FDTD算法的Matlab语言实现

FDTD算法的Matlab语言实现
FDTD算法的Matlab语言实现

0.618法的matlab实现

实验报告 实验题目: 0.618法的MATLAB实现学生姓名: 学号: 实验时间: 2013-5-13

一.实验名称: 0.618法求解单峰函数极小点 二.实验目的及要求: 1. 了解并熟悉0.618法的方法原理, 以及它的MATLAB 实现. 2. 运用0.618法解单峰函数的极小点. 三.实验内容: 1. 0.618法方法原理: 定理: 设f 是区间],[b a 上的单峰函数, ] ,[ ,)2()1(b a x x ∈, 且)2()1(x x <. 如果)()()2()1(x f x f >, 则对每一个],[)1(x a x ∈, 有)()()2(x f x f >; 如果)()()2()1(x f x f ≤, 则对每一个] ,[) 2(b x x ∈, 有)()()1(x f x f ≥. 根据上述定理, 只需选择两个试探点, 就可将包含极小点的区间缩短. 事实上, 必有 如果)()()2()1(x f x f >, 则],[)1(b x x ∈; 如果)()() 2()1(x f x f ≤, 则][)2(x a x ,∈. 0.618 法的基本思想是, 根据上述定理, 通过取试探点使包含极小点的区间(不确定区间)不断缩短, 当区间长度小到一定程度时, 区间上各点的函数值均接近极小值, 因此任意一点都可作为极小点的近似. 0.618 法计算试探点的公式: ). (618.0),(382.0k k k k k k k k a b a a b a -+=-+=μλ 2. 0.618法的算法步骤: ①置初始区间],[11b a 及精度要求0>L , 计算试探点1λ和1μ, 计算函数值)(1λf 和)(1μf . 计算公式是 ).(618.0 ),(382.011111111a b a a b a -+=-+=μλ 令1=k . ②若L a b k k <-, 则停止计算. 否则, 当)()(k k f f μλ>时, 转步骤③; 当)()(k k f f μλ≤时, 转步骤④. ③置k k a λ=+1, k k b b =+1, k k μλ=+1,)(618.01111++++-+=k k k k a b a μ, 计算函数值)(1+k f μ, 转步骤⑤.

哈工大_Matlab__2013年春季学期《MATLAB语言及应用》试题答案

2013年春季学期 《MATLAB语言及应用》课程试卷 姓名: 学号: 学院: 专业: 必答题 1.常用的matlab界面由哪些窗口组成,各有什么主要作用?(4分) (1)菜单和工具栏功能:【File】菜单主要用于对文件的处理。【Edit】菜单主 要用于复制、粘贴等操作,与一般Windows程序的类似,在此不作详细介绍。【Debug】菜单用于调试程序。【Desktop】菜单用于设置主窗口中需要打开的窗口。【Window】菜单列出当前所有打开的窗口。【Help】菜单用于选择打开不同的帮助系统。 (2)命令窗口功能:用于输入命令并显示除图形以外的所有执行结果 (3)历史命令窗口功能:主要用于记录所有执行过的命令 (4)当前工作目录窗口功能:对文件和目录进行操作 (5)工作空间窗口功能:查看、载入和保存变量 2.如何设置当前目录和搜索路径,在当前目录上的文件和在搜索路径上的文件有什么 区别?(2分) 方法一:在MATLAB命令窗口中输入editpath或pathtool命令或通过【File】/|【SetPath】菜单,进入“设置搜索路径”对话框,通过该对话框编辑搜索路径。 方法二:在命令窗口执行“path(path,…D:\Study ?)”,然后通过“设置搜索路径”对话查看“D:\Study”是否在搜索路径中。 方法三:在命令窗口执行“addpath D:\Study- end”,将新的目录加到整个搜索路径的末尾。如果将end改为begin,可以将新的目录加到整个搜索路径的开始。 区别:当前文件目录是正在运行的文件的目录,显示文件及文件夹的详细信息,且只有将文件设置为当前目录才能直接调用。搜索路径中的文件可以来自多个 不同目录,在调用时不用将其都设置为当前目录,为同时调用多个文件提供 方便。 3.有几种建立矩阵的方法?各有什么优点?(4分) 1.在命令窗口中直接输入优点:适合输入不规则和较小的矩阵 2.通过语句和函数生成矩阵优点:适合输入规则且较大的矩阵 3.通过M文件来建立矩阵,从外部数据文件中导入矩阵 优点:方便创建和导入大型矩阵 4.说明break语句、continue语句和return语句的用法。(3分)

最优化方法的Matlab实现(公式(完整版))

第九章最优化方法的MatIab实现 在生活和工作中,人们对于同一个问题往往会提出多个解决方案,并通过各方面的论证从中提取最佳方案。最优化方法就是专门研究如何从多个方案中科学合理地提取出最佳方案的科学。由于优化问题无所不在,目前最优化方法的应用和研究已经深入到了生产和科研的各个领域,如土木工程、机械工程、化学工程、运输调度、生产控制、经济规划、经济管理等,并取得了显著的经济效益和社会效益。 用最优化方法解决最优化问题的技术称为最优化技术,它包含两个方面的内容: 1)建立数学模型即用数学语言来描述最优化问题。模型中的数学关系式反映了最优化问题所要达到的目标和各种约束条件。 2)数学求解数学模型建好以后,选择合理的最优化方法进行求解。 最优化方法的发展很快,现在已经包含有多个分支,如线性规划、整数规划、非线性规划、动态规划、多目标规划等。 9.1 概述 利用Matlab的优化工具箱,可以求解线性规划、非线性规划和多目标规划问题。 具体而言,包括线性、非线性最小化,最大最小化,二次规划,半无限问题,线性、非线性方程(组)的求解,线性、非线性的最小二乘问题。另外,该工具箱还提供了线性、非线性最小化,方程求解,曲线拟合,二次规划等问题中大型课题的求解方法,为优化方法在工程中的实际应用提供了更方便快捷的途径。 9.1.1优化工具箱中的函数 优化工具箱中的函数包括下面几类: 1 ?最小化函数

2.方程求解函数 3.最小—乘(曲线拟合)函数

4?实用函数 5 ?大型方法的演示函数 6.中型方法的演示函数 9.1.3参数设置 利用OPtimSet函数,可以创建和编辑参数结构;利用OPtimget函数,可以获得o PtiOns优化参数。 ? OPtimget 函数 功能:获得OPtiOns优化参数。 语法:

MATLAB语言及应用课程教学大纲

《MATLAB语言及应用》课程教学大纲 课程编号:21311105 总学时数:32 总学分数:2 课程性质:专业必修课 适用专业:电气工程及其自动化 一、课程的任务和基本要求: 控制算法是集中现代控制系统CAD 技术的本质反映,对于控制算法系统深入地学习,在扩展计算机技术在控制理论中的应用和发展,同时培养学生运用计算机技术进行思维和开发的能力。控制系统理论、计算方法与计算机技术的结合是当代控制理论发展的标志,因此在以MATLAB 为代表的软件平台上,对控制系统进行分析、设计与仿真将成为控制工程领域工程师必须熟练掌握的重要知识和技能。因此,深入透彻地分析和理解控制算法的思想和构造就必须系统学习典型控制系统应用软件的基本原理和控制算法,将成为本课程的目的和任务。 通过本课程的学习,要求学生掌握对于控制系统的分析和综合设计的方法和基本技巧,而控制算法在控制系统CAD 技术中占有相当大的比重,本课程要求较熟练掌握控制算法的基本思想;MATLAB 是一种解释性编程语言,因此,要求熟练掌握MATLAB 的基本编程手段和模块化编程方法,消化和理解控制语言描述的图形界面的设计过程。 二、基本内容和要求: 1.自动控制系统与仿真基础知识 (1)自动控制系统基本概念 (2)自动控制系统分类 (3)控制系统仿真基本概念 (4)MA TLAB与控制系统仿真 (5)MA TLAB 7中控制相关的工具箱 要求:了解自动控制系统与仿真的基础知识,包括自动控制系统的基本概念、分类,以及控制系统仿真的基本概念和Matlab工具。 2.MA TLAB计算及仿真基础 (1)MA TLAB概述 (2)MA TLAB桌面操作环境 (3)MA TLAB数值计算 (4)关系运算和逻辑运算 (5)符号运算 (6)复数和复变函数运算 (7)MA TLAB常用绘图命令 (8)MA TLAB程序设计 要求:了解MA TLAB计算及仿真基础,包括MATLAB的安装、界面及其数值计算、函数运算、程序设计及其绘图命令。 3. Simulink仿真基础 (1)Simulink仿真概述

王能超 计算方法——算法设计及MATLAB实现课后代码

第一章插值方法 1.1Lagrange插值 1.2逐步插值 1.3分段三次Hermite插值 1.4分段三次样条插值 第二章数值积分 2.1 Simpson公式 2.2 变步长梯形法 2.3 Romberg加速算法 2.4 三点Gauss公式 第三章常微分方程德差分方法 3.1 改进的Euler方法 3.2 四阶Runge-Kutta方法 3.3 二阶Adams预报校正系统 3.4 改进的四阶Adams预报校正系统 第四章方程求根 4.1 二分法 4.2 开方法 4.3 Newton下山法 4.4 快速弦截法 第五章线性方程组的迭代法 5.1 Jacobi迭代 5.2 Gauss-Seidel迭代 5.3 超松弛迭代 5.4 对称超松弛迭代 第六章线性方程组的直接法 6.1 追赶法 6.2 Cholesky方法 6.3 矩阵分解方法 6.4 Gauss列主元消去法

第一章插值方法 1.1Lagrange插值 计算Lagrange插值多项式在x=x0处的值. MATLAB文件:(文件名:Lagrange_eval.m)function [y0,N]= Lagrange_eval(X,Y,x0) %X,Y是已知插值点坐标 %x0是插值点 %y0是Lagrange插值多项式在x0处的值 %N是Lagrange插值函数的权系数 m=length(X); N=zeros(m,1); y0=0; for i=1:m N(i)=1; for j=1:m if j~=i; N(i)=N(i)*(x0-X(j))/(X(i)-X(j)); end end y0=y0+Y(i)*N(i); end 用法》X=[…];Y=[…]; 》x0= ; 》[y0,N]= Lagrange_eval(X,Y,x0) 1.2逐步插值 计算逐步插值多项式在x=x0处的值. MATLAB文件:(文件名:Neville_eval.m)function y0=Neville_eval(X,Y,x0) %X,Y是已知插值点坐标 %x0是插值点 %y0是Neville逐步插值多项式在x0处的值 m=length(X); P=zeros(m,1); P1=zeros(m,1); P=Y; for i=1:m P1=P; k=1; for j=i+1:m k=k+1;

Matlab语言及应用论文

一、MATLAB简介 MATLAB 是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。 MATLAB是矩阵实验室(Matrix Laboratory)的简称,和Mathematica、Maple 并称为三大数学软件。它在数学类科技应用软件中在数值计算方面首屈一指。MATLAB可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其他编程语言的程序等,主要应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。 MATLAB的基本数据单位是矩阵,它的指令表达式与数学、工程中常用的形式十分相似,故用MATLAB来解算问题要比用C,FORTRAN等语言完成相同的事情简捷得多,并且mathwork也吸收了像Maple等软件的优点,使MATLAB成为一个强大的数学软件。在新的版本中也加入了对C,FORTRAN,C++ ,JAVA的支持。可以直接调用,用户也可以将自己编写的实用程序导入到MATLAB函数库中方便自己以后调用,此外许多的MATLAB爱好者都编写了一些经典的程序,用户可以直接进行下载就可以用。 二、应用 MATLAB 产品族可以用来进行以下各种工作: (1)数值分析; (2)数值和符号计算; (3)工程与科学绘图; (4)控制系统的设计与仿真; (5)数字图像处理技术; (6)数字信号处理技术; (7)通讯系统设计与仿真; (8)财务与金融工程。 MATLAB 的应用范围非常广,包括信号和图像处理、通讯、控制系统设计、测试和测量、财务建模和分析以及计算生物学等众多应用领域。附加的工具箱(单独提供的专用 MATLAB 函数集)扩展了 MATLAB 环境,以解决这些应用领域内特

[设计]罚函数法MATLAB程序

[设计]罚函数法MATLAB程序 一、进退法、0.618法、Powell法、罚函数法的Matlab程序设计罚函数法(通用) function y=ff(x,k) y=-17.86*0.42*x(1)/(0.8+0.42*x(1))*(1-exp(- 2*(0.8+0.42*x(1))/3))*exp(-1.6)*x(2)-22. 99*x(1)/(0.8+x(1))*(1-exp(-2*(0.8+x(1))/3))*x(3)+k*(x(2)- (1.22*10^2*(9517.8*exp(-1 .6-2*0.42*x(1)/3)*x(2)+19035.6*exp(- 2*x(1)/3)*x(3)))/(1.22*10^2+9517.8*exp(-1.6-2 *0.42*x(1)/3)*x(2)+19035.6*exp(-2*x(1)/3)*x(3)))^2+k*(x(3)-exp(-0.8-2*x(1)/3)*x(3) -exp(-2.4-2*0.42*x(1)/3)*x(2))^2; % 主函数,参数包括未知数的个数n,惩罚因子q,惩罚因子增长系数k,初值x0,以及允许的误差r function G=FHS(x0,q,k,n,r,h,a) l=1; while (l) x=powell(x0,n,q,r(1),h,a); %调用powell函数 g(1)=ff1(x),g(2)=ff2(x) . . . g(p)=ffp(x); %调用不等式约束函数,将其值 %存入数组g h(1)=hh1(x),h(2)=hh2(x) . . . h(t)=hht(x); %调用等式约束函数,将其值%存入数组h for i=1:p

龙格库塔方法matlab实现

龙格库塔方法matlab实现~ function ff=rk(yy,x0,y0,h,a,b)%yy为y的导函数,x0,y0,为初值,h为步长,a,b为区间 c=(b-a)/h+1;i1=1; %c为迭代步数;i1为迭代步数累加值 y=y0;z=zeros(c,6); %z生成c行,5列的零矩阵存放结果; %每行存放c次迭代结果,每列分别存放k1~k4及y的结果 for x=a:h:b if i1<=c k1=feval(yy,x,y); k2=feval(yy,x+h/2,y+(h*k1)/2); k3=feval(yy,x+h/2,y+(h*k2)/2); k4=feval(yy,x+h,y+h*k3); y=y+(h/6)*(k1+2*k2+2*k3+k4); z(i1,1)=x;z(i1,2)=k1;z(i1,3)=k2;z(i1,4)=k3;z(i1,5)=k4;z(i1,6)=y; i1=i1+1; end end fprintf(‘结果矩阵,第一列为x(n),第二列~第五列为k1~k4,第六列为y(n+1)的结果') z %在命令框输入下列语句 %yy=inline('x+y'); %>> rk(yy,0,1,0.2,0,1) %将得到结果 %结果矩阵,第一列为x(n),第二列~第五列为k1~k4第六列为y(n+1)的结果 %z = % 0 1.0000 1.2000 1.2200 1.4440 1.2428 % 0.2000 1.4428 1.6871 1.7115 1.9851 1.5836 % 0.4000 1.9836 2.2820 2.3118 2.6460 2.0442 % 0.6000 2.6442 3.0086 3.0451 3.4532 2.6510 % 0.8000 3.4510 3.8961 3.9407 4.4392 3.4365 % 1.0000 4.4365 4.9802 5.0345 5.6434 4.4401

0计算方法及MATLAB实现简明讲义课件PPS8-1欧拉龙格法

第8章 常微分方程初值问题数值解法 8.1 引言 8.2 欧拉方法 8.3 龙格-库塔方法 8.4 单步法的收敛性与稳定性 8.5 线性多步法

8.1 引 言 考虑一阶常微分方程的初值问题 00(,),[,],(). y f x y x a b y x y '=∈=(1.1) (1.2) 如果存在实数 ,使得 121212(,)(,).,R f x y f x y L y y y y -≤-?∈(1.3) 则称 关于 满足李普希茨(Lipschitz )条件, 称为 的李普希茨常数(简称Lips.常数). 0>L f y L f (参阅教材386页)

计算方法及MATLAB 实现 所谓数值解法,就是寻求解 在一系列离散节点 )(x y <<<<<+121n n x x x x 上的近似值 . ,,,,,121+n n y y y y 相邻两个节点的间距 称为步长. n n n x x h -=+1 如不特别说明,总是假定 为定数, ),2,1( ==i h h i 这时节点为 . ) ,2,1,0(0 =+=i nh x x n 初值问题(1.1),(1.2)的数值解法的基本特点是采取 “步进式”. 即求解过程顺着节点排列的次序一步一步地向前推进. 00(,),[,], (). y f x y x a b y x y '=∈=

描述这类算法,只要给出用已知信息 ,,,21--n n n y y y 计算 的递推公式. 1+n y 一类是计算 时只用到前一点的值 ,称为单步法. 1+n y n y 另一类是用到 前面 点的值 , 1+n y k 11,,,+--k n n n y y y 称为 步法. k 其次,要研究公式的局部截断误差和阶,数值解 与 精确解 的误差估计及收敛性,还有递推公式的计算 稳定性等问题. n y )(n x y 首先对方程 离散化,建立求数值解的递推 公式. ),(y x f y ='

(完整版)纵横向拉开档次法的MATLAB实现

简介:本文档为《纵横向拉开档次法的MATLAB实现》,可适用于工程科技领域,主题内容包含globalxystdszxystdxy定义全局变量loadshuju原始数据xystd=zscore(shuju)数据无量纲处理xystdrow,符等。 global xystdsz xystd x y %定义全局变量 load shuju %原始数据 xystd= zscore (shuju); %数据无量纲处理 [xystdrow,xystdcol]=size(xystd); %----------区域知识创造能力评价---------- for tt=1:xystdcol xystdsz{tt}(:,:)=xystd{tt}(:,1:10); %提取区域知识创造能力指标无量纲值 end [xystdszrow,xystdszcol]=size(xystdsz); [xyrow,xycol]=size(xystdsz{1}); w0=zeros(1,xycol); for i=1:xycol w0(1,i)=1/xycol; % 优化初始值 end Aeq=[]; beq=[]; lb=zeros(1,xycol);ub=ones(1,xycol); %zeros生成零矩阵;ones生成全1阵。 options =optimset('largescale','off'); %优化函数,largescale大规模算法 [w,faval]=fmincon(@YHQU,w0,[],[],Aeq,beq,lb,ub,@fun,options ); %优化求权重;fmincon用来求解非线性多元函数最小值。 wqz1=w./sum(w); %权重归一化 for tt=1:xystdszcol z{tt}(:,1)=xystd{tt}(:,1:10)*wqz1'; % 求评价值 pxacz(:,tt)=px(z{tt}(:,1)) ; % 对评价值排序 end clear w0 w lb ub faval ; clear global xystdsz; %--------区域知识流动能力评价------------ for tt=1:xystdszcol xystdsz{tt}(:,:)=xystd{tt}(:,11:16); %提取区域知识流动能力指标无量纲值 end global xystdsz; [xystdszrow,xystdszcol]=size(xystdsz); [xyrow,xycol]=size(xystdsz{1}); w0=zeros(1,xycol); for i=1:xycol w0(1,i)=1/xycol; % 优化w初始值 end Aeq=[]; beq=[]; lb=zeros(1,xycol);ub=ones(1,xycol); options =optimset('largescale','off'); [w,faval]=fmincon(@YHQU,w0,[],[],Aeq,beq,lb,ub,@fun,options );

用MATLAB实现结构可靠度计算.

用MATLAB实现结构可靠度计算 口徐华…朝泽刚‘u刘勇‘21 。 (【l】中国地质大学(武汉工程学院湖北?武汉430074; 12】河海大学土木工程学院江苏?南京210098 摘要:Matlab提供了各种矩阵的运算和操作,其中包含结构可靠度计算中常用的各种数值计算方法工具箱,本文从基本原理和相关算例分析两方面,阐述利用Matlab,编制了计算结构可靠度Matlab程.序,使得Matlab-语言在可靠度计算中得到应用。 关键词:结构可靠度Matlab软件最优化法 中图分类号:TP39文献标识码:A文章编号:1007-3973(200902-095-Ol 1结构可靠度的计算方法 当川概率描述结构的可靠性时,计算结构可靠度就是计算结构在规定时问内、规定条件F结构能够完成预定功能的概率。 从简单到复杂或精确稃度的不同,先后提出的可靠度计算方法有一次二阶矩方法、二次二阶矩方法、蒙特卡洛方法以及其他方法。一次■阶矩方法又分为。I-心点法和验算点法,其中验算点法足H前可靠度分析最常川的方法。 2最优化方法计算可靠度指标数学模型 由结构111n个任意分布的独立随机变量一,x:…以表示的结构极限状态方程为:Z=g(■.托…t=0,采用R-F将非正念变量当罱正态化,得到等效正态分布的均值o:和标准差虹及可靠度指标B,由可靠度指标B的几何意义知。o;辟

开始时验算点未知,把6看成极限状态曲面上点P(■,爿:---37,的函数,通过优化求解,找到B最小值。求解可靠皮指标aJ以归结为以下约束优化模型: rain睁喜t华,2 s.,.Z=g(工i,x2’,…,工:=0 如极限状态方栉巾某个变最(X。可用其他变量表示,则上述模型jfIJ‘转化为无约束优化模型: 。。B!:手f生丛r+阻:坚:坠:盐尘}二剐 t∞oY?’【叫,J 3用MATLAB实现结构可靠度计算 3.1Matlab简介 Matlab是++种功能强、效率高、便.丁.进行科学和工程计算的交互式软件包,汇集了人量数学、统计、科学和工程所需的函数,MATI.AB具有编程简甲直观、用户界mf友善、开放性强等特点。将MATLAB用于蒙特卡罗法的一个显著优点是它拥有功能强大的随机数发生器指令。 3.2算例 3.2.I例:已知非线形极限状态方程z=g(t r'H=567f r-0.5H2=0’f、r服从正态分布。IIf=0.6,o r=0.0786;la|_ 2.18,o r_0.0654;H服从对数正态分布。u H= 3218,O。 =0.984。f、r、H相互独立,求可靠度指标B及验算点(,,r’,H‘。 解:先将H当量正念化:h=ln H服从正态分布,且 ,‘-““了:等专虿’=,。49?口二-、『五ir面_。。3

波前法及matlab实现

有限元二维热传导波前法MATLAB程序 ?二维热传导有限元 ?使用高斯消去法解线性方程组的二维热传导有限元程序 ?波前法的基本概念与算法 ?使用波前法解线性方程组的二维热传导有限元程序 ?消元过程 ?波前法与高斯消去法的效率之比较 ?小结:波前法的过去、现在和未来 波前法是求解线性方程组的一种方法,广泛用于有限元程序。它最初由英国人(?)B.M. Irons于1970在“国际工程计算方法杂志”上发表。30多年来,波前法有了不少变种。本文所用算法,采于法国人Pascal JOLY所著《Mise en Oeuvre de la Méthode des Eléments Finis》。这本书是我1993年在比利时一家书店买的,书中有一节"波前法",六页纸,解释了基本概念和算法,但没有程序,也没有细节讨论。我曾花了两个半天的时间,在网上寻找波前法程序,或更详细的资料,没有找到(需要花钱才能看的文献不算)。倒是看到不少中国人,也在寻找。 一些人说,波前法程序太难懂了。 通过自己编写程序,我同意这些人的说法,确实难。我还真很少编如此耗费脑力的程序。完工之后,我曾对朋友老王说,有了算法,编程序还这么难,当初想出 算法的人,真是了不起。 现将我对波前法的理解和编程体会解说如下,供感兴趣的网友参考,也为填补网 络上波前法空白。 二维热传导有限元 波前法和有限元密不可分。因而,在编写波前法程序之前,必须有个有限元程序。为了简化问题,最好是能解算一个节点上只有一个自由度的问题的有限元程序,而且要尽可能地简单。我手边现有的有限元程序都不符合这个要求。就决定先开发一个解算二维热传导问题的MATLAB有限元程序。 二维热传导问题的微分方程是 其中T 是温度,Kx 和Ky 分别是x 和y 方向上的热传导系数,q 是热源。 对于这样的比较经典的二阶微分方程,如何导出有限元表达式? 这个问题,是有限元的首要问题! 我相信,许许多多学过有限元的人,甚至每天都在用有限元的人,并不真的十分 明了。

计算方法及其MATLAB实现第二章作业

作者:夏云木子 1、 >> syms re(x) re(y) re(z) >> input('计算相对误差:'),re(x)=10/1991,re(y)=0.0001/1.991,re(y)=0.0000001/0.0001991 所以可知re(y)最小,即y精度最高 2、 >> format short,A=sqrt(2) >> format short e,B=sqrt(2) >> format short g,C=sqrt(2)

>> format long,D=sqrt(2) >> format long e,E=sqrt(2) >> format long g,F=sqrt(2) >> format bank,H=sqrt(2) >> format hex,I=sqrt(2) >> format +,J=sqrt(2) >> format,K=sqrt(2)

3、 >> syms A >> A=[sqrt(3) exp(7);sin(5) log(4)];vpa(pi*A,6) 4、1/6251-1/6252=1/6251*6252 5、(1)1/(1+3x)-(1-x)/(1+x)=x*(3*x-1)/[(1+3*x)*(1+x)] (2) sqrt(x+1/x)-sqrt(x-1/x)=2/x/[sqrt(x-1/x)+sqrt(x+1/x)] (3) log10(x1)-log(x2)=log10(x1/x2) (4) [1-cos(2*x)]/x =x^2/factorial(2)-x^4/factorial(4)+x^6/factorial(6)-…

(完整版)《MATLAB语言及其应用》教案

MATLAB语言及其应用 教 案 任课教师:罗靖宇 任课班级:09通信(1)(2) 教材:MATLAB程序设计与应用(第二版) 作者:刘卫国主编出版社:高等教育出版社

内容: 书籍简介:本书以MATLAB 7.0版为蓝本介绍MATLAB功能与应用强调理论和实践相结合贴近读者需要注重讲清有关数学方法和算法原理前提下介绍MATLAB功能;注重和有关学科领域结合,突出应用书中有许多应用实例些实例既是对MATLAB重点和难点诠释又可以更好地帮助读者应用MATLAB来解决实际问题具有很强代表性。 全书分为基础篇应用篇和实验篇基础篇包括MATLAB系统环境MATLAB数据及其运算MATLAB矩阵分析与处理 MATLAB程序设计MATLAB图MATLAB数值计算MATLAB符号计算应用篇包括MATLAB图形用户界面设计MATLAB Notebook使用MATLAB Simulink 仿真软件MATLAB外部程序接口技术MATLAB应用实验篇和教学内容相配合包括15实验以帮助读者更好地上机操作。本书可作为高等学校理工科各专业大学生或研究生学习教材也可供广大科技工作者参考。 第1章MATLAB系统环境 1.1 MA TLAB概貌 1.1.1 MA TLAB 发展 1.1.2 MA TLAB 主要功能 1.1.3 MA TLAB功能演示 1.2 MA TLAB环境准备 1.2.1 MA TLAB 安装 1.2.2 MA TLAB 启动与退出 1.3 MA TLAB操作界面 1.3.1 主窗口 1.3.2 命令窗口 1.3.3 工作空间窗口 1.3.4 当前目录窗口和搜索路径 1.3.5 命令历史记录窗口 1.3.6 Stalt菜单 1.4 MA TLAB帮助系统 1.4.1 帮助命令 1.4.2 帮助窗口 1.4.3 演示系统 第2章MATLAB数据及其运算 2.1 MA TLAB数据特点 2.2 变量及其操作 2.2.1 变量与赋值 2.2.2 变量管理 2.2.3 数据输出格式 2.3 MA TLAB矩阵表示 2.3.1 矩阵建立 2.3.2 冒号表达式 2.3.3 矩阵拆分 2.4 MA TLAB数据运算 2.4.1 算术运算 2.4.2 关系运算 2.4.3 逻辑运算 2.5 字符串 2.6 结构数据和单元数据 2.6.1 结构数据 2.6.2 单元数据 第3章MATLAB矩阵分析与处理 3.1 特殊矩阵 3.1.1 通用特殊矩阵 3.1.2 用专门学科特殊矩阵 3.2 矩阵结构变换 3.2.1 对角阵与三角阵 3.2.2 矩阵转置与旋转 3.3 矩阵求逆与线性方程组求解 3.3.1 矩阵逆与伪逆 3.3.2 用矩阵求逆方法求解线性方程组 3.4 矩阵求值 3.4.1 方阵行列式值 3.4.2 矩阵秩与迹 3.4.3 向量和矩阵范数 3.4.4 矩阵条件数 3.5 矩阵特征值与特征向量 3.6 矩阵超越函数 第4章MATLAB程序设计 4.1 M文件 4.1.1 M文件分类 4.1.2 M文件建立与打开 4.2 程序控制结构 顺序结构、选择结构、循环结构 4.3 函数文件 4.4 程序调试 第5章MATLAB绘图 5.1 二维图形

最优化方法的Matlab实现(公式完整版)

第九章最优化方法的Matlab实现 在生活和工作中,人们对于同一个问题往往会提出多个解决方案,并通过各方面的论证从中提取最佳方案。最优化方法就是专门研究如何从多个方案中科学合理地提取出最佳方案的科学。由于优化问题无所不在,目前最优化方法的应用和研究已经深入到了生产和科研的各个领域,如土木工程、机械工程、化学工程、运输调度、生产控制、经济规划、经济管理等,并取得了显著的经济效益和社会效益。 用最优化方法解决最优化问题的技术称为最优化技术,它包含两个方面的内容:1)建立数学模型即用数学语言来描述最优化问题。模型中的数学关系式反映了最优化问题所要达到的目标和各种约束条件。 2)数学求解数学模型建好以后,选择合理的最优化方法进行求解。 最优化方法的发展很快,现在已经包含有多个分支,如线性规划、整数规划、非线性规划、动态规划、多目标规划等。 9.1 概述 利用Matlab的优化工具箱,可以求解线性规划、非线性规划和多目标规划问题。具体而言,包括线性、非线性最小化,最大最小化,二次规划,半无限问题,线性、非线性方程(组)的求解,线性、非线性的最小二乘问题。另外,该工具箱还提供了线性、

非线性最小化,方程求解,曲线拟合,二次规划等问题中大型课题的求解方法,为优化方法在工程中的实际应用提供了更方便快捷的途径。 9.1.1 优化工具箱中的函数 优化工具箱中的函数包括下面几类: 1.最小化函数 表9-1 最小化函数表 2.方程求解函数 表9-2 方程求解函数表

3.最小二乘(曲线拟合)函数 表9-3 最小二乘函数表 4.实用函数 表9-4 实用函数表 5.大型方法的演示函数 表9-5 大型方法的演示函数表

matlab用于计算方法的源程序

1、Newdon迭代法求解非线性方程 function [x k t]=NewdonToEquation(f,df,x0,eps) %牛顿迭代法解线性方程 %[x k t]=NewdonToEquation(f,df,x0,eps) %x:近似解 %k:迭代次数 %t:运算时间 %f:原函数,定义为内联函数 ?:函数的倒数,定义为内联函数 %x0:初始值 %eps:误差限 % %应用举例: %f=inline('x^3+4*x^2-10'); ?=inline('3*x^2+8*x'); %x=NewdonToEquation(f,df,1,0.5e-6) %[x k]=NewdonToEquation(f,df,1,0.5e-6) %[x k t]=NewdonToEquation(f,df,1,0.5e-6) %函数的最后一个参数也可以不写。默认情况下,eps=0.5e-6 %[x k t]=NewdonToEquation(f,df,1) if nargin==3 eps="0".5e-6; end tic; k=0; while 1 x="x0-f"(x0)./df(x0); k="k"+1; if abs(x-x0) < eps || k >30 break; end x0=x; end t=toc; if k >= 30 disp('迭代次数太多。'); x="0"; t="0"; end

2、Newdon迭代法求解非线性方程组 function y="NewdonF"(x) %牛顿迭代法解非线性方程组的测试函数 %定义是必须定义为列向量 y(1,1)=x(1).^2-10*x(1)+x(2).^2+8; y(2,1)=x(1).*x(2).^2+x(1)-10*x(2)+8; return; function y="NewdonDF"(x) %牛顿迭代法解非线性方程组的测试函数的导数 y(1,1)=2*x(1)-10; y(1,2)=2*x(2); y(2,1)=x(2).^+1; y(2,2)=2*x(1).*x(2)-10; return; 以上两个函数仅供下面程序的测试 function [x k t]=NewdonToEquations(f,df,x0,eps) %牛顿迭代法解非线性方程组 %[x k t]=NewdonToEquations(f,df,x0,eps) %x:近似解 %k:迭代次数 %t:运算时间 %f:方程组(事先定义) ?:方程组的导数(事先定义) %x0:初始值 %eps:误差限 % %说明:由于虚参f和df的类型都是函数,使用前需要事先在当前目录下采用函数M文件定义% 另外在使用此函数求解非线性方程组时,需要在函数名前加符号“@”,如下所示 % %应用举例: %x0=[0,0];eps=0.5e-6; %x=NewdonToEquations(@NewdonF,@NewdonDF,x0,eps) %[x k]=NewdonToEquations(@NewdonF,@NewdonDF,x0,eps) %[x k t]=NewdonToEquations(@NewdonF,@NewdonDF,x0,eps) %函数的最后一个参数也可以不写。默认情况下,eps=0.5e-6 %[x k t]=NewdonToEquations(@NewdonF,@NewdonDF,x0,eps)

层次分析法计算权重在matlab中的实现

信息系统分析与设计作业 层次分析法确定绩效评价权重在matlab中的实现 小组成员:孙高茹、王靖、李春梅、郭荣1 程序简要概述 编写程序一步实现评价指标特征值lam、特征向量w以及一致性比率CR的求解。 具体的操作步骤是:首先构造评价指标,用专家评定法对指标两两打分,构建比较矩阵,继而运用编写程序实现层次分析法在MATLAB中的应用。 通过编写MATLAB程序一步实现问题求解,可以简化权重计算方法与步骤,减少工作量,从而提高人力资源管理中绩效考核的科学化电算化。 2 程序在matlab中实现的具体步骤 function [w,lam,CR] = ccfx(A) %A为成对比较矩阵,返回值w为近似特征向量 % lam为近似最大特征值λmax,CR为一致性比率 n=length(A(:,1)); a=sum(A); B=A %用B代替A做计算 for j=1:n %将A的列向量归一化 B(:,j)=B(:,j)./a(j); end s=B(:,1); for j=2:n s=s+B(:,j); end c=sum(s);%计算近似最大特征值λmax w=s./c; d=A*w lam=1/n*sum((d./w)); CI=(lam-n)/(n-1);%一致性指标 RI=[0,0,0.58,0.90,1.12,1.24,1.32,1.41,1.45,1.49,1.51];%RI为随机一致

性指标 CR=CI/RI(n);%求一致性比率 if CR>0.1 disp('没有通过一致性检验'); else disp('通过一致性检验'); end end 3 案例应用 我们拟构建公司员工绩效评价分析权重,完整操作步骤如下: 3.1构建的评价指标体系 我们将影响员工绩效评定的指标因素分为:打卡、业绩、创新、态度与品德。 3.2专家打分,构建两两比较矩阵 A = 1.0000 0.5000 3.0000 4.0000 2.0000 1.0000 5.0000 3.0000 0.3333 0.2000 1.0000 2.0000 0.2500 0.3333 0.5000 1.0000 3.3在MATLAB中运用编写好的程序实现 直接在MATLAB命令窗口中输入 [w,lam,CR]=ccfx(A) 继而直接得出 d = 1.3035 2.0000 0.5145 0.3926 w = 0.3102 0.4691 0.1242 0.0966 lam =4.1687

计算方法及其MATLAB实现第一章作业

计算方法作业(作者:夏云木子) 1、help linspace type linspace 2、a1=[5 12 47;13 41 2;9 6 71];a2=[12 9;6 15;7 21];B=a1*a2, C=a1(:,1:2).*a2, D=a1.^2,

E=a1(:).^2 3、a1=[5 12 47;13 41 2;9 6 71];a2=[12 9;6 15;7 21];a1(4:5,1:3)=a2.';a1([4 5],:)=a1([5 4],:);b1=a1

c1=b1(4,1),c2=b1(5,3),D=b1(3:4,:)*a2 4、a1=[5 12 47;13 41 2;9 6 71]; E=eye(3,3); S = a1 + 5*a1' - E, S1=a1^3-rot90(a1)^2+6*E 5、a1=[5 12 47;13 41 2;9 6 71];s=5;A=s-a1,B=s*a1,C=s.*a1,D=s./a1,E=a1./s

6、c=[1 2 3 4;5 6 7 8;9 10 11 12;13 14 15 16];A=c^-4,B=(c^3)^-1,C=(3*c+5*c^-1)/5

7、a=[1 i 3;9i 2-i 8;7 4 8+i];A=a.' 8、abc=[-2.57 8.87;-0.57 3.2-5.5i];m1=sign(abc),m2=round(abc),m3=floor(abc) Sign为符号函数,round表示四舍五入取整,floor表示舍去小数部分取整

9、x=[1 4 3 2 0 8 10 5]';y=[8 0 0 4 2 1 9 11]';A=dot(x,y) 10、a=[3.82 5.71 9.62];b=[7.31 6.42 2.48];A=dot(a,b),B=cross(a,b) 11、P=[5 7 8 0 1];Pf=poly(P);Px=poly2str(Pf,'x') 12、P=[3 0 9 60 0 -90];K1=polyval(P,45),K2=polyval(P,-123),K3=polyval(P,579) 13、P1=[13 55 0 -17 9];P2=[63 0 26 -85 0 105];PP=conv(P1,P2);P1P2=poly2str(PP,'x'),[Q,r]=deconv(P2,P1)

MATLAB-语言及其用-实验(答案)

M A T L A B-语言及其用- 实验(答案) -CAL-FENGHAI.-(YICAI)-Company One1

《MATLAB 语言及其用》 实验指导书 目录

实验一 Matlab 使用方法和程序设计........................ 实验二控制系统的模型及其转换............................. 实验三控制系统的时域、频域和根轨迹分析...........实验四动态仿真集成环境-Simulink......................... 实验一Matlab使用方法和程序设计一、实验目的 1、掌握Matlab软件使用的基本方法; 2、熟悉Matlab的数据表示、基本运算和程序控制语句 3、熟悉Matlab绘图命令及基本绘图控制 4、熟悉Matlab程序设计的基本方法 二、实验内容: 1、帮助命令 使用help命令,查找 sqrt(开方)函数的使用方法; 在 CommandWindowL里输入help,接在在search里输入sqr即可。sqrt Square root Syntax B = sqrt(X) Description

B = sqrt(X) returns the square root of each element of the array X. For the elements of X that are negative or complex, sqrt(X) produces complex results. Tips See sqrtm for the matrix square root. Examples sqrt((-2:2)') ans = 0 + 1.4142i 0 + 1.0000i 1.0000 1.4142 See Also nthroot | realsqrt | sqrtm 2、矩阵运算 (1)矩阵的乘法 已知A=[1 2;3 4]; B=[5 5;7 8]; 求A^2*B A=[1 2;3 4];B=[5 5;7 8]; C=A^2*B >> format compact C = 105 115 229 251 (2)矩阵除法 已知 A=[1 2 3;4 5 6;7 8 9]; B=[1 0 0;0 2 0;0 0 3]; A\B,A/B A=[1 2 3;4 5 6;7 8 9];

相关文档
最新文档