预应力FRP混凝土梁的受力和变形性能

预应力FRP混凝土梁的受力和变形性能
预应力FRP混凝土梁的受力和变形性能

预应力FRP加固混凝土梁的受力与变形性能研究

目录

一、应力分析

1、预应力FRP加固混凝土梁的界面应力分析

1.1界面应力分析

1.2界面的剪应力

1.3界面的正应力

2、预应力FRP加固受弯构件剥离应力分析

2.1剥离应力函数表达式的建立

2.1.1基本假定

2.1.2粘结剪应力

2.1.3剥离正应力

二、变形性能

3预应力FRP加固混凝土梁的变形性能

3.1计算假定

3.2截面曲率及相应弯矩

3.2.1屈服曲率和屈服弯矩

3.2.2极限曲率和极限弯矩

3.2.2.1Ⅰ型破坏

3.2.2.2Ⅱ型破坏

3.3 M-υ曲线

4、预应力FRP加固钢筋混凝土梁的挠度计算

4.1现有的预应力混凝土结构挠度计算方法

4.2预应力FRP加固钢筋混凝土梁的挠度计算方法

4.2.1开裂前截面惯性矩计算

4.2.2开裂后截面惯性矩计算

4.2.3挠度计算公式及验证

摘要:预应力FRP加固混凝土结构在结构工程中应用越来越广泛,本文就预应力FRP 加固混凝土梁的受力和变形的性能从界面应力、剥离应力、梁的变形性能以及挠度计算四个方面并结合一些相应的实验结果对FRP加固混凝土梁分析。

一、应力分析

1预应力FRP加固混凝土梁的界面应力分析[1]

预应力FRP片材增强RC梁的界面应力分析纤维增强复合材料(FRP)粘贴加固技术已广泛

应用于钢筋混凝土建筑(结构)物的加固和维修工程中。然而,现有的FRP片材粘贴加固技术是被动加固技术,FRP片材的抗拉强度没有得到充分的发挥,构件的抗弯刚度提高幅度不大,混凝土中的裂缝等缺陷无法闭合。因此,采用预应力FRP片材加固混凝土结构(主动

加固技术)将是一种更有前途的新技术。但是,在预应力FRP片材作用下,FRP端部界面层的剪应力和正应力分布与无预应力作用下相比会发生改变,容易造成界面剥离破坏。因此,研究预应力FRP增强RC结构中FRP片材与混凝土的界面层的应力分布,对于探明增强构件的破坏机理具有重要的意义。

有关预应力FRP片材与混凝土的界面的应力分析,国内外的研究尚不多见.Triantafillou 给出了不发生端部剥离破坏情况下的最大预应力的理论计算公式,但最大预应力的表达式是一个隐函数,影响参数不明确。牛赫东,吴智深应用断裂力学概念对界面的剪应力进行了理论计算,并讨论了影响界面剪应力的因子,但其未考虑界面正应力对剥离破坏的影响。为了深入探讨预应力FRP片材与混凝土的界面的应力分布,本研究以预应力碳纤维薄板(CFL)增强RC梁为对象,理论推导其界面的剪应力和正应力的计算公式,并通过有限元计算进行对比分析,为预应力FRP片材增强RC梁的端部抗剪加固设计及其破坏模式的分析提供理论依据。

1.1界面应力分析

力学分析模型

以矩形RC梁为研究对象,对FRP片材施加张力Npf,然后将FRP片材粘贴在RC梁底部,待FRP片材和混凝土粘结牢固后释放张力Npf,并将预应力RC梁施加外载进行弯曲受力分析。在外载作用下预应力FRP片材增强RC梁单元的力学分析模型如图1所示。

为了简化计算模型,外载作用下混凝土与FRP片材的界面层的剪应力和正应力分布计算基于以下假设进行:

(1)不考虑梁自重对界面应力的影响;

(2)混凝土、界面层以及FRP片材都呈线弹性变形;

(3)RC梁简支,其变形符合平截面假定;

(4)计算界面层剪应力时,忽略FRP片材和界面层的弯曲变形;

(5)界面层剪应力不随其厚度变化.

1. 2界面的剪应力

根据弹性理论,由图1并考虑假设(2),有

式中:G为界面层的剪切模量;u(x,y),v(x,y)分别为界面任一点的横向和纵向位移。

当单元体受力变形时,由几何关系,有

式中:为界面层厚度;和分别为FRP片材和钢筋混凝土的横向位移;

为FRP片材增强RC梁的整体抗弯刚度;和分别为FRP片材和钢筋混凝土的轴向正应变,即

式中:和分别为FRP片材的弹性模量和钢筋混凝土的当量弹性模量;和分别为FRP片材和RC梁的转动惯量;和分别为FRP片材和RC梁的横截面面积;h

为RC梁高度;为FRP片材的厚度;为释放张力后FRP片材上的张力;和

分别为FRP片材和RC梁的弯矩。

由式(2)~(6),有

根据假设(4),并由式(7),有

式中b为RC梁宽度.

当RC梁只受到均匀分布预应力作用,不考虑q时,上式可改写为

将式(13)、(14)代入式(10),可求解预应力FRP片材增强RC梁中混凝土与FRP片材之间的界面层的剪应力。

1. 3界面的正应力

根据图1所示力学分析模型,预应力FRP片材增强RC梁中混凝土与FRP片材之间的界面层的正应力可表示为

式中和分别表示FRP片材和梁的剪应力。由几何关系,有

式中β,m1,m2,d1,d2均为系数。在RC梁只受到预应力FRP片材作用下,设在x=0处RC梁的剪力为Q(0),弯矩为M(0),则边界条件为

由式(22)可求解预应力FRP片材增强RC梁中混凝土与FRP片材之间的界面层的正应力。

2预应力FRP加固受弯构件剥离应力分析[2]

目前预应力FRP加固技术已逐渐成熟,预应力的使用不仅可以提高开裂荷载,提高纤维布应力水平,解决FRP加固构件的应力滞后问题;同时也可以减小粘结界面上的剥离应力,推迟剥离破坏的发生。为了研究各种因素对剥离应力的影响,首先应得出剥离应力的函数表达式。

2·1剥离应力函数表达式的建立

2·1·1基本假定

为了使方程的导出和求解成为可能,并且能够反映出事物的本质特性,本文采用以下基本假定:

(1)连续性假定;(2)完全线弹性假定;(3)均匀性假定;(4)各向同性假定。

如图1所示剥离应力产生在粘结层与混凝土层以及粘结层与纤维片材之间,本文将混凝土受拉区裂缝所产生的变形均布到相应的微段内,未考虑裂缝处的局部变形集中的影响。

2·1·2粘结剪应力

图1所示为一高为h,宽为b的预应力FRP片材加固钢筋混凝土梁。FRP厚,宽为,胶体厚为,有效预应力为,沿梁纵向取一微元体,由纤维布x方向的平衡可得;

式中,τ(x)为粘结剪应力;σp(x)+σpy为考虑预应力时的纤维布拉应力。

因胶层的厚度相对梁截面非常小,所以对胶体可忽略弯矩的影响,则胶体的剪切变形与剪应力τ(x)之间有关系式:

式中,Ga为胶体的剪切模量;u(x,y)为胶体沿x方向的变形。

进一步变换得到:

式中,ε1(x)、ε2(x)分别为胶体上、下边缘的拉应变。

求解胶体上下边缘的应变必须要求得梁截面的刚度,即要确定受压区高度,按下列方法求解:

(1)受拉区混凝土开裂前=h,此时加固后的梁截面换算截面惯性矩近似为

其中,Mcr为开裂弯矩。

2·1·3剥离正应力

由图1,根据微分关系可得

式中,σ(x)为剥离正应力;υ1、υ2分别为混凝土梁底沿竖直方向的变形、纤维布沿竖直方向的变形;Ip为FRP片材截面惯性矩,;Ic为混凝土梁截面惯性矩,可按前述方法求得,再根据式(6)计算出,再将中纤维布的影响扣除,按式(12)计算:

以上公式中参数的意义及计算方法同前。将有关参数代入后可得剥离正应力的微分控制方程:

二、变形性能

3 预应力FRP加固混凝土梁的变形性能[3]

3·1计算假定

对预应力FRP加固混凝土梁进行变形性能研究采用如下假定:

(1)平截面假定。试验研究表明:预应力FRP加固混凝土梁的截面变形符合平截面假定。

(2)混凝土应力-应变关系采用GB50010-2002《混凝土结构设计规范》中的曲线。

(3)钢筋应力-应变关系为理想的弹塑性模型,不考虑应力强化。

(4)FRP应力-应变关系为线弹性关系。

(5)不考虑混凝土的抗拉强度。

3·2截面曲率及相应弯矩

3·2·1屈服曲率和屈服弯矩

纵筋屈服时,截面的应变和应力分布如图1。

由应变几何关系容易求得混凝土压区边缘应变和受压钢筋应变为预应力FRP从消压弯矩状态到纵筋屈服时增加的应变,为考虑预应力损失后消压弯矩状态下预

应力FRP的应变,为纵筋屈服时预应力FRP的总应变,,和的计算可参考文献

《张建伟,杜修力,邓宗才,等.预应力芳纶纤维布加固混凝土梁的受弯性能研究[J].建筑结构学报,2006,27(5):101-109.》,为预应力FRP的弹性模量。图1中,由力的平衡条件可得

当截面参数一定,由式(1)可计算出混凝土受压区高度,再由弯矩平衡条件求得

3·2·2极限曲率和极限弯矩

构件端部锚固可靠时,预应力FRP加固混凝土梁可能发生两种破坏情况。当

时,FRP拉断,压区混凝土未被压碎,称为Ⅰ型破坏;当时,FRP未断,压区混凝土被压碎,称为Ⅱ型破坏,为FRP界限补强率。其中以Ⅰ型破坏为主,不管是哪

种破坏形式,纵向受拉钢筋都达到了屈服强度。

3·2·2·1 Ⅰ型破坏

当预应力FRP拉断,压区混凝土未碎的情况下,截面的应变应力分布如图2。

为预应力FRP从消压弯矩状态到被拉断时增加的应变,为预应力FRP的极限拉应

变。由力的平衡条件得

同理,把截面参数代入,可求得,进而由弯矩平衡条件求得

当时,令,此时混凝土受压区合力作用点与纵向受压钢筋合力点重合,截面对该重合点取矩,可得

Ⅰ型破坏时截面的极限曲率为

3·2·2·2 Ⅱ型破坏

当受压区边缘混凝土达到极限压应变时,截面的应变和应力分布如图3。

为预应力FRP从消压弯矩状态到混凝土被压碎时增加的应变。由力的平衡条件可得

把截面参数代入,可求得,进而由弯矩平衡条件求得

当时,令,截面对受压区压力重合点取矩,可得

Ⅱ型破坏时截面的极限曲率为

3·3 M-υ曲线

通过以下A、B、C三组试件来探究M-υ曲线,A、B、C三组试件的信息

三组试件的M-υ曲线如下:

简化曲线如下:

4预应力FRP加固钢筋混凝土梁的挠度计算[4]

4·1现有的预应力混凝土结构挠度计算方法

采用预应力FRP加固后,钢筋混凝土受弯构件本质上成为了使用荷载大于开裂荷载的部分预应力构件,因此可考虑基于现有的部分预应力混凝土结构设计理论对其进行分析,进而提出加固构件的挠度计算方法。目前,国内、外学者对于部分预应力受弯构件挠曲变形的计算已进行了许多研究,并提出了不少计算方法,其中最主要的方法包括直接双线性法、有效惯性矩法及曲率积分法。

1)直接双线性法。这种方法是将预应力混凝土土梁的力学行为分成开裂弯矩Mcr前与

M′=M-Mcr两部分。对开裂弯矩以前的部分按未开裂截面惯性矩计算,得;假定相同配筋的截面在出现裂缝后,预应力混凝土受弯构件在不同预应力度下的挠度-弯矩曲线相

平行,对超过开裂弯矩的部分M′按开裂后构件截面的惯性矩计算挠度,得。则受弯构件的挠度f=+。1970年CEB-FIP提出的变形计算公式为:

式中:α为与支座及荷载条件有关的变形计算系数;为受弯构件的计算跨度;M为实际弯矩;Mcr为开裂弯矩;Ec为混凝土的弹性模量;为未开裂截面的惯性矩;为开

裂截面的惯性矩。

2)有效惯性矩法。该方法是根据开裂弯矩Mcr对使用弯矩所占比例大小,把开裂前的截面惯

性矩Ic和开裂后的惯性矩Ig,折算为有效惯性矩Ie,再由有效惯性矩Ie来计算受弯构件的挠度

3)曲率积分法。该方法通过求出构件全长的曲率分布,对全长的曲率进行积分,从而得到构件的挠度。1978年CEB-FIP提出的计算公式为:

式中:α为与支座及荷载条件有关的变形计算系数;为受弯构件计算跨度;为曲

率。

曲率积分法过于繁琐,难以提炼成公式进行经常性的计算。与有效惯性矩法相比,直接双线性法概念简单且与试验结果吻合良好,因此不少国家规范(如:中国的《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004))都采用直接双线性法作为预应力混凝土受弯构件的挠度计算方法。

就预应力FRP片材加固钢筋混凝土受弯构件开展了一系列试验研究。通过分析各试件试验结果中的荷载-变形相关性发现,加固试件的挠度-荷载曲线在屈服荷载前呈现出较明显的两段直线,因此,采用直接双线性法来计算预应力FRP加固受弯构件的挠曲变形是合适的。

4·2预应力CFRP加固钢筋混凝土梁的挠度计算方法

直接双线性法的基本原理为将受弯结构屈服

前的挠度变形分为开裂前与开裂后两个阶段,根

据不同阶段的截面特性分别构建其随荷载的挠度

增量计算式.因此,开裂前、后的截面特性计算是

加固结构挠度变形计算的基础.

4·2·1开裂前截面惯性矩计算

开裂前构件近似处于弹性状态,可看成均质弹性体加以计算。对于由不同材料(混凝土、钢筋及FRP)组合成的截面可根据其模量比例进行截面换算,受压区高度hc可根据拉、压区对中和轴的面积矩相等来确定:

4·2·2开裂后截面惯性矩计算

构件出现裂缝后,假设裂缝截面上受拉区的混凝土完全退出工作,只有FRP与非预应

力钢筋承担拉力,将FRP与非预应力钢筋的换算面积置于各自的截面高度,根据受拉、受压区对中和轴的面积矩相等这一条件来确定中和轴的位置:

构件未开裂时,换算截面的中和轴高度及惯性矩用式(6)得到,荷载小于开裂荷载时的截面抗弯刚度为:

4·2·3挠度计算公式及验证

根据直接双线性法的原理可以写出预应力FRP加固构件的挠度计算公式

式中:均为影响系数。

根据试验研究的结果对式(11)进行线性回归分析,得到:

可以看出,式(12)与CEB-FIP提出的部分预应力构件挠度计算公式非常接近。

在一系列预应力CFRP布与CFRP板加固构件的试验研究的基础上,该研究将试验结果与公式计算结果进行了对比。预应力CFRP片材加固试件参数见表1。预应力CFRP板、布加固性能试验结果见表2。

预应力CFRP片材加固受弯构件试验如图1所示,图2,3分别为预应力CFRP布加固构件与预应力CFRP板加固构件的试验结果与式(12)的计算结果对比。其中3根预应力CFRP 布加固试件的初始应力相同,3根试件的试验荷载-挠度曲线与计算荷载-挠度曲线放置于一起;而4根预应力CFRP板加固试件的初始应力水平不同,试验结果也有所不同,故分别将试验结果与计算结果进行比较。

得到的挠度计算公式其最大荷载边界为受弯结构的钢筋屈服荷载,从图2,3的对比可以看出,加固构件荷载-挠度曲线位于屈服荷载之前的部分,与根据式(12)计算结果得到的曲线吻合得相当良好。图3中加固试件在开裂荷载时的转折相对较不明显。这是由于图3所示的试件截面较小。而加固用的CFRP布加固体量相对试件尺寸及配筋较大,在钢筋屈服时CFRP布仍然继续提供抗拉贡献.图2,3所表现出的式(12)计算结果与预应力FRP加固构件试验结果的吻合。这说明该公式可用于计算预测预应力FRP加固构件屈服荷载范围内的挠度。

[1]华南理工大学学报(自然科学版)第35卷第7期2007年7月预应力FRP片材增强RC梁的界面应力分析。郭馨艳,黄培彦,杨怡,郑小红华南理工大学交通学院. 广东广州510640. 编号1000-565X(2007)07-0001-05

[2]华南理工大学学报(自然科学版)第37卷第六期2009年6月预应力FRP加固RC 梁的受弯剥离承载力分析。谢建和,黄培彦,郭馨艳. 华南理工大学土木于交通学院,广东广州510640. 编号1000-565X(2009)06-0107-06

[3]华中科技大学学报(城市科学版)第25卷第3期2008年9月预应力FRP加固混凝土梁的变形性能研究。司马玉州(华中科技大学土木工程与力学学院),朱宏平(华中科技大学土木工程与力学学院),张建文(南阳理工学院土木工程系)。编号1672-7032(2008)03-0226-04

[4]交通科学工程第26卷第2期2010年6月预应力FRP加固钢筋混凝土梁的挠度计算方法。王先华(湖南大学建筑装饰有限公司.湖南长沙410082;彭辉(长沙理工大学土木与建筑学院.湖南长沙410004. 编号1674-599X(2010)02-0048-05

知识讲解 平衡条件下的受力分析 (基础)

平衡条件下的受力分析 编稿:周军审稿:吴楠楠 【学习目标】 1. 能准确分析物体的受力情况 2.理解分析静摩擦力的要领 3.掌握整体法与隔离法在分析物体受力时的应用 4.理解共点力的平衡条件,会分析基本的平衡问题 【要点梳理】 要点一、物体的受力分析 要点诠释: 受力分析是力学的一个基础,贯穿于整个高中物理,受力分析就是分析物体受哪些力的作用,并将物体所受的力在力的示意图中表示出来,有时还需求出各力的大小及合力的大小.只有正确分析出物体的受力,才能进一步研究物理过程,因此正确的受力分析,是成功解决问题的关键. 1.物体受力分析的一般思路 (1)明确研究对象,并将它从周围的环境中隔离出来,以避免混淆.由于解题的需要,研究的对象可以是质点、结点、单个物体或物体系统. (2)按顺序分析物体所受的力.一般按照重力、弹力、摩擦力、其他力的顺序比较好,要养成按顺序分析力的习惯,就不容易漏掉某个力. (3)正确画出物体受力示意图,画每个力时不要求严格按比例画出每个力的大小,但方向必须画准确.一般要采用隔离法分别画出每一个研究对象的受力示意图,以避免发生混乱. (4)检查.防止错画力、多画力和漏画力. 2.物体受力分析的要领 (1)只分析研究对象所受的力,不分析研究对象对其他物体所施的力.也不要把作用在其他物体上的力错误地认为通过“力的传递”作用在所研究的对象上. (2)只分析根据性质命名的力,不用分析根据效果命名的力,如动力、阻力、下滑力等. (3)每分析一个力,都应找出施力物体,以防止多分析某些不存在的力. (4)如果一个力的方向难以确定,可用假设法分析. (5)物体的受力情况会随运动状态的改变而改变,必要时要根据学过的知识通过计算确定. (6)合力与分力不同时分析:合力和分力不能同时作为物体所受的力,只分析实际存在的力,不分析它们的合力或分力. (7)受力分析需要严谨,外部作用看整体,互相作用要隔离,找施力物体防“添力”,顺序分析防“漏力”.分力和合力避免重复,性质力和效果力避免重记. 3.对物体进行受力分析时应注意 (1)为了使问题简化,题目中会出现一些带有某种暗示的提法,如“轻绳”“轻杆”暗示不考虑绳与杆的重力;“光滑面”暗示不考虑摩擦力;“滑轮”“光滑挂钩”暗示两侧细绳中的拉力相等. (2)弹力表现出的形式是多种多样的,平常说的“压力”“支持力”“拉力”“推力”“张力”等实际上都是弹力. (3)静摩擦力产生的条件中相对运动的趋势要由研究对象受到的某些他力来确定,例如,放在倾角为θ的粗糙斜面上的物体A,当用一个沿着斜面向上的拉力F作用时,物体A处于静止状态.从一般的受力分析方法可知A一定受重力G、斜面支持力F N和拉力F,但静摩擦力可能沿斜面向下,可能沿斜面向上,也可能恰好是零,这需要分析物体A所受重力沿斜面的分力与拉力F的大小关系来确定. (4)不要把研究对象所受的力与研究对象对其他物体的作用力相混淆.譬如以A物体为研究对象,则要找出“甲对A”“乙对A”……的力,而“A对甲”“A对乙”……的力就不是A所受的力. (5)对于分析出的物体受到的每一个力,都必须明确其来源,即每一个力都应找出其施力物体,不能无中生有. (6)合力和分力不能重复考虑.如在分析斜面上的物体的受力情况时,不能把物体所受的重力和“下滑力”并列为物体所受的力,因为“下滑力”是重力沿斜面方向的分力.

箱梁的结构与受力特点

(二)箱形截面的配筋 箱形截面的预应力混凝土结构一般配 有预应力钢筋和非预应力向普通钢筋。 1、纵向预应力钢筋:结构的主要受力 钢筋,根据正负弯矩的需要一般布置在顶板 和底板内。这些预应力钢束部分上弯或下弯 而锚于助板,以产生预剪力。近年来,由于 大吨位预应力束的采用,使在大跨径桥梁设 计中,无需单纯为了布置众多的预应力束而 增大顶板或底板面积,使结构设计简洁,而 又便于施工。 2、横向预应力钢筋:当箱梁肋板间距 厚的桥面板。的上、下两层钢筋网间,锚固于悬臂板端。 3时,可布置竖向预应力钢筋,面桥梁都采用三向预应力。 4 钢筋网。必须指出,因此必须精心设计,做到既安全又经济。 第二节 箱形梁的受力特点 作用在箱形梁上的主要荷载是恒载与活载。恒载 一般是对称作用的,活载可以是对称作用,但更多的 情况是偏心作用的,因此,作用于箱形梁的外力可综 合表达为偏心荷载来进行结构分析; 在偏心荷载作用下,箱形梁将产生纵向弯曲、扭 转、畸变及横向挠曲四种基本变形状态。详见图2-4。 1、纵向弯曲 产生竖向变位w ,在横截面上起纵向正应力M σ及剪应力M τ。对于肋距不大的箱形梁,M σ按初等梁 理论计算,当肋距较大时,会出现所谓“剪力滞效应”。 即翼板中的M σ分布不均匀,近肋翼板处产生应力高 βα+= 刚性扭转 横向挠曲 图2-4 箱形梁在偏心荷载 作用下的变形状态

峰,而远肋翼板处则产生应力低谷,这称为“正剪力滞”;反之,如果近肋翼板处产生应力低谷,而远肋翼板处则产生应力高峰,则为“负剪力滞”。对于肋距较大的宽箱梁,这种应力高峰可达相当大比例,必须引起重视。 2、刚性扭转 刚性扭转即受扭时箱形的周边不变形。扭转产生扭转角θ。分自由扭转与约束扭转。 (1)自由扭转:箱形梁受扭时,截面各纤维的纵向变形是自由的,杆件端面虽出现凹凸,但纵向纵维无伸长缩短,能自由翘曲,因而不产生纵向正应力,只产生自由扭转剪应力K τ。 (2)约束扭转:受扭时纵向纤维变形不自由,受到拉伸或压缩,截面不能自由翘曲。约束扭转在截面上产生翘曲正应力w σ和约束扭转剪应力w τ。 产生约束扭转的原因:支承条件的约束,如固端支承约束纵向纤维变形;受扭时截面形状及其沿梁纵向的变化,使截面各点纤维变形不协调也将产生约束扭转。如等厚壁的矩形箱梁、变截面梁、设横隔板的箱梁等,即使不受支承约束,也将产生约束扭转。 3、畸变(即受扭时截面周边变形) 畸变的主要变形特征是畸变角γ。薄壁宽箱的矩形截面受扭变形后,无法保持截面的投影仍为矩形。畸变产生翘曲正应力dw σ和畸变剪应力dw τ。 4、横向弯曲:畸变还会引起箱形截面各板的横向弯曲,在板内产生横向弯曲应力dt σ (纵截面上)。 5、局部荷载的影响:箱形梁承受偏心荷载作用,除了按弯扭杆件进行整体分析外,还应考虑局部荷载的影响。车辆荷载作用于顶板,除直接受荷载部分产生横向弯曲外,由于整个截面形成超静定结构,因而引起其它各部分也产生横向弯曲。图2-5表示箱形截面在顶板上作用车辆荷载,在各板中产生横向弯矩图。这些弯矩在各板的纵截面上产生横向弯曲正应力c σ及剪应力。 综合箱形梁在偏心荷载作用下产生的应力有: 在横截面上:纵向正应力:dw w M z σσσσ++= 剪应力:dw w M K τττττ+++= 在纵截面上;横向弯曲正应力:c dt s σσσ+= 在预应力混凝土梁中,跨径越大,恒载占总荷载比例就越大。一般地,由于恒载产生的对称弯曲应力是主要的,而由于活载偏心所产生的扭转应力是次要的。如果箱壁较厚,或沿梁的纵向布置一定数量的横隔板,限制箱形梁的畸变,则畸变应力也是不大的。但对于少设或不设横隔板的宽箱薄壁梁,畸变应力不可忽视。板的横向应力对于顶板、肋板及底板的配筋具有重要意义,必须引起重视。 图2-5 局部荷载作用下 横向弯矩图

钢混组合连续梁桥顶推施工受力特性分析

钢混组合连续梁桥顶推施工受力特性分析 钢混组合梁因其受力性能好,预制化程度高而得到广泛应用,国家在“十三五”期间大力提倡钢桥的应用,因此该桥在我国又迎来了新的历史机遇。在钢混组合梁的施工中,主梁与桥面板往往是分开施工的,组合梁的钢主梁因为其自重轻、几乎是等截面的优点,通常采用顶推法进行施工,而桥面板通常采用预制形式,安装方法上采用间断施工法来改善支点处桥面板受力。 鉴于组合梁的应用前景,对于分析组合梁在施工过程的受力,模拟其在施工 中的受力状态,显得十分有必要。本文选择钢板组合梁进行研究,希望能为同类桥梁的施工与设计提供帮助。 本文主要进行了以下几个方面的研究:(1)回顾了钢混组合梁与顶推施工法 的发展历程,就顶推施工法的分类与与发展特点进行了详细阐述,展望了顶推施 工法需要关注的问题,对组合梁的结构特征以及顶推法的发展历程有了全方位的了解与认识。(2)简化导主梁模型,采用位移法分析了顶推过程主梁的受力。 获得了顶推过程中主梁内力与支点反力的解析表达式,确定了顶推过程主梁的控制截面与时间节点。分析了导梁长度、自重集度以及刚度对主梁受力的影响,确定了导主梁顶推过程最佳的长度比α,自重集度比β以及刚度比γ。 (3)采用杆系有限元分析了某钢板组合梁顶推施工过程,确定了导梁的合理 设计参数与截面形式,得到了有限元仿真模拟下导梁前端的挠度变化情况以及主梁的内力与支反力,验证了导梁设置的合理性和有效性。(4)采用有限元软件中的施工阶段联合截面分析了桥面板的施工过程,比较了桥面板在间断施工法与顺序施工法下施工顺序的差异,比较了在两种施工法下支点处桥面板的受力状态,验 证了间断施工法的可靠。

型钢混凝土结构介绍

一、钢—混凝土组合结构概况 (一)钢—混凝土组合结构的一般概念 组合结构定义:组合结构的种类繁多,从广义上讲,组合结构是指两种或多种不同材料组成一个结构或构件而共同工作的结构(Composite Structure)。钢—混凝土组合结构是继木结构、砌体结构、钢筋混凝土结构和钢结构之后发展兴起的第五大类结构。从广义概念上看,钢筋混凝土结构就是具有代表性的组合结构的一种。 组合结构分类:组合结构通常是指钢—混凝土组合结构,其中钢又分为钢筋和型钢,混凝土可以是素混凝土也可以是钢筋混凝土。国内外常用的钢—混凝土组合结构主要包括以下五大类:(1)压型钢板混凝土组合板;(2)钢—混凝土组合梁;(3)钢骨混凝土结构(也称为型钢混凝土结构或劲性混凝土结构);(4)钢管混凝土结构;(5)外包钢混凝土结构。 (二)钢—混凝土组合结构的发展概况 钢—混凝土组合结构这门学科起源于本世纪初期。于本世纪二十年代进行了一些基础性的研究。到了五十年代已基本形成独立的学科体系。至今组合结构在基础理论,应用技术等方面都有很大的发展。目前钢—混凝土组合结构在高层建筑、桥梁工程等许多土木工程中得到广泛的应用,并取得了较好的经济效益。 在国外,钢—混凝土组合结构最初大量应用于土木工程旨在二次世界大战结束后,当时的欧洲急需恢复战争破坏的房屋和桥梁,工程师们采用了大量的钢—混凝土组合结构,加快了重建的速度,完成了大量的道路桥梁和房屋的重建工程。1968年日本十胜冲地震以后,发现采用钢—混凝土组合结构修建的房屋,其抗震性能良好,于是钢—混凝土组合结构在日本的高层与超高层中得到迅速发展。60年代以后世界上许多国家(包括英、美、日、苏、法、德)根据本国的试验研究成果及施工技术条件制定了相应的设计与施工技术规范。1971年成立了由欧洲国际混凝土委员会(CES)、欧洲钢结构协会(ECCS)、国际预应力联合会(FIP)和国际桥梁及结构工程协会(IABSE)

物体的受力(动态平衡)分析典型例题

物体的受力(动态平衡)分析及典型例题 受力分析就是分析物体的受力,受力分析是研究力学问题的基础,是研究力学问题的关键。 受力分析的依据是各种力的产生条件及方向特点。 一.几种常见力的产生条件及方向特点。 1.重力。 重力是由于地球对物体的吸引而使物体受到的力,只要物体在地球上,物体就会受到重力。 重力不是地球对物体的引力。重力与万有引力的关系是高中物理的一个小难点。 重力的方向:竖直向下。 2.弹力。 弹力的产生条件是接触且发生弹性形变。 判断弹力有无的方法:假设法和运动状态分析法。 弹力的方向与施力物体形变的方向相反,与施力物体恢复形变的方向相同。 弹力的方向的判断:面面接触垂直于面,点面接触垂直于面,点线接触垂直于线。 【例1】如图1—1所示,判断接触面对球有无弹力,已知球静止,接触面光滑。图a 中接触面对球 无 弹力;图b 中斜面对小球 有 支持力。 【例2】如图1—2所示,判断接触面MO 、ON 对球有无弹力,已知球静止,接触面光滑。水平面ON 对球 有 支持力,斜面MO 对球 无 弹力。 【例3】如图1—4所示,画出物体A 所受的弹力。 a 图中物体A 静止在斜面上。 b 图中杆A 静止在光滑的半圆形的碗中。 c 图中A 球光滑,O 为圆心,O '为重心。 【例4】如图1—6所示,小车上固定着一根弯成α角的曲杆,杆的另一端固定一个质 图1—1 a b 图1—2 图1—4 a b c

量为m 的球,试分析下列情况下杆对球的弹力的大小和方向:(1)小车静止;(2)小车以加速度a 水平向右加速运动;(3)小车以加速度a 水平向左加速运动;(4)加速度满足什么条件时,杆对小球的弹力沿着杆的方向。 3.摩擦力。 摩擦力的产生条件为:(1)两物体相互接触,且接触面粗糙;(2)接触面间有挤压;(3)有相对运动或相对运动趋势。 摩擦力的方向为与接触面相切,与相对运动方向或相对运动趋势方向相反。 判断摩擦力有无和方向的方法:假设法、运动状态分析法、牛顿第三定律分析法。 【例5】如图1—8所示,判断下列几种情况下物体A 与接触面间有、无摩擦力。 图a 中物体A 静止。图 b 中物体A 沿竖直面下滑,接触面粗糙。图 c 中物体A 沿光滑斜面下滑。图 d 中物体A 静止。 图a 中 无 摩擦力产生,图b 中 无 摩擦力产生,图c 中 无 摩擦力产生,图d 中 有 摩擦力产生。 【例6】如图1—9所示为皮带传送装置,甲为主动轮,传动过程中皮带不打滑,P 、Q 分别为两轮边缘上的两点,下列说法正确的是:( B ) A .P 、Q 两点的摩擦力方向均与轮转动方向相反 B .P 点的摩擦力方向与甲轮的转动方向相反, Q 点的摩擦力方向与乙轮的转动方向相同 C .P 点的摩擦力方向与甲轮的转动方向相同, Q 点的摩擦力方向与乙轮的转动方向相反 D .P 、Q 两点的摩擦力方向均与轮转动方向相同 【例7】如图1—10所示,物体A 叠放在物体B 上,水平地面光滑,外力F 作用于物体B 上使它们一起运动,试分析两物体受到的静摩擦力的方向。 图1—8 图1—9

最新先简支后结构连续梁桥的受力分析与施工技术

先简支后结构连续梁桥的受力分析与施工 技术

先简支后结构连续梁桥的受力分析与施工技术 先简支后结构连续梁桥的受力分析与施工技术 随着国家队高速公路的投入加大,高速公路的发展取得了很大的成绩。公路桥梁的构造也得到了长足的发展,同时对高速公路的行车舒适性也提出了更高的要求。高速公路桥梁逐渐由广泛使用的简支梁桥更多的向先简支后结构连续的方向 论文格式论文范文毕业论文 【摘要】随着国家队高速公路的投入加大,高速公路的发展取得了很大的成绩。公路桥梁的构造也得到了长足的发展,同时对高速公路的行车舒适性也提出了更高的要求。高速公路桥梁逐渐由广泛使用的简支梁桥更多的向先简支后结构连续的方向发展,其结构特性在有效避免了简支梁桥与连续梁桥的缺点的同时又兼顾了二者的优点,很快在桥梁中成为广泛使用的结构形式。 【关键词】 先简支后结构连续梁的受力特征;施工工艺过程;质量控制引言目前在国内高速公路桥梁中普遍使用装配式预应力钢筋混凝土“T”(箱)型板梁。简支梁桥的优点在于结构简单,属于静定结构,且造价相对较低,施工简单,工期相对较短。在正常条件使用情况下,桥梁不会有刚体位移,并且梁体一端可以自由伸缩,不产生多余的内力。但缺点是由于其自身结构,抗震能力和外力抵抗能力较弱,梁体自身变形大,存在落梁的危险,尤其是在跟高墩组合使用的情况下安全储备较低。对于大跨径的连续梁桥而言,目前主要采用支架法、挂篮悬臂对称浇筑法和拼装法施工,虽然改良了梁体自身受力,克服了简支梁桥的一些缺点,但其施工过程复杂繁琐,费时费工,成本大,一般在遇到特殊地形和跨越长距离时使用。先简支后结构连续梁因其受力和施工工艺相对简单克服了以上两者的问题而得到大范围的实际应用。 1 先简支后结构连续梁的受力特点分析 (2)在结构使用过程中,混凝土自身的收缩徐变,负弯矩预应力的布置同时也影响梁体的受力变化。

受力分析物体的平衡

受力分析、物体的平衡 一.目标:1.学会按即定顺序对物体进行受力分析 2.能对物体受到的力进行正交分解后列出平衡方程 二.物体的受力分析 1、先确定研究对象; 2、把研究对象隔离出来; 3、分析顺序____________、___________、______________; 4、其他力(结合二力平衡条件进行判断)。 2006年全国卷Ⅱ15、如图所示,位于水平桌面上的物体P,由跨过定滑轮的轻绳与物块Q 相连,从滑轮到P 和到Q的两段绳都是水平的。已 知Q与P之间以及P与桌面之间的动摩擦因素都是 μ,两物块的质量都是m,滑轮的质量,滑轮上的 摩擦都不计。若用一水平向右的力F拉P使它做匀 速运动,则的F大小为 ( ) A.4μmg B. 3μmg C. 2μmg D. μmg 06年广东省汕头市二模6.“水往低处流”是自然现象,但下雨天落在快速行驶的小车的前挡风玻璃上的雨滴,相对于车却是向上流动的,对这一现象的正确解释是 ( ) A.车速快使雨滴落在挡风玻璃上的初速度方向向上,雨滴由于惯性向上运动 B.车速快使空气对雨滴产生较大的作用力,空气的作用力使雨滴向上运动 C.车速快使挡风玻璃对雨滴产生较大的吸引力,吸引力吸引雨滴向上运动 D.车速快使挡风玻璃对雨滴产生较大的支持力,支持力使雨滴向上运动 三.物体受力分析常用的方法及注意点 (1)隔离法与整体法 将研究对象与周围物体分隔或将相对位置不变的物体系作为一个整体来分析。 (2)假设法 在未知某力是否存在时,可先对其作出存在或不存在的假设,然后再就该力存在与不存在对物体运动状态是否产生影响来判断该力是否存在。 (3)注意要点 ①研究对象的受力图,通常只画出根据性质命名的力,不要把按效果分解的分力或合力 分析进去,受力图完成后再进行力的合成或分解。 ②区分内力和外力,对几个物体的整体进行受力分析时,这几个物体间的作用力为内力, 不能在受力图中出现,当把某一物体单独隔离分析时,原来的内力变成了外力,要画在受力图上。 ③在难以确定物体的某些受力情况时,可先根据(或确定)物体的运动状态,再运用平 衡条件或牛顿定律判定未知力。 例如图所示,A、B两物体排放在水平面上,在水平力F的作用下 处于静止状态.在以下情况中对B进行受力分析, (1)B与水平面间无摩擦.(2)B与水平面间及B、A之间都存在摩擦. 三.物体的平衡条件

型钢混凝土转换结构模板支撑体系研究

111111111111111111111111111111111111111111111 111111********* 111111111111111111111111111111111111111111111 111111********* 1转换层模板支撑体系的研究现状转换层结构能满足上部办公住宅小空间,下部商业娱乐大开间的综合性建筑功能使用要求。因此,近年来,随着我国经济和土木工程技术的发展,带转换层复杂结构已逐渐成为竖向不规则高层建筑中经常采用的一种满足其建筑功能及美学要求的结构布置方式。型钢混凝土由内部型钢与外包混凝土形成整体,共同受力,能够充分发挥材料各自的特性,具有强度高、刚度大、延性好、抗震能力强、防火、防腐性好、利于施工新工艺的采用,适用于大跨、重载等一系列优点,鉴于转换层结构设计的特殊性以及型钢混凝土结构的优良特性,型钢混凝土结构应用到转换层结构设计中,能发挥型钢混凝土结构优点,解决转换层结构设计所遇到的问题,尤其是结构抗震问题。 苏州科技学院唐兴荣针对高层建筑转换层结构施工技术中支撑体系与混凝土浇筑的关键问题进行了论述。文中详细介绍了一次性支模、荷载传递法支模和叠合浇筑法支模方法,提出转换结构混凝土浇筑时防止温度裂缝产生的一系列措施。湖南大学李永贵在对梁式转换构件受力性能进行浅析 基础上,综合多个实际工程,详细介绍了转换构件的模板支撑设计、钢筋连接与安装以及混凝土施工技术,重点分析防止大体积混凝土开裂的施工技术。西南交大曹裕阳对转换结构施工特点进行分析后,使用通用有限元程序SAP2000对梁式转换结构施工阶段进行模拟分析,其认为随着转换层跨度增加,传统分析方法所得结果与结构实际施工阶段受力状态相差甚远,并且由于混凝土的收缩与徐变使得结构承受的施工荷载增大,这可通过减少施工周期来降低结构在施工过程中所承受的施工荷载。利用型钢混凝土梁柱中的钢骨架这个强度很刚度较大的结构体系,作为浇筑混凝土时的吊模骨架,这样不仅可以节省大量模板支撑材料,简化支模工程,创造出较大的工作面,而且还能提高施工效率,解决决定施工进度的关键问题“模板工程”,加快施工进度。型钢混凝土转换构件施工阶段研究多为实际工程应用,重点研究转换构件施工中关键问题:支撑工程和混凝土施工。 西安工业学院赵敏等人对某高层建筑的转换大梁进行施工设计,根据转换大梁其跨度大(12.6m ),截面尺寸大(1200mm ×4870mm )的特点, 型钢混凝土转换结构模板 支撑体系研究 ○张明星 姜华 李海洋(中天建设集团有限公司广东分公司) 【摘 要】型钢混凝土转换结构模板支撑体系相互作用机理的研究,对确保型钢混凝土转换 结构施工安全至关重要。现就转换层模板支撑体系的研究现状作一综述,并在分析已有研究的基础上,提出目前存在的问题及对未来的研究展望,以期为广大施工管理者提供参考依据。 【关键词】型钢混凝土 转换层结构 模板支撑 研究进展 49

受力分析、物体的平衡

专题:受力分析和物体的平衡 学习目标: 1、能准确分析物体的受力情况,熟练画出物体的受力示意图 2、知道物体的平衡状态,了解物体的两种平衡情形 3、知道物体处于平衡状态的条件 4、能熟练处理动态平衡问题 活动方案: 活动一:受力分析 1、受力分析的一般步骤: ①、明确研究对象(研究对象可以是单个物体或物体的一部分,也可以是几个物体组成的系统) ②、按顺序分析受力(通常按照重力、弹力、摩擦力、外加力的顺序分析) ③、画受力示意图 ④、检查有无多力、漏力 2、受力分析的注意事项: ①只画性质力(如:重力、弹力、摩擦力等)不画效果力(如:下滑力、动力、阻力等) ②只画实际力,不画分力。分析图1中物体的受力情况(斜面光滑)例如—不能画出下滑力 ③不能传导,不能画传导的力。分析图2中B、C两物体的受力情况。 ④惯性不是力,不能画成力。分析图3中物体的受力情况(冲上斜面的物体沿斜面上滑) ⑤若某个力的方向不能确定,可以先假设这个力不存在,分析物体发生怎样的运动,然后再确定其方 向 例1、如上图所示,物体均处于静止状态,分析物体A、B的受力情况。 活动二:物体的平衡 1、物体的平衡: (1)静平衡:物体在共点力作用下处于状态; 动平衡:物体在共点力作用下处于状态。 (2)“静止”和“v=0”的区别与联系 v=0时,如a=0,是静止,是平衡状态 如a0,不是静止,不是平衡状态 例2、物体在共点力作用下,下列说法中正确的是() A、物体的速度等于零,物体就一定处于平衡状态 B、物体相对另一物体保持静止时,物体一定处于平衡状态 C、物体所受合力为零时,物体一定处于平衡状态 D、物体做匀加速运动时,物体一定处于平衡状态 即时训练:下列属于平衡状态的物体是() A、在直轨道上高速行驶的磁悬浮列车 B、百米赛跑时,运动员起跑的瞬间 C、被乒乓球运动员击中的乒乓球与球怕相对静止时 D、乘客在加速行驶的列车中静止不动 2、共点力作用下物体的平衡条件: (1)共点力的平衡条件:在共点力作用下物体的平衡条件是合力为零,即F合=0或F x合=0,F y合=0 (2)由平衡条件得出的结论: ①物体在两个力的作用下处于平衡状态,这两个力必定是一对平衡力 ②物体在三个共点力的作用下处于平衡状态时,其中任意两个力的合力与第三个力等大反向 ③物体受n个共点力作用而处于平衡状态时,其中的任意一个力与其他n-1个力的合力一定等大反向 ④当物体处于平衡状态时,沿任意方向物体所受的合力为零 例 3、如图所示,在倾角为θ的斜面上,放置一个质量为m 的光滑小球,球被竖直的挡板挡住,斜面和木板对球的作用力分别是多大? 即时训练:如图所示,细线的一端固定于A点,细线上挂一质量为m的物体,另一端B固定在墙上,当AO与竖直方向成θ角,OB沿水平方向时,则:AO及BO对O点的拉力分别是多大? 3、动态平衡类问题 所谓动态平衡是指通过控制某些物理量,使物体的状态发生缓慢变化,而在这一过程中物体又始终处于一系列的平衡状态。 例4、如图所示,把球夹在竖直墙面AC和木板BC之间,不计摩擦,在将板BC逐渐放置水平的过程中,球对墙的压力和球对板的压力如何变化?

桥梁结构形式和受力特点

桥梁结构形式和受力特点 摘要:桥梁跨过河流,跨过峡谷,让交通变得便利,让城市与城市之间的距离变短,从古代的石拱桥到今天的悬索桥,斜拉桥等,桥梁的结构发生了怎样的变化,有些怎样的特点。 关键词:桥梁结构受力特点 1. 梁式桥包括简支板梁桥、悬臂梁桥、连续梁桥其中简支板梁桥跨越能力最小,一般一跨在8-20m.连续梁桥国内最大跨径在200m以下,国外已达240m。 2.拱桥在竖向荷载作用下,两端支承处产生竖向反力和水平推力,正是水平推力大大减小了跨中弯矩,使跨越能力增大.理论推算,混凝土拱极限跨度在500m左右,钢拱可达1200m.亦正是这个推力,修建拱桥时需要良好的地质条件。 3.刚架桥有T形刚架桥和连续刚构桥,T形刚架桥主要缺点是桥面伸缩缝较多,不利于高速行车.连续刚构主梁连续无缝,行车平顺.施工时无体系转换.跨径我国最大已达270m(虎门大桥辅航道桥)。 4.缆索承重桥(斜拉桥和悬索桥)是建造跨度非常大的桥梁最好的设计.道路或铁路桥面靠钢缆吊在半空,缆索悬挂在桥塔之间。斜拉桥已建成的主跨可达890m,悬索桥可达1991m。 5.组合体系桥有梁拱组合体系,如系杆拱、桁架拱、多跨拱梁结构等.梁刚架组合体系,如T形刚构桥等。 6.桁梁式桥:有坚固的横梁,横梁的每一端都有支撑。最早的桥梁就是根据这种构想建成的。他们不过是横跨在河流两岸之间的树干或石块。现代的桁梁式桥,通常是以钢铁或混凝土制成的长型中空桁架为横梁。这使桥梁轻而坚固。利用这种方法建造的桥梁叫做箱式梁桥。 7.悬臂桥:桥身分成长而坚固的数段,类似桁梁式桥,不过每段都在中间而非两端支承。 拱桥:借拱形的桥身向桥两端的地面推压而承受主跨度的应力。现代的拱桥通常采用轻巧、开敞式的结构。 8.吊桥:是建造跨度非常大的桥梁最好的设计。道路或铁路桥面靠钢缆吊在半空,钢缆牢牢地悬挂在桥塔之间。较古老的吊桥有的使用铁链,有的甚至使用绳索而不是用钢缆。 9.拉索桥:有系到桥柱的钢缆。钢缆支撑桥面的重量,并将重量转移到桥柱上,使桥柱承受巨大的压力。 班级:2011级2班姓名:夏一

受力分析、共点力的平衡练习题(标准答案)

受力分析共点力的平衡 1.如图所示,物块A、B通过一根不可伸长的细线连接,A静止在斜面上,细线绕过光滑的滑 轮拉住B,A与滑轮之间的细线与斜面平行.则物块A受力的个数可能是( ) A.6个B.4个C.5个D.2个 【答案】 B 2.如图所示,A和B两物块的接触面是水平的,A与B保持相对静止一起沿固定粗糙斜面匀速 下滑,在下滑过程中B的受力个数为( ) A.3个B.4个C.5个D.6个 【答案】 B 3.如图所示,在斜面上,木块A与B的接触面是水平的.绳子呈水平状态,两木块均保持静 止.则关于木块A和木块B的受力个数不可能是( )

A.2个和4个B.3个和4个C.4个和4个D.4个和5个 【答案】 B 4.如图所示,位于倾角为θ的斜面上的物块B由跨过定滑轮的轻绳与物块A相连.从滑轮到 A、B的两段绳都与斜面平行.已知A与B之间及B与斜面之间均不光滑,若用一沿斜面向 下的力F拉B并使它做匀速直线运动,则B受力的个数为( ) A.4个B.5个C.6个D.7个 【答案】 D 5.如图所示,固定的斜面上叠放着A、B两木块,木块A与B的接触面是水平的,水平力F 作用于木块A,使木块A、B保持静止,且F≠0.则下列描述正确的是( )

A.B可能受到3个或4个力作用B.斜面对木块B的摩擦力方向一定沿斜面向下 C.A对B的摩擦力可能为0D.A、B整体可能受三个力作用 【答案】 D 6.如图所示,在恒力F作用下,a、b两物体一起沿粗糙竖直墙面匀速向上运动,则关于它们 受力情况的说确的是( ) A.a一定受到4个力B.b可能受到4个力 C.a与墙壁之间一定有弹力和摩擦力D.a与b之间一定有摩擦力 【答案】AD 7.如图所示,物体B的上表面水平,当A、B相对静止沿斜面匀速下滑时,斜面保持静止不动, 则下列判断正确的有( )

预应力混凝土连续箱梁纵向受力分析

预应力混凝土连续箱梁纵向受力分析 摘要:以某三跨预应力混凝土连续箱梁为例,利用有限元分析软件Midas/Civil分别建立了单梁模型和梁格法模型。通过对两种模型计算结果的比较,分析了单梁模型和梁格模型计算结果之间的差异,提出了设计计算分析中的一些建议。结论对同类桥梁的设计计算分析具有一定的参考意义。 关键词:连续箱梁平面杆系梁格法 1引言 对箱型梁桥进行有限元分析时通常可建立三种模型进行计算分析,即平面杆系、空间杆系以及空间实体模型。平面杆系模型方法简便,仅能反映杆系截面的平均力学特征,可用于简单结构的粗略分析;空间实体模型建模工作量大,适用于结构的局部分析;空间杆系模型在合理建模的情况下,能较为全面地反映结构的空间受力特点,具有基本概念清晰、易于理解和使用等特点[1]。本文从适用性和经济性出发,结合具体实例采用梁格法进行结构分析,并与平面杆系模型的计算结果进行比较分析验证梁格法的适用性。 2工程实例概况 本文以某三跨等截面预应力混凝土连续箱梁桥为例,桥跨布置为20m+32m+20m,桥面宽12.0m,为单箱双室截面,如图1所示;两侧翼缘悬臂板长2.0m,箱底宽7.5m,梁高1.45m,连续梁双点支撑,跨间无横隔板,仅在支点处设支座横梁。设计荷载:汽车-15、挂-80。 图1 桥梁简图(单位:cm) 3计算模型及计算结果分析 本文采用桥梁有限元分析软件Midas/Civil分别建立桥梁的单梁模型和梁格模型。 3.1单梁模型 采用Midas/Civil的空间梁单元建立桥梁的单梁模型,共建立节点73个,单元72个,如图2所示。其中汽车荷载的作用通过定义车道偏心加以考虑。

【专题一】受力分析物体的平衡(含答案)

【专题一】受力分析物体的平衡 【考情分析】 1.本专题涉及的考点有:滑动摩擦、静摩擦、动摩擦因数;形变、弹性、胡克定律;力的合成和分解。 《大纲》对“滑动摩擦、静摩擦、动摩擦因数,形变、弹性、胡克定律”等考点均为Ⅰ类要求;对“力的合成和分解”为Ⅱ类要求。 力是物理学的基础,是高考必考内容。其中对摩擦力、胡克定律的命题几率较高。主要涉及弹簧类问题、摩擦力等,通过连接体、叠加体等形式进行考查。力的合成与分解、摩擦力的概念及变化规律是复习的重点。 2.本专题的高考热点主要由两个:一是有关摩擦力的问题,二是共点的两个力的合成问题。本章知识经常与牛顿定律、功和能、电磁场等内容综合考查。单纯考查本章的题型多以选择题为主,中等难度。 【知识交汇】 1.重力 (1)产生:重力是由于地面上的物体受地球的_____________而产生的,但两地得不等价,因为万有引力的一个分力要提供物体随地球自转所需的___________.而另一个分力即重力,如图所示. (2)大小:随地理位置的变化而变化 在两极:G F = 万 在赤道:G F F - = 万向 一般情况下,在地表附近G=________ (3)方向:竖直向下,并不指向地心. 2.弹力 (1)产生条件:①接触;②挤压;③____________. (2)大小:弹簧弹力F kx =,其它的弹力利用牛顿定律和___________求解.(3)方向:压力和支持力的方向垂直于_____________指向被压或被支持的物体,若接触面是球面,则弹力的作用线一定过___________.绳的作用力_________沿绳,杆的作用力__________沿杆.

预应力砼连续箱梁支架受力分析

预应力砼连续箱梁支架受力分析 本文从搭设满堂脚手架需的基础,叙述预应力砼连续箱梁,必须基础稳固,支架荷载分析计算全面,通过预压,消除主要的非弹性变形和弹性变形,使底模顶面预设标高符合设计要求。 标签支架;砼连续箱梁;预压;荷载 在南水北调安阳段的生产桥的施工中,上部结构为后张法现浇预应力混凝土连续箱梁,梁长有95m、80m、70m、66m等,梁宽有5.5m、4.5m两种,下部结构为钻孔灌注桩基础、柱式墩台。桥梁设计车辆荷载等级为公路—Ⅱ级。桥位地震动峰值加速度为0.15g。在两桥台处设D80型伸缩缝各一道。混凝土设计标号为C50。本文就预应力砼连续箱梁支架受力,进行分析。 1 地基处理(渠道内搭满堂脚手架) 满堂脚手架的沉降值控制至关重要,所以应严格控制地基的强度,首先在桥位的两侧挖好排水系统,然后对原地面进行压实处理,土基高度比渠底高0.6m。在桥墩与桥台之间的渠坡上挖台阶,台阶高0.1m,宽0.3m,长(梁宽加1m),然后在土台阶上浇C10垫层、厚0.1 m,作为渠坡面上搭钢管架子垫石。坡面上粉2cm厚水泥砂浆,防止下雨时雨水冲毁台阶。 对承台与渠坡交界处架子搭设,承台开挖时的工作面,根据设计要求选用回填材料,回填跟承台顶面平,承台顶面以上土方暂不回填,搭满堂脚手架时,承台与渠坡交界处的三角形部位,立杆纵横间距按0.3m布设,大小横杆层步距按0.9 m搭设,增加斜撑杆。同时,注意渠坡上钢管与承台处钢管的连接。 2 支架荷载计算分析 支架进行强度、刚度及稳定进行验算,确保支架在施工过程中能满足承载要求。进行验算,过程如下: 满堂脚手架顶层大横杆验算: 箱梁底砼荷载,按中跨计算 G=30/80×(265-30)×26=2291.25KN 安全系数取K=1.2,假设全部重量作用于底模上,则底模按每平方米承受的荷载为:按中跨30m计算。 F1=2291.25×1.2/(3×30)=30.55KN/㎡

混凝土梁钢筋与型钢柱组合连接技术

逆施混凝土梁钢筋与正施型钢柱组合连接技术 【摘 要】 xxxxx 广场工程逆施结构与正施型钢混凝土组合结构中采用了“逆施混凝土梁钢筋与正施型钢柱组合连接技术”,解决了窄间隙下逆施混凝土梁筋与正施型钢柱连接钢筋不同心、钢筋无伸缩的连接难题,为正逆施粗直径钢筋连接、特别是正施结构采用型钢混凝土组合结构钢筋连接技术作出了成功的探索。 【关键词】 可焊接套筒 熔槽帮条焊 型钢混凝土组合结构 钢筋连接 正逆施 前言:随着施工技术的发展,高层建筑越来越多,鉴于逆作法施工在工程周期方面的优势、型钢混凝土组合结构在抗震、防火及造价方面的优势,逆作法施工工艺及型钢混凝土组合结构在高层、超高层建筑中应用越来越多。而高层、超高层结构中混凝土梁配筋量大、钢筋排数多、钢筋间距较小,加之结构体系抗震等级高,钢结构体系不允许开洞,且正逆施连接部位空间较小,如何实现逆施混凝土梁钢筋与正施型钢柱的合理连接,成为此类工程施工的难点。 1 工程概况 xxxx 广场工程包含1栋办公楼,3栋公寓楼及商业裙楼,设有4层地下室。1栋办公楼及3栋公寓楼为超高层建筑,办公楼共53层,总高度258m ;A 、B 、C 三栋公寓分别为57层、53层、49层, 总高度分别为191m 、179m 、168m 。 工程抗震设防烈度为7度,主体结构 抗震等级为特一级或一级。 本工程地下结构采用敞开式逆作法施工工艺,逆施结构与正施结构型钢柱间距最小为600mm 如图1所 示。由于抗震等级高,与型钢柱连接 的逆施混凝土梁钢筋直径大(最大达 ф32)、排数多(大部分为3排),为保证结构的整体性,设计禁止在型钢柱上开洞,要求梁钢筋与型钢柱连接采用机械连接方式直接连接。 图1 逆施混凝土与正施型钢柱对接平面图

物体的平衡专题(一):平衡态受力分析

物体的平衡专题(一)—— 平衡态的受力分析专题 常用方法: 1、静态平衡:正交分解法 2、动态平衡:类型一 特点:三力中有一个不变的力,另有一个力的方向不变 解决方法:矢量三角形 类型二 特点:三力中只有一个不变的力,另两力方向都在变 解决方法:相似三角形(力三角和几何三角的相似) 特殊类型 特点:三力中只有一个不变的力,另两力方向都在变,但这两力的夹角 不变 解决方法:边角关系解三角形(如果夹角是直角,一般利用三角函数性质, 如果夹角非直角,一般会用到正弦定理) 注:动态平衡方法一般适用于三力平衡,若非三力状态,可先通过合成步骤变成三力平衡状态。 3、系统有多个物体的分析,整体法与隔离法 【例题1】如图所示,在倾角为θ的斜面上,放一质量为m 的光滑小球,球被竖 直的木板挡住,则球对挡板的压力和球对斜面的压力分别是多少? 【例题2】如图所示,一个半球形的碗放在桌面上,碗口水平,O 点为其球心,碗的内表面及碗口是光滑的.一根细线跨在碗口上,线的两端分别系有质量为m 1和m 2的小球.当它们处于平衡状态时,质量为m 1的小球与O 点的连线与水平线的夹角为α=60°两小球的质量比12m m 为( ) A . 33 B .32 C .23 D .22 【例题3】如图,电灯悬挂于两干墙之间,要换绳OA ,使连接点A 上移,但保 持O 点位置不变,则在A 点向上移动的过程中,绳OA 的拉力如何变化? 【例题4】用等长的细绳0A 和0B 悬挂一个重为G 的物体,如图所示,在保持O 点位置不变的前提下,使绳的B 端沿半径等于绳长的圆弧轨道向C 点移动,在移动的过程中绳OB 上张力大小的变化情况是( ) A .先减小后增大 B .逐渐减小 C .逐渐增大 D .OB 与OA 夹角等于90o 时,OB 绳上张力最大 【例题5】重G 的光滑小球静止在固定斜面和竖直挡板之间。若挡板逆时针 缓慢转到水平位置,在该过程中,斜面和挡板对小球的弹力的大小F 1、F 2 各如何变化?

高三受力分析动态平衡模型总结(解析版)

动态平衡受力分析 在有关物体平衡的问题中,有一类涉及动态平衡。这类问题中的一部分力是变力,是动态力,力的大小和方向均要发生变化,故这是力平衡问题中的一类难题。解决这类问题的一般思路是:把“动”化为“静”,“静”中求“动”。物体受到往往是三个共点力问题,利用三力平衡特点讨论动态平衡问题是力学中一个重点和难点。 基础知识必备 方法一:三角形图解法 特点:三角形图象法则适用于物体所受的三个力中,有一力的大小、方向均不变(通常为重力,也可能是其它力),另一个力的方向不变,大小变化,第三个力则大小、方向均发生变化的问题。 方法:先正确分析物体所受的三个力,将三个力的矢量首尾相连构成闭合三角形。然后将方向不变的力的矢量延长,根据物体所受三个力中二个力变化而又维持平衡关系时,这个闭合三角形总是存在,只不过形状发生改变而已,比较这些不同形状的矢量三角形,各力的大小及变化就一目了然了。 【例1】如图所示,一个重力为G的匀质球放在光滑斜面上,斜面倾角为,在斜面上有一光滑的不计厚度的木板挡住球,使之处于静止状态.今使板与斜面的夹角β缓慢增大,问:在此过程中,挡板对球的压力F N1和斜面对球的支持力F N2变化情况为()A.F N1、F N2都是先减小后增加 B.F N2一直减小,F N1先增加后减小 C.F N1先减小后增加,F N2一直减小 D.F N1一直减小,F N2先减小后增加 答案 C 【练习1】如图所示,小球被轻质细绳系着,斜吊着放在光滑劈面上,小球质量为m,斜面倾角为θ,向右缓慢推动劈一小段距离,在整个过程中() A.绳上张力先增大后减小 B.绳上张力先减小后增大 C.劈对小球支持力减小 D.劈对小球支持力增大 答案 D

预应力混凝土连续梁桥

6.2 预应力混凝土连续梁桥 6.2.1力学特点及适用范围 连续梁桥在结构重力和汽车荷载等恒、活载作用下,主梁受弯,跨中截面承受正弯矩,中间支点截面承受负弯矩,通常支点截面负弯矩比跨中截面正弯矩大。作为超静定结构,温度变化、混凝土收缩徐变、基础变位以及预加力等会使桥梁结构产生次内力。 由于预应力结构可以有效地避免混凝土开裂,能充分发挥高强材料的特性,促使结构轻型化,预应力混凝土连续梁桥具有比钢筋混凝土连续梁桥较大的跨越能力,加之它具有变形和缓、伸缩缝少、刚度大、行车平稳、超载能力大、养护简便等优点,所以在近代桥梁建筑中已得到越来越多的应用。 预应力混凝土连续梁桥适宜于修建跨径从30m到100多m的中等跨径和大跨径的桥梁。 6.2.2立面布置 预应力混凝土连续梁桥的立面布置包括体系安排、桥跨布置、梁高选择等问题,可以设计成等跨或不等跨、等截面或变截面的结构形式(图6.1)。结构形式的选择要考虑结构受力合理性,同时还与施工方法密切相关。 a b a.不等跨不等截面连续梁 b. 等跨等截面连续梁 图6.1 连续梁立面布置 1.桥跨布置 根据连续梁的受力特点,大、中跨径的连续梁桥一般宜采用不等跨布置,但多于三跨的连续梁桥其中间跨一般采用等跨布置。当采用三跨或多跨的连续梁桥时,为使边跨与中跨的最大正弯矩接近相等,达到经济的目的,边跨取中跨的0.8倍为宜,当综合考虑施工和其他因素时,边跨一般取中跨的0.5~0.8倍。对于预应力混凝土连续梁桥宜取偏小值,以增加边跨刚度,减小活载弯矩的变化幅度,减少预应力筋的数量。若采用过小的边跨,会在边跨支座上产生拉力,需在桥台上设置拉力支座或压重。当受到桥址处地形、河床断面形式、通航(车)净空及地质条件等因素的限制,并且同时总长度受到制约时,可采用多孔小边跨与较大的中间跨相配合,跨径从中间向外递减,以使各跨内力峰值相差不大。 桥跨布置还与施工方法密切相关。长桥、选用顶推法施工或者简支—连续施工的桥梁,多采用等跨布置,这样做结构简单,统一模式。等跨布置的跨径大小主要取决于经济分跨和

预应力钢骨混凝土框架梁抗弯承载力计算

预应力钢骨混凝土框架梁抗弯承载力计算 摘要:本文基于平截面假定,考虑预应力超静定结构次内力,根据截面中钢骨所处的位置不同,建立了预应力钢骨混凝土梁的抗弯承载力计算公式,并对预应力钢骨混凝土梁正截面承载力进行实验验证,计算值与试验的结果吻合较好。 关键词:预应力钢骨混凝土框架;次轴力;次弯矩;抗弯承载力 1 预应力钢骨混凝土梁正截面承载力的计算方法 1.1 基本假定 符合平截面假定:不考虑受拉区混凝土的受拉作用;破坏时梁受压区边缘混凝土的极限压应变为εcu=0.0033,达到极限状态时混凝土受压区的应力图形可取矩形分布;钢骨、钢筋和预应力筋的应力等于其弹性模量与应变的乘积,但其绝对值不大于相应的强度设计值;由于混凝土对钢骨的嵌固和约束作用,承载力极限阶段不考虑钢骨的屈曲。 1.2 界限压区高度 预应力钢骨混凝土梁的破坏形态与钢筋混凝土梁类似,其极限承载能力的丧失同样以受压区混凝土压碎为标志。普通钢筋、预应力钢筋和钢骨下翼缘中屈服时,受压区高度的最小值可以认为是预应力钢骨混凝土梁的截面界限压区高度,如图1所示,设普通钢筋、预应力钢筋和钢骨下翼缘中屈服时,受压区高度分别为xs、xp、xa。 1.3 中和轴在钢骨腹板中()正截面承载力计算 根据中和轴位置的不同分为3种情况:中和轴在钢骨腹板中;中和轴不通过钢骨截面,在钢骨上翼缘与混凝土梁受压边缘之间;中和轴恰好在钢骨上翼缘上。中和轴恰好在钢骨上翼缘上可作为判别其他两种情况的界限。 由表1可以看出,混凝土内钢骨产生滑移使平截面假定已经不再成立,本公式推导时假定钢骨与混凝土之间无滑移,来达到计算简单的目的,所以实际承载力低于钢滑移的公式计算值,因此应用此公式进行计算时,建议预应力钢骨混凝土构件正截面承载力乘以0.8的折减系数。 3 结语 对于一般的框架结构,柱子截面并不十分巨大,柱子的侧向刚度对预应力梁中的预应力效应的影响较小,一般都在5%以下;推导计算公式时,忽略了各部分之间的粘结滑移,从而大大简化了计算方法。因此应用此公式进行计算时,建

相关文档
最新文档