ELMO首次调试方法

Elmo驱动器的调试方法

1.正确接线并保证通讯正常,而后将进入如下画面
2.选择正确 的波特率并 点击下面连 接按钮
1.选择RS232 串口通讯方 式,并点击右 下方按钮

选择驱动器运行模式 1.电流环 2.速度环 度环 3.步进模式 4.全闭环 5.位置环
?按此按钮 将打出下面 motion Moni motion_Moni tor监视面板
在此选择需 要监视的项 目,可以是电 压,电流,速度, 位置等

点击左边两个绿 色选项,选择监视 的分辨率,图中为 监视1.84秒
选择反馈方式 1.电流 2 辅助位置 2. 3.当前位置 4.位置错误 5 速度(RPM) 5.

选择系统加速度 与减速度
点击选择监视方 式,选择Begin motion ti 为电机运 转后马上启动,

1.点击右边Jogging 1 J i mode d 进 入调试状态, 2.在速度处输入希望的速 度,点击右边GO即可运行 3.如果不选择jogging?mode 模式,则需要在下面输入速 度和位置,电机则从当前位 置运行至希望位置
观察IO状态, 左侧输入, 右侧输出

当需要记录时, 需要率先点击 Start?Record

系统滤波界面Noise Filter 当系统出现较大的杂波干扰时,需要加入系统的滤波装置 例如:当系统使用外界脉冲跟随时,发现系统跟随不正常,外界输 入了大量不正确的杂波,此时需要加入辅助编码器的滤波装置
选择系统滤波 编码器滤波与数 字IO的滤波
主编码器滤波
辅助编码器滤波

系统保护界面(Protections) (P t ti ) 该界面定义驱动器的 些保护参数包括电流,电压,刹车, 该界面定义驱动器的一些保护参数包括电流 与跟随误差等 例如:可以在该界面输入输入电压的高低限制,刹车的开 启松开时间,速度与位置的跟随误差等

系统各种限制参数(Limits) (Li it ) 在此输入电流,电压位置等的各种限制 例如:1.系统额定电流,峰值电流与峰值电流持续时间 2.速度的上下限与减速度 3.位置的上下限 4.反馈的上下限

系统的增益(Digital Filter) 包括电流环,速度环与位置环

用户自设定参数(Customer) 供用户编写简单的小命令,如果需要编写程序则需要Elmo studio

模拟量输入控制(Analog Input) 在该界面进行模拟量控制 例如:1. 在速度环下通过外界±10V电压信号来控制驱动器的速度 2.在电流环下通过外界±10V电压信号来控制驱动器的电流 具体设定请查阅配套例程
首先设置 系统零漂 设定1V电压对应驱 动器的电流输出

IO输入孔定义(Input Logic) 设定IO输入接头的定义,具体使用程序请查阅配套例程

IO输出孔定义(Output Logic) 设定IO输出接头的定义,具体使用程序请查阅配套例程

进行简单电机试运转的相关步骤
1.正确连接驱动器,电机,电脑,按照图1选择正确的拨特率(通讯不上可以反复多选几个选项 1 2.如图2打开下面监视面板,选择需要监视的参数 3.选择需要监视的时间与分辨率 4.选择监视的种类 Begin?motion:电机运转后才开始监视 No?trigger:点击后马上开始监视 5.Elmo驱动器可以进行点到点的运行 动 行点到点 行,也可以在试运行模式下一直运行 在试 行模式 行, 6.当需要监视电机状态时,需要按1~4设定监视方式,而后如图6点击Recorder,最后点击GO 运行驱动器,当监视时间达到后,驱动器会生成一个新的软件,在该软件上即可检查电机相 关运行情况.?
如果
步了解


力士乐驱动器调试指南

1.蓝色串口线为易损坏品,请拔下时先离线或者关闭软件 2.软件启动 双击桌面上的图标 3.软件启动后界面如下 如果没有出现左侧的PROJECT EXPLORE请按以下操作如有跳过 在菜单VIEW下选择并单击PROJECT EXPLORE 3.出现左侧的菜单后,点击图片中放大镜图标

出现下图对话框,请按下图选择IndraDrive(Serial RS232), 如果IndraDrive(Serial RS232)未在右侧框内,请在左侧框内找到并选择,然后点击框中间的指向右侧的三角,添加好后即为上图的样子。并点击NEXT 4.上一步点击NEXT后出现下图对话框, 下图左侧框为目前计算机上现有通讯端口,在其中选择当前与力士乐通讯所用端口并添加到右侧框内,添加方法同上步相同 其他选项同上图。通讯端口如果不知道具体是那个,就全部添加上。点击NEXT

5.如果扫描连接成功就会出现下图,如未找到请检查线连接是否正常,端口选择是否正确, 6.单击图片中的小加号展开项目 7.菜单键介绍 上图由左至右作用依次为,驱动器离线,在线,模拟在线,搜索设备,空,空,空,空,空,空,驱动器转为参数模式,驱动器转为操作模式 8.驱动器装态监控 操作方法,右键单击图中菜单中的AXIS在弹出菜单中依次如图中选择即可 出现的窗口数据从上到下依次为,当前位置,当前速度,当前加速度,当前电机负载 忘记截图了。。。。。。。。。

9.驱动器参数备份, 右键单击菜单中高亮部分,然后如图依次选择,并点击EXPORT,出现下图 单击左上角的三个小点,出现下图

在文件名中键入你想保存的文件名,在保存在中选择保存的路径。选择后点击保存然后会回到上一个窗口,点击EXPORT会出现 当这个窗口消失后,参数保存完成。 10.驱动器参数恢复(不建议使用) 选择后在下图中找到你保存的文件,点击打开。 出现下图对话框

PID调试步骤

一、PID调试步骤 没有一种控制算法比PID调节规律更有效、更方便的了。现在一些时髦点的调节器基本源自PID。甚至可以这样说:PID调节器是其它控制调节算法的吗。 为什么PID应用如此广泛、又长久不衰?因为PID解决了自动控制理论所要解决的最基本问题,既系统的稳定性、快速性和准确性。调节PID的参数,可实现在系统稳定的前提下,兼顾系统的带载能力和抗扰能力,同时,在PID调节器中引入积分项,系统增加了一个零积点,使之成为一阶或一阶以上的系统,这样系统阶跃响应的稳态误差就为零。 由于自动控制系统被控对象的千差万别,PID的参数也必须随之变化,以满足系统的性能要求。这就给使用者带来相当的麻烦,特别是对初学者。下面简单介绍一下调试PID参数的一般步骤: 1.负反馈 自动控制理论也被称为负反馈控制理论。首先检查系统接线,确定系统的反馈为负反馈。例如电机调速系统,输入信号为正,要求电机正转时,反馈信号也为正(PID算法时,误差=输入-反馈),同时电机转速越高,反馈信号越大。其余系统同此方法。 2.PID调试一般原则 a、在输出不振荡时,增大比例增益P。 b、在输出不振荡时,减小积分时间常数Ti。 c、在输出不振荡时,增大微分时间常数Td。 3.一般步骤 a、确定比例增益P 确定比例增益P时,首先去掉PID的积分项和微分项,一般是令Ti=0、Td=0(具体见PID的参数设定说明),使PID为纯比例调节。输入设定为系统允许的最大值的60%~70%,

由0逐渐加大比例增益P,直至系统出现振荡;再反过来,从此时的比例增益P逐渐减小,直至系统振荡消失,记录此时的比例增益P,设定PID的比例增益P为当前值的60%~70%。比例增益P调试完成。 b、确定积分时间常数Ti 比例增益P确定后,设定一个较大的积分时间常数Ti的初值,然后逐渐减小Ti,直至系统出现振荡,之后在反过来,逐渐加大Ti,直至系统振荡消失。记录此时的Ti,设定PI D的积分时间常数Ti为当前值的150%~180%。积分时间常数Ti调试完成。 c、确定微分时间常数Td 积分时间常数Td一般不用设定,为0即可。若要设定,与确定P和Ti的方法相同,取不振荡时的30%。 d、系统空载、带载联调,再对PID参数进行微调,直至满足要求。 二、PID控制简介 目前工业自动化水平已成为衡量各行各业现代化水平的一个重要标志。同时,控制理论的发展也经历了古典控制理论、现代控制理论和智能控制理论三个阶段。智能控制的典型实例是模糊全自动洗衣机等。自动控制系统可分为开环控制系统和闭环控制系统。一个控制系统包括控制器、传感器、变送器、执行机构、输入输出接口。控制器的输出经过输出接口、执行机构,加到被控系统上;控制系统的被控量,经过传感器,变送器,通过输入接口送到控制器。不同的控制系统,其传感器、变送器、执行机构是不一样的。比如压力控制系统要采用压力传感器。电加热控制系统的传感器是温度传感器。 目前,PID控制及其控制器或智能PID控制器(仪表)已经很多,产品已在工程实际中得到了广泛的应用,有各种各样的PID控制器产品,各大公司均开发了具有PID参数自整定功能的智能调节器(intelligent regulator),其中PID控制器参数的自动调整是通过智能

最新Rexroth—IndraMotion MTX调试手册(简化版)

IndarMotion MTX调试方法 1 2 3 1.急停功能:系统自带有效,无需调试。 4 2.硬限位:系统无此功能,无需调试。 5 3.软限位:开启软限位检测,同时设定软限位的正向与负向行程极限6 值。软限位1和软限位2均可在【System】——【驱动参数】——【向导设7 置】——【轴】下设置。同时也可以在【参数】——【轴基本参数】中设置。 8 9 4.手动移动:在【参数】——【轴基本参数】中可设定相关参数。 10 11 5.手轮移动:在手动方式下按竖式软键【手轮】后激活,摇动手脉可12 以移动各轴。

13 6.回零功能:执行指令G74 X/Y/Z F执行回零。回零位置可以在14 【System】——【驱动参数】——【S参数】中的【Reference1】中设定。 15 此外,还有其他相关参数。 16 17 7.主轴旋转功能:M3/M4/M5/M19。在【参数】——【主轴】中有以下18 相关参数。 19 主轴定向位置设定:在【System】——【驱动参数】——【向导设置】20 ——【参考点设置】中,选择C轴,可以显示当前主轴的实际位置,同时可以

21 选择主轴选用的编码器等信息。在此界面下,可以任意旋转主轴到任意位置,22 此时按设定参考点,则此点默认为主轴零点,当执行主轴定向M19时,主轴定23 向到主轴零位。 24 8.刀库功能:换刀点(Z轴换到位置,主轴位置) 25 (1)Z轴换刀位置设定:在CPL变量中有一个参数可以设定Z 26 轴换刀位置,73号机床的Z换刀位置为-110.375。 27 (2)换刀时主轴位置设定:在CPL变量中有一个参数可以设28 定换刀时主轴位置与主轴零位(主轴零位可以自由设定,即是M19位29 置)的相对距离。 30 (3)在【Tool】界面下,可以添加刀套、删除刀套、插入刀31 套等。在各刀套下可以自由设定刀具号,设定方法为在非当前刀时按32 下界面中的编辑,通过TAP键切换选项更改信息。在执行换刀时,能33 够任意的换刀想要的刀具号上。若在某个刀套号前面的复选框中打34 √,则默认此刀不存在,执行换刀时提示报警。 35 (4)刀库回零:在手动方式下,按【刀库旋转】(左边这个按36 键)。若是出现报警号为602,则是刀库未回零导致的。 37 (5)换刀宏程序路径:usr/fep/TCH就是换刀宏程序。 38 (6)宏程序内容: 39 不写,太长。 40 (7)相关换刀指令:

CSC数字式母线保护装置调试方法

C S C-150数字式母线保护装置 调试方法 1. 概述 CSC-150母线保护装置是适用于750kV及以下电压等级,包括单母线、单母分段、双母线、双母分段及一个半断路器等多种接线型式的数字式成套母线保护装置(以下简称装置或产品)。装置最大接入单元为24个(包括线路、元件、母联及分段开关),主要功能包括虚拟电流比相突变量保护、常规比率制动式电流差动保护、断路器失灵保护、母联充电保护、母联失灵及死区保护、母联过流保护、母联非全相保护。装置由一个8U保护机箱和一个4U 辅助机箱构成,8U保护机箱共配置18个插件,包括8个交流插件、启动CPU插件、保护CPU插件、管理插件(MASTER)、开入插件1、开出插件1(含一块正板和一块副板)、开出插件2、开出插件3(含一块正板和一块副板)及电源插件;4U辅助机箱共配置7个插件,包括隔离刀闸辅助触点转接板(2块)、开入插件2、开入插件3、开入插件4、开入插件5、开入插件6,对需要模拟盘显示的用户还会配置一块模拟盘开关位置转接板。 2. 调试与检验项目 2.1 通电前检查 2.2 直流稳压电源通电检查 2.3 绝缘电阻及工频耐压试验 2.4 固化CPU软件 2.5 装置上电设置 a) 设置投入运行的CPU; b) 设置装置时钟; c) 检查软件版本号及CRC校验码; d) 整定系统定值; e) 设置保护功能压板; f) 整定保护定值。 g) 装置开入开出自检功能 2.6 打印功能检查 2.7 开入检查 2.8 开出传动试验

2.9 模拟量检查 a) 零漂调整与检查; b) 刻度调整与检查; c) 电流、电压线性度检查; d) 电流、电压回路极性检查; e) 模入量与测量量检查。 2.10 保护功能试验 a) 各种保护动作值检验和动作时间测量。 b) 整组试验。 2.11 直流电源断续试验 2.12 高温连续通电试验 2.13 定值安全值固化 3. 检验步骤及方法 3.1 通电前检查 a) 检查装置面板型号标示、灯光标示、背板端子贴图、端子号标示、装置铭牌标注完整、正确。 b) 对照装置的分板材料表,逐个检查各插件上元器件应与其分板材料表相一致,印刷电路板应无机械损伤或变形,所有元件的焊接质量良好,各电气元件应无相碰,断线或脱焊现象。 c) 各插件拔、插灵活,插件和插座之间定位良好,插入深度合适;大电流端子的短接片在插件插入时应能顶开。 d) 交流插件上的TA和TV规格应与要求的参数相符。 e) 检查各插件的跳线均应符合表1、表2和表3要求。 表1 CPU板跳线说明

(完整word版)PID调节方法分享S7-1200PID

1.S7 1200 PLC PID参数翻译 i_Mode : pid 控制器模式(Int)0:未激活1:预调节2:手动精确调节3:自动模式4:手动模式。 i_ModeOld: i_SveModeByEnMan: i_StateOld: r_Ctrl_Gain:比例增益(Real) r_Ctrl_Ti:积分作用时间(Real) r_Ctrl_Td:微分作用时间(Real) r_Ctrl_A: r_Ctrl_B: r_Ctrl_C: r_Ctrl_Cycle:PID算法采样时间(Real)

2 . PID参数输入输出参数 Setpoint:设定值(Real) Input:过程值实测值(Real) Input_PER:模拟量过程值(Word) Output:输出值(Real) Output_PER:模拟量输出值(Word) Output_PWM:脉冲宽度输出值(Bool) ManualEnable:手动模式 ManualValue:手动输出值 Reset:复位PID控制器 b_InvCtrl:取反逻辑 3.PID调试方法: a.设定一个比较大的积分时间,比较小的微分作用时间, 比例由小到大,到曲线发生振 荡。调小比例使曲线相对平稳。 b.--调小积分到消除静态误差,使曲线趋于平稳。 c.--干扰系统,使其产生动态误误差,观察系统抑制误差能力是否达标,抑制能力弱, 放大微分作用时间或者比例增益,使其抑制能力增强。 比例作用:加快系统反应速度,有利于抑制动态误差,太强会过调,曲线震荡,太小动态误差抑制能力弱。 积分作用:消除静态误差,使曲线趋于平稳 微分作用:感知曲线变化趋势,提前启动调节,太大不利于曲线平稳,太小动太误差抑制能力弱。

PID调试步骤说明_温度

锅炉房来蒸汽调节温度-PID调试步骤 气动调节阀-PID调试步骤 调试只在操作画面上,程序和组态都已经完成。工艺描述:气动阀控制开度(位号:TV_101,AO信号 4~20mA),控制温度大小(位号:TIC_101,RTD信号),阀门控制蒸汽大小,蒸汽给原油加温,从而达到控制阀门而控制温度。 1.确认硬件接线无误。 确认仪表安装正确,确认接线无误。 TV_101接线:模块FM151(地址27,即是第2排第7个模块)的第3通道,模块上端子号是9(+)和10(-)。 2.工程师登录。用户名:ECHO 密码:tech 根据操作权限,不是工程师登录是不能进行PID参数整定的。 在其它流程画面正上方功能键里,图案“黄色钥匙”是登录键,“红色钥匙”为退出登录。如图: 在菜单画面也有登录按钮和退出登录按钮。 注意:参数整定后请退出登录,以免操作人员误操作。 3.打开流程画面,打开气动阀PID窗口。 打开工艺流程画面“原由处理1”,下图是整个画面的一部分,控制工艺就在其中。气动调TV_101,油温TIC_101。

点击气动调节阀图标,出现气动阀PID 窗口: 图中:S 代表设定值;P 代表过程值;O 代表输出值。 设定值,自动状态下设定控制温度 过程值,现场仪表温度 输出值,气动阀的开度(0~100%) 量程 自动/手动切换 PID 参数整定,工程师登录有效

点击整定按钮即可进入趋势画面,工程师级别的可以点击此按钮进入整顶画面,完成P、I、D三个参数的调整工作,如下图所示。 工程师登录后可以进行PID参数整定:比例系数P,积分系数I,微分系数D。 4.PID手动调节 手动状态就是在PID窗口打到手动,然后直接点击“输出值”输出阀门开度。温度大小用手动控制阀门开度。 有些不好调节的回路就只能用手动调节。 控制温度50度例子:手动输出阀门开度50%,待温度稳定后,如温度TIC_101>50,则减少阀门开度;如温度TIC_101<50,则增大阀门开度;这样直到温度在50度。 5.PID自动调节 1)设定PID参数。比例系数P,积分系数I,微分系数D 工程师登录后可以进行PID参数整定。首先选一组经验值: 经验值(P=350,I=50,D=5),(P=550,I=30,D=2),(P=100,I=300,D=2)2)手动状态下,输出一个阀门开度,让过程值接近要控制的温度。 3)由手动状态打到自动状态,然后马上设定“设定值”。

力士乐驱动器使用说明.-共24页

力士乐驱动器使用说明书 本说明书针对非正弦用力士乐驱动器。主要讲述驱动软件的使用、参数配置、PID调节等。 一、软件使用 1.MLC04v16软件的安装 安装文件夹内有CD1、CD2、CD3三个文件夹,打开CD1文件夹, ?双击setup.exe进行安装,如图所示选择英文后,点Next ?按如图所示选择,点Next。 ?点击Next

?点击Next ?选择接受,后点击Next ?输入名称,点击Next ?选择安装目录,然后点击Next

?点Install ?安装进度如下:真个过程可能要10多分钟,看电脑性能。

?完成窗口如下: ?完成后需要重启。点”是”自动重启,点”否”则不重启。 2.软件操作 ?打开软件 ●双击桌面快捷方式,如下图所示。 ●通过点击开始菜单->程序 ->Rexroth->IndraWorks7.14.166.0->Engineering.来打开。 ?软件使用 ●工程的使用

如下图 点击Create an empty project为建立一个新工程。 点击Open project打开一个现有工程。 点击Scan for devices扫描串口总线上的设备 点击Restore project把保存的已压缩工程,解压缩。 点击下面快捷按钮,第一个为新建工程,第二个位打开现有工程。 点击File下拉菜单后,New:新建工程;Open:打开工程。 与伺服启动器联机

打开工程后变为 点黄色图标进入虚拟模式。 点蓝色图标连接实际驱动器。 如果端口配置正常则直接联机,否则会弹出如下窗口。 点击Scan for Device后弹出如下窗口 点Next后自动寻找设备。 未找到设备则弹出下面创库

PID参数设置及调节方法

PID参数设置及调节方法 方法一: PID参数的设定:是靠经验及工艺的熟悉,参考测量值跟踪与设定值曲线,从而调整P\I\D的大小。 PID控制器参数的工程整定,各种调节系统中P.I.D参数经验数据以下可参照:温度T: P=20~60%,T=180~600s,D=3-180s 压力P: P=30~70%,T=24~180s, 液位L: P=20~80%,T=60~300s, 流量L: P=40~100%,T=6~60s。 我在手册上查到的,并已实际的测试过,方便且比较准确 应用于传统的PID 1。首先将I,D设置为0,即只用纯比例控制,最好是有曲线图,调整P值在控制范围内成临界振荡状态。 记录下临界振荡的同期Ts 2。将Kp值=纯比例时的P值 3。如果控制精度=1.05%,则设置Ti=0.49Ts ;Td=0.14Ts ;T=0.01 4 控制精度=1.2%,则设置Ti=0.47Ts ;Td=0. 16Ts ;T=0.043 控制精度=1.5%,则设置Ti=0.43Ts ;Td=0. 20Ts ;T=0.09 朋友,你试一下,应该不错,而且调试时间大大缩短 我认为问题是,再加长积分时间,再减小放大倍数。获得的是1000rpm以上的稳定,牺牲的是系统突加给定以后系统调节的快速性,根据兼顾原则,自己掌握调节指标吧。 方法二: 1.PID调试一般原则 a.在输出不振荡时,增大比例增益P。 b.在输出不振荡时,减小积分时间常数Ti。 c.在输出不振荡时,增大微分时间常数Td。 2.一般步骤 a.确定比例增益P 确定比例增益P 时,首先去掉PID的积分项和微分项,一般是令Ti=0、Td=0(具体见PID的参数设定说明),使PID为纯比例调节。输入设定为系统允许的最大值的60%~70%,由0逐渐加大比例增益P,直至系统出现振荡;再反过来,

PID调节方法

PID调节方法 PID是由比例、微分、积分三个部分组成的,在实际应用中经常只使用其中的一项或者两项,如P、PI、PD、PID等。就可以达到控制要求...PLC编程指令里都会有PID这个功能指令...至于P,I,D 数值的确定要在现场的多次调试确定.. 比例控制(P): 比例控制是最常用的控制手段之一,比方说我们控制一个加热器的恒温100度,当开始加热时,离目标温度相差比较远,这时我们通常会加大加热,使温度快速上升,当温度超过100度时,我们则关闭输出,通常我们会使用这样一个函数 e(t) = SP – y(t); u(t) = e(t)*P SP——设定值 e(t)——误差值 y(t)——反馈值 u(t)——输出值 P——比例系数 滞后性不是很大的控制对象使用比例控制方式就可以满足控制要求,但很多被控对象中因为有滞后性。 也就是如果设定温度是200度,当采用比例方式控制时,如果P选择比较大,则会出现当温度达到200度输出为0后,温度仍然会止不住的向上爬升,比方说升至230度,当温度超过200度太多后又开始回落,尽管这时输出开始出力加热,但温度仍然会向下跌落一定的温度才会止跌回升,比方说降至170度,最后整个

系统会稳定在一定的范围内进行振荡。 如果这个振荡的幅度是允许的比方说家用电器的控制,那则可以选用比例控制.比例积分控制(PI): 积分的存在是针对比例控制要不就是有差值要不就是振荡的这种特点提出的改进,它常与比例一块进行控制,也就是PI控制。 其公式有很多种,但大多差别不大,标准公式如下: u(t) = Kp*e(t) + Ki∑e(t) +u0 u(t)——输出 Kp——比例放大系数 Ki——积分放大系数 e(t)——误差 u0——控制量基准值(基础偏差) 大家可以看到积分项是一个历史误差的累积值,如果光用比例控制时,我们知道要不就是达不到设定值要不就是振荡,在使用了积分项后就可以解决达不到设定值的静态误差问题,比方说一个控制中使用了PI控制后,如果存在静态误差,输出始终达不到设定值,这时积分项的误差累积值会越来越大,这个累积值乘上Ki后会在输出的比重中越占越多,使输出u(t)越来越大,最终达到消除静态误差的目的。 PI两个结合使用的情况下,我们的调整方式如下: 1、先将I值设为0,将P值放至比较大,当出现稳定振荡时,我们再减小P 值直到P值不振荡或者振荡很小为止(术语叫临界振荡状态),在有些情况下,

力士乐驱动器使用说明

力士乐驱动器参数调试说明 本说明书针对非正弦用力士乐驱动器。主要讲述驱动软件的使用、参数配置、PID调节等。 一、软件使用 1.MLC04v16软件的安装 安装文件夹有CD1、CD2、CD3三个文件夹,打开CD1文件夹, ?双击setup.exe进行安装,如图所示选择英文后,点Next ?按如图所示选择,点Next。 ?点击Next

?点击Next ?选择接受,后点击Next ?输入名称,点击Next ?选择安装目录,然后点击Next

?点Install ?安装进度如下:真个过程可能要10多分钟,看电脑性能。

?完成窗口如下: ?完成后需要重启。点”是”自动重启,点”否”则不重启。 2.软件操作 ?打开软件 ●双击桌面快捷方式,如下图所示。 ●通过点击开始菜单->程序->Rexroth->IndraWorks7.14.166.0->Engineering.来打 开。 ?软件使用 ●工程的使用

如下图 点击Create an empty project为建立一个新工程。 点击Open project打开一个现有工程。 点击Scan for devices扫描串口总线上的设备 点击Restore project把保存的已压缩工程,解压缩。 点击下面快捷按钮,第一个为新建工程,第二个位打开现有工程。 点击File下拉菜单后,New:新建工程;Open:打开工程。 与伺服启动器联机 打开工程后变为 点黄色图标进入虚拟模式。

点蓝色图标连接实际驱动器。 如果端口配置正常则直接联机,否则会弹出如下窗口。 点击Scan for Device后弹出如下窗口 点Next后自动寻找设备。 未找到设备则弹出下面创库

保护装置实用调试技巧

RCS-978主变保护装置调试方法 一、装置铭牌对数: 装置型号:RCS-978 版本号:1.10 CPU 校验码:F1565E26 管理序号:SUBQ 00090844 二、装置调试技巧: 变压器参数计算: 项目 高压侧(I 侧) 中压侧(II 侧) 低压侧(III 侧) 变压器全容量e S 180MV A 电压等级e U 220kV 115kV 10.5kV 接线方式 Y 0 Y 0 Δ-11 各侧TA 变比TA n 1200A/5A 1250A/5A 3000A/5A 变压器一次额定电流 472A 904A 9897A 试验项目 一、 纵差保护定值检验 1、差动速断定值校验 2、差动启动值校验 3、比率制动特性校验 4、二次谐波制动特性校验 计算数值:各侧额定 电流 计算公式:nTA Un S Ie **3 其中:S 为容量,Un 为各侧额定电压,nTA 为各侧额定电流 计算数据:I 1e =180*103/(1.732*220*240)=1.96A I 2e =180*103/(1.732*115*250)=3.61A I 3e =180*103/(1.732*10.5*600)=16.5A 各侧平衡 系数k 高压侧(I 侧) 中压侧(II 侧) 低压侧(III 侧) 4.000 2.177 0.476 试验项目一 差动速断定值校验 整定定值 (举例) 差动速断电流定值:5Ie , 试验条件 1. 硬压板设置:投入主保护压板 1LP2、退出其他功能压板 2. 软压板设置:投入主保护软压板 3. 控制字设置:“差动速断”置“1” 计算方法 计算公式:I=m*I zd 注:m 为系数 计算数值: 单相校验法: 高压侧Izd=5I 1e =5*1.96*1.5=14.7A

PID调节方法

1、先调节P值(I、D均为0),使其调节速度达到要求。P值增减先按倍 数处理(乘2或除2),直到超越了要求,再将前后两个值取平均值。 2、再根据调节偏差处理I的取值,该值从大往小试验,温度调节初始值可以从10min开始,而流量、压力可以从1min开始。直到偏差小到符合要求。 3、D值只在超调量过大时采用,取值从小往大试验,以超差幅度小于允许值, 又不发生震荡为度。 1. PID常用口诀: 参数整定找最佳,从小到大顺序查,先是比例后积分,最后 再把微分加,曲线振荡很频繁,比例度盘要放大,曲线漂浮绕大湾,比例度盘 往小扳,曲线偏离回复慢,积分时间往下降,曲线波动周期长,积分时间再加长,曲线振荡频率快,先把微分降下来,动差大来波动慢,微分时间应加长, 理想曲线两个波,前高后低4比1, 2. 一看二调多分析,调节质量不会低 2.PID控制器参数的工程整定,各种调节 系统中P.I.D参数经验数据以下可参照:温度T: P=20~60%,T=180~600s,D=3-180s压力P: P=30~70%,T=24~180s, 液位L: P=20~80%,T=60~300s, 流量L: P=40~100%,T=6~60s。 PID控制原理与PID参数的整定方法 PID是比例、积分、微分的简称,PID控制的难点不是编程,而是控制器的参数整定。参数整定的关键是正确地理解各参数的物理意义,PID控制的原理可以用人对 炉温的手动控制来理解。阅读本文不需要高深的数学知识。 1.比例控制 有经验的操作人员手动控制电加热炉的炉温,可以获得非常好的控制品质,PID控制 与人工控制的控制策略有很多相似的地方。 下面介绍操作人员怎样用比例控制的思想来手动控制电加热炉的炉温。 假设用热电偶检测炉温,用数字仪表显示温度值。在控制过程中,操作人员用眼睛读取炉温,并与炉温给定值比较,得到温度的误差值。然后用手操作电位器,调节加热的电流,使 炉温保持在给定值附近。 操作人员知道炉温稳定在给定值时电位器的大致位置(我们将它称为位置L),并根 据当时的温度误差值调整控制加热电流的电位器的转角。炉温小于给定值时,误差 为正,在位置L的基础上顺时针增大电位器的转角,以增大加热的电流。炉温大 于给定值时,误差为负,在位置L的基础上反时针减小电位器的转角,并令转角与位置L的差值与误差成正比。 上述控制策略就是比例控制,即PID控制器输出中的比例部分与误差成正比。 闭环中存在着各种各样的延迟作用。例如调节电位器转角后,到温度上升到新的 转角对应的稳态值时有较大的时间延迟。由于延迟因素的存在,调节电位器转角后 不能马上看到调节的效果,因此闭环控制系统调节困难的主要原因是系统中的延迟 作用。比例控制的比例系数如果太小,即调节后的电位器转角与位置L的差值太小,调节的力度不够,使系统输出量变化缓慢,调节所需的总时间过长。比例系数如果过大,即

PID调试步骤(精)

1. PID调试步骤 没有一种控制算法比PID调节规律更有效、更方便的了。现在一些时髦点的调节器基本源自PID。甚至可以这样说:PID调节器是其它控制调节算法的吗。 为什么PID应用如此广泛、又长久不衰? 因为PID解决了自动控制理论所要解决的最基本问题,既系统的稳定性、快速性和准确性。调节PID的参数,可实现在系统稳定的前提下,兼顾系统的带载能力和抗扰能力,同时,在PID调节器中引入积分项,系统增加了一个零积点,使之成为一阶或一阶以上的系统,这样系统阶跃响应的稳态误差就为零。 由于自动控制系统被控对象的千差万别,PID的参数也必须随之变化,以满足系统的性能要求。这就给使用者带来相当的麻烦,特别是对初学者。下面简单介绍一下调试PID参数的一般步骤: 1.负反馈 自动控制理论也被称为负反馈控制理论。首先检查系统接线,确定系统的反馈为负反馈。例如电机调速系统,输入信号为正,要求电机正转时,反馈信号也为正(PID算法时,误差=输入-反馈),同时电机转速越高,反馈信号越大。其余系统同此方法。 2.PID调试一般原则 a.在输出不振荡时,增大比例增益P。 b.在输出不振荡时,减小积分时间常数Ti。 c.在输出不振荡时,增大微分时间常数Td。 3.一般步骤 a.确定比例增益P 确定比例增益P 时,首先去掉PID的积分项和微分项,一般是令Ti=0、Td=0(具体见PID的参数设定说明),使PID为纯比例调节。输入设定为系统允许的最大值的60%~70%,由0逐渐加大比例增益P,直至系统出现振荡;再反过来,从此时的比例增益P逐渐减小,直至系统振荡消失,记录此时的比例增益P,设定PID的比例增益P为当前值的60%~70%。比例增益P调试完成。 b.确定积分时间常数Ti 比例增益P确定后,设定一个较大的积分时间常数Ti的初值,然后逐渐减小Ti,直至系统出现振荡,之后在反过来,逐渐加大Ti,直至系统振荡消失。记录此时的Ti,设定PID 的积分时间常数Ti为当前值的150%~180%。积分时间常数Ti调试完成。 c.确定微分时间常数Td 积分时间常数Td一般不用设定,为0即可。若要设定,与确定 P和Ti的方法相同,取不振荡时的30%。 d.系统空载、带载联调,再对PID参数进行微调,直至满足要求。 2.PID控制简介 目前工业自动化水平已成为衡量各行各业现代化水平的一个重要标志。同时,控制理论的发展也经历了古典控制理论、现代控制理论和智能控制理论三个阶段。智能控制的典型实例是模糊全自动洗衣机等。自动控制系统可分为开环控制系统和闭环控制系统。一个控制系统包括控制器﹑传感器﹑变送器﹑执行机构﹑输入输出接口。控制器的输出经过输出接口﹑执行机构﹐加到被控系统上﹔控制系统的被控量﹐经过传感器﹐变送器﹐通过输入接口送到控制器。不同的控制系统﹐其传感器﹑变送器﹑执行机构是不一样的。比如压力控制系统要采用压力传感器。电加热控制系统的传感器是温度传感器。目前,PID控制及其控制器或智能

力士乐驱动器使用说明

文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持. 力士乐驱动器参数调试说明 本说明书针对非正弦用力士乐驱动器。主要讲述驱动软件的使用、参数配置、PID调节等。 一、软件使用 1.MLC04v16软件的安装 安装文件夹内有CD1、CD2、CD3三个文件夹,打开CD1文件夹, ?双击setup.exe进行安装,如图所示选择英文后,点Next ?按如图所示选择,点Next。 ?点击Next ?点击Next ?选择接受,后点击Next ?输入名称,点击Next ?选择安装目录,然后点击Next ?点Install ?安装进度如下:真个过程可能要10多分钟,看电脑性能。 ?完成窗口如下: ?完成后需要重启。点”是”自动重启,点”否”则不重启。 2.软件操作 ?打开软件 ●双击桌面快捷方式,如下图所示。 ●通过点击开始菜单->程序->Rexroth-> ?软件使用 ●工程的使用 如下图 点击Create an empty project为建立一个新工程。 点击Open project打开一个现有工程。 点击Scan for devices扫描串口总线上的设备 点击Restore project把保存的已压缩工程,解压缩。 点击下面快捷按钮,第一个为新建工程,第二个位打开现有工程。 点击File下拉菜单后,New:新建工程;Open:打开工程。 ●与伺服启动器联机 打开工程后变为 点黄色图标进入虚拟模式。 点蓝色图标连接实际驱动器。 如果端口配置正常则直接联机,否则会弹出如下窗口。 点击Scan for Device后弹出如下窗口 点Next后自动寻找设备。 未找到设备则弹出下面创库 ●示波器功能 点Diagnostics下拉菜单,点击Oscilloscope 下图所示为示波器窗口。 采集时间配置:

PID调节方法

PID调节方法: ●你先设定I和D参数为0,P参数设小点,观察一下控制流量的效果,如果响应过慢的 话,再适当加大P值和I值。如果反复振荡,则减小P值,加大I值;D值就为0,可以不管。要达到好的效果,只能慢慢试,耐心点。 ●PID参数设定直接影响流量的稳定度,PI设定值大电动阀稳定,PI设定值小电动阀灵 敏。要根据工艺流程来设定。 ●pid的设定需要一定的经验我的经验是先将PI的值设大一些,之后逐渐减少. ●PID是比例,积分,微分的缩写, Uo(N)=P*E(N)+I*[E(N)+E(N-1)+...+E(0)]+D*[E(N)-E(N-1)] E-误差 P--改变P可提高响应速度,减小静态误差,但太大会增大超调量和稳定时间。 I--与P的作用基本相似,但要使静态误差为0,必须使用积分。 D--与P,I的作用相反,主要是为了减小超调,减小稳定时间。 三个参数要综合考虑,一般先将I,D设为0,调好P,达到基本的响应速度和误差,再加上I,使误差为0,这时再加入D,三个参数要反复调试,最终达到较好的结果。不同的控制对象,调试的难度相差很大,祝好运! ●PID调试步骤 PID解决了自动控制理论所要解决的最基本问题,既系统的稳定性、快速性和准确性。调节PID的参数,可实现在系统稳定的前提下,兼顾系统的带载能力和抗扰能力,同时,在PID调节器中引入积分项,系统增加了一个零积点,使之成为一阶或一阶以上的系统,这样系统阶跃响应的稳态误差就为零。 由于自动控制系统被控对象的千差万别,PID的参数也必须随之变化,以满足系统的性能要求。下面简单介绍一下调试PID参数的一般步骤: 1.负反馈 自动控制理论也被称为负反馈控制理论。首先检查系统接线,确定系统的反馈为负反馈。例如电机调速系统,输入信号为正,要求电机正转时,反馈信号也为正(PID算法时,误差=输入-反馈),同时电机转速越高,反馈信号越大。其余系统同此方法。 2.PID一般表达式 PID模拟算法:U(t)=P*[e(t)+ 1/Ti*∫0te(t)dt+Td*de(t)/dt] PID数字算法:U(K)=P*{[e(K)-e(K-1)+Ts/Ti*e(K-1)+Td/Ts*[e(K)-2e(K-1)+e(K-2)]]}+ U(K-1) 其中P为比例增益;Ti为积分时间常数;Td为微分时间常数;PID调节器要调节的也就是这三个参数。e(t)为输入误差;Ts为数字PID运算的采样周期。 3.PID调试一般原则 a.在输出不振荡时,增大比例增益P。 b.在输出不振荡时,减小积分时间常数Ti。 c.在输出不振荡时,增大微分时间常数Td。 4.一般步骤 a.确定比例增益P 确定比例增益P 时,首先去掉PID的积分项和微分项,一般是令Ti=0、Td=0(具体见PID的参数设定说明),使PID为纯比例调节。输入设定为系统允许的最大值的60%~70%,由0逐渐加大比例增益P,直至系统出现振荡;再反过来,从此时的比例增益P逐渐减小,直至系统振荡消失,记录此时的比例增益P,设定PID的比例增益P

完整介绍pid调试方法

1.1 衰减曲线法 衰减曲线法是在总结临界比例带法基础上发展起来的,它是利用比例作用下产生的4:1衰减振荡(ψ=0.75)过程时的调节器比例带δs 及过程衰减周期s T , 据经验公式计算出调节器的各个参数。 衰减曲线法的具体步骤是: (1)置调节器的积分时间i T →∞,微分时间d T →0,比例带δ为一稍大的值;将系统投入闭环运行。 (2)在系统处于稳定状态后作阶跃扰动试验,观察控制过程。如果过渡过程衰减率大于0.75,应逐步减小比例带值,并再次试验,直到过渡过程曲线出现4:1的衰减过程。记录下4:1的衰减振荡过程曲线,如图所示的曲线上求取ψ=0.75时的振荡周期s T 结合此过程下的调节器比例带s δ,按表计算出调节器的各个参数。 表衰减曲线法计算公式 4:1衰减曲线法PID 参数整定经验公式 10:1衰减曲线法PID 参数整定经验公式

图衰减曲线 (3)按计算结果设置好调节器的各个参数,作阶跃扰动试验,观察调节过程,适当修改调节器参数,到满意为止。 与临界比例带法一样,衰减曲线法也是利用了比例作用下的调节过程。从表3-5可以发现,对于ψ=0.75,采用比例积分调节规律时相对于采用比例调节规律引入了积分作用,因此系统的稳定性将下降,为了仍然能得到ψ=0.75的衰减

率,就需将s δ放大1.2倍后作为比例积分调节器的比例带值。 1.2临界比例带法 临界比例带法又称边界稳定法,其要点是将调节器设置成纯比例作用,将系统投入自动运行并将比例带由大到小改变,直到系统产生等幅振荡为止。这时控制系统处于边界稳定状态,记下此状态下的比例带值,即临界比例带K δ以及振荡周期K T ,然后根据经验公式计算出调节器的各个参数。可以看出临界比例带法无需知道对象的动态特性,直接在闭环系统中进行参数整定。 临界比例带法的具体步骤是: (1)将调节器的积分时间置于最大,即i T →∞;置微分时间d T =0;置比例带δ于一个较大的值。 (2)将系统投入闭环运行,待系统稳定后逐渐减小比例带δ,直到系统进入等幅振荡状态。一般振荡持续4~5个振幅即可,试验记录曲线如图3-7所示。 图等幅振荡曲线 (3)据记录曲线得振荡周期K T ,此状态下的调节器比例带为K δ,然后按表3-6计算出调节器的各个参数。 表1 临界比例带法计算公式()75.0=ψ (4)将计算好的参数值在调节器上设置好,作阶跃响应试验,观察系统的调节过程,适当修改调节器的参数,直到调节过程满意为止。

PID参数如何设定调节

PID参数如何设定调节 PID(比例积分微分)英文全称为Proportion Integration Differentiation,它是一个数学物理术语。 PID控制简介 目前工业自动化水平已成为衡量各行各业现代化水平的一个重要标志。同时,控制理论的发展也经历了古典控制理论、现代控制理论和智能控制理论三个阶段。智能控制的典型实例是模糊全自动洗衣机等。自动控制系统可分为开环控制系统和闭环控制系统。一个控控制系统包括控制器﹑传感器﹑变送器﹑执行机构﹑输入输出接口。控制器的输出经过输出接口﹑执行机构﹐加到被控系统上﹔控制系统的被控量﹐经过传感器﹐变送器﹐通过输入接口送到控制器。不同的控制系统﹐其传感器﹑变送器﹑执行机构是不一样的。比如压力控制系统要采用压力传感器。电加热控制系统的传感器是温度传感器。目前,PID控制及其控制器或智能PID控制器(仪表)已经很多,产品已在工程实际中得到了广泛的应用,有各种各样的PID控制器产品,各大公司均开发了具有PID参数自整定功能的智能调节器(intelligentregulator),其中PID控制器参数的自动调整是通过智能化调整或自校正、自适应算法来实现。有利用PID控制实现的压力、温度、流量、液位控制器,能实现PID控制功能的可编程控制器(PLC),还有可实现PID控制的PC 系统等等。可编程控制器(PLC)是利用其闭环控制模块来实现PID控制,而可编程控制器(PLC)可以直接与ControlNet相连,如Rockwell的PLC-5等。还有可以实现PID控制功能的控制器,如Rockwell的Logix产品系列,它可以直接与ControlNet 相连,利用网络来实现其远程控制功能。 1、开环控制系统 开环控制系统(open-loopcontrolsystem)是指被控对象的输出(被控制量)对控制器(controller)的输出没有影响。在这种控制系统中,不依赖将被控量反送回来以形成任何闭环回路。 2、闭环控制系统

CSG变压器成套保护装置调试大纲

目录 PCS-978GE-C-D变压器成套保护装置调试大纲

一、变压器保护概述 变压器的纵差动保护用于防御变压器绕组和引出线多相短路故障、大接地电流系统侧绕组和引出线的单相接地短路故障及绕组匝间短路故障。目前国内的微机型差动保护,主要由分相差动元件和涌流判别元件两部分构成。对于用于大型变压器的差动保护,还有5次谐波制动元件,以防止变压器过激磁时差动保护误动。 为防止在较高的短路电流水平时,由于电流互感器饱和时高次谐波量增加,产生极大的制动力矩而使差动元件据动,故在谐波制动的变压器差动保护中还设置了差动速断元件,当短路电流达到4~10倍额定电流时,速断元件快速动作出口。 二、试验接线与参数配置 1、试验接线 继电保护测试仪模拟高、中、低压侧合并单元发送采样数据,及模拟高、中、低压侧智能终端监视保护装置出口动作信息。测试仪A1、A2、A3和A4光纤接口分别与保护装置高压侧、中压侧、低压侧和本体侧SV光纤接口相连接,B1和B2光纤接口与保护装置GOOSE直跳接口和GOOSE组网接口连接。注意测试仪侧光纤端口TX接保护装置侧光纤端口RX,测试仪侧光纤端口RX接保护装置侧光纤端口TX。测试仪光口指示灯常亮,表示光纤线收发接线正确;指示灯闪烁,表示通道数据交换。 2、IEC61850参数设置 第一步:打开测试软件主界面,点击“光数字测试”模块,打开“IEC-61850配置(SMV-GOOSE)” 菜单: 第二步:点击“SCL文件导入”,打开“ONLLY SCL文件导入”菜单,导入智能变电站SCD文件“dxb.scd” 第三步:左框区域显示整站设备,找到“1号主变保护A”装置。 选中“1号主变保护A”装置目录下的“SMV输入”文件夹,右上框显示“1号主变保护A”装置所有的SMV控制块,分别为“220KV侧采样”、“110KV侧采样”、“35KV侧采样”、“本体采样”。 选中“220KV侧采样”、“110KV侧采样”、“35KV侧采样”、“本体采样”四个控制块,点击“添加至SMV”,注意报文规范选择“61850-9-2”。 第四步:选中“1号主变保护A”装置目录下的“GOOSE输出”文件夹,右上框显示“1号主变保护A”装置所有的GOOSE输出控制块,右下框为控制块虚端子详细内容。 选中右上框中GOOSE输出控制块,点击“添加至GOOSE IN”。 第五步:选中“1号主变保护A”装置目录下的“GOOSE输入”文件夹,右上框显示“1号主变保护A”装置所有的GOOSE输入控制块,右下框为控制块引用的虚端子详细内容。 选中右上框中GOOSE输入控制块,点击“添加至GOOSE OUT”。 导入SCD文件完成,关闭“ONLLY SCL文件导入”菜单。 第六步:返回“IEC-61850配置”菜单,设置“SMV配置”页面。选中“1号主变220KV 合并单元A”控制块,根据试验接线选择测试仪“光口”,并且将测试仪电压电流a、b、c相与保护装置220KV侧电压电流a、b、c相对应映射。 注意:虚端子映射时,确认控制块为“1号主变220KV合并单元A”。

PID调节参数(FB41)

PID调节-----西门子FB41使用 准备用连续PID调节来实验一个控制,在软件上做了一个简单的PID41用仿真模拟了一把,情况还好,基本可以运行,但是其中的一些小的功能还是没有做好.想仔细再看看说明.幸好有一位网又一起讨论,得到了一个比较好的说明.传上来以免以后找不到. 使用FB41进行PID调整的说明 FB41称为连续控制的PID用于控制连续变化的模拟量,与FB42的差别在于后者是离散型的,用于控制开关量,其他二者的使用方法和许多参数都相同或相似。PID的初始化可以通过在OB100中调用一次,将参数COM-RST置位,当然也可在别的地方初始化它,关键的是要控制COM-RST;PID的调用可以在OB35中完成,一般设置时间为200MS,一定要结合帮助文档中的PID框图研究以下的参数,可以起到事半功倍的效果以下将重要参数用黑体标明.如果你比较懒一点,只需重点关注黑体字的参数就可以了。其他的可以使用默认参数。 A:所有的输入参数: COM_RST: BOOL: 重新启动PID:当该位TURE时:PID执行重启动功能,复位PID内部参数到默认值;通常在系统重启动时执行一个扫描周期,或在PID进入饱和状态需要退出时用这个位; MAN_ON:BOOL:手动值ON;当该位为TURE时,PID 功能块直接将MAN的值输出到LMN,这可以在PID框图中看到;也就是说,这个位是PID的手动/自动切换位;

PEPER_ON:BOOL:过程变量外围值ON:过程变量即反馈量,此PID可直接使用过程变量PIW(不推荐),也可使用PIW 规格化后的值(常用),因此,这个位为FALSE; P_SEL:BOOL:比例选择位:该位ON时,选择P(比例)控制有效;一般选择有效; I_SEL:BOOL:积分选择位;该位ON时,选择I(积分)控制有效;一般选择有效; INT_HOLD BOOL:积分保持,不去设置它; I_ITL_ON BOOL:积分初值有效, I-ITLV AL(积分初值)变量和这个位对应,当此位ON时,则使用I-ITLV AL变量积分初值。一般当发现PID功能的积分值增长比较慢或系统反应不够时可以考虑使用积分初值; D_SEL :BOOL:微分选择位,该位ON时,选择D(微分)控制有效;一般的控制系统不用; CYCLE :TIME:PID采样周期,一般设为200MS;SP_INT:REAL:PID的给定值; PV_IN :REAL:PID的反馈值(也称过程变量); PV_PER:WORD:未经规格化的反馈值,由PEPER-ON选择有效;(不推荐)MAN :REAL:手动值,由MAN-ON选择有效;GAIN :REAL:比例增益; TI :TIME:积分时间; TD :TIME:微分时间;

相关文档
最新文档