市居民消费。而且,由于各地区人口和经济总量不同,只能用“城镇居民每人每年的平均消费支出”来比较,而这正是可从统计年鉴中获得数据的变量。 所以模型的被解释变量Y选定为“城镇居民每人每年的平均消费支出”。 因为研究的目的是各地区城镇居民消费的差异,并不是城镇居民消费在不同时间的变动,所以应选择同一时期各地区城镇居民的消费支出来建立模型。因此建立的是2008年截面数据模型。影响各地区城镇居民人均消费支出有明显差异的因素有多种,但从理论和经验分析,最主要的影响因素应是居民收入,其他因素虽然对居民消费也有影响,但有的不易取得数据,如“居民财产”和“购物环境”;有的与居民收入可能高度相关,如“就业状况”、“居民财产”;还有的因素在运用截面数据时在地区间的差异并不大,如“零售物价指数”、“利率”。因此这些其他因素可以不列入模型,即便它们对居民消费有某些影响也可归入随即扰动项中。 为了与“城镇居民人均消费支出”相对应,选择在统计年鉴中可以获得的“城市居民每人每年可支配收入”作为解释变量X。 以下是2008年各地区城镇居民人均年消费支出和可支配收入表

一元线性回归分析的结果解释

一元线性回归分析的结果解释 1.基本描述性统计量 分析:上表是描述性统计量的结果,显示了变量y和x的均数(Mean)、标准差(Std. Deviation)和例数(N)。 2.相关系数 分析:上表是相关系数的结果。从表中可以看出,Pearson相关系数为0.749,单尾显著性检验的概率p值为0.003,小于0.05,所以体重和肺活量之间具有较强的相关性。 3.引入或剔除变量表

分析:上表显示回归分析的方法以及变量被剔除或引入的信息。表中显示回归方法是用强迫引入法引入变量x的。对于一元线性回归问题,由于只有一个自变量,所以此表意义不大。 4.模型摘要 分析:上表是模型摘要。表中显示两变量的相关系数(R)为0.749,判定系数(R Square)为0.562,调整判定系数(Adjusted R Square)为0.518,估计值的标准误差(Std. Error of the Estimate)为0.28775。 5.方差分析表 分析:上表是回归分析的方差分析表(ANOVA)。从表中可以看出,回归的均方(Regression Mean Square)为1.061,剩余的均方(Residual Mean Square)为0.083,F检验统计量的观察值为12.817,相应的概率p 值为0.005,小于0.05,可以认为变量x和y之间存在线性关系。

6.回归系数 分析:上表给出线性回归方程中的参数(Coefficients)和常数项(Constant)的估计值,其中常数项系数为0(注:若精确到小数点后6位,那么应该是0.000413),回归系数为0.059,线性回归参数的标准误差(Std. Error)为0.016,标准化回归系数(Beta)为0.749,回归系数T检验的t统计量观察值为3.580,T检验的概率p值为0.005,小于0.05,所以可以认为回归系数有显著意义。由此可得线性回归方程为: y=0.000413+0.059x 7.回归诊断 分析:上表是对全部观察单位进行回归诊断(Casewise Diagnostics-all cases)的结果显示。从表中可以看出每一例的标准

一元线性回归分析实验报告

一元线性回归在公司加班制度中的应用 院(系): 专业班级: 学号姓名: 指导老师: 成绩: 完成时间:

一元线性回归在公司加班制度中的应用 一、实验目的 掌握一元线性回归分析的基本思想和操作,可以读懂分析结果,并写出回归方程,对回归方程进行方差分析、显著性检验等的各种统计检验 二、实验环境 SPSS21.0 windows10.0 三、实验题目 一家保险公司十分关心其总公司营业部加班的程度,决定认真调查一下现状。经10周时间,收集了每周加班数据和签发的新保单数目,x 为每周签发的新保单数目,y 为每周加班时间(小时),数据如表所示 y 3.5 1.0 4.0 2.0 1.0 3.0 4.5 1.5 3.0 5.0 2. x 与y 之间大致呈线性关系? 3. 用最小二乘法估计求出回归方程。 4. 求出回归标准误差σ∧ 。 5. 给出0 β∧与1 β∧ 的置信度95%的区间估计。 6. 计算x 与y 的决定系数。 7. 对回归方程作方差分析。 8. 作回归系数1 β∧ 的显著性检验。 9. 作回归系数的显著性检验。 10.对回归方程做残差图并作相应的分析。

11.该公司预测下一周签发新保单01000 x=张,需要的加班时间是多少? 12.给出0y的置信度为95%的精确预测区间。 13.给出 () E y的置信度为95%的区间估计。 四、实验过程及分析 1.画散点图 如图是以每周加班时间为纵坐标,每周签发的新保单为横坐标绘制的散点图,从图中可以看出,数据均匀分布在对角线的两侧,说明x和y之间线性关系良好。 2.最小二乘估计求回归方程

用SPSS 求得回归方程的系数01,ββ分别为0.118,0.004,故我们可以写出其回归方程如下: 0.1180.004y x =+ 3.求回归标准误差σ∧ 由方差分析表可以得到回归标准误差:SSE=1.843 故回归标准误差: 2= 2SSE n σ∧-,2σ∧=0.48。 4.给出回归系数的置信度为95%的置信区间估计。 由回归系数显著性检验表可以看出,当置信度为95%时:

第7章 非线性模型参数估值

第7章 非线性模型参数估值 7.1 引言 数学模型是观测对象各影响因素相互关系的定量描述。在获得实验数据并做了整理之后,就要建立数学模型。这一工作在科学研究中有着十分重要的意义。 人们选用的模型函数可以是经验的,可以是半经验的,也可以是理论的。模型函数选定之后,需要对其中的参数进行估值并确定该估值的可靠程度。对于线性模型,待求参数可用线性最小二乘法求得,即用前一章中介绍的确定线性回归方程的方法。对于非线性模型,通常是通过线性化处理而化为线性模型,用线性最小二乘法求出新的参数,从而再还原为原参数。这种方法在处理经验模型时,简便易行,具有一定的实用价值。但要注意到,这样做是使变换后的新变量y '的残差平方和(即剩余平方和)最小,这并不能保证做到使原变量y 的残差平方和也达最小值。因此,得到的参数估计值就不一定是最佳的估计值。可见在求理论模型的参数时,这种线性化的方法尚有其不足之处。此外,还有些数学模型无法线性化,所以用线性化的方法是行不通的。为此,需要一种对非线性模型通用的(不管是经验模型还是理论模型,不管这个模型能否线性化),能够得到参数最佳估计值的参数估计方法。 在工程中,特别是在化学工程中的数学模型大多是非线性、多变量的。设y ?为变量x 1,x 2,…,x p ,的函数,含有m 个参数b 1,b 2,…,b m ,则非线性模型的一般形式可表示为: =y ?f (x 1,x 2,…,x p ;b 1,b 2,…,b m ) (7.1) 或写为 ),(?b x f y = (7.2) 式中x 为p 维自变量向量,b 为m 维参数向量。 设给出n 组观测数据 x 1 ,x 2 ,… ,x n y 1 ,y 2 ,… ,y n 我们的目的是由此给出模型式(7.2)中的参数b 的最佳估计值。可以证明,这个最佳估计值就是最小二乘估计值。 按最小二乘法原理,b 应使Q 值为最小,即 ∑==-=n i i i y y Q 12min )?( 或写成 ∑==-=n i i i f y Q 1 2min )],([b x (7.3) 现在的问题是根据已知的数学模型和实验数据,求出使残差平方和最小,即 目标函数式(7.3)取极小值时的模型参数向量b 。这显然是一个最优化的数学问题,可以采用逐次逼近法求解。这种处理方法实质上是逐次线性化法或某种模式的搜索法。在下面各节中将介绍几个适用方法。

多元线性回归预测模型论文

多元线性回归统计预测模型 摘要:本文以多元统计分析为理论基础,在对数据进行统计分析的基础上建立多元线性回归模型并对未知量作出预测,为相关决策提供依据和参考。重点介绍了模型中参数的估计和自变量的优化选择及简单应用举例。 关键词:统计学;线性回归;预测模型 一.引言 多元线性回归统计预测模型是以统计学为理论基础建立数学模型,研究一个随机变量Y与两个或两个以上一般变量X 1,X 2,…,Xp 之间相依关系,利用现有数据,统计并分析,研究问题的变化规律,建立多元线性回归的统计预测模型,来预测未来的变化情况。它不仅能解决一些随机的数学问题,而且还可以通过建立适当的随机模型进而解决一些确定的数学问题,为相关决策提供依据和参考。 目前统计学与其他学科的相互渗透为统计学的应用开辟新的领域。并被广泛的应用在各门学科上,从物理和社会科学到人文科学,甚至被用来工业、农业、商业及政府部门。而多元线性回归是多元统计分析中的一个重要方法,被应用于众多自然科学领域的研究中。多元线性回归分析作为一种较为科学的方法,可以在获得影响因素的前提下,将定性问题定量化,确定各因素对主体问题的具体影响程度。 二.多元线性回归的基本理论 多元线性回归是多元统计分析中的一个重要方法,被广泛应用于众多自然科学领域的研究中。多元线性回归分析的基本任务包括:根据因变量与多个自变量的实际观测值建立因变量对多个自变量的多元线性回归方程;检验、分析各个自变量对因自变量的综合线性影响的显著性;检验、分析各个自变量对因变量的单纯线性影响的显著性,选择仅对因变量有显著线性影响的自变量,建立最优多元线性回归方程;评定各个自变量对因变量影响的相对重要性以及测定最优多元线性回归方程的偏离度等。由于多数的多元非线性回归问题都可以化为多元线性回归问题,所以这里仅讨论多元线性回归。许多非线性回归和多项式回归都可以化为多元线性回归来解决,因而多元线性回归分析有着广泛的应用。 2.1 多元线性回归模型的一般形式 设随机变量y 与一般变量12,, ,p x x x 线性回归模型为 01122...p p y x x x ββββε=+++++ (2.1) 模型中Y为被解释变量(因变量),而12,,,p x x x 是p 个可以精确测量并可控制的一般变 量,称为解释变量(自变量)。p =1时,(2.1)式即为一元线性回归模型,p 大于2时,(2.1)

非线性模型参数估计方法步骤

EViews非线性模型参数估计方法步骤 1.新建EViews工作区,并将时间序列X、P1和P0导入到工作区; 2.设定参数的初始值全部为1,其方法是在工作区中其输入下列命令 并按回车键 param c(1) 1 c(2) 1 c(3) 1 c(4) 1 3.估计非线性模型参数,其方法是在工作区中其输入下列命令并按 回车键 nls q=exp(c(1))*x^c(2)*p1^c(3)*p0^c(4) 4.得到结果见table01(91页表3. 5.4结果)(案例一结束) Dependent Variable: Q Method: Least Squares Date: 03/29/15 Time: 21:44 Sample: 1985 2006 Included observations: 22 Convergence achieved after 9 iterations Q=EXP(C(1))*X^C(2)*P1^C(3)*P0^C(4) Coefficient Std. Error t-Statistic Prob. C(1) 5.567708 0.083537 66.64931 0.0000 C(2) 0.555715 0.029067 19.11874 0.0000 C(3) -0.190154 0.143823 -1.322146 0.2027 C(4) -0.394861 0.159291 -2.478866 0.0233 R-squared 0.983631 Mean dependent var 1830.000 Adjusted R-squared 0.980903 S.D. dependent var 365.1392 S.E. of regression 50.45954 Akaike info criterion 10.84319 Sum squared resid 45830.98 Schwarz criterion 11.04156 Log likelihood -115.2751 Hannan-Quinn criter. 10.88992 Durbin-Watson stat 0.672163 (92页表3.5.5结果)(案例二过程) 5.新建EViews工作区,并将时间序列X、P1和P0导入到工作区;

matlab建立多元线性回归模型并进行显著性检验及预测问题

matlab建立多元线性回归模型并进行显着性检验及预测问题 例子; x=[143 145 146 147 149 150 153 154 155 156 157 158 159 160 162 164]'; X=[ones(16,1) x]; 增加一个常数项Y=[88 85 88 91 92 93 93 95 96 98 97 96 98 99 100 102]'; [b,bint,r,rint,stats]=regress(Y,X) 得结果:b = bint = stats = 即对应于b的置信区间分别为[,]、[,]; r2=, F=, p= p<, 可知回归模型y=+ 成立. 这个是一元的,如果是多元就增加X的行数! function [beta_hat,Y_hat,stats]=regress(X,Y,alpha) % 多元线性回归(Y=Xβ+ε)MATLAB代码 %? % 参数说明 % X:自变量矩阵,列为自变量,行为观测值 % Y:应变量矩阵,同X % alpha:置信度,[0 1]之间的任意数据 % beta_hat:回归系数 % Y_beata:回归目标值,使用Y-Y_hat来观测回归效果 % stats:结构体,具有如下字段 % =[fV,fH],F检验相关参数,检验线性回归方程是否显着 % fV:F分布值,越大越好,线性回归方程越显着 % fH:0或1,0不显着;1显着(好) % =[tH,tV,tW],T检验相关参数和区间估计,检验回归系数β是否与Y有显着线性关系 % tV:T分布值,beta_hat(i)绝对值越大,表示Xi对Y显着的线性作用% tH:0或1,0不显着;1显着 % tW:区间估计拒绝域,如果beta(i)在对应拒绝区间内,那么否认Xi对Y显着的线性作用 % =[T,U,Q,R],回归中使用的重要参数 % T:总离差平方和,且满足T=Q+U % U:回归离差平方和 % Q:残差平方和 % R∈[0 1]:复相关系数,表征回归离差占总离差的百分比,越大越好% 举例说明 % 比如要拟合y=a+b*log(x1)+c*exp(x2)+d*x1*x2,注意一定要将原来方程线化% x1=rand(10,1)*10; % x2=rand(10,1)*10; % Y=5+8*log(x1)+*exp(x2)+*x1.*x2+rand(10,1); % 以上随即生成一组测试数据 % X=[ones(10,1) log(x1) exp(x2) x1.*x2]; % 将原来的方表达式化成Y=Xβ,注意最前面的1不要丢了

多元线性回归模型案例

我国农民收入影响因素的回归分析 本文力图应用适当的多元线性回归模型,对有关农民收入的历史数据和现状进行分析,探讨影响农民收入的主要因素,并在此基础上对如何增加农民收入提出相应的政策建议。?农民收入水平的度量常采用人均纯收入指标。影响农民收入增长的因素是多方面的,既有结构性矛盾因素,又有体制性障碍因素。但可以归纳为以下几个方面:一是农产品收购价格水平。二是农业剩余劳动力转移水平。三是城市化、工业化水平。四是农业产业结构状况。五是农业投入水平。考虑到复杂性和可行性,所以对农业投入与农民收入,本文暂不作讨论。因此,以全国为例,把农民收入与各影响因素关系进行线性回归分析,并建立数学模型。 一、计量经济模型分析 (一)、数据搜集 根据以上分析,我们在影响农民收入因素中引入7个解释变量。即:2x -财政用于农业的支出的比重,3x -第二、三产业从业人数占全社会从业人数的比重,4x -非农村人口比重,5x -乡村从业人员占农村人口的比重,6x -农业总产值占农林牧总产值的比重,7x -农作物播种面积,8x —农村用电量。

资料来源《中国统计年鉴2006》。 (二)、计量经济学模型建立 我们设定模型为下面所示的形式: 利用Eviews 软件进行最小二乘估计,估计结果如下表所示: DependentVariable:Y Method:LeastSquares Sample: Includedobservations:19 Variable Coefficient t-Statistic Prob. C X1 X3 X4 X5 X6 X7 X8 R-squared Meandependentvar AdjustedR-squared 表1最小二乘估计结果 回归分析报告为: () ()()()()()()()()()()()()()()() 2345678 2? -1102.373-6.6354X +18.2294X +2.4300X -16.2374X -2.1552X +0.0100X +0.0634X 375.83 3.7813 2.066618.37034 5.8941 2.77080.002330.02128 -2.933 1.7558.820900.20316 2.7550.778 4.27881 2.97930.99582i Y SE t R ===---=230.99316519 1.99327374.66 R Df DW F ====二、计量经济学检验 (一)、多重共线性的检验及修正 ①、检验多重共线性 (a)、直观法 从“表1最小二乘估计结果”中可以看出,虽然模型的整体拟合的很好,但是x4x6

一元线性回归模型习题及答案解析

一元线性回归模型 一、单项选择题 1、变量之间的关系可以分为两大类__________。A A 函数关系与相关关系 B 线性相关关系和非线性相关关系 C 正相关关系和负相关关系 D 简单相关关系和复杂相关关系 2、相关关系是指__________。D A 变量间的非独立关系 B 变量间的因果关系 C 变量间的函数关系 D 变量间不确定性的依存关系 3、进行相关分析时的两个变量__________。A A 都是随机变量 B 都不是随机变量 C 一个是随机变量,一个不是随机变量 D 随机的或非随机都可以 4、表示x 和y 之间真实线性关系的是__________。C A 01???t t Y X ββ=+ B 01()t t E Y X ββ=+ C 01t t t Y X u ββ=++ D 01t t Y X ββ=+ 5、参数β的估计量?β 具备有效性是指__________。B A ?var ()=0β B ?var ()β为最小 C ?()0β β-= D ?()ββ-为最小 6、对于01??i i i Y X e ββ=++,以σ?表示估计标准误差,Y ?表示回归值,则__________。B A i i ??0Y Y 0σ∑ =时,(-)= B 2 i i ??0Y Y σ∑=时,(-)=0 C i i ??0Y Y σ∑=时,(-)为最小 D 2 i i ??0Y Y σ∑=时,(-)为最小 7、设样本回归模型为i 01i i ??Y =X +e ββ+,则普通最小二乘法确定的i ?β的公式中,错误的是__________。D A ()()()i i 1 2 i X X Y -Y ?X X β--∑∑= B ()i i i i 1 2 2 i i n X Y -X Y ?n X -X β ∑∑∑∑∑= C i i 1 2 2 i X Y -nXY ?X -nX β ∑∑= D i i i i 1 2 x n X Y -X Y ?β σ ∑∑∑= 8、对于i 01i i ??Y =X +e ββ+,以 ?σ表示估计标准误差,r 表示相关系数,则有__________。D A ?0r=1σ =时, B ?0r=-1σ =时, C ?0r=0σ =时, D ?0r=1r=-1σ =时,或 9、产量(X ,台)与单位产品成本(Y ,元/台)之间的回归方程为?Y 356 1.5X -=,这说明__________。D

相关文档
最新文档