《大高考》2016届高考复习数学理 五年高考真题 第八章 立体几何初步 第四节

《大高考》2016届高考复习数学理 五年高考真题 第八章 立体几何初步 第四节
《大高考》2016届高考复习数学理 五年高考真题 第八章 立体几何初步 第四节

第四节空间中平行的判定与性质

考点空间中平行的判定与性质

1.(2013·广东,6)设m,n是两条不同的直线,α,β是两个不同的平面.下列命题中正确的是()

A.若α⊥β,m?α,n?β,则m⊥n

B.若α∥β,m?α,n?β,则m∥n

C.若m⊥n,m?α,n?β,则α⊥β

D.若m⊥α,m∥n,n∥β,则α⊥β

解析A项中,m与n还可能平行或异面,故不正确;

B项中,m与n还可能异面,故不正确;

C项中,α与β还可能平行或相交,故不正确;

D项中,∵m⊥α,m∥n,∴n⊥α.

又n∥β,∴α⊥β,故选D.

答案 D

2.(2012·四川,6)下列命题正确的是()

A.若两条直线和同一个平面所成的角相等,则这两条直线平行

B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行

解析若两条直线和同一平面所成的角相等,则这两条直

线可平行、可异面、可相交.选项A错;

如果到一个平面距离相等的三个点在同一条直线上或在这

个平面的两侧,则经过这三个点的平面与这个平面相交,选项B不正确;

如图,平面α∩β=b,a∥α,a∥β,过直线a作平面ε∩α=c,过直线a作平面γ∩β=d,

∵a∥α,∴a∥c,

∵a∥β,∴a∥d,∴d∥c,

∵c?α,d?α,∴d∥α,

又∵d?β,∴d∥b,∴a∥b,选项C正确;

若两个平面都垂直于第三个平面,则这两个平面可平行、可相交,选项D不正确.

答案 C

3.(2015·江苏,16)如图,在直三棱柱ABC-A1B1C1中,已知

AC⊥BC,BC=CC1.设AB1的中点为D,B1C∩BC1=E.

求证:(1)DE∥平面AA1C1C;

(2)BC1⊥AB1.

证明(1)由题意知,E为B

C的中点,

又D为AB1的中点,因此DE∥AC.

又因为DE?平面AA1C1C,AC?平面AA1C1C,

所以DE∥平面AA1C1C.

(2)因为棱柱ABC-A1B1C1是直三棱柱,

所以CC1⊥平面ABC.

因为AC?平面ABC,所以AC⊥CC1.

又因为AC⊥BC,CC1?平面BCC1B1,BC?平面BCC1B1,BC∩CC1=C,

所以AC⊥平面BCC1B1.

又因为BC1?平面BCC1B1,

所以BC1⊥AC.

因为BC=CC1,

所以矩形BCC1B1是正方形,

因此BC1⊥B1C.

因为AC,B1C?平面B1AC,AC∩B1C=C,

所以BC1⊥平面B1AC.

又因为AB1?平面B1AC,

所以BC1⊥AB1.

4.(2014·江苏,16)如图,在三棱锥P-ABC中,D,E,F

分别为棱PC,AC,AB的中点.已知P A⊥AC,P A=6,

BC=8,DF=5.

求证:(1)直线P A∥平面DEF;

(2)平面BDE⊥平面ABC.

证明

(1)因为D,E分别为棱PC,AC的中点,所以DE∥P A.

又因为P A?平面DEF,DE?平面DEF,

所以直线P A∥平面DEF.

(2)因为D,E,F分别为棱PC,AC,AB的中点,P A=6,BC=8,

所以DE∥P A,DE=1

2P A=3,

EF=1

2BC=4.

又因为DF=5,

故DF2=DE2+EF2,

所以∠DEF=90°,即DE⊥EF.

又P A⊥AC,DE∥P A,所以DE⊥AC.

因为AC∩EF=E,AC?平面ABC,EF?平面ABC,

所以DE⊥平面ABC.

又DE?平面BDE,

所以平面BDE⊥平面ABC.

5.(2014·新课标全国Ⅱ,18)如图,四棱锥P-ABCD中,底

面ABCD为矩形,P A⊥平面ABCD,E为PD的中点.

(1)证明:PB∥平面AEC;

(2)设二面角D-AE-C为60°,AP=1,AD=3,求三

棱锥E-ACD的体积.

(1)证明连接BD交AC于点O,连接EO.

因为ABCD为矩形,所以O为BD的中点.

又E为PD的中点,所以EO∥PB.

又因为EO?平面AEC,PB?平面AEC,

所以PB∥平面AEC.

(2)解因为P A⊥平面ABCD,ABCD为矩形,所以AB,AD,AP两两垂直.

如图,以A 为坐标原点,AB →的方向为x 轴的正方向,|AP →|为单位长,建立空间

直角坐标系A -xyz ,则D (0,3,0),E ? ????0,32,12,AE →=?

????0,32,12. 设B (m ,0,0)(m >0),则C (m ,3,0),AC

→=(m ,3,0). 设n 1=(x ,y ,z )为平面ACE 的法向量,

则?????n 1·AC →=0,n 1·AE →=0,即???mx +3y =0,32y +12z =0,

可取n 1=? ??

??3m ,-1,3. 又n 2=(1,0,0)为平面DAE 的法向量,由题设知|cos 〈n 1,n 2〉|=12,即3

3+4m 2

=12,解得m =32.因为E 为PD 的中点,所以三棱锥E -ACD 的高为12,三棱锥

E -ACD 的体积V =13×12×3×32×12=38.

6.(2014·湖北,19)如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E ,F ,M ,N 分别是棱AB ,AD ,A 1B 1,A 1D 1的中点,点P ,Q 分别在棱DD 1,BB 1上移动,且DP =BQ =λ(0<λ<2).

(1)当λ=1时,证明:直线BC 1∥平面EFPQ ;

(2)是否存在λ,使面EFPQ 与面PQMN 所成的二面角为直二面角?若存在,求出λ的值;若不存在,说明理由.

法一(几何法)

(1)证明 如图1,连接AD 1,由ABCD -A 1B 1C 1D 1是正方体,知BC 1∥AD 1. 当λ=1时,P 是DD 1的中点,又F 是AD 的中点,所以FP ∥AD 1. 所以BC 1∥FP .

而FP ?平面EFPQ ,且BC 1?平面EFPQ ,故直线BC 1∥平面EFPQ .

(2)解 如图2,连接BD .因为E ,F 分别是AB ,AD 的中点,所以EF ∥BD ,

且EF =12BD .

又DP =BQ ,DP ∥BQ ,

所以四边形PQBD 是平行四边形,

故PQ ∥BD ,且PQ =BD ,

从而EF ∥PQ ,且EF =12PQ .

在Rt △EBQ 和Rt △FDP 中,

因为BQ =DP =λ,BE =DF =1,

于是EQ =FP =1+λ2,所以四边形EFPQ 是等腰梯形.

同理可证四边形PQMN 是等腰梯形.

分别取EF ,PQ ,MN 的中点为H ,O ,G ,连接OH ,OG ,

则GO ⊥PQ ,HO ⊥PQ ,而GO ∩HO =O ,

故∠GOH 是面EFPQ 与面PQMN 所成的二面角的平面角.

若存在λ,使面EFPQ 与面PQMN 所成的二面角为直二面角,则∠GOH =90°. 连接EM ,FN ,则由EF ∥MN ,且EF =MN ,知四边形EFNM 是平行四边形. 连接GH ,因为H ,G 是EF ,MN 的中点,

所以GH =ME =2.

在△GOH 中,GH 2=4,

OH 2=1+λ2

-? ????222=λ2+12,

OG 2=1+(2-λ)2

-? ????222=(2-λ)2+12, 由OG 2+OH 2=GH 2,得(2-λ)2+12+λ2+12=4,

解得λ=1±22,

故存在λ=1±22,使面EFPQ 与面PQMN 所成的二面角为直二面角.

法二(向量方法)

以D 为原点,射线DA ,DC ,DD 1分别为x ,y ,z 轴的正半轴建立如图3所示的空间直角坐标系D -xyz .由已知得B (2,2,0),C 1(0,2,2),E (2,1,0),F (1,0,0),P (0,0,λ).

BC 1

→=(-2,0,2),FP →=(-1,0,λ),FE →=(1,1,0). (1)证明 当λ=1时,FP

→=(-1,0,1), 又因为BC 1

→=(-2,0,2), 所以BC 1→=2FP →,即BC 1

∥FP . 而FP ?平面EFPQ ,且BC 1?平面EFPQ ,故直线BC 1∥平面EFPQ .

(2)解 设平面EFPQ 的一个法向量为n =(x ,y ,z ),

则由?????FE →·n =0,FP →·n =0,

可得???x +y =0,-x +λz =0. 于是可取n =(λ,-λ,1).

同理可得平面MNPQ 的一个法向量为m =(λ-2,2-λ,1).

若存在λ,使面EFPQ 与面PQMN 所成的二面角为直二面角,

则m·n =(λ-2,2-λ,1)·(λ,-λ,1)=0,

即λ(λ-2)-λ(2-λ)+1=0,

解得λ=1±22.

故存在λ=1±22,使面EFPQ 与面PQMN 所成的二面角为直二面角.

7.(2013·江苏,16)如图,在三棱锥S -ABC 中,平面SAB ⊥

平面SBC ,AB ⊥BC ,AS =AB .过A 作AF ⊥SB ,垂足为F ,点E ,G 分别是棱SA ,SC 的中点.

求证:(1)平面EFG ∥平面ABC ;

(2)BC ⊥SA .

证明 (1)因为AS =AB ,AF ⊥SB ,垂足为F ,

所以F 是SB 的中点,又因为E 是SA 的中点,

所以EF ∥AB .

因为EF ?平面ABC ,AB ?平面ABC ,

所以EF ∥平面ABC .

同理EG ∥平面ABC .又EF ∩EG =E ,

所以平面EFG ∥平面ABC .

(2)因为平面SAB ⊥平面SBC ,且交线为SB ,

又AF ?平面SAB ,AF ⊥SB ,

所以AF ⊥平面SBC .

因为BC ?平面SBC ,所以AF ⊥BC .

又因为AB ⊥BC ,AF ∩AB =A ,AF ,AB ?平面SAB ,

所以BC ⊥平面SAB .

因为SA ?平面SAB ,所以BC ⊥SA .

8.(2013·新课标全国Ⅱ,18)如图,在直三棱柱ABC -A 1B 1C 1中,

D ,

E 分别是AB ,BB 1的中点,AA 1=AC =CB =22AB .

(1)证明:BC 1∥平面A 1CD ;

(2)求二面角D -A 1C -E 的正弦值.

(1)证明 连接AC 1交A 1C 于点F ,

则F 为AC 1的中点.又D 是AB 的中点,连接DF ,

则BC 1∥DF .因为DF ?平面A 1CD ,BC 1?平面A 1CD ,

所以BC 1∥平面A 1CD .

(2)解 由AC =CB =22AB 得,

AC ⊥BC .以C 为坐标原点,CA →的方向为x 轴正方向,

CB

→的方向为y 轴正方向, CC 1

→的方向为z 轴正方向, 建立如图所示的空间直角坐标系

C -xyz .

设CA =2,则D (1,1,0),E (0,2,1),A 1(2,0,2). CD

→=(1,1,0),CE →=(0,2,1), CA 1

→=(2,0,2). 设n =(x 1,y 1,z 1)是平面A 1CD 的法向量,

则?????n ·CD →=0,n ·CA 1

→=0,即???x 1+y 1=0,2x 1+2z 1=0. 可取n =(1,-1,-1).

同理,设m =(x 2,y 2,z 2)是平面A 1CE 的法向量,

则?????m ·CE →=0,m ·CA 1

→=0, 即???2y 2+z 2=0,2x 2+2z 2=0.

可取m =(2,1,-2).

从而cos 〈n ,m 〉=n ·m |n ||m |=33,

故sin 〈n ,m 〉=63.

即二面角D -A 1C -E 的正弦值为63.

近五年高考数学(理科)立体几何题目汇总

高考真题集锦(立体几何部分) 1.(2016.理1)如图是由圆柱和圆锥组合而成的几何体的三视图,则该几何体的表面积是( ) A 20π B24π C28π D.32π 2. βα,是两个平面,m,n 是两条直线,有下列四个命题: (1)如果m ⊥n,m ⊥α,n ∥β,那么βα⊥; (2)如果m ⊥α,n ∥α,那么m ⊥n. (3)如果αβα?m ,∥那么m ∥β。 (4)如果m ∥n,βα∥,那么m 与α所成的角和n 与β所成的角相等。 其中正确的命题有___________ 3.(2016年理1)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是π328,则它的表面积是 A 17π B.18π C.20π D.28π 4.平面α过正方体1111D C B A ABCD -的顶点A ,α//平面11D CB ,?α平面ABCD =m , ?α平面11A ABB =n,则m,n 所成角的正弦值为( ) A.23 B.22 C.33 D.3 1 5.(2016年理1)如图,在以A,B,C,D,E,F 为顶点的五面体中,面ABEF 为正方形,AF=2FD ,∠AFD=90°,且二面角D-AF-E 与二面角C-BE-F 都是60° .(12分) (Ⅰ)证明:平面ABEF ⊥平面EFDC ; (Ⅱ)求二面角E-BC-A 的余弦值.

6. (2015年理1)圆柱被一个平面截取一部分后与半球(半径为r )组成一个几何体,该几何体三视图的正视图和俯视图如图所示,若该几何体的表面积是16+20π,则r=( ) A.1 B.2 C.7 D.8 7.如图,四边形ABCD 为菱形,∠ABC=120°,E,F 是平面ABCD 同一侧的亮点,BE ⊥平面ABCD,DF ⊥平面ABCD,BE=2DF,AE ⊥EC. (1) 证明:平面AEC ⊥平面AFC; (2) 求直线AE 与直线CF 所成角的余弦值。 8.一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截取部分体积和剩余 部分体积的比值为() 9.如图,长方体1111D C B A ABCD -中,AB = 16,BC = 10,AA1 = 8,点E ,F 分别在1111C D B A , 上,411==F D E A ,过点E,F 的平面α与此长方体的面相交,交线围成一个正方形。 (1)在图中画出这个正方形(不必说明画法和理由); (2)求直线AF 与平面α所成的角的正弦值 10.如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB=5,AC=6,点E,F 分别在AD,CD 上,AE=CF=45 ,EF 交BD 于点H.将△DEF 沿EF 折到△DEF 的位置,OD ’=10 (1)证明:D ’H ⊥平面ABCD (2)求二面角B-D ’A-C 的正弦值

高考数学专题复习立体几何(理科)练习题

A B C D P 《立体几何》专题 练习题 1.如图正方体1111D C B A ABCD -中,E 、F 分别为D 1C 1和B 1C 1的中点, P 、Q 分别为A 1C 1与EF 、AC 与BD 的交点, (1)求证:D 、B 、F 、E 四点共面; (2)若A 1C 与面DBFE 交于点R ,求证:P 、Q 、R 三点共线 2.已知直线a 、b 异面,平面α过a 且平行于b ,平面β过b 且平行于a ,求证:α∥β. 3. 如图所示的多面体是由底面为ABCD 的长方体被截面AEFG 4=AB 1=BC 3=BE ,4=CF ,若如图所示建立空间直角坐标系. ①求EF 和点G 的坐标; ②求异面直线EF 与AD 所成的角; ③求点C 到截面AEFG 的距离. 4. 如图,三棱锥P —ABC 中, PC ⊥平面ABC ,PC=AC=2,AB=BC ,D 是PB 上一点,且CD 平面PAB . (I) 求证:AB ⊥平面PCB ; (II) 求异面直线AP 与BC 所成角的大小; (III )求二面角C-PA-B 的余弦值. 5. 如图,直二面角D —AB —E 中,四边形ABCD 是边长为2的正方形,AE=EB ,F 为CE 上的点,且BF ⊥平面ACE. (1)求证AE ⊥平面BCE ; (2)求二面角B —AC —E 的余弦值. 6. 已知正三棱柱111ABC A B C -的底面边长为2,点M 在侧棱1BB 上. P Q F E D 1C 1B 1A 1D C B A F E C B y Z x G D A

(Ⅰ)若P 为AC 的中点,M 为BB 1的中点,求证BP//平面AMC 1; (Ⅱ)若AM 与平面11AA CC 所成角为30ο,试求BM 的长. 7. 如图,在底面是矩形的四棱锥P —ABCD 中,PA ⊥底面ABCD ,PA =AB =1,BC =2. (1)求证:平面PDC ⊥平面PAD ; (2)若E 是PD 的中点,求异面直线AE 与PC 所成角的余弦值; 8. 已知:在正三棱柱ABC —A 1B 1C 1中,AB = a ,AA 1 = 2a . D 是侧棱BB 1的中点.求证: (Ⅰ)求证:平面ADC 1⊥平面ACC 1A 1; (Ⅱ)求平面ADC 1与平面ABC 所成二面角的余弦值. 9. 已知直四棱柱1111ABCD A B C D -的底面是菱形,且60DAB ∠=,1AD AA =F 为 棱1BB 的中点,M 为线段1AC 的中点. (Ⅰ)求证:直线MF //平面ABCD ; (Ⅱ)求证:直线MF ⊥平面11ACC A ; (Ⅲ)求平面1AFC 与平面ABCD 所成二面角的大小 10. 棱长是1的正方体,P 、Q 分别是棱AB 、CC 1上的内分点,满足 21==QC CQ PB AP . P A B C D E

最新-江苏高考数学立体几何真题汇编

A B C D E F 2008-2018江苏高考数学立体几何真题汇编 (2008年第16题) 在四面体ABCD 中, CB =CD ,AD ⊥BD ,且E 、F 分别是AB 、BD 的中点, 求证:(1)直线EF ∥平面ACD (2)平面EFC ⊥平面BCD 证明:(1) ??? E , F 分别为AB ,BD 的中点?EF ∥AD 且AD ?平面ACD ,EF ?平面ACD ?直线EF ∥平面ACD (2)? ?????CB =CD F 是BD 的中点 ? CF ⊥BD ? ?? AD ⊥BD EF ∥AD ? EF ⊥BD ?直线BD ⊥平面EFC 又BD ?平面BCD , 所以平面EFC ⊥平面BCD

B C? (2009年第16题) 如图,在直三棱柱ABC—A1B1C1中,E,F分别是A1B,A1C的中点,点D在B1C1上,A1D⊥B1C . 求证:(1)EF∥平面ABC (2)平面A1FD⊥平面BB1C1C 证明:(1)由E,F分别是A1B,A1C的中点知EF∥BC, 因为EF?平面ABC,BC?平面ABC,所以EF∥平面ABC (2)由三棱柱ABC—A1B1C1为直三棱柱知CC1⊥平面A1B1C1, 又A1D?平面A1B1C1,故CC1⊥A1D, 又因为A1D⊥B1C,CC1∩B1C=C,CC1、B1C?平面BB1C1C 故A1D⊥平面BB1C1C,又A1D?平面A1FD, 故平面A1FD⊥平面BB1C1C

P A B C D D P A B C F E (2010年第16题) 如图,在四棱锥P —ABCD 中,PD ⊥平面ABCD ,PD =DC =BC =1,AB =2,AB ∥DC , ∠BCD =90°. (1)求证:PC ⊥BC ; (2)求点A 到平面PBC 的距离. 证明:(1)因为PD ⊥平面ABCD , BC ?平面ABCD ,所以PD ⊥BC . 由∠BCD =90°,得CD ⊥BC , 又PD ∩DC =D ,PD 、DC ?平面PCD , 所以BC ⊥平面PCD . 因为PC ?平面PCD ,故PC ⊥BC . 解:(2)(方法一)分别取AB 、PC 的中点E 、F ,连DE 、DF ,则: 易证DE ∥CB ,DE ∥平面PBC ,点D 、E 到平面PBC 的距离相等. 又点A 到平面PBC 的距离等于E 到平面PBC 的距离的2倍. 由(1)知:BC ⊥平面PCD ,所以平面PBC ⊥平面PCD 于PC , 因为PD =DC ,PF =FC ,所以DF ⊥PC ,所以DF ⊥平面PBC 于F . 易知DF = 2 2 ,故点A 到平面PBC 的距离等于2. (方法二)等体积法:连接AC .设点A 到平面PBC 的距离为h . 因为AB ∥DC ,∠BCD =90°,所以∠ABC =90°. 从而AB =2,BC =1,得△ABC 的面积S △ABC =1. 由PD ⊥平面ABCD 及PD =1,得三棱锥P —ABC 的体积V =13S △ABC ×PD = 1 3 . 因为PD ⊥平面ABCD ,DC ?平面ABCD ,所以PD ⊥DC . 又PD =DC =1,所以PC =PD 2+DC 2=2. 由PC ⊥BC ,BC =1,得△PBC 的面积S △PBC = 2 2 . 由V A ——PBC =V P ——ABC ,13S △PBC ×h =V = 1 3 ,得h =2, 故点A 到平面PBC 的距离等于2.

2018年高考数学立体几何试题汇编

2018年全国一卷(文科):9.某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为 A .217 B .25 C .3 D .2 18.如图,在平行四边形ABCM 中,3AB AC ==,90ACM =?∠,以AC 为折痕将△ACM 折起,使点M 到达点 D 的位置,且AB DA ⊥. (1)证明:平面ACD ⊥平面ABC ; (2)Q 为线段AD 上一点,P 为线段BC 上一点,且2 3 BP DQ DA == ,求三棱锥Q ABP -的体积. 全国1卷理科 理科第7小题同文科第9小题 18. 如图,四边形ABCD 为正方形,,E F 分别为,AD BC 的中点,以DF 为折痕把DFC △折起,使点C 到达点 P 的位置,且PF BF ⊥. (1)证明:平面PEF ⊥平面ABFD ; (2)求DP 与平面ABFD 所成角的正弦值. 全国2卷理科: 9.在长方体1111ABCD A B C D -中,1AB BC ==,13AA =,则异面直线1AD 与1DB 所成角的余弦值为 A .15 B . 5 C . 5 D . 2 20.如图,在三棱锥P ABC -中,22AB BC ==,4PA PB PC AC ====,O 为AC 的中点.

(1)证明:PO⊥平面ABC; --为30?,求PC与平面PAM所成角的正弦值.(2)若点M在棱BC上,且二面角M PA C 全国3卷理科 3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是 19.(12分) 如图,边长为2的正方形ABCD所在的平面与半圆弧?CD所在平面垂直,M是?CD上异于C,D的点. (1)证明:平面AMD⊥平面BMC; (2)当三棱锥M ABC -体积最大时,求面MAB与面MCD所成二面角的正弦值. 2018年江苏理科: 10.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为▲ .

2019-2020年高考数学大题专题练习——立体几何

2019-2020年高考数学大题专题练习——立体几何(一) 1.如图所示,四棱锥P ABCD -中,底面ABCD 为正方形,⊥PD 平面ABCD , 2PD AB ==,点,,E F G 分别为,,PC PD BC 的中点. (1)求证:EF PA ⊥; (2)求二面角D FG E --的余弦值. 2.如图所示,该几何体是由一个直角三棱柱ADE BCF -和一个正四棱锥P ABCD -组合而成,AF AD ⊥,2AE AD ==. (1)证明:平面⊥PAD 平面ABFE ; (2)求正四棱锥P ABCD -的高h ,使得二面角C AF P --的余弦值是 22 .

3.四棱锥P ABCD -中,侧面PDC是边长为2的正三角形,且与底面垂直,底面ABCD是 面积为ADC ∠为锐角,M为PB的中点. (Ⅰ)求证:PD∥面ACM. (Ⅱ)求证:PA⊥CD. (Ⅲ)求三棱锥P ABCD -的体积. 4.如图,四棱锥S ABCD -满足SA⊥面ABCD,90 DAB ABC ∠=∠=?.SA AB BC a ===,2 AD a =. (Ⅰ)求证:面SAB⊥面SAD. (Ⅱ)求证:CD⊥面SAC. S B A D M C B A P D

5.在四棱锥P ABCD -中,底面ABCD 为矩形,测棱PD ⊥底面ABCD ,PD DC =,点E 是 BC 的中点,作EF PB ⊥交PB 于F . (Ⅰ)求证:平面PCD ⊥平面PBC . (Ⅱ)求证:PB ⊥平面EFD . 6.在直棱柱111ABC A B C -中,已知AB AC ⊥,设1AB 中点为D ,1A C 中点为E . (Ⅰ)求证:DE ∥平面11BCC B . (Ⅱ)求证:平面11ABB A ⊥平面11ACC A . E D A B C C 1 B 1 A 1 D A B C E F P

全国高考理科数学:立体几何

2013年国理科数学试题分类汇编7立体几何 一、选择题 1 .(2013年新课标1(理))如图有一个水平放置的透明无盖的正方体容器容器8cm 将一个 球放在容器口再向容器内注水当球面恰好接触水面时测得水深为6cm 如果不计容器的 厚度则球的体积为 ) A 2 .(2013年普通等学校招生统一试广东省数学(理)卷(纯WORD 版))设,m n 是两条不同的 直线,αβ是两个不同的平面下列命题正确的是( )[] A .若αβ⊥m α?n β?则m n ⊥ B .若//αβm α?n β?则//m n C .若m n ⊥m α?n β?则αβ⊥ D .若m α⊥//m n //n β则αβ⊥ 3 .(2013年上海市春季数学试卷(含答案))若两个球的表面积之比为1:4则这两个球的体积 之比为( ) A .1:2 B .1:4 C .1:8 D .1:16 4 .(2013年普通等学校招生统一试大纲版数学(理)WORD 版含答案(已校对))已知正四棱柱 1111ABCD A B C D -12AA AB =则CD 与平面1BDC 所成角的正弦值等于( ) A 5 .(2013年新课标1(理))某几何体的三视图如图所示则该几何体的体积为

( ) A .168π+ B .88π+ C .1616π+ D .816π+ 6 .(2013年湖北卷(理))一个几何体的三视图如图所示该几何体从上到下由四个简单几何 体组成其体积分别记为1V 2V 3V 4V 上面两个简单几何体均为旋转体下面两个简单几何体均为多面体则有( ) A .1243V V V V <<< B .1324V V V V <<< C .2134V V V V <<< D .2314V V V V <<< 7 .(2013年湖南卷(理))已知棱长为1的正方体的俯视图是一个面积为1的正方形则该正 方体的正视图的面积不可能...等于( ) A .1 B 8 .(2013年普通等学校招生统一试广东省数学(理)卷(纯WORD 版))某四棱台的三视图如 图所示则该四棱台的体积是

2015年高考理科数学试题汇编(含答案):立体几何-小题

2015年高考理科数学试题汇编(含答案):立体几何-小题

(新课标1)(6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆为 一个圆锥的四分之一),米堆底部的弧度为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有() A.14斛 B.22斛 C.36斛 D.66斛 【答案】B 考点:圆锥的体积公式 (新课标1)(9)已知A,B是球O的球面上两点,∠AOB=90,C为该球面上的动点,若三棱锥O-ABC体积的最大值为36,则球O的表面积为A.36π B.64π C.144π D.256π 【答案】C

试题分析:因为α,β是两个不同的平面,m是 直线且mα?.若“mβ∥”,则平面、 αβ可能相交 也可能平行,不能推出// αβ, αβ,反过来若// mα ?,则有mβ∥,则“mβ∥”是“αβ∥”的必要而不充分条件. 考点:1.空间直线与平面的位置关系;2.充要条件. (福建)7.若,l m是两条不同的直线,m垂直于平面α,则“l m⊥”是“//lα的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件【答案】B 考点:空间直线和平面、直线和直线的位置关系.(湖南)10.某工件的三视图如图3所示,现将该工件通过切割,加工成一个体积尽可能大的长方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为(材料利用

历年全国理科数学高考试题立体几何部分精选(含答案)

1.在一个几何体的三视图中,正视图和俯视图如 右图所示,则相应的俯视图可以为 2.已知矩形ABCD的顶点都在半径为4的球O的球面上,且6,23 ==,则棱锥 AB BC -的体积为。 O ABCD 3.如图,四棱锥P—ABCD中,底面ABCD为平行四 边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD. (Ⅰ)证明:PA⊥BD; (Ⅱ)若PD=AD,求二面角A-PB-C的余弦值。

2.83 3. 解:(Ⅰ)因为60,2DAB AB AD ∠=?=, 由余弦定理得3BD AD = 从而BD 2+AD 2= AB 2,故BD ⊥AD 又PD ⊥底面ABCD ,可得BD ⊥PD 所以BD ⊥平面PAD. 故 PA ⊥BD (Ⅱ)如图,以D 为坐标原点,AD 的长为单位长,射线DA 为x 轴的正半轴建立空间直角坐标系D-xyz ,则 ()1,0,0A ,()03,0B ,,() 1,3,0C -,()0,0,1P 。 (1,3,0),(0,3,1),(1,0,0)AB PB BC =-=-=- 设平面PAB 的法向量为n=(x ,y ,z ),则0, 0,{ n AB n PB ?=?= 即 3030 x y y z -+=-= 因此可取n=(3,1,3) 设平面PBC 的法向量为m ,则 m 0, m 0, { PB BC ?=?= 可取m=(0,-1,3-) 27 cos ,727 m n = =- 故二面角A-PB-C 的余弦值为 27 7 -

1. 正方体ABCD-1111A B C D 中,B 1B 与平面AC 1D 所成角的余弦值为 A 23 B 33 C 2 3 D 63 2. 已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为俩切点,那么PA PB ?的最小值为 (A) 42-+ (B)32-+ (C) 422-+ (D)322-+ 3. 已知在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为 (A) 23 (B)43 (C) 23 (D) 83 4. 如图,四棱锥S-ABCD 中,SD ⊥底面ABCD ,AB ⊥⊥(Ⅰ)证明:SE=2EB ; (Ⅱ)求二面角A-DE-C 的大小 .

历年全国理科数学高考试题立体几何部分精选(含答案)

(一) 1.在一个几何体的三视图中,正视图和俯视图如 右图所示,则相应的俯视图可以为 2.已知矩形ABCD的顶点都在半径为4的球O的球面上,且6,23 ==,则棱锥 AB BC -的体积为。 O ABCD 3.如图,四棱锥P—ABCD中,底面ABCD为平行四 边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD. (Ⅰ)证明:PA⊥BD; (Ⅱ)若PD=AD,求二面角A-PB-C的余弦值。

(一) 1.D 2.83 3. 解:(Ⅰ)因为60,2DAB AB AD ∠=?=, 由余弦定理得3BD AD = 从而BD 2+AD 2= AB 2,故BD ⊥AD 又PD ⊥底面ABCD ,可得BD ⊥PD 所以BD ⊥平面PAD. 故 PA ⊥BD (Ⅱ)如图,以D 为坐标原点,AD 的长为单位长,射线DA 为x 轴的正半轴建立空间直角坐标系D-xyz ,则 ()1,0,0A ,()03,0B ,,()1,3,0C -,()0,0,1P 。 (1,3,0),(0,3,1),(1,0,0)AB PB BC =-=-=- 设平面PAB 的法向量为n=(x ,y ,z ),则0,0,{n AB n PB ?=?= 即 30 30x y y z -+=-= 因此可取n=(3,1,3) 设平面PBC 的法向量为m ,则 m 0,m 0,{PB BC ?=?= 可取m=(0,-1,3-) 27cos ,727 m n ==- 故二面角A-PB-C 的余弦值为 27-

(二) 1. 正方体ABCD-1111A B C D 中,B 1B 与平面AC 1D 所成角的余弦值为 A 23 B 33 C 23 D 63 2. 已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为俩切点,那么PA PB ?的最小值为 (A) 42-+ (B)32-+ (C) 422-+ (D)322-+ 3. 已知在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为 (A) 23 (B)43 (C) 23 (D) 83 4. 如图,四棱锥S-ABCD 中,SD ⊥底面ABCD ,AB//DC ,AD ⊥DC ,AB=AD=1, DC=SD=2,E 为棱SB 上的一点,平面EDC ⊥平面SBC . (Ⅰ)证明:SE=2EB ; (Ⅱ)求二面角A-DE-C 的大小 .

高考中常见的立体几何题型和解题方法

高考中常见的立体几何题型和解题方法 黔江中学高三数学教师:付 超 高考立体几何试题一般共有2——3道(选择、填空题1——2道, 解答题1道), 共计总分18——23分左右,考查的知识点在20个以内. 选择填空题考核立几中的 逻辑推理型问题, 而解答题着重考查立几中的计算型问题, 当然, 二者均应以正 确的空间想象为前提. 随着新的课程改革的进一步实施,立体几何考题正朝着“多 一点思考,少一点计算”的方向发展.从历年的考题变化看, 以简单几何体为载体 的线面位置关系的论证,角与距离的探求是常考常新的热门话题. 一、知识整合 1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过 程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与 距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行 与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能, 通过对问题的分析与概括,掌握立体几何中解决问题的规律——充分利用线线平 行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能 力和空间想象能力. 2. 判定两个平面平行的方法: (1)根据定义——证明两平面没有公共点; (2)判定定理——证明一个平面内的两条相交直线都平行于另一个平面; (3)证明两平面同垂直于一条直线。 3.两个平面平行的主要性质: ⑴由定义知:“两平行平面没有公共点”。 ⑵由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平 面。 ⑶两个平面平行的性质定理:“如果两个平行平面同时和第三个平面相交, 那 么它们的交线平行”。 ⑷一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。 ⑸夹在两个平行平面间的平行线段相等。 ⑹经过平面外一点只有一个平面和已知平面平行。 以上性质⑵、⑷、⑸、⑹在课文中虽未直接列为“性质定理”,但在解题过 程中均可直接作为性质定理引用。 4.空间角和距离是空间图形中最基本的数量关系,空间角主要研究射影以 及与射影有关的定理、空间两直线所成的角、直线和平面所成的角、以及二面角 和二面角的平面角等.解这类问题的基本思路是把空间问题转化为平面问题去解 决. 空间角,是对由点、直线、平面所组成的空间图形中各种元素间的位置关系 进行定量分析的一个重要概念,由它们的定义,可得其取值范围,如两异面直线 所成的角θ∈(0,2π],直线与平面所成的角θ∈0,2π?????? ,二面角的大小,可用它们的平面角来度量,其平面角θ∈[0,π].对于空间角的计算,总是通过一定 的手段将其转化为一个平面内的角,并把 它置于一个平面图形,而且是一个三

2019高考数学试题汇编之立体几何(原卷版)

专题04 立体几何 1.【2019年高考全国Ⅱ卷文数】设α,β为两个平面,则α∥β的充要条件是 A.α内有无数条直线与β平行 B.α内有两条相交直线与β平行 C.α,β平行于同一条直线 D.α,β垂直于同一平面 2.【2019年高考全国Ⅲ卷文数】如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则 A.BM=EN,且直线BM,EN是相交直线 B.BM≠EN,且直线BM,EN是相交直线 C.BM=EN,且直线BM,EN是异面直线 D.BM≠EN,且直线BM,EN是异面直线 3.【2019年高考浙江卷】祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V柱体=Sh,其中S是柱体的底面积,h是柱体的高.若某柱体的三视图如图所示(单位:cm),则该柱体的体积(单位:cm3)是 A.158 B.162 C.182 D.324

4.【2019年高考浙江卷】设三棱锥V –ABC 的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点).记直线PB 与直线AC 所成的角为α,直线PB 与平面ABC 所成的角为β,二面角P –AC –B 的平面角为γ,则 A .β<γ,α<γ B .β<α,β<γ C .β<α,γ<α D .α<β,γ<β 5.【2019年高考全国Ⅰ卷文数】已知∠ACB=90°,P 为平面ABC 外一点,PC =2,点P 到∠ACB 两边AC , BC P 到平面ABC 的距离为___________. 6.【2019年高考全国Ⅱ卷文数】中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长 方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.(本题第一空2分,第二空3分.) 7.【2019年高考全国Ⅲ卷文数】学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方 体1111ABCD A B C D 挖去四棱锥O ?EFGH 后所得的几何体,其中O 为长方体的中心,E ,F ,G ,H 分别为所在棱的中点,16cm 4cm AB =BC =AA =,,3D 打印所用原料密度为0.9 g/cm 3 ,不考虑打印损耗,制作该模型所需原料的质量为___________g. 8.【2019年高考北京卷文数】某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网 格纸上小正方形的边长为1,那么该几何体的体积为__________.

历年江苏高考数学立体几何真题汇编含详解

历年江苏高考数学立体几何真题汇编(含详解) (2008年第16题) 在四面体ABCD 中, CB =CD ,AD ⊥BD ,且E 、F 分别是AB 、BD 的中点, 求证:(1)直线EF ∥平面ACD (2)平面EFC ⊥平面BCD 证明:(1) ? ??? ?E ,F 分别为AB ,BD 的中点?EF ∥AD 且AD ?平面ACD ,EF ?平面ACD ?直线EF ∥平面ACD (2)??????? ?? ?CB =CD F 是BD 的中点 ? CF ⊥BD ? ??? ?AD ⊥BD EF ∥AD ? EF ⊥BD ?直线BD ⊥平面EFC 又BD ?平面BCD , 所以平面EFC ⊥平面BCD (2009年第16题) 如图,在直三棱柱ABC —A 1B 1C 1中,E ,F 分别是A 1B ,A 1C 的中点,点D 在B 1C 1上, A 1D ⊥ B 1 C . 求证:(1)EF ∥平面ABC (2)平面A 1FD ⊥平面BB 1C 1C 证明:(1)由E ,F 分别是A 1B ,A 1C 的中点知EF ∥BC , 因为EF ?平面ABC ,BC ?平面ABC ,所以EF ∥平面ABC (2)由三棱柱ABC —A 1B 1C 1为直三棱柱知CC 1⊥平面A 1B 1C 1, 又A 1D ?平面A 1B 1C 1,故CC 1⊥A 1D , 又因为A 1D ⊥B 1C ,CC 1∩B 1C =C , CC 1、B 1C ?平面BB 1C 1C 故A 1D ⊥平面BB 1C 1C ,又A 1D ?平面A 1FD , 故平面A 1FD ⊥平面BB 1C 1C (2010年第16题)

高考数学15立体几何小题.docx

立体几何 1、平面βα⊥,直线α?b ,m β?,且b m ⊥,则b 与β( ) A .b β⊥ B .b 与β斜交 C .b //β D .位置关系不确定 2、过三棱柱111ABC A B C -的任意两条棱的中点作直线,其中与平面11ABB A 平行的直线共有( )条 A .2 B .4 C .6 D .8 3、一条直线与一个平面所成的角等于3π,另一直线与这个平面所成的角是6 π 。则这两条直线的位置关系( ) A .必定相交 B .平行 C .必定异面 D .不可能平行 4、在一个锥体中,作平行于底面的截面,若这个截面面积与底面面积之比为1:3,则锥体被截面所分成的两部分的体积之比为( ) A . B .1:9 C .1: D .1:1) 5、正方体1111ABCD A B C D -中,,,P Q R 分别是11,,AB AD B C 的中点.那么,正方体的过,,P Q R 的截面图形是( ) A .三角形 B .四边形 C .五边形 D .六边形 6、正四棱锥的侧棱长与底面边长都是1,则侧棱与底面所成的角为( ) A .75° B .60° C .45° D .30° 7、已知平面α与β所成的二面角为80°,P 为,αβ外一定点,过点P 的一条直线与,αβ所成的角都是30°,则这样的直线有且仅有( ) A .1条 B .2条 C .3条 D .4条 8、如图所示,PAB ?所在的平面α和四边形ABCD 所在的平面β互相垂直,且AD α⊥,BC α⊥,4AD =, 8BC =,6AB =。若tan 2tan 1ADP BCP ∠-∠=,则动点P 在平面α内的轨迹是( ) A .椭圆的一部分 B .线段 C .双曲线的一部分 D .以上都不是 9、如图所示,已知球O 为棱长为1的正方体1111ABCD A B C D -的内切球,则平面1ACD 截球O 的截面面积为( ) A . 6 π B . 3 π C D

2007年高考理科数学“立体几何”题

2007年高考“立体几何”题 1.(全国Ⅰ) 如图,正四棱柱1111ABCD A B C D -中,12AA AB =, 则异面直线1A B 与1AD 所成角的余弦值为( ) A . 15 B . 25 C . 3 5 D . 45 解:如图,连接BC 1,A 1C 1,∠A 1BC 1是异面直线1A B 与1AD 所成的角,设AB=a ,AA 1=2a ,∴ A 1B=C 1B=5a , A 1C 1=2a ,∠A 1BC 1的余弦值为4 5 ,选D 。 一个等腰直角三角形的三个顶点分别在正三棱柱的三条侧棱上.已知 正三棱柱的底面边长为2,则该三角形的斜边长为 . 解:一个等腰直角三角形DEF 的三个顶点分别在 正三棱柱的三条侧棱上,∠EDF=90°,已知 正三棱柱的底面边长为AB=2,则该三角形 的斜边EF 上的中线DG=3. ∴ 斜边EF 的长为23。 四棱锥S ABCD -中,底面ABCD 为平行四边形, 侧面SBC ⊥底面ABCD .已知45ABC =∠, 2AB = ,BC = SA SB == (Ⅰ)证明SA BC ⊥; (Ⅱ)求直线SD 与平面SAB 所成角的大小. 解法一: (Ⅰ)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD , 得SO ⊥底面ABCD . 因为SA SB =,所以AO BO =, 又45ABC =∠,故AOB △为等腰直角三角形,AO BO ⊥, 由三垂线定理,得SA BC ⊥. (Ⅱ)由(Ⅰ)知SA BC ⊥,依题设AD BC ∥, 1 A A B 1B 1A 1D 1C C D C 1A C F A D B C A S

2019届高考理科数学专题 高考中的立体几何问题

2019届高考理科数学专题 高考中的立体几何问题 一、选择题(每小题5分,共30分) 1.一个多面体的三视图如图4-1所示,则此多面体的表面积是() 图4-1 A.22 B.24- C.22+ D.20+ 2.如图4-2,网格纸上小正方形的边长为1,粗线画的是某组合体的三视图,则该组合体的体积 是() 图4-2 A.+π B.+π C.4+π D.+π 3.已知正方体ABCD-A1B1C1D1的所有顶点均在球O的表面上,E,F,G分别为AB,AD,AA1的中点,若平面EFG截球O所得圆的半径为,则该正方体的棱长为() A. B. C.3 D.2 4. [数学文化题]如图4-3为中国传统智力玩具鲁班锁,它起源于中国古代建筑中首创的榫卯结构,这种三维的拼插器具内部的凹凸部分啮合,外观看是严丝合缝的十字立方体,其上下、左右、前后完全对称,六根完全相同的正四棱柱分成三组,经90°榫卯起来.现有一鲁班锁的正四棱柱 的底面正方形的边长为2,欲将其放入球形容器内(容器壁的厚度忽略不计),若球形容器的表 面积的最小值为56π,则正四棱柱的高为()

A. B.2 C.6 D.2 5. [数学文化题]中国古代计时器的发明时间不晚于战国时代(公元前476年~前222年),其中沙漏就是古代利用机械原理设计的一种计时装置,它由两个形状完全相同的容器和一个狭窄的连接管道组成,开始时细沙全部在上部容器中,细沙通过连接管道流到下部容器.如图4-4所示,某沙漏由上、下两个圆锥形容器组成,圆锥形容器的底面圆的直径和高均为8 cm,细沙全部在上部时,其高度为圆锥形容器高度的(细管长度忽略不计).若细沙全部漏入下部后,恰好堆成一个盖住沙漏底部的圆锥形沙堆,则此圆锥形沙堆的高为() 图4-4 A.2 cm B.cm C.cm D.cm 6.如图4-5,在正三棱柱ABC-A1B1C1中,AA1=AB,E,F分别为BC,BB1的中点,M,N分别为 AA1,A1C1的中点,则直线MN与EF所成角的余弦值为() 图4-5 A. B. C. D. 二、填空题(每小题5分,共10分) 7.若侧面积为8π的圆柱有一外接球O,则当球O的体积取得最小值时,圆柱的表面积 为. 8.如图4-6,在棱长为1的正方体ABCD-A1B1C1D1中,作以A为顶点,分别以AB,AD,AA1为轴,底面圆半径为r(0

立体几何 高考真题全国卷

(2018 文 I )在平行四边形中,,,以为折痕将折起,使点到达点的位置,且. ⑴证明:平面平面; ⑵为线段上一点,为线段上一点,且,求三棱锥的体积. (2018 文 I I )如图,在三棱锥中,, ,为的中点. (1)证明:平面; (2)若点在棱上,且,求点到平面的距离. ABCM 3AB AC ==90ACM =?∠AC ACM △M D AB DA ⊥ACD ⊥ABC Q AD P BC 2 3 BP DQ DA ==Q ABP -P ABC -AB BC ==4PA PB PC AC ====O AC PO ⊥ABC M BC 2MC MB =C POM A B C P O M

(2018 文 III )如图,矩形ABCD 所在平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点. ⑴证明:平面AMD ⊥平面BMC ; ⑵在线段AM 上是否存在点P ,使得MC ∥平面PBD ?说明理由. (2017 文 I )如图,在四棱锥P-ABCD 中,AB//CD ,且90BAP CDP ∠=∠= (1)证明:平面PAB ⊥平面PAD ; (2)若PA=PD=AB=DC,90APD ∠=,且四棱锥P-ABCD 的体积为8 3 ,求该四棱锥的侧面积.

(2017 文 II )如图,四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD , 1 ,2 AB BC AD BAD == ∠90.ABC =∠=? (1)证明:直线BC ∥平面PAD ; (2)若△PCD 的面积为P ABCD -的体积. (2017 文 III )如图,四面体ABCD 中,△ABC 是正三角形,AD=CD . (1)证明:AC ⊥BD ; (2)已知△ACD 是直角三角形,AB=BD .若E 为棱BD 上与D 不重合的点,且AE ⊥EC ,求四面体ABCE 与四面体ACDE 的体积比.

最新高考数学立体几何试题分析及备考建议

高考数学立体几何试题分析及备考建议 一、高考命题分析 立体几何是高中数学领域的重要模块,是高考考查考生的空间感、图 形感、语言转化能力、几何直观能力、逻辑推理能力的主要载体。主要包 括柱、锥、台、球及其简单组合体的结构特征,三视图,点、直线、平面 的位置关系等。通过研究近年高考试卷,不难发现有关立体几何的命题较 稳定,难易适中,基本体现出“两小一大”或“一小一大”的特点.即1--2道小题,1道大题,占17--22分,小题灵活多变且有一定的难度,其中常有组 合体三视图问题和开放型试题,大多考查概念辨析,位置关系探究,空间 几何量的简单计算求解等,考查画图、识图、用图的能力;而解答题大多 属中档题, 一般设计成几个小问题,此类考题往往以简单几何体为载体, 考查直线与直线、直线与平面、平面与平面的位置关系,综合考查空间想 象能力、推理论证能力和运算求解能力,也关注对条件和结论不完备情形 下开放性问题的探究。其解题思路也主要是“作——证——求”,强调作图、证明和计算相结合。命题既注意“知识的重新组合”,又采用“小题目综合化,大题分步设问”的命题思路,朝着“重基础、直观感、空间感、探究与创新”的方向发展。 二、高考命题规律 (一)客观题方面

1.以三视图为载体考查空间想象能力 空间几何体的结构与三视图主要培养观察能力、归纳能力和空间想象 能力,识别三视图所表示的空间几何体,柱、锥、台、球体及其简单组合 体的结构特征与新增内容三视图的综合会重点考查,从新课标地区的高考 题来看,三视图是出题的热点,题型多以选择题、填空题为主,属中等偏 易题。随着新课标的推广和深入,难度逐渐有所增加。主要考查以下两个 方面:①几何体的三视图与直观图的认识;②通过三视图和几何体的结合,考查几何体的表面积和体积。 例1 (新课标2)一个四面体的顶点在空间直角坐标系O-xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以 zOx平面为投影面, 则得到正视图可以为 A B C D 注意:必修2中的空间直角坐标系容易被文科忽视。 例2 (新课标2)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为 A.6 B.9 C.12 D.18 注意:简单组合体的表面积和体积的问题为常考题目。 例3 (四川理)一个几何体的三视图如图所示,则该几何体的直观图可以

高中数学立体几何小题100题(含答案与解析)

立体几何小题100例 一、选择题 1.如图,已知正方体1111ABCD A B C D -的棱长为4,点E ,F 分别是线段AB ,11C D 上的动点,点P 是上底面1111A B C D 内一动点,且满足点P 到点F 的距离等于点P 到平面11ABB A 的距离,则当点P 运动时, PE 的最小值是( ) A .5 B .4 C . .【答案】D 【解析】 试题分析:因为点P 是上底面1111A B C D 内一动点,且点P 到点F 的距离等于点P 到平面11ABB A 的距离,所以,点P 在连接1111,A D B C 中点的连线上.为使当点P 运动时,PE 最小,须PE 所在平面平行于平面 11AA D D ,PE ==选D 考点:1.平行关系;2.垂直关系;3.几何体的特征. 2.如图在一个二面角的棱上有两个点A ,B ,线段,AC BD 分别在这个二面角的两个面内,并且都垂直于棱AB ,=46,AB cm AC cm =, 8,BD cm CD ==,则这个二面角的度数为( ) A .30? B .60? C .90? D .120? 【答案】B 【解析】 试题分析:设所求二面角的大小为θ,则,B D A C θ<>= ,因为CD DB BA AC =++,所以2 2 2 2 2()222CD DB BA AC DB BA AC DB BA DB AC BA AC =++=+++?+?+?

而依题意可知,BD AB AC AB ⊥⊥,所以20,20DB BA BA AC ?=?= 所以2222 ||||||||2CD DB BA AC BD AC =++-?即222417468286cos θ?=++-?? 所以1 cos 2 θ= ,而[0,]θπ∈,所以60θ=?,故选B. 考点:1.二面角的平面角;2.空间向量在解决空间角中的应用. 3.已知某个几何体的三视图如图所示,根据图中标出的尺寸(单位:cm )可得这 个几何体的体积是( ) A .343cm B .383cm C .33cm D .3 4cm 【答案】B . 【解析】 试题分析:分析题意可知,该几何体为一四棱锥,∴体积3 8 2231312=??==Sh V . 考点:空间几何体的体积计算. 4.如图,P 是正方体1111ABCD A B C D -对角线1AC 上一动点,设AP 的长度为x ,若PBD ?的面积为 (x)f ,则(x)f 的图象大致是( )

相关文档
最新文档