电阻式触摸屏校准算法的研究与设计_谭翀

电阻式触摸屏校准算法的研究与设计_谭翀
电阻式触摸屏校准算法的研究与设计_谭翀

邮局订阅号:82-946360元/年技术创新

嵌入式系统应用

《PLC 技术应用200例》

您的论文得到两院院士关注

电阻式触摸屏校准算法的研究与设计

Research and design for Calibrating the Resistance Touch Screen

(武汉数字工程研究所)

谭翀

TAN Chong

摘要:本文介绍电阻式触摸屏的基本结构和工作原理,分析常用的几种触摸屏校准算法,并且给出了在嵌入式Linux 操作系统中,基于MiniGUI 的触摸屏三点校准算法,经测试表明,该算法具有较高的校准精度。关键词:触摸屏;校准;MiniGUI

中图分类号:TP368.1文献标识码:A

Abstract:This paper firstly introduces the structure and principle of the resistance touch screen,and analyzes several kinds of calibration algorithms.It actualizes a three point calibration algorithm based on MiniGUI,and the testing results show good precision of it.Key words:Touch screen;calibration;MiniGUI

文章编号:1008-0570(2010)06-2-0035-03

1引言

在多媒体信息化飞速发展的今天,触摸屏作为一种新的电

脑输入设备,凭借其简单、

方便、自然的人机交互方式,成为目前极富吸引力的多媒体交互设备,被广泛的应用在电信、税务、银行、电力等部门的业务查询应用中,还深入到了城市信息服务、企业管理、工业控制、军事指挥、多媒体教学、娱乐等众多领域中。

触摸屏是一种高新技术产品,具有坚固耐用、反应速度快、节省空间、易于交流等许多优点。用户只要用手指轻轻地碰计算机显示屏上的图符或文字就能实现对主机操作,从而使人机交互更为直截了当,这种技术大大方便了那些不懂电脑操作的用户。市场上较为常见的触摸屏产品有四种:初期的红外线触摸屏、电容型触摸屏、电阻型式触摸屏和表面声波触摸屏,其中电阻式触摸屏是应用得较多的一种。本文主要研究电阻式触摸屏的校准算法,并给出了一种基于MiniGUI 的校准算法设计。

2电阻式触摸屏的工作原理

简单来说,电阻式触摸屏就是一种传感器,它利用压力感应进行控制,将矩形区域中触摸点(X,Y)的物理位置转换为代表X 坐标和Y 坐标的电压。电阻式触摸屏的主要部分是一块与显示器表面非常配合的电阻薄膜屏,这是一种多层的复合薄膜,它以一层玻璃或硬塑料平板作为基层,表面涂有一层导电层(透明的导电电阻),上面再盖一层经过硬化处理、光滑防擦的塑料层、它的内表面也涂有一层透明导电层层,在他们之间有许多细小的(小于1/1000英寸)的透明隔离点把两层导电层隔开绝缘。当手指触摸屏幕时,两层导电层在触摸点位置就有了接触,电阻发生变化,其中一面导电层接通Y 轴方向的5V 均匀电压场,使得侦测层的电压由零变为非零,控制器侦测到这个接通后,进行A/D 转换,并将得到的电压值与5V 相比即可得触摸点的Y 轴坐标,同理也能得出X 轴的坐标,然后再根据模拟鼠标的方式运作。这就是所有电阻技术触摸屏共同的最基本原理。

由压力感应得到坐标值的并不能达到100%的精度,它存在

着误差,其中最主要的误差源是电气噪声、机械误差及放大因子。在触摸屏中,由于A/D 转换器的前端电路具有高输入阻抗,因此特别容易受到电气噪声的影响;触摸屏本身电阻材料的均匀性以及模拟电子开关的内阻和A/D 转换器自身的转换精度会影响直接最后计算出的坐标值;用户接触触摸屏的部分于触摸屏真正对应的点的集合之间具有放大关系。由电气噪声所产生的干扰误差是随机的,而另外两方面所带来的误差是固有误差。此外,操作者的误操作也会有所影响,如手指或铁笔按压时间不够长或压力不够大等。

由于误差的存在,在触摸屏上所绘制的图形和液晶屏上的图形,对应点的集合会有所偏差。在触摸屏上点击某一按钮或选择某项功能时,内置的软件便无法对触摸屏上的点击做出正确响应,而触摸屏具有离散性,任意两个触摸点密度都不能完全一致,所以几乎所有带阻性触摸屏的设备在出厂前均要经过一定的校准。校准是一种图形重建的过程,即将图形经过变换,换算出与液晶屏相一致的点集合,现有的校准算法主要是用来改善上述中的固有误差。

图1电阻式触摸屏结构

3触摸屏校准算法的基本原理

由于电阻式触摸屏的电压成线性均匀分布,那么A/D 转换后的坐标也成线性,因此现有的触摸屏校准算法也都基于此原理。触摸屏的校准方法大致有两点校准、三点校准、五点校准等。其中校准的点数越多,触摸屏的数据越精确,其校准算法也各有不同。

3.1两点校准法

两点校准法即为取触摸屏成对角线的两个点来校准触摸

谭翀:软件工程师硕士

35--

技术创新

《微计算机信息》(嵌入式与SOC)2010年第26卷第6-2期

360元/年邮局订阅号:82-946

《现场总线技术应用200例》

嵌入式系统应用

屏。下面以取触摸屏左上角和右下角这两个点为例进行说明。

1)先触摸并获取触摸屏左上角坐标(lefttopx,lefttopy)。

2)再触摸并获取触摸屏右下角坐标(rightbottomx,rightbotto -my)。

3)计算触摸屏在水平方向和垂直方向的比率ratiox=(rightbottomx-lefttopx)/触摸屏宽度ratioy=(rightbottomy-lefttopy)/触摸屏高度4)假设触摸屏当前点的坐标为(X,Y)当前点X 坐标=X*ratiox+lefttopx 当前点Y 坐标=Y*ratioy+lefttopy 3.2三点校准法

触摸屏常和点阵式液晶显示(LCD)屏叠加在一起配套使用,构成一个矩形的实际物理平面;而由用户触摸的触摸点集合经过A/D 转换器,得到具体显示坐标的集合,这个集合构成了一个逻辑平面。由于存在误差,这两个平面并不重合,校准的作用就是要将逻辑平面映射到物理平面上,即得到触点在液晶屏上的位置坐标。校准算法的中心思想也就是要建立这样一个映射函数。

现有的校准算法大多是基于线性校准,即首先假定物理平面和逻辑平面之间的误差是线性误差,由旋转和偏移形成。如果已知触摸屏上一点A,其物理坐标为,相应的显示坐标为

,根据假定的线性关系,可以得到:

只要能够求得线性变换的参数,就可以通过等式(1)来校正从触摸屏驱动程序那里得来的显示坐标。显然,要求得的值,至少需要知道三个点的坐标。那么在触摸屏上取三个点(注意不要取边界点,并且三点的覆盖面要大),设物理坐标和显示坐标分别为和

,可以得到方程组:

通过高斯消去法,可得:

3.3五点校准法

假设将触摸屏左下角点定为物理坐标原点A,其物理坐标为(X a =0,Y a =0),其逻辑坐标为(XL a ,YL a ),那么触摸屏上任意一点B 的逻辑坐标可表达为:

(1)

其中K x 、K v 分别为触摸屏X 轴方向与Y 轴方向的系数。该系数与触摸屏具体的安装方向和其自身的特性有关。

若A 点并非坐标原点,而是任意一点,则式(1)可表达为:

(2)

由式2可以推出计算触摸屏X 轴方向与Y 轴方向系数的公式:

(3)

在触摸屏上选择位置固定的五个点,由于触摸屏边缘区域的线性不太好,应避免选择靠边的点。如图2所示。

图2五点校准法示意图

在ABCDE 对应的位置用尖状物触摸,得到五个点的逻辑坐标。根据式(3)可计算出X 轴方向和Y 轴方向系数的平均值:(4)

根据C 点的逻辑坐标,通过式(2),可得出触摸屏上任意一点F 的逻辑坐标:

(5)

4基于MiniGUI 的校准算法实现

MiniGUI 是面向实时嵌入式系统的轻量级图形用户界面支持系统,它提供了完善的图形及图形用户界面支持,具有优良的可移植性能,不论在哪个硬件平台、哪种操作系统上运行,均能为上层应用程序提供一致的应用程序编程接口(API)。目前,MiniGUI 已成为跨操作系统的图形用户界面支持系统,可以在Linux/uClinux 、eCos 、uC/OS-II 、VxWorks 等操作系统上运行,已验证的硬件平台包括Intel x86、ARM(ARM7/AMR9/StrongARM/xS -cale)、PowerPC 、MIPS 、M68K(DragonBall/ColdFire)等。MiniGUI 自

1999年发布第一个版本以来,已广泛应用于手持信息终端、

机顶盒、工业控制系统及工业仪表、金融终端等产品和领域。

本文是在嵌入式Linux 系统中,实现基于MiniGUI 的触摸屏校准程序。

从尽量降低校准运算的复杂度和尽量提高校准算法的精确度考虑,本项目选取三点校准法。校准程序在触摸屏上依次显示三个校准点,通过触摸笔点击获取三个点的物理和逻辑坐标,然后计算得出6个校准系数,并将这六个系数保存在触摸屏的非易失性Flash 存储器里。触摸屏上电后,用户可根据需要自行决定是否对触摸屏进行校准,若不进行校准,当进入该触摸屏的应用程序时,立即读出这六个系数的值,然后根据3.2小节中的等式(1)来对任一来自驱动程序的坐标值进行校准,得到用户界面的显示坐标。若进行校准,则运行校准程序,通过校准步骤可重新计算出校准系数,并保存到触摸屏的Flash 中。

36--

邮局订阅号:82-946360元/年技术创新

嵌入式系统应用

《PLC 技术应用200例》

您的论文得到两院院士关注校准程序流程图如图3所示。

图3校准程序流程图

5校准测试

5.1测试环境

触摸屏校准算法的测试环境:基于S3C44B0X 的ARM7开发板,外接五线电阻式触摸屏和640×480象素16级灰度液晶屏,使用嵌入式Linux 操作系统及MiniGUI 图形显示系统,触摸屏与调试用PC 机通过串口连接。

5.2测试方法与结果

首先通过调用MiniGUi 中相应的图形处理函数,在触摸屏的A(80,80),B(450,230),C(240,380)3点位置均显示“+”,液晶屏左上角为坐标原点,用笔依次点击这三个点,获得触摸屏对应的坐标值为A ’(635,628),B ’(2263,998),C ’(1321,2351),将其代入3.2小节中的计算公式,可计算出校准系数如下:K 1=3.412,K 2=3.871,k 3=12.242,k 4=3,413,k 5=3.571,k 6=3.041。并将这些校准系数存储在触摸屏的Flash 中。

然后在触摸屏的D(80,180),E(400,200),F(250,380)3点位置均显示“+”,并通过读取Flash 中的校准系数对触摸屏实行校准,考虑到可能会有突发性脉冲干扰会使得校准产生一些偏差,所以采用多次点击上述三点进行采样的办法,来观察校准的效果。

表1触摸屏校准数据比较

可见,通过三点校准法校准后,数据精度得到了很大的提高。

6结束语

校准是目前电阻式触摸屏系统的必须步骤,本文介绍了触摸屏校准的基本原理,并给出了嵌入式linux 系统下,基于MiniGUI 的校准程序的实现方法。试验证明,该校准算法具有较高的校准精度,能够适用于各种电阻式触摸屏的应用。

本文作者创新观点:本文在嵌入式Linux 操作系统及MiniGUI 图形显示系统中实现了触摸屏的三点校准算法,试验证明该校准算法具有较高的校准精度。参考文献

[1]崔如春,谭海燕.电阻式触摸屏的坐标定位与笔画处理技术[J].仪表技术与传感器,2004,(8):49-50

[2]王丁,闫瑶,张廷宇.触摸屏校准的一种通用算法[J].自动化技术与应用,2008,27(2):116-118

[3]徐杨,乔卫民,赵中.基于AT91RM9200的触摸屏驱动及三点校正算法[J].微计算机信息,2007,2-2:73-74

[4]冯国进.嵌入式Linux 驱动程序设计从入门到精通.北京:清华大学出版社,2005

[5]uC/GUI User Datasheet,Micrium,2002

作者简介:谭翀(1980-),男(汉族),湖南人,湖北武汉数字工程研究所软件部软件工程师,硕士,毕业于中南大学信息科学与工程学院,计算机软件与理论专业,从事智能信息处理技术以及嵌入式软件的研发工作。

Biography:TAN Chong (birth 1980-),Male (the Han nationality),Hunan,Working at Wuhan Digital Engineering Institute,Software engineer,Master,Major is computer software and theory,and Re -search area are intelligent information process technique and em -bedded software R&D.

(430074武汉武汉数字工程研究所)谭翀

(Wuhan Digital Engineering Institute,Wuhan,430074,China)TAN Chong

通讯地址:(430074武汉市珞瑜路718号武汉数字工程研究所软件部)谭翀

(收稿日期:2009.07.06)(修稿日期:2009.10.06)

(上接第50页)

为了更加充分的利用LM3S1138丰富的外设和优异的性能,还可以结合变压器、断路器等电气设备,设计成综合性的电气设备在线监测系统,将会有广泛的应用前景。

本文作者的创新点:设计了基于ARM 的避雷器状态实时监测记录仪,实现了对多路避雷器状态的实时监测,便于电气设备的综合自动化管理。参考文献

[1]Wong K.Electromagnetic Emission Based Monitoring Technique for Polymer ZnO Surge Arresters.IEEE Transactions on Dielectrics &Electrical Insulation.February 2006;13(1):181-190.

[2]Schoene J,Uman M,Rakov V,et al.Direct Lightning Strikes to Test.Power Distribution Lines —Part II:Measured and Modeled Current Division Among Multiple Arresters and Grounds.IEEE Transactions on Power Delivery.October 2007;22(4):2245-2253.[3]石云,张素文.Flash Memory 作为数据存储器在E5中的应用[J].微计算机信息,2007(35):108-109,43.

作者简介:胡超(1986-),男,湖北公安人,硕士,研究方向:嵌入式系统及测控技术;陈新岗(1968-),男,硕士,副教授。研究方向:高压电器、电力系统在线监测及过电压、信号采集与信号处理、机床电气等方面的科研和教学工作。

Biographyn:HU Chao (1986-),male,Gongan Hubei,Master.Main research interests:embedded system,detecting and control technology.

(400054重庆理工大学)胡超陈新岗郑方燕武亮(Chongqing University of Technology,400054,China)

HU Chao CHEN Xing-gang ZHENG Fang-yan WU Liang 通讯地址:(400054重庆理工大学机械检测技术与装备教育部工程研究中心)胡超

(收稿日期:2009.07.13)(修稿日期:2009.10.13)

37--

电阻式触摸屏的硬件接口电路与校准算法

收稿日期:2011-01-16 作者简介:谭翠兰(1981 ),女,湖北潜江人,实验员,硕士,主要从事单片机与嵌入式系统研究. 电阻式触摸屏的硬件接口电路与校准算法 谭翠兰,何立言 (江汉大学物理与信息工程学院,湖北 武汉 430056) 摘 要:介绍了触摸控制芯片AD S 7843的基本工作原理及其与单片机的接口电路设计,给出了触摸屏的坐标变换及校准算法,并用数据证明了此算法的可行性.采用M SP 430单片机作主控芯片,液晶采用武汉中显分辨率为800 480的7寸触摸屏,验证了该校准算法在实际应用中的效果. 关键词:触摸屏;坐标变换;校准;AD S 7843 中图分类号:TP 334.3 文献标志码:A 文章编号:1673 0143(2011)02 0019 03 0 引言 在便携式电子产品及工业产品的设计中,触摸屏由于其轻便、占用空间少、方便灵活等优点越来越受到设计师及用户的青睐.触摸屏可作为模拟键盘,使用起来比普通键盘灵活,因为键的位置可根据需要进行改变,并且省去了按键所占用的空间. 1 电阻式触摸屏与M CU 的接口电路 电阻式触摸屏有4线、5线等多种类型,其原理基本相似.本文以4线电阻式触摸屏为例,图1给出了屏与ADS 7843的接口原理图.4线电阻式触摸屏是由两个透明电阻膜构成的,电阻在X 方向及Y 方向呈线性分布, 4条线分别接至 ADS 7843的X +、Y +、X -、Y -口线.当屏被触摸时,两层导电层在触摸点相接触,电阻发生变化.ADS 7843是一款专为触摸屏设计的带SPI 接口的12位AD 转换器,内部含模拟电子开关和逐次比较型AD 转换器.当要采样Y 方向的AD 值时,通过将Y +、Y -端施加电压,将X +送入AD 转换器得到Y 方向的AD 值;同理可得X 方向的AD 值.而这些转换均由M C U 通过SPI 方式向ADS 7843发送命令来完成.以M SP 430F 149单片机为例,DCLK 、D I N 、DOUT 接至单片机的SPI 口,DCLK 为外部时钟输入;CS 为片选信号,低有效;DI N 为串行数据输入端;DOUT 为串行数据输 出端;BUSY 为忙信号;PEN I RQ 为中断接收引脚.M SP 430F 149单片机的P 1口和P 2口均为具有中断能力的I/O 口,可接至其中任一口线,且该脚通过上拉电阻接到VCC ,当屏未被触摸时,该引脚为高电平,一旦被触摸,该引脚由高电平变为低电平,向单片机发出中断请求 [1] .单片机通过 SPI 方式向触摸芯片发送命令,可读取当前点的X 方向及Y 方向的12位AD 值.该值与笔触点位置成近似线性关系,因此单片机读出的X 和Y 值便能描述笔触点在屏上的位置. 图1 单片机与触摸芯片接口电路 2 消除误差的方法 读取的坐标值的精度受几个因素的影响,分别是触摸屏本身电阻材料的均匀性,ADS 7843模拟电子开关的内阻和AD 转换器自身的转换精度, AD 转换时所引入的噪声干扰.前两种情况产生的误差是固有的,针对第三种情况产生的误差可在硬件设计时做如下处理:布PCB 板时,在电源引 第39卷 第2期江汉大学学报(自然科学版)V o.l 39 N o .2 2011年6月J .Ji anghan U niv .(N at .Sc.i Ed .)Jun .2011

电容式触摸屏与电阻式触摸屏的对比

计算机图形技术 实 验 报 告 学院电子信息工程学院年级一年级 班级信号与信息处理学号P1******* 姓名戈小娟 2012 年9 月23 日

一、实验目标 了解电阻式触摸屏与电容式触摸屏,激光打印机的基本工作原理,并对电阻式触摸屏与电容式触摸屏的优缺点有着基本的认识。 二、实验内容 电阻式触摸屏的原理: 触摸屏包含上下叠合的两个透明层,四线和八线触摸屏由两层具有相同表面电阻的透明性材料组成,五线和七线触摸屏由一个阻性层和一个导电层组成,通常还要用一种弹性材料来将两层隔开。当触摸屏表面受到的压力(如通过笔尖或手指进行按压)足够大时,顶层和底层之间会产生接触。所有的电阻式触摸屏都采用分压器原理来产生代表X坐标和Y坐标的电压。分压器是通过将两个电阻进行串联来实现的。上面娿电阻R1连接正参考电压VREF,下面的电阻R2接地。两个电阻连接点处的电压测量值与下面那个电阻的阻值成正比。 为了在电阻式触摸屏上的特定方向测量一个坐标,需要对一个阻性层进行偏置:将它的一边接VREF,另一边接地,同时,将未偏置的那一层连接到一个ADC的高阻抗输入端。当触摸屏上的压力足够大,使两层之间发生接触时,电阻性表面背分隔为两个电阻。它们的阻值与触摸点到偏置边缘的距离成正比。触摸点与接地边之间的电阻相当于分压器中下面的那个电阻。 因此,在未偏置层上测得的与触摸点到接地边之间的距离成正比。如图1所示。 电阻式触摸屏的优缺点: 优点:它的屏和控制系统都比较便宜,反应灵敏度也很好,而且不管是四线电阻式触摸屏还是五线电阻触摸屏,它们都是一种对外界完全隔离的工作环境,不怕灰尘和水汽,能适应各种恶劣的环境。它可以用任何物体来触摸,稳定性能较好。 缺点:它的外层薄膜容易被划伤导致触摸屏不可用,多层结构会导致很大的光损失,对于手持设备通常需要加大背光源来弥补透光性不好的问题,但这样会增加电池消耗。

电阻式触摸屏校准算法分析

电阻式触摸屏校准算法分析 <一> 算法分析 电阻式触摸屏在X,Y坐标方向上是线性的,比如S32采用的触摸屏,理论上Xmin=0,Xmax=1023,Ymin=0,Ymax=1023。但是实际的触摸屏,往往是xmin>0,xmax<1023,ymin>0,ymax<1023。所以就需要校准。 此文讨论的校准算法,其原理就是利用触摸屏的线性特性,针对被校准的触摸屏,获取其真正的x,y的范围,即xmin,ymin,xmax,ymax将其记录下来。以后当触摸事件发生,将触摸屏报告的原始坐标(x,y)按比例投射到0~1023的坐标上即可。注意,TP与LCD在相同的坐标方向上,具有相似性,即比例一致性。 看看对原始坐标的处理: If (xxmax) x=xmax-xmin; Else x=1023*(x-xmin)/(xmax-xmin); If (yymax) y=ymax-ymin; Else y=1023*(y-ymin)/(ymax-ymin); 可见,对原始坐标,先减去一个0位置的偏移量(x-xmin),然后求得它X范围上的比率((x-xmin)/(xmax-xmin)),再乘以1023,就得到了投射到(0~1023)上的坐标。 再看看校准算法。在以下的讨论中,所谓物理坐标,指触摸屏上的坐标PT;所谓逻辑坐标,指LCD上的坐标PL。LCD的宽度(W)对应TP的X方向,LCD的高度(H)对应TP的Y方向。 通过点击三个校准点Po(x,y),Px(x,y),Py(x,y),我们能得到图中内层方框的X,Y的物理坐标范围,即Xm = Px.x – Po.x Ym = Py.y – Po.y 将此图投射到LCD上,有如下(物理值->逻辑值)的对应关系:Xl->Lwl,Xm->Lwm,Xr->Lwr,Yb->Lhb,Ym->Lhm,Yt->Lht。根据TP与LCD的比例一致性,可以这样计算得到Xl,Xr,Yb,Yt: Xl = (Xm/ Lwm) * Lwl Xr = (Xm/ Lwm) * Lwr Yb = (Ym/Lhm) * Lhb Yt = (Ym/Lhm) * Lht 于是我们的目的达到了: x范围:xmin = Po.x – Xl xmax = Px.x + Xr y范围:ymin = Po.y – Yb ymax = Py.y + Yt <二> 代码实现

电容式触摸屏设计要求规范精典

电容式触摸屏设计规 【导读】:本文简单介绍了电容屏方面的相关知识,正文主要分为电子设计和结构设计两个部分。电子设计部分包含了原理介绍、电路设计等方面,结构设计部分包好了外形结构设计、原料用材、供应商工艺等方面 【名词解释】 1. V.A区:装机后可看到的区域,不能出现不透明的线路及色差明显的区域等。 2. A.A区:可操作的区域,保证机械性能和电器性能的区域。 3. ITO:Indium Tin Oxide氧化铟锡。涂镀在Film或Glass上的导电材料。 4. ITO FILM:有导电功能的透明PET胶片。 5. ITO GALSS:导电玻璃。 6. OCA:Optically Clear Adhesive光学透明胶。 7. FPC:可挠性印刷电路板。 8. Cover Glass(lens):表面装饰用的盖板玻璃。 9. Sensor:装饰玻璃下面有触摸功能的部件。(Flim Sensor OR Glass Sensor) 【电子设计】 一、电容式触摸屏简介 电容式触摸屏即Capacitive Touch Panel(Capacitive Touch Screen),简称CTP。根据其驱动原理不同可分为自电容式CTP和互电容式CTP,根据应用领域不同

可分为单点触摸CTP和多点触摸CTP。 1、实现原理 电容式触摸屏的采用多层ITO膜,形成矩阵式分布,以X、Y交叉分布作为电容矩阵,当手指触碰屏幕时,通过对X、Y轴的扫描,检测到触碰位置的电容变化,进而计算出手指触碰点位置。电容矩阵如下图1所示。 图1 电容分布矩阵 电容变化检测原理示意简介如下所示: 名词解释: ε0:真空介电常数。 ε1 、ε2:不同介质相对真空状态下的介电常数。 S1、d1、S2、d2分别为形成电容的面积及间距。

四线电阻式触摸屏

四线电阻式触摸屏 工作原理: 四线电阻式触摸屏是电阻式家族中应用最广、最普及的一种。其结构由下线路(玻璃或薄膜材料)导电ITO层和上线路(薄膜材料)导电ITO层组成。中间有细微绝缘点隔开,当触摸屏表面无压力时,上下线路成开路状态。一旦有压力施加到触摸屏上,上下线路导通,控制器通过下线路导电ITO层在X坐标方向上施加驱动电压,通过上线路导电ITO层上的探针,侦测X方向上的电压,由此推算出触点的X坐标。通过控制器改变施加电压的方向,同理可测出触点的Y坐标,从而明确触点的位置。 规格参数: 电路等级:5V DC,35mA 表面硬度:3H 透光率:薄膜对薄膜型>77% 薄膜对玻璃型>83% 敲击寿命:大于一百万次 笔划寿命:大于十万次 触点抖动时间:<5ms 分辨率:4096*4096 线性<1.5% (特殊需求可<1.0%) 操作压力:10g ~100g 操作温度:-10 o C ~+60 o C 储存温度:-20 o C ~+70 o C 玻璃厚度:0.7mm,1.1mm,2.0mm,3.0mm 玻璃种类:普通玻璃,化学强化玻璃 性能特点: ?性能可靠,经济实用,应用广泛。 ?能够识别任何接触介质如手指(带手套或不带)、笔、信用卡等的输入信号。 ?引出线采用FPC(柔性线路板材料)比其它生产商使用的PET材料电阻值小,柔韧性好。 ?线路绝缘点小,视觉效果佳,目前我们可做到最小的绝缘点是Φ 0.035mm,远远领先 其它厂商。 ?触摸屏表面有亮面、雾面、防眩、消光、防牛顿环等多种材料和工艺供选择。 标准品尺寸:2.8"至21"各种规格(物理尺寸可到下载空间下载)。

五线电阻触摸屏 工作原理: 五线触摸屏的结构与四线电阻式类似,也有下线路(玻璃或薄膜材料)导电ITO层和上线路(薄膜材料)导电ITO层。五线触摸屏的工作原理与四线电阻式不同的是:五线式的X和Y 方向上的驱动电压均由下线路的ITO层产生,而上线路层仅仅扮演侦测电压探针的作用。即便上线路薄膜层被刮伤或损坏,触摸屏也能正常工作,所以五线电阻式的使用寿命远比四线式的长。 规格参数: 电路等级:5V DC,35mA 表面硬度:3H 透光率:薄膜对薄膜型>77% 薄膜对玻璃型>83% 敲击寿命:大于三千五百万次 笔划寿命:大于五百万次 触点抖动时间:<5ms 分辨率:4096*4096 线性<1.5% (特殊需求可<1.0%) 操作压力:10g ~100g 操作温度:-10 o C ~+60 o C 储存温度:-20 o C ~+70 o C 玻璃厚度:0.7mm,1.1mm,2.0mm,3.0mm 玻璃种类:普通玻璃,化学强化玻璃 性能特点: ?性能稳定、经久耐用、触摸寿命可达三千五百万次。 ?能够识别任何接触介质如手指(带手套或不带)、笔、信用卡等的输入信号。 ?引出线采用FPC(柔性线路板材料)比其它生产商使用的PET材料电阻值小,柔韧性好。 ?线路绝缘点小,视觉效果佳,目前我们可做到最小的绝缘点是Φ 0.035mm,远远领先 其它厂商。 ?触摸屏表面有亮面、雾面、防眩、消光、防牛顿环等多种材料和工艺供选择。 标准品尺寸:5.8"至21"各种规格(物理尺寸可到下载空间下载)。

电阻触摸屏的驱动软件安装和校正

? Part 10. 装配程序 1. 连接控制卡与电阻屏 2. 通过USB 接口或者RS232接口将控制器连接到主机上。 3. 连接控制器至5VDC 电源。(USB接口可提供5VDC 电源。另外,键盘 和鼠标接口也可为RS232控制器提供5V电源。) 4. 安装与操作系统匹配的触摸驱动程序。(windows XP, 2K等等。) ? Part 11.安装驱动程序 1. 现有的驱动系统 驱动可以从网上下载或者CD光盘上获得 Windows 2000 (家用和个人用版本都可以) Windows XP (家用和个人用版本都可以) Windows 2003 服务器 Windows Vista Windows 2008 服务器 Windows CE 5.0 & 6.0 Linux 2. 驱动安装及触摸系统校准指南: A. 请先将电阻式触摸屏、控制器、电脑用正确的电缆线连接。 B. 插入驱动程序CD C. 根据指示完成驱动程序在Windows 2000/XP如下的安装: 在双击Setup.exe文件,以启动软件驱动程序的安装。然后,安装程序将引导用户完成软件安装。

按Next按钮继续安装,然后,一个新的对话框中出现如下, 这个对话框提示用户是否安装使用PS/2接口的触摸屏。 因为我们现在的新产品已经不采用PS/2接口,因此请不要选择。取消选中此复选框,按Next的按钮,继续安装。然后,新的对话框显示如下,

此处,可以选择是否自动运行4点校准。如果用户需要每次Windows系统启动都自动运行4点校准,请选择“Every system boot up”;如果用户需要安装过后下一次启动后,自动运行一次4点校准,请选择“Next system boot up”;如果用户不需要自动运行4点校准,而是在需要的时候手动运行4点校准,请选择“None”。最后请按NEXT 的按钮,继续安装。此时安装程序会弹出一个消息框以提示 请用户再次确认USB控制卡与系统的USB连接口连接正确,这样安装程序才能正确安装驱动。然后,只需按下确定继续

电容式触摸屏设计规范精典

电容式触摸屏设计规范【导读】:本文简单介绍了电容屏方面的相关知识,正文主要分为电子设 计和结构设计两个部分。电子设计部分包含了原理介绍、电路设计等方面,结构设计部分包好了外形结构设计、原料用材、供应商工艺等方面 【名词解释】 1. V.A区:装机后可看到的区域,不能出现不透明的线路及色差明显的区域等。 2. A.A区:可操作的区域,保证机械性能和电器性能的区域。 3. ITO:Indium Tin Oxide氧化铟锡。涂镀在Film或Glass上的导电材料。 4. ITO FILM:有导电功能的透明PET胶片。 5. ITO GALSS:导电玻璃。 6. OCA:Optically Clear Adhesive光学透明胶。 7. FPC:可挠性印刷电路板。 8. Cover Glass(lens):表面装饰用的盖板玻璃。 9. Sensor:装饰玻璃下面有触摸功能的部件。(Flim Sensor OR Glass Sensor) 【电子设计】 一、电容式触摸屏简介 电容式触摸屏即Capacitive Touch Panel(Capacitive Touch Screen),,根据应CTP和互电容式CTP。根据其驱动原理不同可分为自电容式CTP简称. 用领域不同可分为单点触摸CTP和多点触摸CTP。 1、实现原理 电容式触摸屏的采用多层ITO膜,形成矩阵式分布,以X、Y交叉分布作为电容矩阵,当手指触碰屏幕时,通过对X、Y轴的扫描,检测到触碰位置的电容变化,进而计算出手指触碰点位置。电容矩阵如下图1所示。 1 电容分布矩阵图 电容变化检测原理示意简介如下所示:名词解释::真空介电常数。ε0 ε2:不同介质相对真空状态下的介电常数。ε1 、d2S2d1S1、、、分别为形成电容的面积及间距。

五线电阻式触摸屏工作原理

五线电阻式触摸屏工作原理 在讲述五线触摸屏工作原理之前先回顾一下四线电阻式触摸屏的工作原理,四线的结构图如图一所示,触摸屏的四边为两组平行的电极,分别在菲林和玻璃上面,当在Rx 两端加 图一:四线电阻式触摸屏工作原理 电压0V 时,触摸中间一点,那么这一点的电压相应为: 1012 Rx Vx V Rx Rx =+; 同理在Ry 两端加上0V 时,10 12y Ry V V Ry Ry =+ 这样就可以判断出触摸点的位置。五线的工作原理与四线的相同,也是通过判断触摸点的电压来判断触摸点的位置,在四线中由于电极的电阻很小(<1Ω),这时可以忽略电极的电阻,从理论上讲(ITO 面均匀,电极电阻为0),四线的线性度<<1%,由于菲林上ITO 的稳定性比玻璃的差,且其容易发生断裂,所以四线的线性型只能保证在1.5%的范围之内。五线电阻式触摸屏工作时,电压加在玻璃上的四个角(UL 、UR 、DL 、DR ),当UL 与UR 图二:五线电阻式触摸屏结构

同时为5v时,DL与DR同时为0v,这时要使测得的位置很准,就需要减小UL与UR之间电极的电阻,同时测X轴的位置时需要减小UL与DL之间电极的电阻,这样玻璃上的电极就类似与菲林上的电极,但由于电极电阻很小,于是丝印时会使其不均匀且会使得触摸屏工作时的电流过大。那么,可以适当的增加电极的电阻,通过模拟可以知道,当电极电阻增加后会出现图三所示的扭曲。 图三:电极电阻与线性度的关系 在设计五线电阻式触摸屏的电极时采用了如下的方案,如图四所示。 图四:五线电阻式触摸屏电极图 通过EWB软件模拟可以知道,当电极电阻的取值为发生变化时,触摸屏的线性度是不一样的,于是可以确定一个电阻值使图三中的a线的电压差<1.3%,这时b、c、d三条线的电压差也<1.3%。 在图四中主要采用了两种电极结构,如图五所示。

5点触摸屏校正

电阻技术触摸屏的校正算法及应用编程设计(转) (2008-10-29 10:50:25) 转载 分类:学习 标签: 触摸屏 1前言 触摸屏越来越多的应用于国民生产的各个领域用来实现手写输入、查询、控制等,这些触摸屏多被装在显示器(CRT)或液晶(LCD)上,触摸屏的种类也越来越多,有矢量压力传感技术触摸屏、电阻技术触摸屏、电容技术触摸屏、红外线技术触摸屏、表面声波技术触摸屏等等,这些触摸屏都各有优缺点,介绍的文章很多,笔者就不在这里赘述了。本文主要介绍安装在LCD上的电阻技术触摸屏的校正原理、算法及其编程应用设计。 2触摸屏的校正原理 2.1概述 众所周知,基于电阻技术触摸屏分为四线电阻触摸屏、五线电阻触摸屏或更多线电阻触摸屏,但无论哪一类电阻触摸屏都有一个最大共性:电压成线性均匀分布。正是由于这一特性使得触摸屏的校正和使用非常方便。说到触摸屏的校正,也许有人会问触摸屏为什么还要校正呢?我们知道,触摸屏本身性能多少会有些差异,在LCD或CRT上安装时位置也难免会存在偏差,再加上使用一段时间后,触摸屏的性能参数也有可能发生改变,那么,我们在使用不同的触摸屏时,即便是在显示屏幕上的同一位置触摸也很难保证得到相同的触摸坐标。这样一来编程人员就很难用相同的程序来管理、控制触摸屏。正是基于此原因,我们才引入校正的概念,以便让使用触摸屏设备的编程人员能用统一的程序来管理触摸屏。 2.2 五点法校正触摸屏 2.2.1物理坐标和逻辑坐标 为了方便理解,我们首先引入2个概念,坐标和逻辑坐标。物理坐标就是触摸屏上点的实际位置,我们通常以液晶上点的个数来度量。逻辑坐标就是触摸屏上这一点被触摸时A/D转换后的坐标值。如下图,我们假定液晶最左下角为坐标轴原点A,我们在液晶上再任取一点B(十字线交叉中心),B在X方向距离A 10个点,在Y方向距离A 20个点,那么我们就说液晶上B点所正对的解摸屏上这一点的物理坐标为(10,20)。如果我们触摸这一点时得到的X向A/D转换值为100,Y向A/D,转换值为200,我们就说这一点的逻辑坐标为(100,200)。 2.2.2逻辑坐标的计算 由于电阻式触摸屏的电压成线性均匀分布,那么A/D转换后的坐标也成线性。假如我们将液晶最左下角点对应的解摸屏上的点定为物理坐标原点A其物理

关于四线电阻触摸屏与五线电阻屏的小区别

关于四线电阻触摸屏与五线电阻屏的小区别 随着触摸应用技术的日益普及,多点触控已经日渐成为市场新焦点, 无论使用者是否真有多点需求, 许多公司在触摸屏的选型上如果不去参考或了解多点的功能及趋势, 这个选型很可能被认为是不够专业的. 要实现多点功能的触摸屏已经越来越多, 然而大家的注意力仍集中在投射电容(Projected Capacitive), 这不得不归功于苹果iPhone 的风采. 事实上早有许多厂商跟使用者前仆后继的投入投射电容屏的研发生产及导入, 但许许多多的困难与阻碍横在眼前, 造成完美演出的比率实在不高. 值此同时, 电阻式多点触摸屏也已经悄悄的逼进市场的聚光灯下. 由于拥有稳定不受干扰的特性, 加上容易量产的好处, 整体购得成本又远低于投射电容, 虽然透光度较低, 但整体比较起来, 仍是暇不掩瑜, 值得各类中小尺寸多点需求的触摸屏选型者甚重考虑. 当前电阻式多点触摸技术可大致分为模拟矩阵电阻AMR(Analog Matrix Resistive)、电压驱动式电阻(V oltage-driven)又称为数字矩阵电阻DMR(Digital Matrix Resistive)及五线多点电阻或称为MF(Multi-Finger)三类。ARM与DMR基本上可以说是四线电阻的一种延伸设计,结构上依然是上下两层,上层为透明导电薄膜(ITO Film)下层为透明导电玻璃(ITO Glass) ,中间是绝缘的透明间隔颗粒物(dot spacer)。 AMR 是沿X 与Y两个方向在ITO层蚀刻出一条一条平行排列的区块(channels),两层channels纵横迭加在一起就类似将整个触摸屏划分成很多小矩阵

关于触摸屏校准问题及触摸屏中断过程图解

触摸屏校准 在开始实现触摸屏功能之前,还需要解决一个问题,那就是触摸屏的校正。触摸屏和LCD是两种不同的物理器件。对于一个分辨率为320×240的LCD,它的宽度为320个像素,高度为240个像素。而触摸屏处理的数据是点的物理坐标,该坐标是通过触摸屏控制器采集得到的。要想实现触摸屏上的物理坐标与LCD上的像素点坐标一一对应上,两者之间就需要一定的转换,即校正。而且电阻式触摸屏由于自身的原因参数会发生变化,因此需要经常性的校正。比较常见的校正方法是三点校正法,它的原理是: 设LCD上每个点PD的坐标为[XD,YD],触摸屏上每个点PT的坐标为[XT,YT]。要实现触摸屏上的坐标转换为LCD上的坐标,需要下列公式进行转换:30,30,28,32 XD=A×XT+B×YT+C YD=D×XT+E×YT+F 因为其中一共有六个参数(A,B,C,D,E,F),因此只需要三个取样点就可以求得这六个参数。这六个参数一旦确定下来,只要给出任意触摸屏上的坐标点PT,代入这个公式,就可以得到它所对应的LCD上像素点的坐标PD。具体的求解过程就不细讲,只给出最终的结果。已知LCD上的三个取样点为:PD0,PD1,PD2,它们所对应的触摸屏上的三个点为:PT0,PT1,PT2。A,B,C,D,E,F这六个参数最终的结果都是一个分式,而且都有一个共同的分母,为: K=(XT0-XT2)×(YT1-YT2)-(XT1-XT2)×(YT0-YT2) 那么这六个参数分别为: A=[(XD0-XD2)×(YT1-YT2)-(XD1-XD2)×(YT0-YT2)] / K B=[(XT0-XT2)×(XD1-XD2)-(XD0-XD2)×(XT1-XT2)] / K C=[YT0×(XT2×XD1-XT1×XD2)+YT1×(XT0×XD2-XT2×XD0)+YT2×(XT1×XD0-XT0×XD1)] / K D=[(YD0-YD2)×(YT1-YT2)-(YD1-YD2)×(YT0-YT2)] / K E=[(XT0-XT2)×(YD1-YD2)-(YD0-YD2)×(XT1-XT2)] / K F=[YT0×(XT2×YD1-XT1×YD2)+YT1×(XT0×YD2-XT2×YD0)+YT2×(XT1×YD0-XT0×YD1)] / K 下面的程序是实现触摸屏功能的简单实例——以触点为中心,绘制出一个红色的边长为10个像素的正方形。触点的坐标是用下面方法得到的:当触笔落下时,进入中断,然后读取触点处的坐标,直到触笔的抬起,才退出该次中断。由于触摸屏需要校正,因此在使用之前需要进行校正处理。但并不是每次使用都要校正,只要坐标没有发生漂移,就不需要再次校正。所以在进行一次校正后,只要把那几个参数保存起来,下次需要时直接使用上次

电阻式触摸屏种类介绍归纳

电阻式触摸屏种类介绍归纳 一、 电阻式触摸屏的工作原理: 电阻式触摸屏是一种传感器,它将矩形区域中触摸点(X,Y)的物理位置转换为代表X 坐标和Y 坐标的电压。很多LCD 模块都采用了电阻式触摸屏,这种屏幕可以用四线、五线、七线或八线来产生屏幕偏置电压,同时读回触摸点的电压。电阻式触摸屏基本上是薄膜加上玻 璃的结构,薄膜和玻璃相邻的一面上均涂有ITO (纳米铟锡金属氧化物)涂层,ITO 具有很好的导电性和透明性。当触摸操作时,薄膜下层的ITO 会接触到玻璃上层的ITO ,经由感应器传出相应的电信号,经过转换电路送到处理器,通过运算转化为屏幕上的X 、Y 值,而完成点选的动作,并呈现在屏幕上。 二、 电阻式触摸屏的种类: 电阻式触摸屏的基本结构和驱动原理.pdf 三、 各种类电阻式触摸屏的基本结构: 1.四线电阻式触摸屏 四线电阻式触摸屏的结构如上图,在玻璃或丙烯酸基板上覆盖有两层透平,均匀导电的ITO 层,分别做为X 电极和Y 电极,它们之间由均匀排列的透明格点分开绝缘。其中下层的ITO 四线触摸屏 五线触摸屏 六线触摸屏 七线触摸屏 八线触摸屏

与玻璃基板附着,上层的ITO附着在PET薄膜上。X电极和Y电极的正负端由“导电条”(图中黑色条形部分)分别从两端引出,且X电极和Y电极导电条的位置相互垂直。引出端X-,X+,Y-,Y+一共四条线,这就是四线电阻式触摸屏名称的由来。当有物体接触触摸屏表面并施以一定的压力时,上层的ITO导电层发生形变与下层ITO发生接触,该结构可以等效为相应的电路,如下图 2. 八线电阻式触摸屏 八线电阻式触摸屏的结构与四线类似,所区别的是除了引出X- drive,X+ drive,Y- drive,Y+ drive四个电极,还在每个导电条末端引出一条线:X- sense,X+ sense,Y- sense,Y+ sense,这样一共八条线。

触摸屏的主要类型优点和缺点

触摸屏的主要类型优点和缺点 触摸屏的主要类型: 从技术原理来区别触摸屏,可分为五个基本种类:矢量压力传感技术触摸屏、电阻技术触摸屏、电容技术触摸屏、红外线技术触摸屏、表面声波技术触摸屏 。其中矢量压力传感技术触摸屏已退出历史舞台;红外线技术触摸屏价格低廉,但其外框易碎,容易产生光干扰,曲面情况下失真;电容技术触摸屏设计构思合理,但其图像失真问题很难得到根本解决;电阻技术触摸屏的定位准确,但其价格颇高,且怕刮易损;表面声波触摸屏解决了以往触摸屏的各种缺陷,清晰不容易被损坏,适于各种场合,缺点是屏幕表面如果有水滴和尘土会使触摸屏变的迟钝,甚至不工作。按照触摸屏的工作原理和传输信息的介质把触摸屏分为四种,它们分别为电阻式、红外线式、电容感应式以及表面声波式, 按照触摸屏的工作原理和传输信息的介质,我们把触摸屏分为四种,它们分别为电阻式、电容感应式、红外线式以及表面声波式。每一类触摸屏都有其各自的优缺点,要了解那种触摸屏适用于那种场合,关键就在于要懂得每一类触摸屏技术的工作原理和特点。下面对上述的各种类型的触摸屏进行简要介绍一下: 1、电阻式触摸屏(电阻式触摸屏工作原理图) 这种触摸屏利用压力感应进行控制。电阻触摸屏的主要部分是一块与显示器表面非常配合的电阻薄膜屏,这是一种多层的复合薄膜,它以一层玻璃或硬塑料平板作为基层,表面涂有一层透明氧化金属(透明的导电电阻)导电层,上面再盖有一层外表面硬化处理、光滑防擦的塑料层、它的内表面也涂有一层涂层、在他们之间有许多细小的(小于1/1000英寸)的透明隔离点把两层导电层隔开绝缘。当手指触摸屏幕时,两层导电层在触摸点位置就有了接触,电阻发生变化,在X和Y两个方向上产生信号,然后送触摸屏控制器。控制器侦测到这一接触并计算出(X,Y)的位置,再根据模拟鼠标的方式运作。这就是电阻技术触摸屏的最基本的原理。电阻类触摸屏的关键在于材料科技,常用的透明导电涂层材料有: A、ITO,氧化铟,弱导电体,特性是当厚度降到1800个埃(埃=10-10米)以下时会突然变得透明,透光率为80%,再薄下去透光率反而下降,到300埃厚度时又上升到80%。ITO是所有电阻技术触摸屏及电容技术触摸屏都用到的主要材料,实际上电阻和电容技术触摸屏的工作面就是ITO涂层。 B、镍金涂层,五线电阻触摸屏的外层导电层使用的是延展性好的镍金涂层材料,外导电层由于频繁触摸,使用延展性好的镍金材料目的是为了延长使用寿命,但是工艺成本较为高昂。镍金导电层虽然延展性好,但是只能作透明导体,不适合作为电阻触摸屏的工作面,因为它导电率高,而且金属不易做到厚度非常均匀,不宜作电压分布层,只能作为探层。

电阻触摸屏三点校准法

三点校准法 三点校准法较之前面介绍的二点校准法更为精确。当触摸屏与液晶屏间的角度差很小时,经过推理可以假设触摸屏与液晶显示器各点之间的对应关系为(假设液晶显示器的坐标为(XD, YD),触摸屏的坐标为(X,Y)): XD = AX + BY + C YD =DX + EY + F 因为要取三个点进行校准,所以存在六个变量,即要通过六个方程式求出液晶显示器的坐标。此处要求三个点尽量分散,最好为左上角、中间、右下角三点。 得: XD0 = AX0 + BY0 + C XD1 = AX1 + BY1 + C XD2 = AX2 + BY2 + C YD0 = DX0 + EY0 + F YD1 = DX1 + EY1 + F YD2 = DX2 + EY2 + F 可求出 A、B、C、D、E、F的值,一旦这些参数值定下来,便可利用上面的方程组,通过触摸屏上的原始数据计算出它在LCD显示器上的对应点。 推导得出将K作为各方程式的公分母,便可得出未知量: K = (X0-X2)(Y1-Y2)-(X1-X2)(Y0-Y2) A = ((XD0-XD2)(Y1-Y2)-(XD1-XD2)(Y0-Y2))/K B = ((X0-X2)(XD1-XD2)-(XD0-XD2)(X1-X2))/K C = (Y0(X2XD1-X1XD2) + Y1(X0XD2-X2XD0) + Y2(X1XD0-X0XD1))/K D = ((YD0-YD2)(Y1-Y2)-(YD1-YD2)(Y0-Y2))/K E = ((X0-X2)(YD1-YD2)-(YD0-YD2)(X1-X2))/K F = (Y0(X2YD1-X1YD2) + Y1(X0YD2-X2YD0) + Y2(X1YD0-X0YD1))/K

触摸屏安装说明A

触摸屏安装说明提纲 一.触摸屏的简要介绍和安装准备 1. 通用的四线电阻触摸屏的特点; 2. 电阻触摸屏的安装准备; 3. 安装电阻触摸屏的注意事项; 二.触摸屏的安装 1. 触摸屏的安装过程; 2. 触摸屏的驱动软件安装; 3. 触摸屏的硬件安装; 三.触摸屏的具体使用方法和注意事项 四.排除故障的要点总结

1 触摸屏的简要介绍和安装准备 1.1 通用的四线电阻触摸屏的特点; 最近几年,人机对话的界面刚发展起来的一项新技术,它通过计算机技术四线/触摸屏控制处理声音、图像、视频、文字、动画等信息,并在这些信息间建立一定的逻辑关系,使之成为能交互地进行信息存取和输出的集成系统。 触摸屏系统符合简便、经济、高效的原则,具有人机交互性好、操作简单灵活、输入速度快等特点。它与迅猛发展的计算机网络和四线/触摸屏控制多媒体技术相结合,使用者仅仅用手指触摸屏幕,就能进行信息检索、数据分析,甚至可以做出身临其境、栩栩如生的效果;较键盘输入简单、直观、快捷,具有丰富多采的表现能力,比以往任何传媒更具亲合力。 触摸屏在我国已经得到了非常广阔的应用,主要是公共信息的查询;如电信局、税务局、银行、电力等部门的业务查询;城市街头的信息查询;此外应用于领导办公、工业控制、军事指挥、电子游戏、点歌点菜、多媒体教学、房地产预售等。如今,触摸屏特别是电阻式触摸屏,在不断走入大众家庭。 ,四线电阻式触摸屏:电阻触摸屏的屏体部分是一块与显示器表面非常配合的多层四线/触摸屏控制复合薄膜,由一层玻璃或有机玻璃作为基层,表面涂有一层透明的导电层,上面再盖有一层外表面硬化处理、光滑防刮的塑料层而内表面也涂有一层透明导电层,在两层导电层之间有许多细小(小于千分之一英寸)的透明隔离点把它们隔开绝缘,见图1。

四线五线电阻式触摸屏的工作原理

四线五线电阻式触摸屏的工作原理 四线电阻模拟量技术的两层透明金属层工作时每层均增加5V恒定电压:一个竖直方向,一个水平方向。总共需四根电缆。高解析度,高速传输反应。表面硬度处理,减少擦伤、刮伤及防化学处理。具有光面及雾面处理。一次校正,稳定性高,永不漂移。 五线电阻技术触摸屏的基层把两个方向的电压场通过精密电阻网络都加在玻璃的导电工作面上,我们可以简单的理解为两个方向的电压场分时工作加在同一工作面上,而外层镍金导电层只仅仅用来当作纯导体,有触摸后分时检测内层ITO接触点X轴和Y轴电压值的方法测得触摸点的位置。五线电阻触摸屏内层ITO需四条引线,外层只作导体仅仅一条,触摸屏得引出线共有5条。解析度高,高速传输反应。表面硬度高,减少擦伤、刮伤及防化学处理。同点接触3000万次尚可使用。导电玻璃为基材的介质。一次校正,稳定性高,永不漂移。五线电阻触摸屏有高价位和对环境要求高的缺点。五线电阻触摸屏的外层导电层使用的是延展性好的镍金涂层材料,外导电层由于频繁触摸,使用延展性好的镍金材料目的是为了延长使用寿命但是工艺成本较为高昂。镍金导电层虽然延展性好,但是只能作透明导体,不适合作为电阻触摸屏的工作面,因为它导电率高,而且金属不易做到厚度非常均匀,不宜作电压分布层,只能作为探层。 不管是四线电阻触摸屏还是五线电阻触摸屏,它们都是一种对外界完全隔离的工作环境,不怕灰尘和水汽,它可以用任何物体来触摸,可以用来写字画画,比较适合工业控制领域及办公室内有限人的使用。电阻触摸屏共同的缺点是因为复合薄膜的外层采用塑胶材料,不知道的人太用力或使用锐器触摸可能划伤整个触摸屏而导致报废。不过,在限度之内,划伤只会伤及外导电层,外导电层的划伤对于五线电阻触摸屏来说没有关系,而对四线电阻触摸屏来说是致命的。电阻触摸屏的精度只取决于A/D转换的精度,因此都能轻松达到4096*4096·比

五线电阻式触摸屏详细资料

五线电阻式触摸屏详细资料 工作原理 五线电阻技术触摸屏的基层把两个方向的电压场通过精密电阻网络都加在玻璃的导电工作面上,我们可以简单的理解为两个方向的电压场分时工作加在同一工作面上、而外层镍金导电层只仅仅用来当作纯导体,有触摸后分时检测内层ITO接触点X和Y轴电压值的方法测得触摸点的位置。五线电阻触摸屏内层ITO需四条引线,外层只作导体仅仅一条,触摸屏的引出线共有5条。五线电阻触摸屏的另一个专有技术是通过精密的电阻网络来校正内层ITO的线性问题:由于导电镀膜有可能厚薄不均匀而造成电压不均匀分布。(5)电阻屏性能特点★它们都是一种对外界完全隔离的工作环境,不怕灰尘、水汽和油污★可以用任何物体来触摸,可以用来写字画画,这是它们比较大的优势★电阻触摸屏的精度只取决于A/D 转换的精度,因此都能轻松达到4096*4096·比较而言,五线电阻比四线电阻在保证分辨率精度上还要优越,但是成本代价大,因此售价非常高。 技术参数及电气特性 适用安装于液晶显示模块之ANALOG电阻式Touch Panel。 产品特色 ●无四线电阻式因快速切换所造成之干扰,噪声小. ●即使上层导电膜因外力破裂,仍可正常工作,且线性误差仍为1.5%. ●五线式使用寿命较四线式长五倍 通用标准规格 ●表面硬度:3H ●透光率:80 %↑ ●操作温度:-10°C ~ 60°C ●耐久力打击:超过一仟万次 ●操作电压:DC5V ●X、Y阻值:30Ω~ 300Ω ●线性< 1.5% ●表面处理:雾面及亮面 ●操作压力:15~70g (依客户需求而定)

●储存温度:-20°C ~ 70°C ●噪声:5 m sec ~ 15 m sec ●操作电流:5mA ~ 25mA ●绝缘阻抗:20MΩ↑@DC25V ●总厚度:1.4mm or 2.1mm 外型尺寸 光学的特性 ●光透过率在波长550 nm的可视波下可达80%↑以上。 电气的特性 ●导通阻抗 ●200Ω< X Axis <800Ω ●300Ω< Y Axis <900Ω ●绝缘阻抗 ●20MΩ↑@ DC 25V ●耐静电气 ●10 KV , 100Ω, 250 PF的静电气印加后无异常发生。 ●线性误差 ●X Axis:1.5% ↓ ●Y Axis:1.5% ↓ ●操作电压 ●操作电压可从3V ~ 7V DC ●操作电流 ●操作电流可从5mA ~ 25mA 5线电阻模拟屏的图纸 注:备注栏标有“生产”字样的型号表示此型号已量产,选此型号免开模费;标有“打样”字样或者空白表示此型号只出过图纸或者人工打过样并无模具,选此型号需付开模费。

四线电阻触摸屏校准算法小结

四线电阻触摸屏校准算法的实现 (一) 四线电阻屏的触摸板坐标和屏坐标有如下关系: X0 = xfac * X + xoff; Y0 = yfac * Y + yoff; 其中X0,Y0是屏的物理坐标,xfac,yfac为x,y方向的比例因子,xoff,yoff为x,y方向的偏移量. 既然说到了校准,那么这四个量肯定是不变的,所以我们可以用至少两个屏的物理坐标点就可算出这四个量,也即是两点校准法,由于按下屏后读出的是X,Y值,而校准时用的X0,Y0 也是已知的,那么就是解四元一次方程组了,算法如下: (X1,Y1)和(X2,Y2)是用于校准时屏上显示的两个点,这两个点的坐标必须不一样, 是已知的; (x1,y1)和(x2,y2)是校准时读取的被按下的两点的触摸板坐标值; 有如下方程组: X1 = xfac * x1 + xoff; // 1 Y1 = yfac * y1 + yoff; // 2 X2 = xfac * x2 + xoff; // 3 Y2 = yfac * y2 + yoff; // 4 解得: 3 -1 得xfac = (X2 -X1)/(x2 -x1); //得到x轴方向的比例因子 3 + 1 得xoff = [(X2 + X1)-xfac(x2 + x1)]/2; //得到x轴方向的偏移量 4 -2 得yfac = (Y2 -Y1)/(y2 -y1); //得到y轴方向的比例因子 4 + 2 得yoff = [(Y2 + Y1)-yfac(y2 + y1)]/2; //得到y轴方向的偏移量 OK! 所谓的三点触摸校准,四点触摸校准只不过是加了可靠的滤波算法,因为触摸笔和屏的接触不是很准确的!而像素点是很小的,所以通常都用四点校准,而且经验证这此算法是必须加的,否则很不准,参见STM32学习笔记相关实验实验例程,已验证通过理论知识: * 触摸屏实际是在普通的lcd 上贴了一个触摸膜, 没有原生的触摸屏 校准公式 X液晶= ax + by + c x,y是触摸屏 Y液晶= dx + ey + d 公式原理 X,Y的公司类似, 这里就已X液晶的公式为例 先说a 首先, 液晶和触摸膜的分辨率通常是不一样的, 如液晶分辨率640*480, 触摸膜分辨率1024 * 768, 则这时就需要把触摸膜的分辨率乘一个系数才和液晶分辨率对应, 这里就是ax中的a, 这里a = 640 / 1024 = 0.625 再说c 由于安装的机械问题, 可能有水平的平移, 这里就是c 最后说b 一开始还以为公式错了, 为什么x的东西还有y的事, 原理还是安装机械的问题, 若膜和lcd 安装有一定的倾斜角度y就不是0了 计算abcdef参数 对应abc和def来说是独立的, 类似的, 下面以计算abc为例

触摸屏校准方法

嵌入式Linux和MiniGUI结合的解决方案已经成为很多嵌入式系统的图形化方案之一,而触摸屏也是很多嵌入式系统首选的输入设备,因此触摸屏的校准也成为很多嵌入式系统开发过程中常常碰到的问题之一。 嵌入式Linux是一种可以进行裁减、修改使之能在嵌入式计算机系统上运行的操作系统,既继承了Internet上的无限的开放源代码资源,又具有嵌入式操作系统的特性。该系统具有较高的稳定性和安全性、良好的硬件支持、标准兼容性和资源丰富等功能。而触摸屏是一种方便、快捷的输入设备,附着在显示器的表面,与显示器配合使用,在工业控制场合得到了广泛的应用。然而在实际的嵌入式程序移植的过程中,由于触摸屏尺寸的不同,以及GUI(Graphic User Interface)方案选择和IAL(Input Abstract Layer)的差异,一般开发板制造商并不提供触摸屏的校正程序。本文介绍的正是笔者在制作实际的嵌入式Linux数控机床人机接口过程中,提出的一套基于嵌入式Linux和MiniGUI的通用触摸屏校准程序设计方案。 MiniGUI简介 MiniGUI(https://www.360docs.net/doc/bd10718658.html,)是国内最有影响的自由软件项目之一, MiniGUI 项目的目标是为基于 Linux 的实时嵌入式系统提供一个轻量级的图形用户界面支持系统。该项目自1998年底开始到现在,已历经7年多的开发过程,到目前为止,已经比较成熟和稳定,并且在许多实际产品或项目中得到了广泛应用。 MiniGUI 为应用程序定义了一组轻量级的窗口和图形设备接口。利用这些接口,每个应用程序可以建立多个窗口,而且可以在这些窗口中绘制图形且互不影响。用户也可以利用MiniGUI 建立菜单、按钮、列表框等常见的 GUI 元素。 MiniGUI 可以具有两种截然不同的运行时模式:MiniGUI-Threads或者MiniGUILite。运行在 MiniGUI-Threads 上的程序可以在不同的线程中建立多个窗口,但所有的窗口在一个进程中运行。相反,运行在 MiniGUI-Lite 上的每个程序是单独的进程,每个进程也可以建立多个窗口。MiniGUI-Threads 适合于具有单一功能的实时系统,而 MiniGUI-Lite则适合于具有良好扩展性的嵌入式系统,比如要下载并运行第三方应用程序的智能手持终端。 MiniGUI在体系结构上有许多独特之处。它的主要特色有: ● 提供了完备的多窗口机制; ● 对话框和预定义的控件类; ● 消息传递机制; ● 多字符集和多字体支持; ● 全拼、五笔等汉字输入法支持; ● BMP、GIF、JPEG等常见图像文件的支持; ● 小巧,包含全部功能的库文件大小为300KB左右; ● 可配置,可根据项目需求进行定制配置和编译; ● 可移植性好。

相关文档
最新文档