力学教材的简单历史

力学教材的简单历史
力学教材的简单历史

力学教材的简单历史

武际可 黄克服

(北京大学力学与工程科学系,100871)

摘要:本文概述了教材的历史发展,并且提出在教材发展中专业和基础部分分离、否定、再分离的发展线索。文章还总结出近年来教材改革的三个主要趋势:精炼化、现代化、通俗化。最后提出了对今后教材改革、特别是对重视基础课的一些看法。

关键词:力学,教材,基础教育,教育改革,理工科教育。

教材是每门学科发展和建设的关键之一,好的教材可以使青年人迅速地、牢固地、系统地掌握本门学科已有的成果,并把他们很快地带领到该门学科发展的前沿。一部好的教材可以经久不衰,影响数代学者的成长。例如法国天文学家弗拉马里翁(C. Flammarion,1842-1925)所写的《大

众天文学》于1880年出版后,被译成多种文字,

不断补充重印。许多世界著名的天文学家就是由于

受这本书引导走上天文学的道路的。

美国著名的物理学家费曼(R.P.Feynmann,

1918-1988),一生有许多重要贡献,并且由于在量

子电动力学方面的工作而获得了1965年的诺贝尔

奖。他同时还在教学方面有重要的贡献,他的《费

曼物理学讲义》影响很大。著名的物理学家1973

年诺贝尔奖金获得者贾爱弗把费曼看作是对他影响最大的人。加利福尼亚理工学院的副院长说:“从长远的观点看来,他对物理

Feynmann,1918-1988

学最重要的贡献不是量子电动力学,不是液氦、极化或旋子理论,他的真正的记功碑将是他的《费曼物理学讲义》。”由此可见教材的重要性

随着二十一世纪的临近,我国现代化教育事业的不断发展以及教育改革的不断深入,为了适应现代化建设对人才的新的要求,各门学科教学改革的呼声日渐高涨。作为自然科学七大基础学科的之一的力学,同样遇到了如何顺应社会的要求,进行教学改革的问题。事实上,力学教学的改革也是时代的要求,是我们目前必须面对的一个现实问题。力学教材改革的成败,不仅影响大学力学专业学生的学习,而且对整个工科以及相邻的理科专业也将会产生深远的影响。

教学改革包括了许多方面,其中十分重要的一点就是教材的更新,包括教材内容的现代化以及教学方法、教学手段的现代化。

§1 从理工科教育的发展来看教材

纵观力学教材的发展历史,我们认为不能将力学教材的变革仅仅从力学本学科的角度来看,而应将其与整个自然科学各门学科的教材的发展紧密联系在一起。一部自然科学教材的发展历史告诉我们,不同历史时期的教材都是当时整个学术思潮的一种反映,它或多或少地体现了当时的理念。因此,为了把握力学教材的发展趋势,必须放开眼界,纵的方面从历史进程中看,横的方面从各门学科来看,广的方面从世界各国来看,以求抓住教材发展进程的主流。

1789年法国大革命后,为适应在进行的

战争迫切地需要工程师做筑堡垒、修道路、

建桥梁以及有关枪炮方面的工作, 1795年

正式成立了巴黎综合工科学校。这所学校的

成立是在世界范围内理工科高等教育发展

史上的大事。法国数学家蒙日是这所学校的

第一任校长.

蒙日

(Monge,1748-1848)

综合工科学校与以往的学校最大的不同

是由学校组织集中授课的方式进行教学,而

以往学校则基本上还是师徒之间的个别传

授。由于这所学校开创了对学生集体授课的教学方式,于是就必须有相应的教材。

如果说,在对大批学生集中授课才是现代意义上的教材产生的社会条件,那末,巴黎综合工科学校所组织的新型的集中授课,就是近代教材的开始。学校组织出版了一批影响很大的教科书。如泊松著的《力学教程》、普朗尼著的《力学分析讲义》、纳维写的《力学在结构和机械方面的应用》(后来经过圣维南对该书的第三版修订补充使篇幅增加了九倍),等。

其次,这个学校规定学生在进入学习各个具体工程部门之前,都必须学好数学、力学、物理、化学等课程。开始有了基础课与专业课的区分。它要求学生在头二年里学习基础课,在第三年才开始讲专业课。后来干脆取消了专业课的教学,这所学校变为一所只教授基础课的基础培训学校。学生在这里上二年基础课,然后被分入其他工程学校如桥梁道路学院、矿业学院、军事学院等。

把基础课与专业课分开来,相应地就需要有基础课的教材,在教材上基础课与专业课也开始分家了。

把基础课和专业课分开来,是教育思想上的巨大进步。后来法国出现了一大批数学和力学的巨人(如柯西、泊松、纳维等、就是该校第一班的学生)。整个弹性力学和流体力学基础的奠定,可以说主要是在法国学者的推动下完成的。就是这种教育思想重大成功的实证。

这所学校的教学组织对世界上其他国家的教学影响很大,后来其他国家的工业高等学校大都仿照这所学校建立。如维也纳工学院、苏黎世工学院、俄国与美国的某些工业院校,都是按照它的模式建立的,有的则完全按照它的教学大纲教学。

§2“百科全书”式的教材

在19世纪中叶,许多自然科学学科得到了迅速的发展并逐步形成了自己的知识体系,如经典力学方程的完善,有了拉格朗日及哈密尔顿力学;电动力学方程的发现,有了麦克斯韦尔方程组;流体力学的发展提出了纳维-斯托克斯(Navier-Stokes)方程,由纳维和柯西建立的弹性理论等等。处于这样一个时期之后,从19世纪末开始,自然科学的教材也就逐渐有了一种“百科全书”式的风格:比如英国人乐甫的《弹性的数学理论教程》几乎囊括了当时所有的弹性理

论的最新成果,并出版了四个版本,成为风靡一时的标准的弹性理论教材;还有法国人阿佩尔(Paul- émile Appell,1855-1930)的《理论力学教程》,英国人汤姆孙(M. Thomson)的《流体力学教程》与瑞利的《声学理论》都是这种风格的教科书。这些教材的特点是以解法为纲,收集了当时几乎大部分已有的理论解;在数学教材方面,当时最权威的教材当数法国人寇萨(E.Goursat)的《数学分析教程》,从微积分到复变函数、微分方程的内容应有尽有。在物理学领域中,德国人索末菲著的《理论物理学教程》集理论物理各个方向之大成。其它学科的教材也有大致类似的特点。

到了本世纪四、五十年代,这种将教科书的内容“百科全书”化的趋势越来越明显了。虽然删去了一些较老的内容,但不过是在新的水平上的无所不包。一本教材既包括学科基本知识,也包括专门知识。在新中国成立以后,我国高等教育从教学体系到教材建设均采用了前苏联的模式,因此我国的自然科学方面的教材普遍采用苏联教科书为样板:力学方面,有洛强斯基的《理论力学教程》,有科钦等的《流体力学》,有穆什海里什维里的《数学弹性力学中的几个基本问题》;数学方面,有菲赫金哥尔茨的《微积分学教程》,斯米尔诺夫的《高等数学教程》、甘特马赫尔的《矩阵论》;在物理方面有福里斯的《普通物理》和朗道、栗福希兹的《理论物理》等等。这些教材大多是所谓大部头的著作,不遗余力地把本学科的内容集中在一起,形成了手册式的教科书。

同时,在美国出现了以铁摩辛柯的《材料力学》、《弹性理论》等为代表的一系列的固体力学教材,这些教材较以往的传统教科书要精简一些了,七十年代以来,我们的许多教材都是以此为蓝本的各种翻版。

这种“百科全书”和“手册”式的教科书的趋势,从19世纪末兴起一直延续到现今,经过了一个多世纪,还有人在坚持。尽管这些教材具有它们的重要价值,确实起过甚至还在起着重要作用。但是从教育思想上来说,却不能不说是对巴黎综合工科学校把重要的、基础的东西和专门的东西相分开的教学思想的否定。

其所以会一再出现把教材弄得“百科全书”化,从根本上说是因为对教育功能的理解上有不同。或者说,把教育和职业培训不能区分,把学校和企业不能区分。实际上,我们也不能把教育看作单纯传授知识。教育的功能是提供一个人今

后发展最重要的条件。由于对在学校教学中,没有把什么是对学生今后发展最重要的条件弄清楚,所以在教学中就会认为什么都重要,结果就形成百科全书式的教学了。

§3 近年来教材改革的趋势

力学教材的精炼化、现代化和通俗化是近年来改革的三个主要趋势。

随着现代社会的飞速发展,人类知识的大量增长,各个学科内容的急剧增加,新的学科门类的出现,以及一些传统学科的相互交叉渗透,使得力学教材的内容较以往有很大程度的增加。因而一个非常实际的问题就摆在了整个教育界和力学教育的面前了:是象以往一样将我们的教科书写成一种新的“百科全书”呢?还是另起炉灶,重新建构我们的教材体系呢?就目前的情形而言,结论显然是后者。通过对这些年来一些新的力学教材的观察,我们认为,新的力学教材体现了如下一些特点:

1.教材的精炼化

五十年代以后,学科方向分类越来越细,学科内容急剧增加和膨胀,人们形容这种情况为“知识爆炸”。以往那种“百科全书”式的教材难于在有限的教学时间内教完,即使作为学生的阅读材料也不容易使人较快地抓住要领,为了纠正以往教材的这一弊端,出现了砍掉其中某些内容使教材精炼化的趋向。

所谓教材精炼化,就是在教材中只包含那些对学生今后发展最重要、应用最普遍的内容,并将这些内容按新的教学系统加以整理,而删去那些比较专门的、相当独立的课题。随之而来的便是一门学科的基础部分教材与讨论专门课题专著的分离。这种趋向是更进一步把巴黎综合工科学校的教育思想贯彻到每一门课程中去。以材料力学而论,较早的教材如铁摩辛柯的《材料力学》(1930年出版),不仅包含了梁,弹性基础上的梁以及薄壁梁等内容,还包含了简单的板壳理论,柱体扭转,塑性力学,应力集中等众多的专题内容。到了五十年代,大多数的材料力学教材都删去了后面的那些专题内容。而铁摩辛柯的材料力学再版时也将专题部分与基础部分分离出来,独立出版为《高等材料力学》。

再以弹性力学而论,早期乐甫的《弹性的数学理论教程》是一本600多页厚

的巨著,它不仅包含了弹性力学的一些基础知识,还包含了板壳理论,弹性体振动和波,弹性柔杆理论,非线性弹性理论等多方面的知识。到50年代以后,后面的各种专题都有了很好的专著出版,如前苏联哥尔琴文塞尔的《弹性薄壳理论》,诺沃日洛夫(Novozhilov)的《非线性弹性力学》等等。40年代苏联出版的列宾逊(Leibenzon)的《弹性理论》完全没有后面的那些专题,而60年代出版的卡茨(Katz)的《弹性理论》仅有200页厚,只涉及弹性力学最重要的基础知识。

这方面代表性的教材还有德国人萨博的《高等工程力学》和马格努斯的《工程力学基础》,他们用相当小的篇幅讲述了相当于理论力学、材料力学、弹性力学和流体力学的最重要的内容(后一本书不到300页)。德国大部分的工科学校的力学课程都是按照这两本教材开辟的道路进行教学,辅以适当的习题课,教授时间却要四个学期。可以说内容充分精炼,而且要求学生牢固地掌握。

2.教材内容的现代化

纯粹的只靠删去某些专题使教材的份量降低下来,突出最基础的知识,是不能使教材满足要求的。这是由于近代科学的发展,不仅仅是数量的增加,它往往要改写整个学科的内容,包括最基础的部分。这也就是说,科学的发展有时会使整个学科产生质的变化,它的最基础部分的叙述方式、逻辑体系、以及应用领域都会发生很大的变化,有时若干年后人们对它会有面目全非的感觉。

由上所述,教材的内容还必须体现现代化的要求。对于力学教材来讲,现代化最主要是体现在以下几个方面。

首先,要引进现代化的数学语言。近三十年来,30年代由数学家发展起来的一整套新的数学语言迅速地向物理界推广和普及,而且业已证明它在表述物理规律方面的重要性。例如,外微分和微分形式的引进,流形、切空间等概念的应用,黎曼几何、辛几何等新的学科在物理中的渗透,已经使得许多物理定律的描述简单明了了。苏联学者阿诺尔德(В.И.Арнолд)的《经典力学中的数学方法》一书,是为莫斯科大学三年级学生写的一本力学教材,它使用近代微分几何的概念,总结了从牛顿力学到拉格朗日、哈密尔顿力学的发展,实质上是对几何认识上的发展的不同阶段,即它们分别对应于欧氏几何、黎曼几何和辛几何。武际可、

王敏中在1981年出版的《弹性力学引论》,随后美国马斯登(Marsden)写的《弹性的数学理论》都应用了外微分的语言来叙述弹性力学,十分精炼。前者主要应用于线弹性力学,后者则是非线性弹性力学。

其次,计算机的发展对力学教材内容的现代化提供了很重要的一个检验手段。原来需要靠解析解或手工计算的重要内容,现在让位给计算机了,于是原来的部分便相对陈旧了,由新的适应数值计算的方法取代了。例如,在弹性力学中,60年代以前,复变函数解法几乎在每一本弹性力学的教科书中占有重要的位置,当时,它是唯一的较普遍使用的求解方法,而现在它已经被有限元法取代了。随着弹性力学边界元法的发展,弹性力学中位势理论和基本解显得比较重要了。近年来,随着计算机的普及与发展,计算力学通用及专用软件的完善,以及一些计算机辅助教学软件的出现,将力学内容与计算机紧密结合的材料力学、结构力学、流体力学、弹性力学、塑性力学的教材也大量出现了。与此同时,相应的数学教材的内容也有了较大的变化,以往的教材定积分的份量较大,有了计算机以及一些公式推导的软件,定积分的计算训练就可以相对减少一些了;过去,常微分方程的内容有很大一部分是讲述可积情形,而现在既然数值解法的普遍使用,因而定性理论就显得更为重要了。例如,阿诺尔德的《常微分方程》一书就重点介绍定性理论。

第三,现代化的教材还要以新发现的事实不断充实教材。科学总是在不断前进的,新发现的定理、定律、规律与新现象层出不穷,一本好的教材总是要从中选择影响深远的部分充实进来。例如,在60年代以前的力学教材中,有百分之八十到九十是关于线性问题的,非线性问题很少涉及。近年来随着非线性科学的发展,非线性这个名词在教科书中出现的频率也就越来越高了。非线性方程、奇异性、奇点、奇怪吸引子以及浑沌等新概念已经在理论力学、振动理论、微分方程等教材中广为介绍。在弹性力学的教材中,值得一提的是英国人阿特金(Atkin)著的《弹性理论引论(An Introduction to the Theory of Elasticity)》在薄薄的一本小册子中不仅介绍了线性弹性理论而且重点介绍了非线性弹性理论以及近代本构理论和不变性原理等新内容。它是作为英国高校大学三年级的教材,写得简单明了。

3.教材的通俗化

一本教材,精炼了,有了现代化的内容,但如果人们不易看懂,仍然不能认为是一本好的教材。所以,近来国内外的学者在教材的易读性上花了很大的功夫。

要使得教材易读,必须重新改写重要定理、定律的证明和阐述,以简单易于了解的通俗的方式取代以往的方式。例如,在费曼(Feynman)写的《费曼物理学讲义》中,在介绍第一宇宙速度时,只要学生承认两件事,即:在地球表面水平飞行的物体第一秒下落16英尺;地球半径为4000英里这两个事实。然后,利用简单的几何推理就可以论证地球的第一宇宙速度为5英里(即7.8公里)。在这里他没有引入速度,也没有引入加速度,更没有引入地心引力等概念的严格定义,却通俗地解答了人造卫星为什么能呆在天上这一事实。类似的优秀论述在不少好的教材中不胜枚举。

利用新的数学工具也可以使事情叙述得简单明了。传说俄国学者A.H.克雷洛夫很不愿意使用向量的符号,张量则更不用说了,结果除了自己书写冗繁以外,上课时学生尽忙于抄黑板。现在的力学、数学教材中大部分都采用向量、张量的语言。如在场论中,一个无旋向量场有势的结论,以往要经过冗长的复杂推导才能得到,现在的许多教科书中利用闭形式与恰当形式的概念,只要几句话便可以阐述得清清楚楚。

在教材中尽量采用直观、生动和精美的插图,是教材易于读懂的努力方向之一。有的教材还采用了漫画式的插图更使教材富于趣味性。近年来随着视听技术和计算机技术的发展,出现了大量的光盘等影视教学教材。

§4 我们应当怎样去改进力学教材。

为了改进力学教学与人才培养,急需改进我们的力学教材。这是我们的共识。而我们的不少力学专业的数学、力学教材却还停留在四、五十年代的水平,不符合时代的要求。为了改变这种情况,力学科学工作者,特别是力学教师,必须努力工作,而首先是再学习。

第一要熟悉当前物理、数学和力学这些学科知识的现代化的进程,特别是其中较为基础的知识的现代状况。

第二要熟悉社会提供的教学条件的变化,特别是计算机、电化教学手段的发

展。

第三要熟悉自己教学的本门学科内容,特别要用以上两条来重新审视这些内容,加以改进。

在这样的基础上,才能教好书,写出新的好教材。

目前,我们的主要问题是基础教材太老,基础课的内容太杂,在学校里基础课不受重视。由于在学校里具有显赫地位的大都是一些在比较狭窄领域取得研究成果的专家,他们满脑子的具体课题,认为这也重要、那也重要。搞断裂的说断裂重要;搞细观的说未来是细观的天下;搞计算的说编程序要紧。结果使学生学许多杂乱而无系统的知识。我国在春秋时代的重要著作《周礼·学记》上说:“杂施而不孙,则坏乱而不修。”意思是说,把杂乱而没有条理的东西交给学生,是学不好的。还说:“记问之学,不足为人师。”意思是说,像活字典那样,记得许多事情,是做不好教师的。这种状况也是不符合国际上现代高等教育重视基础的潮流的。我们现在这种在教学中轻视基础的风气,恐怕是社会上急功近利风气在教学中的一种反映。如果轻视基础的风气不能改变,基础课的教学内容和教学方法不能有明显的改善,我们的教学改革就有流于形式的危险。

针对这种情况,尤其要紧的是,应当组织一些专家仔细研究:在现在的水平上来说,哪一些知识是最为基础的,对学生今后的发展能起至关重要作用的,应当让学生确实学到手的知识。为此,可以开展适当的学术讨论,在充分地争论和讨论的基础上再做结论,或者不做结论。要避免过分简单化。不能某个有名的人写了一本教材,少数人一鉴定,没有经受过教学的实践考验,就匆忙向全国推荐,说是什么新世纪教材,如此等等。我们这么大的国家,应当鼓励多出几套教材,这并没有什么坏处。应当下大功夫,编好针对这些基础内容的教科书、教学参考书。并且编好一批围绕这些内容的辅助读物、通俗读物、视听材料等等。还应当把那些知识面宽、表述能力强而又在研究上取得重要成果的教员推到最重要的基础课课堂上去。

与此同时翻译借鉴国外优秀教材也是一种可行的捷径,过去一些已经翻译出版了的国外的教材,都有许多可资借鉴之处,已经起到了良好的作用。

说到力学教材,我们不仅要关心课堂上使用的教材,还应当关心那种向公众

普及力学的以及着重于提高的广义的教材。教材一共有三种,即供教师课堂讲授的教本、供学生和大众加深课堂讲授的辅助读物和供教师和学生提高的较深的教学参考书。目前我们所关注的只是教本,而对后两类教材注意很少说到力学科学普及读物。迄今我国优秀的力学科普著作、科普文章、科普影片、能够使学生玩味的加深课堂内容的课外读物等如此之少,这不能不说是力学界的一大憾事。这里应当特别推荐的是苏联学者基尔皮切夫(Кирпичев)在1907年出版的《力学谈话》,通过17次谈话将力学中最重要的原理与内容通俗地给以介绍。到1951年出版了第5版,至今它仍是一本适合大学生阅读的好书。

我国的力学家们曾经为国家做出了巨大的贡献。一个作出了很大的研究成果的科学工作者,如果他能用通俗的语言讲给学生,使学生对这件事感兴趣,才能算是一个好的教师。如果他又能用通俗的文体向大众介绍,使大众了解他做了些什么。那他才能算作一个好的科学家。《周礼·学记》上说“善歌者使人继其声,善教者使人继其志”,信然也。

愿我国力学教育中涌现更多的优秀科学家和教育家。愿我国的力学界健康繁荣地发展。

附言:本文的部分内容曾经在前两年北京由徐秉业教授主持的“中日力学教育研讨会”上宣读过。当时的论文题目是《力学教材的过去、现在和将来》,论文的作者署名为武际可、黄克服、张庆源。后来部分内容收入了笔者新近出版的《力学史》中。经过补充与修改响应几位前理事长的号召参加“力学家谈力学”。参加这次会议又做了一些补充。

本文受到国家自然科学基金10172002项目的资助,特致谢意。

参考文献:一些较为重要的力学教材

流体力学教材

GENERAL REFERENCE

1.*Currie, Fundamental Mechanics of Fluids, McGraw-Hill.

2.*Schlichting, Boundary-Layer Theory, McGraw-Hill. (turbulence)

3.Yih, Fluid Mechanics, West River Press, Ann Arbor Michigan.

https://www.360docs.net/doc/b211141497.html,ndau & Lifshitz, Fluid Mechanics, Pergamon Press. (mathematical)

5.*Batchelor, An Introduction to Fluid Dynamics, Cambridge Univ. Press.

6.*White (1986), Viscous Fluid Flow, McGraw-Hill.

7.Sherman (1990), Viscous Fluid Flow, McGraw-Hill.

8.Bird, Stewart & Lightfoot, Transport Phenomena, Wiley. (chemical)

9.Pai, Viscous Flow Theory, Van Norstrand.

10.Lighthill, An Informal Introduction to Theoretical Fluid Mechanics, Oxford.

11.Panton (1984), Incompressible Flow, Wiley and Sons.

12.*Warsi, Fluid Dynamics: Theoretical and Computational Approaches, CRC. INVISCID FLOW

https://www.360docs.net/doc/b211141497.html,mb, Hydrodynamics, Dover Publications.

14.理论流体动力学(英)H·兰姆著游镇雄译, 兰姆(Lamb, Sir Horace), 1849-1934 著1990

15. Milne-Thomson, Theoretical Hydrodynamics, Macmillan.

16. 理论流体动力学(英)米尔恩-汤姆森(https://www.360docs.net/doc/b211141497.html,nethomson)著李裕立,晏名文译,米尔恩-汤

姆森 (Milnethomson,L.M.) 著1984(据麦克米兰公司1979年修订版译)

17.Streeter, Fluid Dynamics, McGraw-Hill.

UNDERGRADUATE

18.Fox & McDonald, Introduction to Fluid Mechanics, Wiley & Sons.

19.Shames, Mechanics of Fluids, McGraw-Hill.

20.Evett & Liu (1987), Fundamentals of Fluid Mechanics, McGraw-Hill.

21.Sabersky, et. al. (1989), Fluid Flow: A First Course in Fluid Mechanics,Macmillan.

22.Potter & Foss (1982), Fluid Mechanics, Great Lakes Press.

23.White, Fluid Mechanics, McGraw-Hill.

24.Binder, Fluid Mechanics, Prentice-Hall.

25.Bertrin (1984), Engineering Fluid Mechanics, Prentice-Hall.

26.John & Haberman (1988), Introduction to Fluid Mechanics, Prentice-Hall.

27.Khan (1987), Fluid Mechanics, Holt, Rinehardt & Winston.

28.Janna (1983), Introduction to Fluid Mechanics, Brooks/Cole.

29.Munson, Young & Okishii (1990), Fundamentals of Fluid Mechanics, Wiley. TURBULENCE

30.*Tennekes & Lumley, A First Course in Turbulence, MIT Press.

31.Hinze, Turbulence, McGraw-Hill.

32.Reynolds, Turbulent Flows in Engineering, Wiley & Sons.

COMPRESSIBLE FLOW

33.Shappiro, The Dynamics and Thermodynamics of Compressible Flow, Ronald

Press.

34.Thompson, Compressible-Fluid Dynamics, McGraw-Hill.

35.Liepmann & Roshko, Elements of Gasdynamics, Wiley & Sons.

PERTURBATION METHODS

36.Van Dyke, Perturbation Methods in Fluid Mechanics, Parabolic Press, Stanford.

37.Kervorkian & Cole, Perturbation Methods in Applied Mathematics, Springer-Verlag,

NY.

STABILITY

38.Chandrasekhar (1964), Hydrodynamic and Hydromagnetic Stability, Dover.

39.Lin, The Theory of Hydrodynamic Stability, Cambridge Univ. Press.

40.Drazin & Reid (1982), Hydrodynamic Stability, Cambridge Univ. Press.

41.Joseph, Stability of Fluid Motions, I. and II., Springer-Verlag.

42.Swinney & Gollub, ed. (1985), Hydrodynamic Stability, Springer-Verlag. MISCELLANEOUS

43.*Van Dyke, An Album of Fluid Motion, Parabolic Press, Stanford, Ca.

44.*Bird, Armstrong & Hassager, Dynamics of Polymeric Liquids I and II, Wiley & Sons.

45.Rosenhead, Ed., Laminar Boundary Layers, Oxford Univ. Press.

46.Greenspan, Theory of Rotating Fluids, Cambridge Univ. Press.

47.Pedlosky, Geophysical Fluid Dynamics, Springer-Verlag.

48.Rayleigh, Theory of Sound, I. and II., Dover.

49.Aris, Rutherford, Vectors, tensors, and the basic equations of fluid

mechanics.Prentice-Hall, 1962.

50.*Mase, Schaum's outline of theory and problems of continuum mechanics,

McGraw-Hill, 1970

51.Granger (1988), Experiments in Fluids, Holt, Rinehardt & Winston.

52.流体力学概论 L. Prandtl 郭永怀等译, 普朗特, L. Prandtl, L. 著1966

53.科钦等著,流体力学

理论力学教材

1.“Classical Mechanics, 3th Edition,” H. Goldstein, C.P. Poole, J.L. Safko, Addison-Wesley (2002).

2."Mathematical methods in classical mechanics,” V.I Arnold (1989). – Classic

3."Classical dynamics of particles and systems,” J.B. Marion and S.T. Thornton (1995). –

standard

4.Traité denmechaique rationelles,V ol.I,II,1941,1953,Gauthier-Villars

5.Rational mechanics, Appell, P., (Born: 27 Sept 1855 in Strasbourg, France. Died: 24 Oct

1930)

6.普赫哥尔茨著,钱敏等译,理论力学教程,商务印书馆,1953

7.洛强斯基,理论力学教程

弹性力学教材

1.Love ,A.E.H.,A treatise on the mathematical theory of elasticity, 4th ed. Cambridge, 1927,

2.穆什海里什维里,数学弹性力学中的几个基本问题

3.菲赫金哥尔茨,微积分学教程

4.铁摩辛柯,材料力学

5.铁摩辛柯,弹性理论

6.萨博,高等工程力学

7.马格努斯,工程力学基础

8.铁木辛柯,高等材料力学

9.弹性薄壳理论 / 哥尔琴文塞尔, А.Л,薛振东,刘树阑上海科学技术出版社 1963

10.Gol’denveizer的《弹性薄壳理论》,

11.Novozhlov的《非线性弹性力学》

12.Leibenzon的《弹性理论》

13.Katz的《弹性理论》人民教育出版社,1962

14.弹性簿板 / 张福范 科学 1984

15.弹性动力学 第一卷 有限运动 / 艾龙根 (Eringen,A.C. ,舒胡毕 (Suhubi,E.S.) ,戈

革 石油工业出版社 1983

16.弹性和塑性力学中的变分法 / 鹫津久一郎 科学 1984

弹性结构的数学理论 / 冯康 科学 1981

18.弹性结构的数学理论 / 冯康 ,石钟慈 科学出版社 1981

19.弹性矩形薄板振动 / 曹国雄 中国建筑工业出版社 1983

20.弹性理论 / 王龙甫 科学出版社 1978

21.弹性理论 / 王龙甫 科学出版社 1984

22.弹性理论 / TIMOSHENKO, S. ,季莫申科 (Timoshenko ,古迪尔 (Goodier, J.N ,徐芝

纶 等译)人民教育出版社 1964

23.弹性理论基础 / 陆明万 清华大学 1990

24.弹性力学 / 徐芝纶 人民教育 1982

25.弹性力学 / 钱伟长 科学 1956

26.弹性力学 / 徐芝纶 高等教育出版社 1990

27.弹性力学 / 吴家龙 同济大学出版社 1993

28.弹性力学的变分原理及其应用 / 胡海昌 科学 1981

29.弹性力学基础 / 陈森 科学 1981

30.弹性力学基础 / 赵学仁 北京理工大学出版社 1994

31.弹性力学基础 / 陈森 科学出版社 1981

32.弹性力学基础 / 蒋咏秋 陕西科学技术出版社 1984

33.弹性力学基础及有限单元法 / 黄义 冶金工业出版社 1983

34.弹性力学及其数值方法 / 夏志皋 同济大学出版社 1997

35.弹性力学及其有限元法 / 张允真 ,曹富新 中国铁道出版社 1983

36.弹性力学简明教程 / 徐芝纶 人民教育 1980

37.弹性力学引论 / 武际可 ,王敏中 北京大学出版社 1981

38.弹性力学教程/王敏中,王炜,武际可,北京大学出版社,2002

39.高等弹性力学/王敏中,北京大学出版社,2003

40.弹性力学与塑性力学解题指导及习题集 / 高等教育出版社 1985

41.弹性力学中的差分方法 / 徐芝纶 高等教育出版社 1989

42.弹性力学中的有限元法 / 卓家寿 高等教育出版社 1987

43.弹性流体动力润滑 / 胡西樵 高等教育出版社 1986

44.弹性流体动力润滑 / 道森 (Dowson, D.) ,希金森 (Higginson, G ,程华 机械工业出

版社 1982

45.弹性流体动力润滑 / 温诗铸 ,杨沛然 清华大学出版社 1992

46.弹性流体动力润滑及其应用 / 张鹏顺 ,陆思聪 高等教育出版社 1995

47.弹性腔理论及其在心血管系统分析中的应用 / 柳兆荣 科学 1987

48.弹性体的力学改性 / 朱玉俊 北京科学技术出版社 1992

49.弹性体系的动力稳定性 / 鲍洛金, 符·华 ,林砚田 高等教育出版社 1960

50.弹性体制造、加工和应用的物理化学基础 / 库兹明斯基 (Кузь ,张隐西 化学工业

出版社 1983

51. 弹性稳定 / 费志中 煤炭工业出版社 1995

52.弹性稳定理论 / 周承倜 四川人民出版社 1981

53.弹性稳定理论 / TIMOSHENKO, S. ,铁摩辛柯, S. ,张福范 科学出版社 1958

54.弹性系统的随机振动 / Болотин В.В ,Bolotin V.V ,博洛京 (Болот

и ,徐昭鑫 ,江晓仑,西南交通大学出版社 1991

55. 弹性系统的稳定性 / 武际可 ,苏先樾 科学出版社 1994

56. 弹性与塑性理论 / 基伏罗夫 人民教育 1957

57. 弹性与塑性力学 / 徐秉业 机械工业出版社 1981

58. 弹性与塑性力学 / 徐秉业 机械工业出版社 1991

59.弹性动力学 / 杨桂通,

60.弹塑性动力学 /杨桂通

61.弹性力学 /杨桂通,高等教育出版社

最早以,武际可、黄克服:对力学教材的几点看法.刊于《力学与实践》,2000,22(5):69~72,后补充,在一些会议上介绍过。

土质学与土力学习题及答案

一、填空题 1、根据受颗粒表面静电引力作用的强弱,固体颗粒周围的水可以划分为三 种类型强结合水、弱结合水和自由水。 2、根据毛系水带的形成条件和分布状况,可以分为三种,即正常毛细水带、毛细网状水带、毛细悬挂水带。 3、通过测定的前期固结压力和土层自重应力状态的比较,将天然土层划分 为正常固结土、超固结土、欠固结土。 4、粘性土的抗剪强度由内摩阻力和粘聚力,其中内摩阻力包括表面摩擦力、土粒之间的咬合力,粘聚力包括原始粘聚力、固化粘聚力、毛细粘聚力。 5、根据土样剪切前固结的排水条件和剪切时的排水条件,三轴试验可分为 不固结不排水剪、固结不排水剪、固结排水剪三种试验方法。 6、压缩试验数据整理时,根据曲线可得到压缩系数、压缩模量两个指标,根据曲线可得到压缩指数。 二、单项选择题 1.当粘性土含水量减小,土体积不再减小,土样所处的状态是: (A)固体状态 (B)可塑状态 (C)流动状态 (D)半固体状态 您的选项( A ) 2.判别粘性土软硬状态的指标是: (A)液限 (B)塑限 (C)塑性指数 (D)液性指数 您的选项(D ) 3亲水性最弱的粘土矿物是: (A)蒙脱石 (B)伊利石 (C)高岭石 (D)方解石 您的选项( C ) 4.土的三相比例指标中需通过实验直接测定的指标为: (A)含水量、孔隙比、饱和度 (B)密度、含水量、孔隙率 (C)土粒比重、含水量、密度

(D)密度、含水量、孔隙比 您的选项( C ) 5.下列指标中,哪一指标数值越大,密实度越小。 (A)孔隙比 (B)相对密实度 (C)轻便贯入锤击数 (D)标准贯入锤击数 您的选项( A ) 6.土的含水量w是指: (A)土中水的质量与土的质量之比 (B)土中水的质量与土粒质量之比 (C)土中水的体积与土粒体积之比 (D)土中水的体积与土的体积之比 您的选项( B ) 7.土的饱和度S r 是指: (A)土中水的体积与土粒体积之比 (B)土中水的体积与土的体积之比 (C)土中水的体积与气体体积之比 (D)土中水的体积与孔隙体积之比 您的选项( D ) 8.粘性土由半固态转入可塑状态的界限含水量被称为: (A)缩限 (B)塑限 (C)液限 (D)塑性指数 您的选项(B ) 9.某粘性土样的天然含水量w为20%,液限w L 为35%,塑限w P 为15%,其液性指 数I L 为: (A)0.25 (B)0.75 (C)4.0 (D)1.33 您的选项( A) 10.根据《建筑地基基础设计规范》(GB50007-2002)(下列习题中简称为规范 GB50007)进 行土的工程分类,砂土为: (A)粒径大于2mm的颗粒含量>全重的50%的土。 (B)粒径大于0.075mm的颗粒含量≤全重的50%的土。 (C)粒径大于2mm的颗粒含量≤全重的50%、粒径大于0.075mm的颗粒 含量>全重的50%的土。 (D)粒径大于0.5mm的颗粒含量≤全重的50%、粒径大于0.075mm的颗 粒含量>全重的50%的土。 您的选项( C ) 11.根据规范GB50007进行土的工程分类,粘土是指:

最新材料力学实验参考教学教材

实验一、测定金属材料拉伸时的力学性能 一、实验目的 1、测定低碳钢的屈服极限s σ,强度极限b σ,延伸率δ和面积收缩率ψ。 2、测定铸铁的强度极限b σ。 3、观察拉伸过程中的各种现象,并绘制拉伸图(l F ?-曲线)。 二、仪器设备 1、液压式万能试验机。 2、游标卡尺。 三、实验原理简要 材料的力学性质s σ、b σ、δ和ψ是由拉伸破坏试验来确定的。试验时,利用试验机自动绘出低碳钢拉伸图和铸铁拉伸图。对于低碳材料,确定屈服载荷s F 时,必须缓慢而均匀地使试件产生变形,同时还需要注意观察。测力回转后所指示的最小载荷即为屈服载荷s F ,继续加载,测得最大载荷b F 。试件在达到最大载荷前,伸长变形在标距范围内均匀分布。从最大载荷开始,产生局部伸长和颈缩。颈缩出现后,截面面积迅速减小,继续拉伸所需的载荷也变小了,直至断裂。 铸铁试件在极小变形时,就达到最大载荷,而突然发生断裂。没有流动和颈缩现象,其强度极限远低于碳钢的强度极限。 四、实验过程和步骤 1、用游标卡尺在试件的标距范围内测量三个截面的直径,取其平均值,填入记录表内。取三处中最小值作为计算试件横截面积的直径。 2、 按要求装夹试样(先选其中一根),并保持上下对中。 3、 按要求选择“试验方案”→“新建实验”→“金属圆棒拉伸实验”进行试验,详细操 作要求见万能试验机使用说明。 4、 试样拉断后拆下试样,根据试验机使用说明把试样的l F ?-曲线显示在微机显示屏 上。从低碳钢的l F ?-曲线上读取s F 、b F 值,从铸铁的l F ?-曲线上读取b F 值。 5、 测量低碳钢(铸铁)拉断后的断口最小直径及横截面面积。 6、 根据低碳钢(铸铁)断口的位置选择直接测量或移位方法测量标距段长度1l 。 7、 比较低碳钢和铸铁的断口特征。

(整理)土质学与土力学课后习题答案.

绪论 答案:略 第1章 土的物理性质及工程 一、填空题 1、固体颗粒,水; 2、结合水,自由水; 3、最松散,最密实; 4、塑限,液限; 5、单粒,蜂窝,絮状; 6、土中水的质量,土粒质量; 7、含水率,黏粒含量。 二、选择题 1、A, 2、D , 3、A , 4、C, 5、D, 6、D , 7、D 三、证明题 1、11s s s s s w d v v s s s G V V V V e V V V γγγγγ====+++ 2、 (1)(1)w v w s s s s s s w r v v v m V m V G G G n m V m V V S V V n V V V ω--==== 四、计算题 1、w = %6.353 .823 .82456.156=-- r =3/60.180.1060456.156m kN =?- 3/72.130.10603.82m kN d =?=γ 73.2=s G ()1 2.73(10.356) 110.991.86 s w G e ωγγ +?+= -= -= 0.990.497110.99 e n e = ==++ 0.356*2.730.9820.99s r G S e ω=== 32.730.991018.69/10.199 s sat w kN G e m e γγ+=+=+?=+ 318.6910.08.69/sat w kN m γγγ'=--== 2、 土样号 γ (kN/m 3) G s ω (%) d γ (kN/m 3) e n S r (%) 体积 (cm 3) 土的重力(N ) 湿 干 1 18.96 2.72 34.0 14.17 0.92 0.48 100.0 — — — 2 17.3 2.74 9.1 15.84 0.73 0.42 34.2 — — — 3 19.0 2.74 31.0 14.5 0.89 0.47 95.7 10.0 0.19 0.145 3、 土样号 L ω P ω I P I L 土的名称 土的状态 1 31 17 14 1.29 低液限黏土 流塑

土质学与土力学在线作业(较全)

吉大18春学期《土质学与土力学》在线作业一一、单选题共10题,40分 1土的三相比例指标中可直接测定的指标为(正确 答案: C) A含水量、孔隙比、饱和度B密度、含水量、孔隙比C土粒相对密度、含水量、密度D密度、含水量、干密度2下列哪些因素会引起xx失稳: (1)xx作用力发生变化 (2)土抗剪强度降低 (3)静水压力的作用 (4)地下水的渗流所引起的渗流力正确 答案: D A(1)(2) B (3)(4) C (2)(3) D (1)(2) (3)(4) 3若土的颗粒级配曲线很平缓,则表示(正确 答案: B)

A不均匀系数较小B粒径分布不均匀C粒径分布较均匀 D级配不好4最容易发生冻胀现象的土是(正确 答案: C) A碎石土B砂土C粉土D粘土 5土的强度是指(正确 答案: A) A抗剪强度B抗压强度C抗拉强度D抗弯强度 6在饱和土的排水固结过程中,随着有效应力的增加,(正确 答案: B) A孔隙水压力相应增加B孔隙水压力相应减少C总应力相应增加D总应力相应减少 7饱和粘性土的抗剪强度指标。(正确 答案: B) A与排水条件无关B与排水条件有关C与试验时的剪切速率无关D与土中孔隙水压力是否变化无关 8分析砂性土坡稳定时,假定滑动面为(正确 答案:

A) A斜平面B坡脚圆C坡面圆 D中点圆9土体压缩变形的实质是(正确 答案: A) A孔隙体积减小B土粒体积的压缩C土中水的压缩 D土中气的压缩10绝对柔性基础在均匀受压时,基底反力分布图形简化为(正确 答案: A) A矩形B抛物线形C钟形 D马鞍形 二、多选题共5题,20分 1下列不属于黏性土构造特点的是(正确 答案: BCD ) A构造可分为原生构造和次生构造B构造呈块状构造、假斑状构造C土的渗透性强,力学强度高D压缩性低 2淤泥类土的特点有(正确 答案: ABCD) A高孔隙比,饱水B透水性极弱C高压缩性D抗剪强度低

流体力学PDF

流 體 力 學 流體靜力學 (流體的靜力平衡) 浮 力 水的壓力 表面張力 (存在液體表面的線張力) 液壓機 毛細現象 流體動力學 大氣壓力

命題焦點9.1→靜止流體的壓力 090101 流體的作用力 1. 何謂「流體」?──可以流動,隨容器改變其形狀的物質,包含液體與氣體。 流體(fluid ) A fluid is a collection of molecules that are randomly arranged and held together by weak cohesive forces and by forces exerted by the walls of a container. 2. 流體力學的分類: (1)流體靜力學:研究靜止流體的壓力與平衡問題。 (2)流體動力學:研究運動中流體其壓力、速度與受力之關係。 ※所謂『靜止』是指巨觀狀態下的靜止,在微觀世界中,只要不是溫度絕對零 度,分子一定會運動。 3.力學分析三步驟: (1)選擇適當的受力物 (2)分析受力﹐畫出力圖 (3)分析力造成何種結果﹐列方程式 4.本章會學到四個力或力的衍生物理量: (大氣)壓力; (液體)壓力; 浮力; 表面張力。 090102 壓力(Pressure) 1、壓力的定義:單位面積上所受的正向力 F P A = 平均壓力 某點壓力 意義 單位面積上的正壓力 某一點上的壓力 F P = F 2. 標準單位(SI 單位): 2N m =牛頓平方公尺 = Pa (帕斯卡) 3、壓力的來源: 種 類 氣體壓力 氣體壓力 液體壓力 來 源 氣體的重量 氣體的碰撞 液體的重量 章 別 第九章 第十一章 第九章 類 別 大氣壓力 密閉容器內的氣體壓力 水壓/液壓

《土质学与土力学》习题库及答案

《土质学与土力学》习题库 第一章 一.填空题 1.土粒粒径越,颗粒级配曲线越,不均匀系数越,颗粒级配越。为了获得较大密实度,应选择级配的土粒作为填方或砂垫层的材料。 2.粘土矿物基本上是由两种原子层(称为品片)构成的,一种是,它的基本单元是Si—0四面体,另一种是,它的基本单元是A1—OH八面体。 3.土中结构一般分为、和三种形式。 4.衡量天然状态下粘性土结构性强弱的指标是,其定义是值愈大,表明土的结构性,受扰动后土的强度愈多。 5.土中主要矿物有、和。它们都是由和组成的层状晶体矿物。6.饱和细砂土和干细砂土都无法形成直立边坡,而非饱和细砂土则可以,这是因为在起作用。 二.选择题 1.在毛细带范围内,土颗粒会受到一个附加应力。这种附加应力性质主要表现为( ) (A)浮力; (B)张力; (C)压力。 2.对粘性土性质影响最大的是土中的( )。 (A)强结合水; (B)弱结合水; (C)自由水; (D)毛细水。 3.砂类土的重要特征是( )。 (A)灵敏度与活动度; (B)塑性指数与液性指数; (C)饱和度与含水量; (D)颗粒级配与密实度。 4.土中所含“不能传递静水压力,但水膜可缓慢转移从而使土具有一定的可塑性的水,称为( )。 (A)结合水; (B)自由水; (C)强结合水; (D)弱结合水。 5.软土的特征之一是( )。 (A)透水性较好; (B)强度较好; (C)天然含水量较小; (D)压缩性较高。6.哪种土类对冻胀的影响最严重?( ) (A)粘土; (B)砂土; (C)粉土。 7.下列粘土矿物中,亲水性最强的是( )。

(A)高岭石; (B)伊里石; (C)蒙脱石 8.对土粒产生浮力的是( )。 (A )毛细水; (B)重力水; (C)强结合水, (D)弱结合水。 (9)毛细水的上升,主要是水受到下述何种力的作用?( ) (A)粘土颗粒电场引力作用; (B)孔隙水压力差的作用 (C)水与空气交界面处的表面张力作用。 (10)软土的特征之一是( )。 (A)透水性较好; (B)强度较好; (C)天然含水量较小; (D)压缩性较 高 第二章 一、填空题 1.相对密度Dr 的定义是 ,Dr 等于 时砂土处于最紧密状态。 2.根据土的颗粒级配曲线,当 时表示土的级配良好。 3.土的九个物理性质指标中,无量纲量除s d 外,还有 ,其中可以大于1或为100%的量为 。 4.液性指数是用来衡量 。 5.有两个天然重度和含水量相同的土样,其土粒比重不同,何者饱和度大 。 6.地下水位在粘性土层中上升时,在被浸湿的土层中,保持不变的物理特征指标是 和 。 二、选择题 1.某土样的孔隙体积等于土粒体积0.95倍,当孔隙为水充满时,土样的重度为多少?(若土粒重度s r =27kN/m 3 ( ) (A)13.8kN/m 3; (B)16.3kN/m 3; (C)18.7 kN/m 3。 2.已知某土样的天然重度r =17kN/m 3:,干重度d r =14.5kg/m 3,饱和重度sat r =18kN/m 3液性指数I L =0。试问该土的塑限为多少?(w r =10kN/m 3 )( ) (A)5.9%; (B)17.2%; (C)24.1%。 3.用于配制1.5m 3土样,要求土样的重度为17.5kN/m 3,含水量为30%。若土粒重度为27kN/m 3 ,则需要土粒体积多少?( )

《流体力学》各章节复习要点..

第一章 一、名词解释 1.理想流体:没有粘性的流体 2.惯性:是物体所具有的反抗改变原有运动状态的物理性质。 3.牛顿内摩擦力定律:流体内摩擦力T 的大小与液体性质有关,并与流速梯度和接触面A 成正比而与接触面上的压力无关。 4.膨胀性:在压力不变条件下,流体温度升高时,其体积增大的性质。 5.收缩性:在温度不变条件下,流体在压强作用下,体积缩小的性质。 6.牛顿流体:遵循牛顿粘性定律得流体。 二、填空题 1.流体的动力粘性系数,将随流体的(温度)改变而变化,但随流体的(压力)变化则不大。 2.动力粘度μ的国际单位是(s p a ?或帕·秒)物理单位是(达因·秒/厘米2或2 /cm s dyn ?)。 3.运动粘度的国际单位是(米2/秒、s m /2 ),物理单位是(沱 )。 4.流体就是各个(质点)之间具有很大的(流动性)的连续介质。 5.理想流体是一种设想的没有(粘性)的流体,在流动时各层之间没有相互作用的(切应力), 即没有(摩擦力) 三、单选题 1. 不考虑流体粘性的流体称( )流体。 A A 理想 B 牛顿 C 非牛顿 D 实际 2.温度升高时,空气的粘性( ) B A .变小 B .变大 C .不变 D .不能确定 3.运动粘度的单位是( ) B A .s/m 2 B .m 2/s C .N ?m 2/s D .N ?s/m 2 4.与牛顿内摩擦定律直接有关的因素是( ) C A .切应力与速度 B .切应力与剪切变形 C .切应力与剪切变形速度 D .切应力与压强 5.200℃体积为2.5m 3的水,当温度升至800℃时,其体积变化率为( ) C 200℃时:1ρ=998.23kg/m 3; 800℃时: 2ρ=971.83kg/m 3 A .2.16% B .1.28% C .2.64% D .3.08% 6.温度升高时,水的粘性( )。 A A .变小 B .变大 C .不变 D .不能确定 2.[动力]粘度μ与运动粘度υ的关系为( )。 B A .υμρ= B .μυρ= C .ρυμ = D .μυ=P

材料力学读书笔记 第四版

第一章 绪论 1. 材料力学基本任务 ? 强度(抵抗破坏) ? 刚度(抵抗变形) ? 稳定性(维持平衡) 2. 变形固体的基本假设 ? 连续性 ? 均匀性 ? 各向同性 3. 外力及其分类 ? 表面力(分布力 集中力) ? 体积力 ? 静载 ? 动载(交变、周期、冲击) 4. 内力、变形与应变 线应变 切应变(角应变) 1Pa=1N/m 2 MPa 应力 5. 杆件变形基本形式 ? 拉伸与压缩 ? 剪切 ? 扭转 ? 弯曲 第二章 拉伸、压缩与剪切 1. 轴力、轴力图 拉伸为正 压缩为负 2. 圣维南原理 离端界面约截面尺寸范围受影响 3. 直杆拉伸或压缩时斜截面上的应力 α=0时,σαmax =σ α=45°,ταmax =σ/2 4. 低碳钢的拉伸性能 (铸铁、球墨铸铁) ? 弹性阶段(塑形变形、弹性变形 比例极限 弹性极限 胡克定律) ? 屈服阶段 ? 强化阶段 ? 紧缩阶段(局部变形阶段) 塑性指标:伸长率δ(工程上的划分:>5%塑形材料 <5%脆性材料)、断面收缩率ψ 卸载定律:应力应变按直线规律变化 冷作硬化:第二次加载时比例极限得到提高,但塑性变形和伸长率有所降低(利用:起重钢索、建筑钢筋常用冷拔工艺提高强度;某些零件喷丸处理使其表面塑形变形形成冷硬层提高表面强度 克服:冷作硬化使材料变硬变脆难于加工易产生表面裂纹,工序之间安排退火) 碳素钢随含碳量的增加,屈服极限和强度极限相应提高,但伸长率降低。 铸铁拉伸因没有屈服现象,强度极限成为唯一强度指标。 材料力学性能主要指标:比例极限、屈服极限、强度极限、弹性模量、伸长率、断面收缩率 作用方式 时间变化

土质学与土力学课后习题答案

绪论 答案:略 第1章 土的物理性质及工程 一、填空题 1、固体颗粒,水; 2、结合水,自由水; 3、最松散,最密实; 4、塑限,液限; 5、单粒,蜂窝,絮状; 6、土中水的质量,土粒质量; 7、含水率,黏粒含量。 二、选择题 1、A, 2、D , 3、A , 4、C, 5、D, 6、D , 7、D 三、证明题 1、 11s s s s s w d v v s s s G V V V V e V V V γγγγγ====+++ 2、(1)(1)w v w s s s s s s w r v v v m V m V G G G n m V m V V S V V n V V V ω--==== 四、计算题 1、w = %6.353 .823 .82456.156=--

r = 3/60.180.1060 45 6.156m kN =?- 3/72.130.10603 .82m kN d =?= γ 73.2=s G ()1 2.73(10.356) 110.991.86 s w G e ωγγ +?+= -= -= 0.990.497110.99 e n e = ==++ 0.356*2.730.9820.99s r G S e ω=== 32.730.991018.69/10.199 s sat w kN G e m e γγ+=+=+?=+ 318.6910.08.69/sat w kN m γγγ'=--== 2、 3、

4、()1 2.68(10.105) 110.6921.75 s w G e ωγγ +?+= -= -= 0.9410.6920.249 0.5180.9410.4600.481 max r max min e e D e e --= ===-- 5、 五、简答题(略)

土质学与土力学试卷(A).doc

名姓 号学 级班

三 计算题:(共60分) 1. 已知某粉质粘土的土粒相对密度为 2.73,含水量为30%,土的密度为1.85g/cm 3,试求浸水饱和后体积不变情 况下该土的水下有效重度。(10分) 2. 相邻两座A 、B 楼,A 楼先建,B 楼后建。建B 楼将对A 楼产生影响,如图所示。试计算建B 楼后A 楼的附 加沉降量。(15分) 基岩 )4() 3. 某粘性土,已知其抗剪强度指标为c=20kPa ,?=20°。试问: (1)如果对该土的试样进行三轴压缩试验,施加大、小主应力分别为σ1=290kPa ,σ3=120kPa ,试问该试样处于何种状态?为什么?(5分)(2)如果该土样未达到极限平衡状态,令大主应力不变,改变小主应力,使土样达到极限平衡状态,此时小主应力应为多少?(5分) 4. 某挡土墙高5m ,墙背直立、光滑、墙后填土面水平,共分两层,各土层的物理力学性质指标如图所示,填土面上有均布荷载q =10kPa ,试用朗肯土压力理论计算主动土压力强度,并求出主动土压力合力及作用点位置(15分)。 5. 某均质砂土土坡高10m.,3/19m kN =γ,0=c , 35=?,试计算土坡稳定安全系数3.1=K 时的坡角β(10分)。

南京工业大学 土质学与土力学 试题 ( A )卷 试题标准答案 2010--2011学年第1学期 使用班级 土木0801-0806 浦土木0807-0808 一 选择题(30分) 二 填空题(10分) 1 密度,土粒相对密度,含水量 2 临界孔隙比,剪缩,剪胀 3 塑性指数,液性指数 4 抗滑力矩,滑动力矩 三 计算题(60分) 1解 9184.019184.185 .110 )3.01(73.21)1(=-=?+?= -+= ρ ρw s w G e (5分) 3'/02.9109184 .011 73.211m kN e G w s =?+-=+-= γγ (5分,不写或写错单位扣2分) 2 解 (1) 由于建B 楼后A 楼产生附加应力增量为: 基底处:0;(2)层土底处:kPa P 1060702=-=? (3)层土底处:kPa P 1040502=-=? (5分) (2) 附加沉降为: 33 3322111 h E P h E P h E P s s s s ?+?+?= (5分) mm 875.1110875.140004000 5 .0)1010(300080005.0)010(0=+=??++??++ =(5分,不写或写错 单位扣2分!) 3解 kPa c kPa 9.301428.120204.2120) 2/45tan(2)2/45(tan 290231=??+?=+++<=??σσοο (3分) 根据粘性土极限平衡条件可知,该土样处于弹性变形阶段。 (2分) kPa c 1.1147.020249.0290) 2/45tan(2)2/45(tan 213=???==----??σσοο (5分) 令大主应力不变,减小小主应力114.1kPa 时,土体处于极限平衡状态。

流体力学计算题教学教材

流体力学计算题

水 水银 题型一:曲面上静水总压力的计算问题(注:千万注意方向,绘出压力体) 1、AB 曲面为一圆柱形的四分之一,半径R=0.2m ,宽度(垂直纸面)B=0.8m ,水深H=1.2m ,液体密度 3/850m kg =ρ,AB 曲面左侧受到液体压力。求作用在AB 曲面上的水平分力和铅直分力。(10分) 解:(1)水平分力: RB R H g A h P z c x ?- ==)2(ργ…….(3分) N 1.14668.02.0)2 2 .02.1(8.9850=??-??=,方向向右(2 分)。 (2)铅直分力:绘如图所示的压力体,则 B R R R H g V P z ??? ? ????+-==4)(2πργ……….(3分) 1.15428.04 2.014.32.0)2.02.1(8.98502=???? ? ?????+?-??=,方向向下(2分)。 2.有一圆滚门,长度l=10m ,直径D=4.2m ,上游水深H1=4.2m ,下游水深H2=2.1m ,求作用于圆滚门上的水平和铅直分压力。 l d Q h G B A 空 气 石 油 甘 油 7.623.66 1.52 9.14m 1 1

解题思路:(1)水平分力: l H H p p p x )(2 12 22121-=-=γ 方向水平向右。 (2)作压力体,如图,则 l D Al V p z 4 432 πγγγ? === 方向垂直向上。 3.如图示,一半球形闸门,已知球门的半径m R 1= ,上下游水位差m H 1= ,试求闸门受到的水平分力和竖直分力 的大小和方向。 解: (1)水平分力: ()2R R H A h P c πγγ?+===左,2R R A h P c πγγ?='=右 右左P P P x -= kN R H 79.30114.31807.92=???=?=πγ, 方向水平向右。 (2)垂直分力: V P z γ=,由于左、右两侧液体对曲面所形成的压力体均为半球面,且两侧方向相反,因而垂直方向总的压力为0。 4、密闭盛水容器,已知h 1=60cm,h 2=100cm ,水银测压计读值cm h 25=?。试求半径R=0.5m 的半球盖AB 所受总压力的水平分力和铅垂分力。

土质学与土力学试卷及答案

一、名词解释:(15分) 1、塑性指数(3分) 答:土处在塑性状态时含水量的变化范围可用来衡量土的可塑性大小,含水量变化范围愈大,说明土得可塑性愈好,这个范围称为土的塑性指数。 2、地基容许承载力(3分) 答:考虑一定安全储备后的地基承载力成为地基容许承载力。 3、被动土压力(3分) 答:若挡土结构在外力作用下,向填土方向移动,这时作用在墙上的土压力将由静止土压力逐渐增大,一直到土体极限平衡,并出现连续滑动面,墙后土体向上挤出隆起,这时土压力增至最大值,称之为被动土压力。 4、液性指数 答:表示天然含水量与界限含水量相对关系的指标。 5、达西定律 答:水在土中的渗透速度与水头梯度成正比,。 二、填空(31分) 1、土是由固相、液相、气相三相物质组成。(3分) 2、常用的粒度成分的表示方法有表格法、累计曲线法、三角坐标法。(3分) 3、根据受颗粒表面静电引力作用的强弱,固体颗粒周围的水可以划分为三种类型强结合水、弱结合水和自由水。(3分) 4、根据毛系水带的形成条件和分布状况,可以分为三种,即正常毛细水带、毛细网状水带、毛细悬挂水带。(3分) 5、通过测定的前期固结压力和土层自重应力状态的比较,将天然土层划分为正常固结土、超固结土、欠固结土。(3分)

6、粘性土的抗剪强度由内摩阻力和粘聚力,其中内摩阻力包括表面摩擦力、土粒之间的咬合力,粘聚力包括原始粘聚力、固化粘聚力、毛细粘聚力。(5分) 7、根据土样剪切前固结的排水条件和剪切时的排水条件,三轴试验可分为不固结不排水剪、固结不排水剪、固结排水剪三种试验方法。(3分) 8、引起土体压缩的应力是附加应力,它随深度增加逐渐减小。(2分) 9、地基的破坏模式包括:整体剪切破坏、局部剪切破坏、刺入式剪切破坏。(3分) 10、压缩试验数据整理时,根据曲线可得到压缩系数、压缩模量两个指标,根据曲线可得到压缩指数。(3) 三、简答题(24分) 1、影响土的渗透性的因素(6分) 答:影响土的渗透性因素有: (1)土的粒度成分及矿物成分,其中土的颗粒大小、形状及级配对砂土渗透性影响较大,土的矿物成分对粘土的渗透性影响较大; (2)结合水膜厚度,结合水膜厚度较厚时,会阻塞土的孔隙,降低土的渗透性。 (3)土的结构构造,由于土是各向异性的,所以渗透性方面也是如此。 (4)水的粘滞度,水在土中的渗流速度与水的的密度及粘滞度有关,而这两个数值又与温度有关。 (5)土中气体,当土孔隙中存在密闭气泡时,会阻塞水的渗流,从而降低土的渗透性。 2、简述分层总和法计算地基最终沉降步骤(6分)

土质学与土力学试卷及参考答案套

《土质学与土力学》课程期终考试A 卷 1.选择填空(20分,每空2分) (1)下列粘土矿物按膨胀性由大到小,正确的顺序是 。 a )高岭石、伊利石、蒙脱石 b )伊利石、高岭石、蒙脱石 c )蒙脱石、伊利石、高岭石 d )蒙脱石、高岭石、伊利石 (2)某土样中水的质量由原来的20g 增加至40g ,则含水量可由原来的20%增加至 。 a )25% b )50% c )33.3% d )40% (3)当土的初始孔隙比e 0≥1时,孔隙度n 。 a )≥50% b )<50% c )>50% d )≤50% (4)下列叙述中正确的是 。 a )土粒比重、密度和含水量是实测指标 b )干密度、饱和度、含水量是导出指标 c )饱和度、孔隙度是实测指标 d )密度、含水量、比重是导出指标 (5)下列叙述中正确的是 。 a )地下水位上升,地基承载力增大 b )地下水位上升,地基承载力降低 c )地下水位上升,地基承载力不变 d )地下水位下降,地基承载力降低 (6)下列叙述中不正确的是 。 a )含水量为100%的土不一定是饱和土 b )土的饱和度在理论上不能大于100% c )含水量大的土饱和度一定大 d )含水量相同的土饱和度不一定相同 (7)按塑性图CIM 区的土为 。 a )中液限粘土 b )有机粉土 c )中液限粘土质粉土 d )粉质中液限粘土 (8)下列叙述中不正确的是 。 a )含水量大于液限时,液性指数大于1 b )两种土的塑性指数相同,则其塑限和液限也相同 c )液性指数取决于含水量的大小,含水量愈高,液性指数相应要大 d )两种土的塑限和液限相同,塑性指数也相等 (9)密实砂土在CU 试验中总应力圆一般位于有效应力圆 。 a )之右 b )之左 c )重合 d )无法确定 (10)土层在历史上受到的最大固结压力小于现有土层的上覆自重应力,这种土的OCR 。 a )大于1 b )等于1 c )小于1 d )等于0 2.证明以下关系式(10分) 3.计算题(50分) (1)(10分)某砂土的孔隙度为45%,土粒比重为2.68,含水量为10%,若将该土10m 3 加水至完全饱和,需要加多少kN 的水? (2)(10分)如图均布荷载p 作用在阴影部分,试用角点法列出A 点下某一深度z 处的附加应力表达式。要说明每一附加应力系数应根据什么值查表或计算。 w d += 1) 1(ρ ρ1 -=d w s G e ρρ (2)

《流体力学》教学大纲

《流体力学》教学大纲 课程编号: B0 课程名称:流体力学 英文名称:Fluid Mechanics 适用专业:建筑环境与设备工程 总学时:66+6 学分: 一、本课程的性质、目的和任务 本课程是建筑环境与设备工程等专业的主干基础课程。其任务是使学生掌握流体平衡和运动的基本概念、基本原理和基本计算方法,并了解一些流动现象的本质。通过本课程的学习,学生应掌握一定的分析、判断、计算和实验能力,为继续学习本专业后续课程,从事专业工作和科学研究奠定基础。 二、课程教学的基本要求 (1)流体的主要物理性质掌握流体的各种力学性质。 (2)流体静力学掌握流体平衡状态下的压强分布规律及压强计算。 (3)流体运动的基本概念和一元动力学分析掌握恒定总流连续性方程、能量方程和动量方程,描述流体运动的方法,能量方程的物理意义和几何意义。 (4)流体微团运动分析了解流体微团的运动特征,掌握有旋流动与无旋流动的判别,确定速度势函数和流函数。 (5)相似原理和因次分析掌握相似原理和因次分析方法,模型律。 (6)流动阻力和能量损失掌握层流和紊流特征,阻力变化规律及能量损失计算。 (7)管路流动掌握管网计算基础。 (8)边界层理论基础与绕流运动了解边界层概念和悬浮速度。 (9)紊流射流掌握紊流射流的结构,几何特征、运动特征和动力特征。 (10)一元气体动力学基础了解一元恒定气流的基本方程,绝热管流和等温管流流量计算。 三、课程教学基本内容 (1)流体的主要物理性质 流体的(易)流动性、惯性、黏性、压缩性和热胀性等;连续介质假设、牛顿流体、无黏流体、不可压缩流体等理论模型;作用在流体上的力:质量力和表面力。 (2)流体静力学 流体静压强及其特性,流体静压强的分布规律,流体静压强的计算基准和量度单位,液柱式测压计,作用于壁面上的液体总压力,流体平衡微分方程,液体的相对平衡。 (3)流体运动的基本概念和一元动力学分析 描述流体运动的方法,流体运动的基本概念,连续性方程,恒定元流能量方程,恒定总流能量方程,能量方程的物理意义、几何意义及应用,恒定气流能量方程,恒定总流动量方程。 (4)流体微团运动分析 流体微团运动分析,有旋流动,不可压缩流体连续性微分方程,粘性流体运动微分方程(即纳维-斯托克斯方程),理想流体运动微分方程(即欧拉方程)及其积分,有旋流动与无旋流动,速度势函数和流函数。 (5)相似原理和因次分析 力学相似性原理,相似准数:欧拉数、弗诺得数、雷诺数、马赫数等,模型律,因次分析法:雷立法

土质学及土力学习题+答案

土质学与土力学习题 一、单项选择题: ( B )1、土的三相比例指标中通过试验测定的指标是: A、孔隙比、含水量和饱和度; B、土的密度、含水量和土粒密度; C、孔隙率、土粒密度和土的密度; D、土粒密度、饱和度和土的密度。 ( A )2、动水力(渗透力)的大小主要取决于; A、水头梯度; B、水头差; C、渗透系数; D、流速。 ( C )3、引起建筑物基础沉降的根本原因是; A、基础自重压力 B、基底总压应力 C、基底附加应力 D、建筑物活荷载 ( A )4、土的压缩系数越______、压缩模量越______,土的压缩性就越大。 A、高,低; B、低,高; C、高,高; D、低,低。 ( D )5、现场载荷试验得到的地基模量是______。 A、压缩模量; B、弹性模量; C、初始模量; D、变形模量。 ( A )6、新近沉积的粘性土一般为_______土。 A、欠固结; B、正常固结; C、超固结: D、完全固结。 ( C )7、下面的几类土中________是由土的颗粒级配进行分类的。 A、杂填土; B、粉质粘土; C、碎石土; D、黄土。 ( C )8、对粘性土进行分类的指标是: A、塑限; B、液限; C、塑性指数; D、液性指数。 ( B )9、下列土层中,最容易出现流砂现象。 A、粗砂; B、粉土; C、粘土; D、粉质粘土。 ( A )10、室内侧限压缩试验测得的e-P曲线愈陡,表明该土样的压缩性: A、愈高; B、愈低; C、愈均匀; D、愈不均匀。 ( B )11、土体中被动土压力充分发挥所需位移量通常主动土压力发挥所需位移量。 A、小于; B、超过; C、等于;D.不一定 ( D )12、有一10m厚的饱和软土层,双面排水,2年后固结度为80%,若该土层是单面排水,要达到同样固结度,则需要的时间为: A、0.5年; B、2年; C、4年; D、8年。 13.湿砂土具有一定程度的“水连接”,用锹能挖成团,这是由于(C )在起作用。 A.水胶连接 B.土粒表面静电引力 C.毛细力 D.胶结连接力 14.流砂现象主要发生在(B )。 A.粘性土土体内部 B.粘性土土体表面逸出区 C.砂性土土体内部 D. 砂性土土体表面逸出区 15.多年冻土区内,砂土和碎石土,按其冻结状态应是( A )冻土。 A.松散 B.坚硬 C.塑性 D.软弱 16.按简化计算方法,N作用于形心轴上且0

流体力学教材

第4章流体动力学基本定理及其应用第2章我们研究了静止流体中的压力分布及流体对物体的作用力,但没有涉及运动问题;第3章我们从几何的观点研究了流体的运动,但没有讨论运动发生的原因。本章将应用力学基本定律建立流体运动的动力学方程,从而揭示流体的运动和力之间的关系。 4.1输运公式 在介绍运输公式之前先说明系统和控制体的概念。 4.1.1系统和控制体 1.系统 由确定的流体质点组成的流体团或有限的流体体积称为系统。系统和外界的分界面称为系统的边界面。系统具有如下特征: b5E2RGbCAP <1)系统是运动流体质点的集合,系统的体积和边界面的形状可以随时间变化; <2)系统边界上没有质量的输入和输出,系统内的质量不变,但有动量和能量的变化; <3)系统边界面上有力的相互作用。

系统内物理量的总和对时间的变化率称为系统导数,用Dt D 表示。 例如,系统总质量为???=) (d t V V M ρ,则它的系统导数为 ???=) (d t V V Dt D Dt DM ρ<4.1.1) 由于系统的体积V ( t >随时间而变,故微分号不能直接移到积分号的内部。 2.控制体 被流体流过的,相对于选定的坐标系固定不变的空间体积称为控制体。控制体的边界面称为控制面。控制体具有如下特征:p1EanqFDPw <1)控制体的几何外形和体积相对于选定的坐标系是固定不变的; <2)控制面上可以有流体的流入、流出,有质量、动量和能量的交换; <3)控制面上有力的相互作用。 控制体内某物理量的总和对时间的变化率称为控制体的局部导数,用t ??表示。例如,控制体内的总质量为???=V V M d ρ,则它的局部导 数为DXDiTa9E3d ????????=??V V V t V t d d ρρ<4.1.2) 由于控制体的体积V 与时间无关,故微分号可直接移到积分号的内部。

土质学与土力学练习题A

土质学与土力学练习题A 一、单项选择题 1.饱和土的渗透固结实际上是:( ) (A)土中颗粒体积逐渐减小 (B)土中孔隙水体积逐渐减小 (C)土体孔隙体积逐渐减小 2.下列土性指标中哪一项对粘性土有意义:( ) (A)粒径级配 (B)相对密度 (C)塑性指数(D)饱和密度 3.在均匀地基中开挖基坑,地基土重度 =18.0kN/m3,基坑开挖深度2m,则基坑底面以下2m 处的自重应力为:( ) (A)36kPa (B)54kPa (C)72kPa (D)90Pa 4.从工程勘察报告中已知某土层的e0=0.856,E s1-2=6.3MPa,则该土层为:( ) (A)低压缩性土 (B)中压缩性土 (C)高压缩性土 (D)无法确定 5.土样内摩擦角为? ?,粘聚力为c=15kPa,土中大主应力和小主应力分别为 =20 =300kPa, =126kPa,则该土样达到的状态为:( ) (A)稳定平衡状态 (B)极限平衡状态 (C)破坏状态(D)无法确定 6.随着挡墙高度的增加,主动土压力强度将:( ) (A)增大 (B)不变 (C)减小 (D)或减小或增大 7.在雨季,山体容易出现滑坡的主要原因是:( ) (A)土的重度增大 (B)土的抗剪强度降低 (C)土的类型发生改变(D)土中水的浮力增加 8.采用应力面积法计算地基最终沉降计算时,采用的地基土压缩模量:( ) (A)与地基应力水平无关 (B)随地基应力水平增大 (C)随地基应力水平减小(D)不确定 二、简述题 1.土中常见的原生矿物有哪些?它们具有哪些特性。 2.试归纳红土的工程性质和形成条件。 3.简述成层土中水平向渗流情况下计算等效渗透系数的步骤。 4.在临塑荷载使用中需注意哪些问题? 5.简述朗肯土压力的理论基础和基本假设。 6.工程上如何利用土的压缩模量来判别土的压缩性高低。

流体力学课程自学辅导资料

流体力学课程自学辅导资料 二○○八年十月

教材:工程流体力学教材编者:孔珑出版社:中国电力出版社出版时间:2007年 注:期中(第10周左右)将前半部分测验作业寄给班主任,期末面授时将后半部分测验作业直接交给任课教师。总成绩中,作业占15分。

第一章绪论 一、本章的核心、重点及前后联系 (一)本章的核心 流体力学的研究内容和研究方法 (二)本章重点 流体力学的研究内容和研究方法 (三)本章前后联系 为本书的其它章节内容做一介绍 二、本章的基本概念、难点及学习方法指导 (一)本章的基本概念 研究内容:是力学的一个独立分支,是一门研究流体的平衡和运动规律及其实际应用的技术科学。研究速度分布、压强分布、能量损失及作用力。 研究方法:理论分析、实验研究、数值计算 (二)本章难点及学习方法指导 流体力学研究内容 三、典型例题分析 (略) 四、思考题、习题及习题解答 (一)思考题、习题 (略) (二)习题解答(只解答难题) (略)

第二章流体及其物理性质 一、本章的核心、重点及前后联系 (一)本章的核心 1、流体的几个性质 2、流体的几个物理模型 3、作用在流体上的力 (二)本章重点 1、流体的压缩性、粘性 2、连续介质模型、不可压缩流体模型、理想流体模型 3、作用在流体上的力:表面力和质量力 (三)本章前后联系 为本书的其它章节建立物理模型 二、本章的基本概念、难点及学习方法指导 (一)本章的基本概念 1、流体力学定义:受任何微小剪切力都能连续变形的物质 特征:流动性 2、连续介质模型:(1)宏观上无限小(2)微观上足够大(3)有确定物理量 连续介质假设(continuum/continuous medium model):把流体视为没有间隙地充满所占据的整个空间的一种连续介质,且其所有的物理量都是空间坐标和时间的连续函数的一种假设模型:f =f(t,x,y,z)。 特例:分子的自由行程和所涉及的最小有效尺寸可以相比拟时,如火箭在高空非常稀薄的空气中以及高真空技术 3、压缩性:一定温度下、压强增加体积缩小的性质 4、膨胀性:一定压强下、温度升高体积增大的性质 5、不可压缩流体模型:通常情况下液体流速不高、压强变化小气体 6、粘性:在运动的状态下,流体所产生的抵抗剪切变形的性质 影响粘性的主要因素:流体种类、温度和压强 7、牛顿流体:牛顿内摩擦定律和牛顿流体

材料力学课本

材料力学电子教材 淮阴工学院建筑工程系 2006.12

主要符号表 符号 A D、d E F F cr F d F N F Q G I y、I z I P I yz i y、i z k d M、M y、M z M x M e M s M u N n n r n st p P q R、r r S y、S z T t V c Vε v d v v vε W 含义 面积直径 弹性模量 集中力临 界力动荷 载轴力 剪力切变 模量惯性 矩极惯性 矩惯性积 惯性半径 动荷因素 弯矩 扭矩外力偶矩 屈服弯矩极限弯 矩循环次数安 全因素,转速疲 劳安全因素稳定 安全因素总应 力,压强功率 均布荷载集度半 径 循环特征面积 矩,静矩扭转 外力偶矩时间 余应变能应变能形状 改变能密度体积改变 能密度应变能密度重 力,外力功,弯曲截 面系数 符号 W c W P w θ φ γ Δ Δl ε εu λ μ ν σ σb σbs σcr σ d σ e σp σr σs σu σ-1 [σ] τ [τ] 含义 余功扭转截面 系数挠度 梁横截面转角,单位长度 相对扭转角,体积应变 相对扭转角,折减因数 切应变 位移伸长(缩短) 变形线应变 极限应变 柔度长度 系数泊松 比正应力 强度极限 挤压应力 临界应力 动应力弹 性极限比 例极限 相当应力,疲劳极限 屈服极限 极限应力对称循环 疲劳极限容许正应 力 切应力容许 切应力

第一章绪论·基本概念§1-1 材料力学的任务 §1-2 变形固体的概念及其基本假设 §1-3 杆件及其变形形式 §1-4 应力 §1-5 位移和应变 §1-6 材料力学的特点思考题 思考题 习题 第二章轴向拉伸和压缩§2-1 概述 §2-2 拉压杆件横截面上的正应力 §2-3 应力集中的概念 §2-4 拉压杆件的变形 §2-5 拉伸和压缩时材料的力学性质 §2-6 几种新材料的力学性质简介 §2-7 拉压杆件的强度计算 §2-8 拉压超静定问题

相关文档
最新文档