大气中的PM2.5的监测方法研究现状

大气中的PM2.5的监测方法研究现状
大气中的PM2.5的监测方法研究现状

大气中的PM2.5的监测方法研究现状

张昕然(201448010214)

吉林师范大学环境科学与工程学院

目录

1. 现有标准方法简介 ...................................................................................... - 1 -

1.1. 国内的标准方法 ............................................................................... - 1 -

1.1.1. 环境空气PM10 和PM

2. 5 的测定重量法 ....................... - 1 -

1.1.

2. 光散射法β 射线法振荡天平法 ........................................... - 1 -

1.2. 国外的标准方法 ............................................................................... - 2 -

1.2.1. 英国PM2. 5 监测网络与监测方法 ..................................... - 2 -

1.2.2. 日本PM2. 5 监测网络与监测方法 ..................................... - 3 -

1.2.3. 美国PM2. 5 监测网络与方法 ............................................. - 3 -

2. 标准方法的改进现状 .................................................................................. - 5 -

2.1. 我国PM2. 5 监测网络布局与方法体系分析 ................................ - 5 -

2.1.1. 我国PM2. 5 监测网络布局分析 ......................................... - 5 -

2.1.2. 我国PM2. 5 监测方法体系分析 ......................................... - 6 -

3. 基于新原理的分析方法 .............................................................................. - 6 -

4. 发展趋势分析 .............................................................................................. - 7 -

5. 参考文献 ...................................................................................................... - 8 -

1.现有标准方法简介

1.1. 国内的标准方法

在监测方法选择上,β 射线法联用动态加热系统( DHS) PM2. 5 自动监测仪器和振荡天平法联用膜动态测量系统( FDMS) PM2. 5 自动监测仪器均能够满足

监测工作的需要,综合考虑两种类型仪器的性能指标和运行成本,β 射线法联用动态加热系统( DHS) PM2. 5 自动监测仪器操作相对简单,运行维护成本相对较低,更适合在我国环境空气监测网络内推广和普及。

1.1.1.环境空气PM10 和PM

2. 5 的测定重量法

2011 年我国颁布了《环境空气PM10 和PM2. 5 的测定重量法》( HJ618 -2011) 。为我国开展PM2. 5 监测工作奠定了基础,该方法是我国PM2. 5 监测的标准方法,其他任何自动监测方法都必须与该方法进行比对,取的满意结果后才能用于监测工作。

PM2. 5 的重量法测定虽然是我国的标准方法,但是该方法监测成本高、操作过程繁杂、对实验室环境和操作人员都要较高的技术要求,更为重要的是该方法不能及时获的实时监测结果,因此无法完全满足当前环境管理的要求和社会公众对环境信息公开的迫切需求。因此,PM2. 5 的监测宜采取自动监测方法,以适应各方面的需求,目前国际上成熟的PM2. 5 自动监测方法有光散射法、β 射线法、振荡天平法等等。

1.1.

2.光散射法β 射线法振荡天平法

2012 年中国环境监测总站对部分型号的光散射法PM2. 5 自动监测仪、β 射线法自动监测仪、振荡天平法自动监测仪进行了手工标准监测方法的比对测试,研究结果显示,β 射线法联用动态加热系统( DHS) 的PM2. 5 自动监测仪、振荡天平法联用膜动态测量系统( FDMS) 的PM2. 5 自动监测仪与我国手工标准监测方法具有较好的可比性,光散射法PM2. 5 自动监测仪和未加装FDMS 的振荡天平法PM2. 5 自动监测仪与我国手工标准监测方法之间的可比性较差。四种不同类型监测仪器的比对测试。结果见图1—图3。

图1振荡天平法联用FDMS 仪器与手工标准方法比对测试结果

图 2 β射线法联用DHS 仪器与手工标准图3 振荡天平法与手工标准方法比对测试结果

方法比对测试结果

研究结果表明,振荡天平法法监测仪器与β 射线法监测仪器均能够满足监测工作需要,但因为设计原理和仪器构造不同,两种仪器操作使用要求与运行成本存在一定差异。β 射线法监测仪器在使用过程中,操作较为简单,运行维护成本低廉; 相对于β 射线法监测仪器,振荡天平法监测仪器在使用过程中其操作相对复杂,运行维护成本也高于β 射线法监测仪器。2012 年我国在直辖市、省会城市、计划单列市、京津冀、长三角、珠三角等重点区域城市已经先期开展了PM2. 5 监测能力建设,共涉及74 个城市的496 个环境空气监测点位。据注,由于PM2. 5 是导致雾霾天气的主要污染物,因此PM2. 5 的监测与防治问题迅速成为人们关注的焦点,

2012 年2 月《环境空气质量标准》( GB3095 -2012) 正台,占仪器总数的85% 。因此,综合考虑两种方法仪器的性能指标和运行维护成本,β射线法PM2. 5 监测仪器更适合于在我国环境空气监测网络内推广和普及。

1.2. 国外的标准方法

1.2.1.英国PM2. 5 监测网络与监测方法

1. 英国PM

2. 5 监测网络

英国环境食品与农业事务部( UK DEFRA) 组建了英国城市和农村空气自动监测网( automatic urban and rural network ,AURN) ,该网络是英国目前最大的空气自动监测网,也是最主要的用来空气质量达标评价的监测网络。2008 年英国的PM2. 5 例行监测点位只有一个,位于London Bloomsbury,截止2011 年英国的PM2. 5 监测点位有131 个,包括城市背景点、郊区背景点、农村背景点、

城市交通点、城市工业点等点位类型。这些点位中有将近一半的点位由环境食品与农业事务部直接负责管理,另一半由地方政府的相关部门负责管理。此外,英国还设立了一个颗粒物数量与浓度研究监测网( The Particle Numbers and Concentrations Network) ,由环境食品与农业事务部委托有关研究机构负责管理,截止2011年该网络共有 5 个点位组成,主要监测颗粒物的数量浓度、粒径分布、质量浓度、离子组分、元素碳、有机碳等。

2. 英国PM2. 5 监测方法

在英国城市和农村空气自动监测网( AURN) 中采用三种方法进行PM2. 5 的监测,即振荡天平联用膜动态测量系统( FDMS) 法、β射线法、重量法,其中

重量法是欧盟相关规范要求的参考方法。相关研究指出,标准振荡天平法不符合欧盟的等效方法要求,但是因为振荡天平法可以获取连续的、瞬时的监测数据,所以在英国被广泛使用。为了弥补挥发性物质的损失,英国曾经使用修正系数1. 3来对监测数据进行修正,但是随后的研究表明,修正后仍然不能满足欧盟等效方法要求,为此英国DEFRA 建议地方当局可以在采用VCM 模型修正的基础上,使用振荡天平法来开展空气质量监测。此外研究还表明,光散射法同样不是欧盟的等效方法。

1.2.2.日本PM2. 5 监测网络与监测方法

1.日本PM

2. 5 监测网络

据资料显示,截止2009 年日本国内共有空气监测点位1987 个,其中包含1549 个环境空气质量监测点位,438 个路边空气质量监测点位。按照相关法律规定,这些点位主要由日本地方政府的相关机构负责管理,其中纳入国家监测网管理的环境空气质量监测点位有9 个,路边空气质量监测点位10 个。在日本并非所有的空气监测点位都开展了PM2. 5 的常规监测,目前开展PM2. 5 监测的点位有588 个,其中包括环境空气质量监测点位424 个,路边空气质量监测点位164 个。

2.日本PM2. 5 监测方法

日本环境质量标准中规定的PM2. 5 标准监测方法,包括了滤膜采样重量法、β射线吸收法、振荡天平法、光散射法等。目前在日本国家监测网中的9 个点位,其PM2. 5 监测方法主要为β射线吸收法。

1.2.3.美国PM2. 5 监测网络与方法

1 . 美国PM2. 5 监测网络

美国从20 世纪70 年代开始组建了环境空气质量监测网,有州和地方环境空气监测站( State and Local Ambient Monitoring Stations ,SLAMS) 组成,监测

项目包括SO2 、NO2 、CO、O3 、Pb、TSP、PM10 、PM2. 5 ,监测点位最多

时达到3000 多个,监测设备5000 多套。这些监测站点大多由州和地方政府的相关部门负责运行,其监测结果用来和国家标准比较,以判断一个区域的空气质量是否达到国家标准的要求。美国于1997 年颁布了PM2. 5 的环境质量标准,其PM2. 5 监测工作于1999 年开始,截止2007 年底,大约有1000 个监测点位开展了PM2. 5 的监测工作,其中滤膜采样手工监测设备947 套,自动监测设备591 套。美国1970 年至2007 年环境空气监测点位变化情况见下图。

图美国环境空气监测点位数量

此外,美国从2000 年起组建了颗粒物化学成分监测网( Chemical Speciation Network ,CSN) ,共包含大约300 个监测点位,在这些点位每三天或每六天采样一次,主要进行PM2. 5 的质量分析、元素分析( 包含铅) 、主要离子组分分析、元素碳分析、有机碳分析等颗粒物的主要组分分析。

该网是一个跨部门合作的监测网,主要开展PM2. 5 形态分析、重金属监测等。目前该网络包括了110 个区域监测站、7 个Clean Air Status and Trends Network( CASTNET) 中的监测站点、34 个CSN 站点。

2011 年美国组建了国家核心监测网,包括80 个站点,其中63 个城市站点和17 个农村站点,监测项目主要有PM2. 5 质量浓度( 滤膜采样法) 、PM2.

5 质量浓度( 自动监测法) 、PM2. 5 -10 质量浓度、PM2. 5 化学组分( 包括离子组分、金属、元素碳、有机碳等) 、气态污染物浓度、气象参数等。

2012 年美国对PM2. 5 环境质量标准进行了修订,并对PM2. 5 的监测网络提出了新的要求,计划从2015 年开始逐步增加PM2. 5 的道路交通监控点,并要求在每个100万人口以上的城市设置一个监控点,为了减少投资,PM2. 5 道路监控点将从现有的NO2 或CO 道路监控点中选取。

2 . 美国PM2. 5 监测方法

美国EPA 要求在环境空气质量监测网中必须使用联邦参考方法或等效方法进行PM2. 5 的监测工作,2008年以前主要采用滤膜采样方法进行监测,每三天或六天采样一次。截止2007 年底,共有947 个滤膜采样手工监测仪器和591 台自动监测仪器。2008 年美国EPA 第一次批准了PM2. 5 的自动监测方法为等

效方法,自动监测方法开始逐步应用于国家监测网中。截止2012 年,通过美国EPA 认证的自动监测方法有11 种,监测方法包括光散射法、振荡天平法( 联

用FDMS) 、β射线法,通过美国EPA 认证的PM2. 5 自动监测设备清单见表1。表 1 美国 EPA PM2. 5自动监测设备认证清单

2.标准方法的改进现状

2.1. 我国PM2. 5 监测网络布局与方法体系分析

2.1.1.我国PM2. 5 监测网络布局分析

我国现有的环境空气监测网络始建于20 世纪80 年代,最初以手工监测为主,从2000 年起自动监测开始逐步取代自动监测,至2010 年我国的环境空气监测网络共涵盖了我国113 个环境保护重点城市的661 个监测点位,全部实现了空气质量自动监测,监测项目为SO2 、NO2、PM10 等,依照当时的环境空气质量标准,各点位未开展PM2. 5的监测。2012 年2 月我国颁布了《环境空气

质量标准》( GB3095 -2012),将PM2. 5纳入了空气质量必测项目,同年 4 月环保部调整了国家环境空气质量监测网组成名单,将监测网络覆盖到我国所有地级以上城市,调整后的监测网络有338个地级以上城市的1436 个监测点位组成。按照空气质量新标准的要求,至2016 年国家环境空气监测网内的所有监测点位将按照新标准开展监测,届时我国PM2. 5 监测点位将达到1436 个,监测点位总数将达到全球第一。与国外主要发达国家相比较,我国单位国土面积PM2. 5监测点位数目略高于美国,低于英国和日本; 但由于我国人口数量庞大,单位人

口PM2. 5 监测点位数量仍低于英、美、日等发达国家。我国PM2. 5 监测点位数量与国外发达国家比较情况见表2。

从监测点位所处区域代表性方面分析,目前我国的PM2. 5 监测点位主要位于城市区域,城市郊区和农村地区的点位偏少。为了全面反映我国PM2. 5 污染状况,我国于2008 开始了环境空气背景站和农村站建设,目前已建成14 个背景监测站和31 个农村区域站,预计到“十二五”末,将建成15 个背景站和96 个农村区域站。从监测点位类型分析,目前我国监测网中的绝大多数点位属于环境空气质量评价点,而污染监控点位和城市路边点位偏少,因此在今后的能力建设中还应考虑适当增加污染监控点位的建设。

从监测项目上分析,目前我国例行监测项目主要是PM2. 5 质量浓度,为了全面反映PM2. 5 的污染特征和来源,今后在质量浓度监测基础上还应该逐步考虑开展PM2. 5 主要组分监测。

2.1.2.我国PM2. 5 监测方法体系分析

2011 年我国颁布了《环境空气PM10 和PM2. 5 的测定重量法》( HJ618 -2011) ,为我国开展PM2. 5 监测工作奠定了基础,该方法是我国PM2. 5 监测的标准方法,其他任何自动监测方法都必须与该方法进行比对,取的满意结果后才能用于监测工作。

PM2. 5 的重量法测定虽然是我国的标准方法,但是该方法监测成本高、操作过程繁杂、对实验室环境和操作人员都要较高的技术要求,更为重要的是该方法不能及时获的实时监测结果,因此无法完全满足当前环境管理的要求和社会公众对环境信息公开的迫切需求。因此,PM2. 5 的监测宜采取自动监测方法,以适应各方面的需求,目前国际上成熟的PM2. 5 自动监测方法有光散射法、β射线法、振荡天平法等等。

3.基于新原理的分析方法

2012 年中国环境监测总站对部分型号的光散射法、PM2. 5 自动监测仪、β射线法自动监测仪、振荡天平法自动监测仪进行了手工标准监测方法的比对测试,研究结果显示,β射线法联用动态加热系统( DHS) 的PM2. 5 自动监测仪、振

荡天平法联用膜动态测量系统( FDMS) 的PM2. 5 自动监测仪与我国手工标准监测方法具有较好的可比性,光散射法PM2. 5 自动监测仪和未加装FDMS 的振

荡天平法PM2. 5 自动监测仪与我国手工标准监测方法之间的可比性较差。四种不同类型监测仪器的比对测试结果见图1 -图3。

研究结果表明,振荡天平法法监测仪器与β射线法监测仪器均能够满足监测工作需要,但因为设计原理和仪器构造不同,两种仪器操作使用要求与运行成本存在一定差异。β射线法监测仪器在使用过程中,操作较为简单,运行维护成本低廉; 相对于β射线法监测仪器,振荡天平法监测仪器在使用过程中其操作相对复杂,运行维护成本也高于β射线法监测仪器。2012 年我国在直辖市、省会城市、计划单列市、京津冀、长三角、珠三角等重点区域城市已经先期开展了PM2. 5 监测能力建设,共涉及74 个城市的496 个环境空气监测点位。据

初步统计,496 个点位中共使用振荡天平法监测仪器75台,占仪器总数的15% ,使用β射线法监测仪器421台,占仪器总数的85% 。因此,综合考虑两种方法仪器的性能指标和运行维护成本,β射线法PM2. 5 监测仪器更适合于在我

国环境空气监测网络内推广和普及。

4.发展趋势分析

近年来,全国多地雾霾笼罩,污染由最严重的京津冀地区扩散至沿海地区,给公众交通出行和健康都带来了严重影响。中央气象台专家分析,进年来的雾霾天气出现是由于冷空气势力弱,形成大雾天气后使空气中的污染物很难扩散,加重了空气污染。这一场十面“霾”伏,确实让国务院、各地方政府、专家学者以及全体公众更加关注大气环境质量。尤其目前我国大气区域性复合污染形势严峻并成为我国“十二五”以及未来大气污染防治的巨大挑战。分析导致区域性大气复合污染的原因,与我国一些地方长期以来经济发展方式粗放、产业结构不合理密切相关。同时,因大气环流造成城市间污染物相互影响,仅仅依靠各个城市“各自为战”,没有形成区域性治污合力,也是目前酸雨、灰霾和光化学烟雾污染严重的重要原因。

党中央、国务院对大气污染防治工作高度重视,作出了一系列重要部署。国务院办公厅于2010 年5 月11日转发了环境保护部《关于推进大气联防联控工作改善区域空气质量的指导意见》。这是国务院第一次专门针对大气污染防治的综合性政策文件,明确提出了推进区域联防联控工作的指导思想和工作目标。2010 年11 月环保部就《环境空气质量标准( 征求意见稿) 》公开向社会征求意见,在该征求意见稿资料性附录中规定了PM2.5 的参考限值,虽未将PM2.5 列入标准规定的必测项目,却是在我国第一次尝试将PM2.5 纳入国家环境质量标准,也使得PM2.5 这一词汇逐步走入公众视野。

秋冬季节,我国京津冀地区雾霾现象频发,雾霾天气发生时,空气质量严重恶化,引发了社会各界的极大关式颁布实施,将PM2.5 列入了环境空气质量必测项目之中。由于PM2.5 的来源、组成,以及性质与PM10 存在明显差异,欧美发达国家的监测经验表明两者的监测技术要求也有较大不同。因此,开展

PM2.5 监测成为我国各级环境监测部门亟待解决的重要问题。

本文结合国内外PM2.5 监测工作的进展情况,对我国PM2.5 监测网络布局与监测方法选择的经济、技术可行性进行了深入研究和分析。通过对国内外PM2. 5 监测网络布局现状的分析和比较,我国“十二五”规划的PM2. 5 监测网络从点位数目和网络布局上基本能够反映我国PM2. 5 的污染状况,但为进一步反映PM2. 5 的污染特征和来源,今后还应逐步增加污染监控点位、道路交通点位的设置,同时在质量浓度监测的基础上,还应逐步开展PM2. 5 主要组分监测。在监测方法上,β射线法联用动态加热系统( DHS) PM2. 5 自动监测仪和振荡天平法联用膜动态测量系统( FDMS) PM2. 5 自动监测仪均能够满足监测工

作的需要,综合考虑两种类型仪器的性能指标和运行成本,β射线法联用动态加热系统( DHS) PM2. 5 自动监测仪操作相对简单,运行维护成本相对较低,更适合于在我国环境空气监测网络内推广和普及。

5.参考文献

[1]GB3095 -2012,环境空气质量标准[S].

[2]Tony Bush,Sarah Choudrie,Beth Conlan,etal,Air Pollution in the UK 2011

[R]. LONDON: UK DEFRA,2012: 16 -19.

[3]Ambient Air Monitoring Strategy for State,Local,and Tribal Air Agencies [R].

Office of Air Quality Planning and Standards Research Triangle Park,NC 2008,1 [4]EPA ’S Revised Air Quality Standards For Particle Pollution: Monitoring,Designations And Permitting Requirements [R].US EPA,2012,1 -2.[5]Implementing Continuous PM2. 5 Federal Equivalent Methods ( FEMs) and Approved Regional Methods ( ARMs) in State or Local Air Monitoring Station ( SLAMS )Networks [R].US EPA,2008,1 -2.

[6]List Of Designated Reference And Equivalent Methods [R],US EPA,2012,48-49.

[7]胡敏,唐倩,彭剑飞.我国大气颗粒物来源及特征分析[J].环境与可持续发展,2011,36( 5) : 15 -19.

[8]王帅,丁俊男,王瑞斌等.关于我国环境空气质量监测点位设置的思考[J].环境与可持续发展,2012,37( 4) : 21 -25.

[9]解淑艳,王瑞斌,李建军等.现代化环境空气质量监测网络构想[J].环境与可持续发展,2012,37( 4) : 26 -31.

[10]潘本锋,汪巍,李亮等.我国大中型城市秋冬季节雾霾天气污染特征与成因分析[J].环境与可持续发展,2013,38( 1) : 33 -36.

Analysis on the Construct of Fine Particle Monitoring Network

and Monitoring Technique System in China

PAN Benfeng WANG Wei WANG Ruibin LI Jianjun

( China National Environmental Monitoring Centre,Beijing 100012)

Abstract: Based onanalysis and comparisonof the fine particle monitoring networks between China and abroad ,the paper points that the existing network proposed in the air monitoring strategy during the 12th five year is available for reflecting the status of PM2.5 pollution.In order to research the characteristic and the source of PM2.5 ,should considerate setting up some industrial stations and traffic stations,and monitoring both mass concentration and major chemical composition in the future.In the matter of monitoring technique,bothbeta attenuation monitor incorporates a dynamic heating system and tapered element oscillating microbalance monitor incorporates a filter dynamic measurement system can meet the demand,after estimating the performance and running cost of each monitor,we could come to the conclusion that the beta attenuation monitor is more convenient to operate and has lower cost,and is more suitable to be used in the PM2.5 monitoring network in China.

Keywords: PM2.5 ; monitoringnetwork; monitoring technique

空气质量检测实训论文

目录 一. 实验意义 (2) 二. 硬件系统设计 (4) 2.1系统整体结构 (4) 2.2 基础硬件模块介绍 (4) 2.2.1空气质量传感器模块 (4) 2.2.2 创新平台底板模块 (8) 2.2.3 51单片机核心模块 (9) 2.2.4 LED数码管模块 (10) 2.2.5 位独立按键模块(扩展模块) (13) 2.2.6 蜂鸣器模块(扩展模块) (14) 2.2.7 LCD1602液晶模块(扩展模块) (14) 三. 软件系统设计 (15) 3.1主程序 (15) 3.1.1主程序模块代码 (15) 3.1.2 程序流程图 (17) 3.1.3 主程序程序流程说明 (18) 3.3. 主要算法 (23) 3.3.1 帧数据的校验算法原理 (23) 3.4 主要函数 (24) 3.4.1 求和校验函数 (24) 3.4.2 串口初始化函数 (25) 3.4.3 串口中断函数 (25) 四. 调试分析 (27) 4.1 硬件组装和程序的下载调试 (27) 4.1.1硬件组装和连接 (27) 4.2 调试过程中出现的问题 (27) 4.2.1 STC单片机程序下载失败原因分析 (27) 4.2.2 LED数码管显示模块问题分析 (28) 4.2.3程序下载好之后,不能立即正常显示原因分析 (28) 4.3 调试过程的注意事项 (28) 五. 心得体会 (29)

一. 实验意义 雾霾是我们经常讨论的热门话题,灰蒙蒙的天,能见度很低、空气中呛人的气味,相信大多数同学都遭受过这样的经历。 雾霾笼罩下的城市 现在已经知道,造成雾霾天气的主要“元凶”是PM2.5,即空气动力学当量直径小于等于2.5微米的颗粒物。这种能够直接进入肺泡的小颗粒,对人体健康危害最大。 当前,人们已经像关注天气一样,关注着空气质量。大多数情况,我们都像查天气预报一样,通过监测站发布的数值,了解当前的PM2.5浓度。但实际上,PM2.5并不像温度一样均匀分布,你呼吸到的PM2.5浓度,可能与报道的数值相差甚远。 通过该项目使我们可以采用电子积木搭接一个简单的空气质量检测仪。既学习了知识,还能知道我们身边PM2.5的浓度,获得我们身边的真实数据。

环境空气 汞的测定 原子荧光法 《空气与废气监测分析方法》(第四

新项目试验报告 项目名称:环境空气汞的测定 原子荧光分光光度法《空气与废气监测分析方法》(第四版)项目负责人:杨刚 项目审批人: 审批日期:

一、新项目概述 原子吸收分光光法和氢化物发生-原子荧光分光光度法测定汞,灵敏度高、方法快速准确、干扰少;双硫腙分光光度法是经典方法,准确、测定范围等,但操作复杂,要求严格,适用于高浓度汞污染物的监测。 二、检测方法与原理 检测方法:原子荧光分光光度法《空气与废气监测分析方法》(第四版)(2003)5.3.7.2 原理:通过等速采样,将颗粒物从固定污染源中抽取到玻璃纤维滤筒中或将无组织排放颗粒物收集到氯乙烯滤膜上。所采集的样品用混合酸消解处理。 在酸性介质中,加热消解是样品溶液中的汞以二价汞的形式存在,再被硼氢化钾还原成单质汞,形成汞蒸气,被引入原子荧光分光光度计进行测定。 大气颗粒物中Sb、Se、Bi、Au等元素含量较低,一般含量的Sb、Se、Bi、Au不干扰Hg的测定,大量的Cu、Pb等均不干扰测定。 当将采集10m3气体的滤膜制备成50ml样品时,最低检出限为3×10-3μg/m3。 三、主要仪器和试剂 1.试剂和材料 测定过程中,除非另有说明,均使用符合国家标准或专业标准的分析纯试剂和蒸馏水或同等纯度的水,所有试剂应不含铬。 1.1 硝酸:ρ=1.42g/ml,优级纯。 1.2 硝酸:1+1。 1.3 硝酸:1+19。 1.4 盐酸:ρ=1.19g/ml,优级纯。 1.5 5%盐酸。 1.6 重铬酸钾:优级纯。

1.7 氢氧化钾或氢氧化钠:优级纯。 1.8 盐酸溶液:1+1. 1.9 0.04%硼氢化钾溶液:称取0.4g硼氢化钾于已加入1gKOH的200ml去离子水中,溶解后,用脱脂棉过滤,稀释至1000ml。此溶液现用现配。 1.10 0.5g/L重铬酸钾溶液:称取0.5g重铬酸钾溶解于1000ml(1+19)HNO3中。 1.11 汞标准贮备液:准确称取1.080g氧化汞(优级纯,于105~110℃烘干2h), 用70ml(1+1)HCl溶液溶解,加入24ml(1+1)HNO3溶液、1.0gK 2Cr 2 O 7 ,溶解 后移入1000ml容量瓶中,用水稀释定容至标线。此溶液每毫升含1.0mg汞。1.12汞标准使用液(Hg),0.500μg/ml:临用时,用0.5g/L重铬酸钾溶液逐级稀释汞贮备液而成。 2. 仪器和设备 2.1原子荧光分光光度计及相应的辅助设备。 2.2中流量采样器。 2.3烟尘采样器。 2.4玻璃纤维滤筒。 2.5过氯乙烯滤膜。 四、采样要求或样品与处理技术 4.1采集 中流量采样器,玻璃纤维滤膜过滤直径8㎝时。以50~150L/min流量,采样30~60m3。采样应将滤膜毛面朝上,放入采样夹中拧紧。采样后小心取下滤膜尘面朝里对折两次叠成扇形,放回纸袋中,并详细记录采样条件。 4.2试料溶液 4.2.1硝酸-过氧化氢溶液浸出法 取试样滤膜,置于高兴烧杯中,加入10ml硝酸-过氧化氢混合溶液浸泡2h以上,微火加热至沸腾,保持微沸10min,冷却后加入过氧化氢10ml,沸腾至微干,冷却,加硝酸溶液20ml,再沸腾10min,热溶液通过多孔玻璃过滤器,收集于烧杯中,用少量热硝酸溶液冲洗过滤器数次。待滤液冷却后,转移到50ml容量瓶中,

全国农村环境质量试点监测技术方案

附件2 全国农村环境质量试点监测技术方案 环境保护部 2014年8月 —15—

目录 一、目的 (17) 二、范围和对象 (17) (一)村庄监测 (17) (二)县域监测 (19) 三、村庄监测内容 (19) (一)环境空气质量 (19) (二)饮用水水源地水环境质量 (20) (三)土壤环境质量 (22) (四)生活污水处理设施出水水质 (23) 四、县域监测内容 (23) (一)地表水环境质量 (23) (二)生态环境质量状况 (25) 五、质量控制 (26) (一)环境空气监测质量控制 (26) (二)饮用水源地监测质量控制 (26) (三)地表水环境监测质量控制 (26) (四)土壤环境监测质量控制 (26) (五)生态环境质量状况监测质量控制 (27) (六)生活污水处理设施出水水质监测质量控制 (27) 六、数据报送和报告编写要求 (27) (一)数据报送 (27) (二)报告提纲 (27) —16—

一、目的 为加强农村环境保护,进一步推进农村环境质量监测工作发展,从点到面反映我国农村区域环境质量状况和变化趋势,特制定本技术方案。 二、范围和对象 监测范围:全国除港、澳、台外的31个省(区、市)。 监测对象:农村环境质量监测以县域为基本单元,包括县域监测和村庄监测2个层次。在村庄监测层次,选择一定数量的代表性行政村庄(城中村不作为监测对象),开展环境空气质量、饮用水水源地水质和土壤环境质量监测,参加“以奖促治”农村环境综合整治项目的村庄,须加测生活污水处理设施(含人工湿地)出水水质;在县域监测层次,开展地表水水质和生态环境质量状况监测。 (一)村庄监测 1.村庄类型划分 根据农村主要生产方式和主要污染来源,将村庄初步划分为生态型、种植型、养殖型、牧业型、工业型、旅游型和其他型等7个类型。 (1)生态型村庄 指生态环境优美,坐落在受保护的自然保护区、风景名胜区、森林公园、地质公园、生态功能保护区、水源保护区、封山育林地等区域内的村庄。 —17—

地表水环境监测方案

地表水水质监测方案 ——广州大学内水质监测一、监测目的 (1)对校园教学区,主要是实验楼区域的校园景观的用水及水样进行监测,了解学校实验楼区域的水质现状。 (2)学习水质监测的步骤,进一步将课堂所学知识运用到实践中,学会制定水质监测方案并按步实施。 (3)进一步熟练常用的水质监测中的实验操作技术,掌握地表各种指标与污染物的测定方法。 (4)熟悉环境质量标准评价的各项标准,并学会运用其来评价水质,提出改善校园水质的意见和建议。 二、基础资料的收集 本次监测选取了校园网主场至生化实验楼区域水域进行监测。根据相关的文档和网上搜寻的资料可知,该河段属于珠江水系广州段,水域的有关资料如下: 1.地形地貌 广州大学城位于中国东南沿海,紧靠珠江两岸地,地处珠江三角洲腹地,是三角洲平原与低山丘陵区的过渡地带。小岛总体地形是东北高、西南低。东北部是由花岗岩与变质岩组成的低山丘陵区,地形高差250m左右,坡度15°~35°。广州大学位于岛的西部,坐落于河流堆积组成的冲积平原,地势平缓,其中分布零星的残丘和苔地,

有着树枝状般的水系。 2.气象 广州大学城地处南亚热带,属海洋性季风气候,有着温暖多雨、光热充足、雨量充沛的特点。其年平均气温约为21.8℃,一年中7月、8月的温度最高,1月最低,绝对最高气温约38.7℃。平均年降雨量为1699.8毫米,集中在梅雨季、台风季两个季节,占全年的82.1%,在七、八、九月份常遭受六级以上的大风袭击或影响,台风最大风力在9级以上,并带来暴雨,破坏力极大,年评卷蒸发量160315,mm。 3.水文 广州大学城位于珠江、冻僵溪流的交汇区上,该区域河段属于不规则半日潮。冲积平原和三角洲平原,地势低平,地表水体类别有:库唐、涌溪、干流河道,全区水域面积16011k㎡,占广州市区面积的10.8%。据黄埔潮汐站资料,珠江平均高潮水位为0.72m,平均低潮水位为-0.88m,涨潮最大潮差2.56m,落潮最大潮差3.00m。潮汐周期为半个月,即15天。每年的1~3月份平均潮位较低,6~9月份较高。各月均值之间差值一般只有0.2米左右,变化较小。 4.监测河段概况 经实地考察,此河段是珠江至校园图书馆中心湖之间的河段,全长约400m,平均宽约4.5m,平均水深1.5m,流经生化实验楼和工程实验楼,水质主要受到这两处污染源的影响。此河段是人工河段,包括河流的河床、两岸的植被、河流的流水量以及河流的污染等,都是有人

大气环境质量现状监测方案

、大气环境质量现状监测方案 1、监测布点 相山开发区20年统计的主导风向为东东北(NNE )风。根据《环境影响评价技术导则大气环境》(HJ2.2-20018),结合规划区特点和当地环境特征,拟在评价区及主导风向下风向5km范围内共布设1-2个现状监测点(根据规划范围确定)。各监测点名称、方位见表, 具体位置见图。 图1规划区大气监测布点图 2、监测因子 根据开发区现有企业和拟进入的企业类型,选择特征因子进行监测,具体包括:HCI (小时值、日均值)、硫酸雾(小时值、日均值)、氟化物(小时值、日均值)、苯(小时值、日均值)、HCN(30min平均、24小时平均)、甲醛(小时值)、TVOC(8小时平均)、Pb (日均值)、锡(日均值)、臭气浓度(小时值)进行监测。 同步记录监测点位坐标、总云量、低云量、气压、气温、风向及风速

3、监测时间和频次 大气监测应在最不利季节监测,鉴于北方地区供暖期内空气质量相对更差一些,因此,应在开始供暖后尽快安排监测。 按照《环境影响评价技术导则大气环境》(HJ2.2-20018)要求,监测时次满足所用标 准的取值时间要求,小时监测取2:00,8:00,14:00,20:00 4 个时段,日均值监测20 小时以上。所有点位和所有因子连续监测7 天。 监测方法选择监测因子对应的环境质量标准或者参考标准所推荐的监测方法。 采样按HJ664 及相关评价标准规定的环境监测技术规范执行。

二、地表水环境质量监测 1、监测布点 根据《环境影响评价技术导则地表水环境》(HJ2.3-2018 ),本次规划环评布设11点监测点位,具体见下表2。

地表水环境质量现状监测

地表水环境质量现状监测方案 广州中科检测技术服务有限公司 一、地表水环境质量现状监测 1、监测断面设置 在该项目污水纳污河道A河设置5个监测断面,分别为该项目污水排口A与B河交叉处、排污口、排口下游1000米、排口下游2000米、排口与C河。 2、监测项目 监测项目为:水温、pH、SS、石油类、总磷、COD、BOD5、DO、NH3-N、硫化物、TN,共11项。 3、采样时间、频率及分析方法 监测分析方法按《地表水及污水监测技术规范》(HJ/T91- 2002)中有关规定进行。 二、地下水水质现状监测 1、监测点设置 布设3个监测点,厂区范围内一个点,及厂区附近两个点。 2、监测项目 地下水监测项目为:pH、高锰酸盐指数、氨氮、氯化物、硫酸盐、硝酸盐氮、亚硝酸盐氮、总大肠菌群、铅、铬、镉、汞、砷,共13项。 监测分析方法按《地表水及地下水监测技术规范》中有

关规定进行。 三、大气环境现状监测 1、监测点布设 拟建厂址上风向、下风向及保护目标区域布设4个测点,主要考虑评价区范围内的主要居民敏感点,在敏感点处要布点监测。 大气监测布点一览表 2、监测项目 监测项目为NO2(小时值和日均值)、SO2(小时值和日均值)、PM10(日均值)、氨气、非甲烷总烃、臭气浓度、乙二醇、环氧丙烷、环氧乙烷、三乙胺、甲苯、甲醇、二苯醚(小时值),同时记录风向、风速、气温、气压等气象参数。

3、监测频率及时间 小时浓度每天四次;日均浓度按国家标准和导则要求采样七天; 4、监测方法 污染物分析方法按《环境空气质量标准》(GB3095-1996)规定方法进行。 四、声环境质量现状监测 在场界四周布设4个监测点(厂界四周各一个),连续监测两天,昼夜各一次。测量方法按《声环境质量标准》(GB/3096-2008)进行。 五、土壤环境质量现状监测 监测布点:在场界内及周边共布设2个监测点; 监测因子:pH、铜、铅、锌、铬、镍、汞、镉、砷; 监测频率:采样一次。 六、底泥环境质量现状监测 监测布点:在排口位置布设1个监测点; 监测因子:pH、铜、铅、锌、铬、镍、汞、镉、砷; 监测频率:采样一次。

空气质量简易检测实验报告范文.doc

空气质量简易检测实验报告范文 铜鼎中学地处江南水乡,这里山清水秀,但由于森林的过度砍伐,水土流失,整体环境恶化,这里的山不再有往日的郁郁葱葱,这里的水不再有往日的清澈见底,这里的天不再有往日的湛蓝清新。为此,我们课题研究小组进行了一个多月的调查研究和具体实验。 我们课题研究小组在指导老师的带领下,对我乡进行了调查走访,了解我乡以往空气质量状况。据上了年纪的老人讲,以前我乡森林多,村边田头到处是高大的树木,不像现在山头只有矮小的灌木林,难见高大的树木,清风送爽,天空瓦蓝瓦蓝的,不像现在天空时时是灰朦朦的,难得一见天空的湛蓝。虽然铜鼎的空气质量状况比较好,但与以前相比,要差很多了。 空气质量状况的好坏,关系着人们的身体健康,如果空气中含有过量的污染物,就会对人体造成极大的影响,导致各种疾病的发生。因此,我们课题研究小组分成四个小组,带着空气采样机对我乡多个地方进行了空气采样,在森林边、河水边、村落旁、闹市区、学校等地方进行了空气采样,通过空气采样机得出的具体数据,并把这些数据带回了实验室进行分析。 随着人们环保意识的提高,室内空气污染问题日益受到人们的重视,据有关资料介绍,室内空气往往比室外空气污染更严重,而我们人类绝大部分时间是在室内度过的,因而,室内空气

污染比室外空气污染对人体的影响更大,所以,我们在进行了室外空气采样之后,又对室内空气质量进行了检测。我们课题研究小组成员带着空气采样机、甲醛检测仪、苯检测仪等仪器对教室、寝室的空气进行了采样和检测,并把实验时局带回了实验室进行了综合分析。 经过我们课题研究小组的检测,我乡室外空气质量状况总体来说较好,空气污染指数小于50,达到了一级标准,但闹市区和村落的空气质量状况不容乐观,空气污染指数53,首要污染物是可吸入颗粒物。而我们生活学习的教室、寝室的空气质量,总体来说状况较好,二氧化硫、二氧化氮、甲醛、苯、甲苯等含量很低,有的甚至不含有,居住条件好,只是物理指标欠佳,新风量低于标准值,寝室相对湿度较大。 空气质量状况直接影响人们的身体健康,影响大自然的和谐发展,关注空气质量,保护空气的清洁,是我们每个公民应尽的义务。针对我们发现的问题,我们的建议是: 1、发动广大群众,广泛植树造林,退耕还林,保持森林覆盖率,是提高空气质量的的重要措施。 2、工业废气经过处理达标后再排放,是治理空气污染的重要举措。 3、工业燃料、生活燃料尽量使用清洁能源,以减少对空气的污染。 4、在室内装修尽量使用无污染的装修材料以减少室内的

环境空气质量监测规范..

环境空气质量监测规范 (试行) 第一章总则 第一条为防治空气污染,规范环境空气质量监测工作,根据《中华人民共和国环境保护法》、《中华人民共和国大气污染防治法》和《国务院关于落实科学发展观加强环境保护的决定》的有关规定,制定本规范。 第二条本规范规定了环境空气质量监测网的设计和监测点位设置要求、环境空气质量手工监测和自动监测的方法和技术要求以及环境空气质量监测数据的管理和处理要求。 本规范适用于国家和地方各级环境保护行政主管部门为确定环境空气质量状况,防治空气污染所进行的常规例行环境空气质量监测活动。 第三条国务院环境保护行政主管部门负责国家环境空气质量监测网的组织和管理,各县级以上地方人民政府环境保护行政主管部门可参照本规范对地方环境空气质量监测网进行组织和管理。 第二章环境空气质量监测网 第四条设计环境空气质量监测网,应能客观反映环境空气污染对人类生活环境的影响,并以本地区多年的环境空气质量状况

及变化趋势、产业和能源结构特点、人口分布情况、地形和气象条件等因素为依据,充分考虑监测数据的代表性,按照监测目的确定监测网的布点。 监测网的设计,首先应考虑所设监测点位的代表性。常规环境空气质量监测点可分为4类:污染监控点、空气质量评价点、空气质量对照点和空气质量背景点。 第五条国家根据环境管理的需要,为开展环境空气质量监测活动,设置国家环境空气质量监测网,其监测目的为:(一)确定全国城市区域环境空气质量变化趋势,反映城市区域环境空气质量总体水平; (二)确定全国环境空气质量背景水平以及区域空气质量状况; (三)判定全国及各地方的环境空气质量是否满足环境空气质量标准的要求; (四)为制定全国大气污染防治规划和对策提供依据。 第六条各地方应根据环境管理的需要,按本规范规定的原则,设置省(自治区、直辖市)级或市(地)级环境空气质量监测网(以下称“地方环境空气质量监测网”),其监测目的为:(一)确定监测网覆盖区域内空气污染物可能出现的高浓度值; (二)确定监测网覆盖区域内各环境质量功能区空气污染物的代表浓度,判定其环境空气质量是否满足环境空气质量标准的

环境监测方案模板

×××项目 监测方案 ××××××××××有限公司

××年××月××日

×××项目 监测方案 部门负责人:高级工程师技术审定人:高级工程师技术审核人:高级工程师编制:工程师

1环境空气 1.1环境空气质量现状 1.1.1监测点位布设 环境空气质量监测点见表1.1-1及附图1。 1.1.2监测项目及频次 监测频次见表1.1-2。 1.2厂界特征因子监测 厂界特征因子监测点见表1.2-1及附图2。 表1.2-1 厂界特征因子监测点一览表 1.3监测方法 监测方法执行《环境空气质量标准》(GB3096-1995)和《空气和废气监测分析方法》(第四版)中相关规定。 1.4监测报告 应包括监测结果、各项目监测分析方法与检出限、同步监测的气象数据等。

2.1监测点布设 共设置××个监测断面,详见表2.1-1。 (HJ/T2.3-93)中有关河流或湖泊、水库相关规定,进行河流或湖泊、水库监测点布设。 2.2监测项目 常规水质参数和特征水质参数,具体根据项目实际情况,并结合《环境影响评价技术导则地面水环境》(HJ/T2.3-93)中相关规定进行选择。 2.3监测频次 执行《环境影响评价技术导则地面水环境》(HJ/T2.3-93)中相关规定。 2.4监测方法 监测方法执行《水和废水分析监测方法》中相关规定。

3.1监测点位布设 地下水环境质量现状监测点见表1.1-1及附图3。 3.2监测项目 (1)水质监测:×××(根据项目实际情况选择监测因子) (2)井点监测:地理坐标、水位、水温、水量、井深、水井的使用功能、结构。 3.3监测频次 监测一天,每天1次。 3.4监测方法 监测方法执行《地下水环境监测技术规范》(HJ/T164-2004)中相关规定。 注:以上各项可根据《地下水环境监测技术规范》(HJ/T164-2004)中相关规定进行适当调整。

环评报告书-环境质量现状监测

第四章环境质量现状监测与评价 4.1 环境空气质量现状监测与评价 4.1.1 环境空气质量现状监测 1、监测点位的布设 根据项目废气的特点和当地常年主导风向情况,同时根据场址周围环境敏感点分布状况,本次评价在场址周围设置2个大气监测点,其具体布点情况详见附图四及表4-1。 表4-1 环境空气质量现状监测布点一览表 2、监测因子及分析方法 根据本工程排污特点,确定监测因子为SO2、NO2小时值和日均值,TSP、PM10日均值。环境空气质量现状监测分析方法见表4-2。 表4-2 环境空气质量现状监测分析方法 3、监测时间和频率 本次环境空气质量现状监测由青岛京诚检测科技有限公司于2015年5月22日至2015年5月28日进行监测,一次性连续监测7天。监测频率见表4-3。

表4-3 环境空气现状监测因子和监测频率 4.1.2环境空气现状监测期间气象数据 本项目环境空气监测期间参数统计表见表4-4。 表4-4 环境空气监测期间参数统计表

4.1.3 环境空气质量现状评价 1、评价标准 根据新乡市环境保护局红旗区分局关于本次评价执行标准的批复意见,本次环境空气质量评价标准执行《环境空气质量标准》(GB3095-2012)二级标准,标准限值见表4-5。 表4-5 环境空气质量现状评价执行标准 2、环境空气质量现状监测结果统计与评价 环境空气现状监测统计结果见表4-6。 表4-6 环境空气质量现状监测统计结果

监测数据表明,除联盟新城小区PM10日均值出现轻微超标现象外,其余各监测点各监测因子均能满足《环境空气质量标准》(GB3095-2012)二级标准要求。根据调查可知,PM10超标的原因主要和新乡市气候干燥,降雨量少且集中,颗粒物受季节、气候影响较大因素有关。 4.2 地表水环境质量现状监测与评价 4.2.1 地表水环境质量现状监测 (1)监测断面的布设 本项目废水经医院内污水处理站处理后进入小店污水处理厂统一处理,本次评价利用河南省联谊制药有限公司环境影响报告书中地表水环境质量现状监测结果,其布设情况详见表4-7。 表4-7 地表水监测断面布设情况一览表 (2)监测因子及分析方法 本次评价利用的地表水环境质量现状监测因子为:pH、COD、氨氮、SS、硫化物、锌,共计6项,同步测定水温、流量,监测频率为连续3天,每天一次混合样送检。按《水和废水监测分析方法》(第四版)中选配的方法进行监测。具体监测方法见表4-8。

煤中汞地测定方法

煤中汞的分析测定方法 汞是一种具有严重生理毒性的全球性污染物。汞一旦释放进入生态环境(尤其是水生与湿地生态环境),无机汞可以被转化为毒性更强的甲基汞,甲基汞的脂溶性和较长的半衰期使其在鱼和其它水生生物体内具有极高的生物富集系数(104以上),并通过食物链富集起来,进而置野生生物和人类于甲基汞暴露风险之中[1]。工业革命以来,由于人为释汞源使大气中汞是工业革命前的3倍,而最大的人为释汞源即为煤燃烧,每年向大气释放约810吨汞[2],超过所有人为释汞源排汞的三分之二[3]。准确分析测定煤中汞的含量是估算我国煤燃烧释汞量的基础。 我国目前分析测定煤中汞的方法是于2009年5月1日实施的GB/T 16659-2008。但笔者认为该方法由于在煤样消解过程中使用大量的V2O5为催化剂消解煤样[4],但国内生产的V2O5含汞空白一般较高(??),有的甚至是煤实际含汞量的30-50%(?),因此严重影响了煤样中汞的分析测定。因此有必要建立更为可靠的分析测定方法。 本文通过对比GB/T 16659-2008的V2O5催化消解煤样原子荧光分析法,王水常温消解煤样原子荧光分析法及煤样直接热解原子吸收分析法分析测定了煤标样及一些煤样,得出较好的结果。 1.材料及仪器 2.样品消解及分析方法 3.结果与讨论 4.结论 实验部分 1 冷原子荧光分光光度法 1.1分析仪器与试剂

1.1.1 分析仪器:金丝捕汞管,冷原子荧光分光光度计,分析天平:感量0.1mg,汞蒸气发生瓶(50ml),振荡器 1.1.2 试剂:优级纯浓硝酸;优级纯浓盐酸;12% 盐酸羟胺溶液; 10% SnCl2溶液 BrCl 溶液: 11. 0 g 分析纯KBrO3 和15.0 g 分析纯KBr 溶于200 mL 蒸馏去离子水中, 轻轻搅拌溶液, 同时缓慢加入700 mL 优级纯浓HCl。整个操作应在通风橱内进行。冷却后, 装入棕色瓶中, 放置阴凉处保存。 王水:按浓盐酸:浓硝酸=3:1,配制。加入硝酸时,缓慢搅拌溶液。整个操作应在通风橱内进行。静置1-2小时后,放置阴凉处保存。 1.2除汞方法 将新配好的氯化亚锡溶液置于还原瓶中, 以0. 5 L/ min 的速度通入不含汞的氮气12 h, 装瓶备用。 1.3化学试剂及器皿的汞空白 汞空白值0.05 0.04 1.4 煤样消解 称取粒度小于0.2mm的空气干燥煤样约1g,称准到0.0002g,于50ml离心管中。加入事先配制好的王水10ml,摇匀,静置24h。第二天将加有试剂的离心管放入振荡器内,拧紧离心管盖子,转速调到220-240转/分,两小时后关闭振荡器,取下离心管。加入1ml BrCl,摇匀,用去离子水定容到50ml。 1.5溶液过滤 在铁架台上用漏斗和中速滤纸,过滤离心管中溶液。滤过后溶液用新离心管盛放。 1.6样品测定 冷原子荧光光度计设备开机,运行20分钟,测噪声。低于40分贝时开始吹扫金管中富集

环境质量监测方案

环境质量监测方案 一、概述 随着经济的发展与人民生活水平的提高,工业污染、汽车尾气排放等,引起了巨大环境污染,各地值爆表新闻频出,加深了老百姓对所在城市的空气质量的担忧与关注,所以进行空气质量实时监测势在必行。 XX市空气质量监测系统本着“总体设计,分步实施”的原则,将XX市的空气质量有效地监控起来,组成自动化的集中的监控系统,通过无线通信网络、计算机控制系统、电力载波通讯, 实现遥测等功能。 瑞斯康空气质量监测系统可以实现对道路、广场、码头、车站等场合的空气质量监测,从而实现高效率、低成本的管理。 二、环境空气质量监测系统架构图 1、系统拓扑图 2、系统组成 平台软件 监控软件采用模块化结构,用户可根据实际需求和财力、物力逐步投入,灵活配置。报警分析和显示模块、监控软件采用超强直观的图形结构,实时准确分析、判断、定位环境数据。适应于不同

层次、不同学历的工作人员操作。 集中控制器 集中控制器是由瑞斯康微电子(深圳)有限公司设计和生产的集中控制器。它是路灯照明系统中电能信息采集和远程控制的关键设备,安装在路灯箱变中低压配电变压器的低压侧。通过485实现对具有RS485接口电能表的采集和通过电力载波通讯对环境传感器进行数据采集。定时或实时的将数据通过TCP/IP、GPRS等通讯方式传回到市政管理部门。该产品采用ARM核微控器和嵌入式操作系统,在低压电网用电数据采集的实时性、、安装的方便性、使用环境的广泛性及建立系统的经济性等方面给城市管理部门提供了现代的手段。 标准及规范 产品符合IEC国际电工委员会相关标准和国家相关标准规定, 具体如下: ◆ IEC61000-6-1-2005 ◆ EN50065 ◆ DL/T645-1997 主要特点 ◆集中控制器采用一体化的小型化工业级设计,抗干扰能力强,工作温度范围宽(主控板达到零下40到85摄氏度),在各种干扰情况下能正常采集各种现场信号,100%的遥信正确率和100%的遥控执行率,保证不能误动。 ◆当发生中控室微机或通信线路发生故障时,终端会根据预先设定的程序定时采集数据,以确保照明线路的正常运行。 ◆由于监控终端一般均安装在干扰较大的环境中,为了保证系统可靠工作,终端的软硬件设计中采用了多种抗干扰措施。 ◆对强干扰信号造成的系统复位时采用软硬件自恢复电路处理。保证在无人值守时也能可靠运行。 ◆对采集到的高压交流信号实行多重防电脉冲冲击和防雷保护措施,已在实际应用中获得了极好的效果。 ◆上下行通讯模块化设计,可进行现场更换免设置,使用方便。 ◆具有功能强大的组态功能,可以在当地/远方修改产品参数,支持软件在线升级。 ◆宽电压范围设计使其具有更高的可靠性。 ◆产品电磁兼容性优良,能抵御高压尖峰脉冲、强磁场、强静电、雷击浪涌的干扰,且具有较

环境质量现状监测报告样板

1?临测依据 (1)国家环保局《空气和废气监测分析方法》(第四版); (2)《环境监测技术规范》; (3)桂环管字[1996]58号《关于广西城市环境综整治定量考核指标实施办法环境监测技术要求的通知》。 2.国家标准: (GB3095-1996)《环境空气质量标准》二级标准。 3.质量保证 本站持有省级《计量认证合格证书》,参加监测分析的技术人员均通过专业培训,并获得相应的资质合格证。样品采集、呆存、贮运、分析全部按国家规定的有关标准、技术规范进行,实行全过程质量控制,所使用的仪器经过省级计量部门检定合格。室内分析采用带标准样测定的质量控制措施,监测数据实行三级审核。 4.大气环境质量现状监测与结果 4.1大气环境质量监测 4.1.1监测点位 根据大气监测布点原则及洛西镇城区地形、地貌、面积、气象等各种因素特征,监测点位布设采用《XX 市大气环境监测点位优化研究》网格优化布点法。整个 城区共设置二个大气监测点位,监测点编号及具体位置详见附表4-1。

4.1.2 监测项目 根据环境监测技术规范及xx市城区污染情况,确定本次xx市xx 镇城区大气监测项目为:二氧化硫、二氧化氮、总悬浮颗微粒物等三项。 4.1.3监测频率 连续监测3天,每天监测四个代表时段,即8时、12 时、16时、20时。二氧化硫、二氧化氮每次采样0.5小 时,其中总悬浮颗粒物每天采样四次共用一张滤膜。采样同步观测气温、气压和相对湿度等地面常规气象参数。 4.1.4监测分析方法及监测仪器 监测分析方法按国家环保局《空气和废气监测分析方法》(第四版)进行。 大气监测项目、分析方法、监测频次及仪器见表 4- 2。 表4-2 大气监测项目、分析方法、监测频次及仪器

大气中汞的测定

环境空气汞的测定巯基棉富集-冷原子荧光分光光度法1.适用范围 本标准规定了测定环境空气中汞及其化合物的巯基棉富集-冷原子荧光分光光度法。 本标准适用于环境空气中汞及其化合物的测定。 本标准方法检出限为0.1ng/10ml试样溶液。当采样体积为15 L时,检出限为6.6×10-6mg/m3,测定下限为2.6×10-5mg/m3。 2规范性引用文件 本标准内容引用了下列文件中的条款。凡是不注日期的引用文件,其有效版本适用于本标准。 HJ/T 194 环境空气质量手工监测技术规范 GB/T 6682 分析实验室用水规格和试验方法 3方法原理 在微酸性介质中,用巯基棉富集环境空气中的汞及其化合物。无机汞反应式如下: 有机汞反应式如下: 元素汞通过巯基棉采样管时,主要为物理吸附及单分子层的化学吸附。 采样后,用4.0 mol/L盐酸-氯化钠饱和溶液解吸总汞,经氯化亚锡还原为金属汞,用冷原子荧光测汞仪测定总汞含量。 4试剂和材料 除非另有说明,分析时均使用符合国家标准的分析纯试剂。水,GB/T 6682,二级。4.1 高纯氮气:?=99.999%。 4.2 重铬酸钾(K2Cr2O7):优级纯。 4.3 硫酸:ρ (H2SO4)=1.84 g/ml,优级纯。 4.4 盐酸:ρ (HCl)=1.19 g/ml,优级纯。 4.5 硝酸:ρ (HNO3)=1.42 g/ml,优级纯。 4.6 重铬酸钾溶液:w(K2Cr2O7)=1.0%。 称取1.0 g的重铬酸钾(4.2),溶于水,稀释到100 ml。 4.7 硫酸溶液:(H2SO4)=10%。 量取10 ml的浓硫酸(4.3),缓慢加入90 ml水中。 4.8盐酸溶液:c(HCl)=4.0 mol/L。 量取123 ml盐酸(4.4),用水稀释至1 000 ml,混匀。 4.9 盐酸溶液:c(HCl)=2.0 mol/L。 量取12 ml盐酸(4.4),用水稀释至1 000 ml,混匀。 4.10 盐酸溶液:pH=3。 吸取2.0 mol/L 盐酸(4.9)0.50 ml,用水稀释至1 000 ml,混匀。

水环境监测方案

地面水质监测方案的制订 (一)基础资料的收集 (1)水体的水文、气候、地质和地貌资料。如水位、水量、流速及流向的变化,降雨量、蒸发量及历史上的水情,河流的宽度、深度、河床结构及地质状况,湖泊沉积物的特性、间温层分布、等深线等。 (2)水体沿岸城市分布、工业布局、污染源及其排污情况、城市给排水情况等。 (3)水体沿岸的资源现状和水资源的用途,饮用水源分布和重点水源保护区:水体流域土地功能及近期使用计划等。 (4)历年的水质资料等 (二)监测断面和采样点的设置 ①监测断面的设置原则 ②河流监测断面的设置 ③采样点的确定 ④湖泊水库监测断面的设置 ⑤采样时间和采样频率 采样断面——﹥采样垂线——﹥采样点位 监测断面的设置原则: (1)有大量废水排入河流的主要居民区、工业区的上游和下游。 (2)湖泊、水库、河口的主要入口和出口。

(3)饮用水源区、水资源集中的水域、主要风景游览区、水上娱乐区及重大水力设施所在地等功能区。 (4)较大支流汇合口上游和汇合后与干流充分混合处,入海河流的河口处,受潮汐影响的河段和严重水土流失区。 (5)国际河流出入国境线的出入口处。 (6)应尽可能与水文测量断面重合;并要求交通方便,有明显岸边标志。

说明: (1)垂线布设应避开污染带,要测污染带应另加垂线 (2)确能证明该断面水质均匀时,可仅设中泓垂线 (3)凡在该断面要计算污染物通量时,必须按上述设垂线 说明: (1)上层指水面下0.5m处,水深不到0.5m时,在水深1/2处

(2)下层指河底以上0.5m处. 中层指水深 (3)封冻时在冰下0.5m处,水深不到0.5m时,在水深1/2处 (4)在该断面要计算污染物通量时,必须按上述设采样点 (三)湖泊、水库监测断面的设置 (1)在进出湖泊、水库的河流汇合处分别设置监测断面。 (2)以各功能区(如城市和工厂的排污口、饮用水源、风景游览区、排灌站等)为中心,在其辋射线上设置弧形监测断面。 (3)在湖库中心,深、浅水区,滞流区,不同鱼类的回游产卵区,水生生物经济区等设置监测断面。 (四)采样时间和采样频率的确定 ①较大水系干流和中、小河流:全年采样不少于6次,采样时间为丰水期、枯水期和平水期,每期采样两次。 ②流经城市工业区、污染较重的河流、游览水域、饮用水源地全重采样不少于12次,采样时间为每月一次或视具体情况选定。 ③底泥每年在枯水期采样一次。 ④潮汐河流:全年在丰、枯、平水期采样,每期采样两天,分别在大潮期和小潮期进行,每次应采集当天涨、退潮水样分别测定。 ⑤排污渠每年采样不少于三次。 ⑥设有专门监测站的湖、库,每月采样1次,全年不少于12次。其他湖泊、水库全年采样9次,枯、丰水期各1次。有废水排入、污染较重的湖、库,应酌情增加采样次数。

空气质量监测与评价(文书特制)

校园空气质量监测及评价 摘要:以嘉应大学的空气质量状况为研究对象,在欲监测环境内进行布点和采样;对校园空气中SO2和NOx进行连续检测和分析,采用了分光光度计的方法测量吸光 度,测定SO 2、NO x 的日均浓度,计算空气污染指数(API);以此来判定校园空气 污染指数及污染现状。 结果表明:汽车尾气排放是校园的一大主要污染源,车辆的行驶也是校园噪声的主要来源,校园的总体空气质量状况总体为良好。 关键词:SO 2 、NOx、校区空气污染指数(API) 1 引言 校园是大学生在在校内学习和活动的外界环境,校园作为一个特定外在环境,其人口密集程度大,所处环境状况复杂,其环境质量好坏不仅直接关系到师生的身心健康,更是威胁到这一代人日后的成长发展。而近年来,随着我国经济的高速发展,各地区院校的发展进程也不断加快,校园环境状况日益恶劣。 而当前关于环境质量监测方面的研究大都倾向于天气质量及城市概况交通的空气品质问题分析,关于校园环境问题的研究相对较少。因此,本文通过对校园环境进行即使的环境监测与评价可掌握校园空气质量状况及变化趋势,展开校园空气污染的预测工作,评价校园空气污染对健康的影响,弄清污染源与空气质量的关系,提出相应改进措施,对控制校园区域污染是很有必要的。通过本次试验,也掌握测定空气中SO2、NOx和TSP的采样和监测方法。 2 实验部分 2.1 理论分析 2.1.1 空气中SO 2 的测定原理 测定空气中SO 2 常用方法有四氯汞盐吸收一副玫瑰苯胺分光光度法、甲醛吸收一副玫瑰苯胺分光光度法和紫外荧光法等。本实验采用四氯汞盐吸收—副玫瑰苯胺分光光度法。 空气中的二氧化硫被四氯汞钾溶液吸收后,生成稳定的二氯亚硫酸盐络合物,此络合物再与甲醛及盐酸副玫瑰苯胺发生反应,生成紫红色的络合物,据其颜色深浅,用分光光度法测定。按照所用的盐酸副玫瑰苯胺使用液含磷酸多少,

2环境空气质量现状监测与评价

4.2环境空气质量现状监测与评价 4.2.1常规因子现状监测与评价 本环评引用宁波滕头再生资源有限公司((中通检测)第ZTE20170535号)中常规数据检测。距离本项目南侧1.5km。 1)监测布点 具体点位见表4.2-1和图4.2-1。 表错误!文档中没有指定样式的文字。-1 环境空气质量现状监测点位布置 表 本项目 HQ3 地表水监测点位 噪声监测点位 地下水监测点位 图错误!文档中没有指定样式的文字。-1 环境空气质量现状监测布点图

2)监测项目 TSP、PM10、SO2、二氧化氮 3)监测时间、频次 监测时间为2017年3月27日至2017年4月2日,共计监测7天。4)检测结果 检测结果如下表所示: 表4.2-2环境空气小时值检测结果

表4.2-3环境空气小时值检测结果

表4.2-4 环境空气日均值检测结果

从监测结果可知,奉化区空气环境质量基本符合《环境空气质量标准》(GB3095-2012)二级标准。 4.2.2特征因子现状监测与评价 本环评参考浙江仁欣环科院有限责任公司编制的《奉化市巨新铸造有限公司环境影响报告书》的数据,委托浙江中通检测科技有限公司对项目所在区域二甲苯、非甲烷总烃实施了现状监测。距离本项目南侧1km。 1)监测布点 具体点位见表4.2-1和图4.2-1。 2)监测项目 二甲苯、非甲烷总烃 3)监测时间、频次 监测时间为2015年5月28日至2015年6月3日,共计监测7天。 监测频次:连续7天,每天4次,具体时段为02:00、08:00、14:00、20:00,每小时至少有45分钟的采样时间。 监测期间同步进行风向、风速、气温、气压等天气要素的观测。 4)监测分析方法 见表4.2-6。 表错误!文档中没有指定样式的文字。-6 大气污染物监测分析方法

环境空气—氯化氢的测定—硫氰酸汞分光光度法

FHZHJDQ0105 环境空气氯化氢的测定硫氰酸汞分光光度法 F-HZ-HJ-DQ-0105 环境空气—氯化氢的测定—硫氰酸汞分光光度法 1 范围 本方法可用于空气中氯化氢的测定。5mL样品溶液中含2μg氯化氢,可有0.033吸光度。 本法检出限为1μg/5mL,若采样体积为200L时,最低检出浓度为 0.01mg/m3;测定范围为5mL样品溶液中含2~20μg氯化氢,若采样体积为200L时,可测浓度范围为0.02~0.40mg/m3。 2 原理 空气中氯化氢吸收在碱溶液中,在酸性溶液中与硫氰酸汞反应置换出硫氰酸根,再与高铁离子作用生成硫氰酸铁红色化合物,比色定量。 3 试剂 所有试剂均用蒸馏水或去离子水配制。 3.1 吸收液:0.05mol /L氢氧化钠溶液。 3.2 无水乙醇。 3.3 硫氰酸汞-乙醇溶液:称取0.4g硫氰酸汞用无水乙醇溶解成 100mL。 3.4 高氯酸:70%~72%。 3.5 硫酸铁铵溶液:称取6g硫酸铁铵用(1+2)高氯酸溶解成100mL。 3.6 标准溶液:准确称量0.2045g经105℃干燥2h的氯化钾(一级),用水溶解后,移入1000mL 容量瓶中,并稀释至刻度。此溶液1.00mL含0.1mg氯化氢。再用吸收液稀释成1.00mL含10μg 氯化氢的标准溶液。 4 仪器 4.1 气泡吸收管:普通型,有10mL刻度线。 4.2 空气采样器:流量范围0.2~3L/min,流量稳定。使用时,用皂膜流量计校准采样系列在采样前和采样后的流量误差应小于5%。 4.3 具塞比色管,10mL 4.4 分光光度计,用20mm比色皿,在波长460nm下,测定吸光度。 5 采样 串联两个各装10mL吸收液的普通型气泡吸收管,以2.5L/min流量采气200L。长时间采样,需用水补充到原体积。 6 操作步骤 6.1 标准曲线的绘制 按下表制备标准色列管。 0 1 2 3 4 5 6 7 标准溶液V/mL 0 0.20 0.40 0.60 0.80 1.00 1.50 2.00 吸收液V/mL 5.0 4.80 4.60 4.40 4.20 4.00 3.50 3.00 氯化氢含量m/μg 0 2 4 6 8 10 15 20 于标准色列各管中加入2mL硫酸铁铵溶液,混匀。加入1mL硫氰酸汞-乙醇溶液,混匀。 在室温下放置10~30min。用20mm比色皿,以水作参比,在波长460nm下,测定各管溶液 吸光度。以氯化氢含量(μg)为横坐标,吸光度为纵坐标,绘制标准曲线,并计算回归线的斜率。以斜率倒数作为样品测定的计算因子B S(μg)。 6.2 样品测定

室内空气质量检测方案

室内空气质量检测方案 检测项目 甲醛的检测 总挥发性有机化合物(TVOC)的检测 氡气的检测 α射线、β射线的检测 检测地点(4个):生化楼实验室、食堂等 检测所需仪器和试剂 甲醛测定 ·仪器:蒸馏水、注射器、洗耳球、空气采样器(附有吸收管)、小烧杯、具塞25ml比色管(1支)。(外出采样需携带) 具塞25ml比色管(7支)、水浴锅、移液管(1ml、2ml、5ml、10ml)、分光光度计、1000ml容量瓶2个。(测定要用到) ·试剂:乙酰丙酮(乙酸胺、冰乙酸、乙酰丙酮、蒸馏水) 甲醛标准溶液(甲醛溶液(内含甲醛36%--38%)、蒸馏水) 总挥发性有机化合物(TVOC)的测定 ·仪器:TVOC测定仪(使用方法参读说明书) 氡气的测定 ·仪器:测氡仪(使用方法参读说明书) α射线、β射线 一、甲醛的测定 特性 无色刺激性气体,能引起流泪、喉部不适 主要危害 可引起恶心、呕吐、咳嗽、胸闷、哮喘甚至肺气肿;长期接触低剂量甲醛,可以引起慢性呼吸道疾病、女性月经紊乱、妊娠综合症,引起新生儿体质降低、染色体异常,引起少年儿童智力下降;致癌促癌 主要来源 夹板、大芯板、中密度板和刨花板等人造板材及其制造的家具,塑料壁纸、地毯等大量使用粘合剂的环节

相关标准(GB50325-2001) 《室内空气质量标准》规定I类民用建筑工程甲醛浓度小于或等于0.08mg/m3;II类民用建筑工程甲醛浓度小于或等于0.12mg/m3 取样 A、带蒸馏水,注射器,洗耳球,具塞25ml比色管 B、用5ml注射器分两次,共加入10ml蒸馏水到吸收管中(缓慢加入) C、接上取样机电源,再按开启仪器;先按(开启/调整)键,再控制流速为0.5L/min,调速幅度要小,以防蒸馏水被仪器吸入仪器中,然后再按(X10)键六次,保证吸收气体的时间为一个小时,一个小时后,待一起停止后,关闭仪器电源,将吸收管中的吸收液缓慢倒入比色管中,不要洒出来。再用少量(不大于10ml)蒸馏水润洗吸收管,将润洗液也倒到比色管中,并盖上塞子,待测。 测定原理: 在过量胺盐存在下,甲醛与乙酰丙酮生成黄色化合物,于414nm处进行分光光度测定。 试剂配制 A、乙酰丙酮:将50g乙酸胺,6ml冰乙酸及0.5ml乙酰丙酮试剂溶于100ml水中 B、甲醛标准溶液:吸取2.8ml甲醛溶液(内含甲醛36%--38%),用水稀释至1000ml,摇匀,此时的溶液为每毫升约含1mg甲醛。从容量瓶中取该溶液10ml用水稀释至1000ml,即此时标准溶液浓度为10.0μg/ml。 标准曲线的绘制: 取数支25ml具塞比色管,分别加0.00,0.20,0.50,1.00,3.00,5.00,8.00ml甲醛标准溶液,加水至25ml,加入2.5ml乙酰丙酮溶液,摇匀。于45--60℃水浴中加热30min,取出冷却,用10mm比色皿,在波长414nm处,以水为参比测量吸光度,减去空白实验所测的吸光度,以吸光度和对应的甲醛含量绘制标准曲线。 测定 将采回来的样品及空白加水稀释至25ml,再加入2.5ml乙酰丙酮摇匀。于45--60℃水浴中加热30min,取出冷却,用10mm比色皿,在波长414nm处,以水为参比测量吸光度,减去空白实验所测的吸光度,得出样品的吸光度,对照标准曲线,求出样品中甲醛的含量。 计算 c=m/v(mg/m3) 式中:c----空气中甲醛的含量(mg/m3) m---标准曲线上查得的样品含甲醛量(μg/ml) v---空气的含量(L) 11、实验数据记录

相关文档
最新文档