芳香族双磷酸酯复配体系阻燃PPO HIPS的制备与阻燃性能

芳香族双磷酸酯复配体系阻燃PPO HIPS的制备与阻燃性能
芳香族双磷酸酯复配体系阻燃PPO HIPS的制备与阻燃性能

芳香族双磷酸酯复配体系阻燃PPO/HIPS的制备与阻燃性能聚苯醚(PPO)具有优良的综合性能,使用温度范围广,吸水性小。缺点是熔体黏度大,流动性差,软化温度在300℃以上,而高温加工(330℃以上)又易发生热氧降解,加工成型困难和能耗过大,实际应用推广受限制。1967年美国GE塑料公司成功地通过与PS,特别是与HIPS合金化,开发出商品名为Noryl的改性PPO,加工性能大为提高,基本保留了PPO的原有特性,因此PPO绝大部分是以改性产品出售和应用的,之后改性聚苯醚获得了迅速发展。是工程塑料中典型且用途广、发展前景广阔的塑料合金,在电子电气、家用电器、办公自动化设备、汽车、建筑、航空和军工等领域具有广泛的用途,成为发达国家垄断核心产品之一。消费居领先的日本、北美和欧洲的消费结构不同,日本以办公室设备、电子电器为主,而美国以汽车为主的运输工业消费居首位。

在PPO/HIPS中,用不同的方法加入不同的阻燃剂,制成阻燃型PPO/HIPS

合金,可以达到抑制火蔓延、阻止燃烧、离火自熄的目的。方法通常有两种:一种是用含有阻燃元素的原料(即反应型阻燃剂)合成,属于化学方法;另一种是在制品(材料)成型过程中加入阻燃剂(即添加型阻燃剂),属于物理方法。

由于全球阻燃剂无卤化的趋势,使磷系阻燃剂在工程塑料上得到了迅速的发展,一系列添加型磷系阻燃剂已经应用于热固性树脂。双酚A双(二苯基)磷酸酯(BDP)和间苯二酚双(二苯基)磷酸酯(RDP)这类芳香族双磷酸酯阻燃剂,具有分子量大、蒸气压低、热稳定性高等优点,能赋予材料较好的阻燃效果和阻燃持久性。笔者采用BDP,RDP和三聚氰胺氰脲酸盐(MCA)复配添加到PPO/HIPS合金中,制

复配制备了阻燃环氧树脂纳米备了阻燃PPO/HIPS合金,另外采用添加纳米SiO

2

复合材料。通过氧指数(LOI)、水平垂直燃烧(UL94V阻燃性)、热失重分析(TG)等分析了阻燃PPO/HIPS合金的阻燃作用和阻燃机理。

1 实验

1.1 原料

阻燃剂RDP:工业品,江阴制药有限公司;

BDP:工业品;

三聚氰胺氰脲酸盐:工业品;

:河南大学纳米材料试验室;

纳米SiO

2

PPO:工业品;

HIPS:工业品。

1.2 仪器

2000型热分析仪:美国Dupont公司;

FTA型氧指数测定仪:英国Tarlin Scientific公司;

综合垂直燃烧测定仪:CZF-2型,江苏江宁分析仪器厂;

双螺杆挤出机:SHL-35型,上海化工机械四厂;

高速混合机:SHR-10A型,张家港市轻工机械厂;

注塑机:IS75 PNII型,日本Toschiba Machin Co.LTD公司。

1.3 阻燃PPO/HIPS合金试样制备

按配方量将PPO、HIPS和阻燃剂的混合物于高搅机中混合均匀,之后用双螺杆挤出机在285℃下挤出造粒,真空干燥后用注塑机制成样条。

1.4 研究方法

氧指数测试按ASTM D-2863标准进行,试样尺寸为100mm×6.5mm×3mm。UL94V阻燃性能测试依据FMVSS 302/ZSO3975标准进行,试样尺寸为

流速80ml/min,升温速率为127mm×12.7mm×3mm。热失重分析测试条件:N

2

10℃/min,测试范围为25-650℃。取得初始热分解温度和残炭率等数据。

2 结果与讨论

2.1 BDP/MCA阻燃PPO/HIPS的阻燃性能

BDP/MCA阻燃PPO/HIPS的氧指数(LOI)和阻燃性能(UL94V)见表1。

表1 BDP/MCA阻燃PPO/HIPS的LOI和UL94阻燃性

表1实验结果证明:1)如果没有BDP的协同作用,MCA对PPO/HIPS合金的LOI和UL94阻燃性几乎没有贡献。2)MCA和BDP具有较好的协同阻燃性能,MCA 添加量相同时,PPO/HIPS合金的LOI随BDP添加量增加而提高,但在BDP添加量达到8份以后就基本不再提高,在实验范围内,阻燃效率随BDP添加量的增加而减少。3)MCA添加量为20份、BDP为4份时,二者协同即能使PPO/HIPS合金达到UL94V-0级。4)根据现有试验数据分析,采用BDP/MCA阻燃PPO/HIPS时,较好的试验方案是MCA添加量为20份、BDP为4份,但如果对于材料的LOI值有所要求,可以继续增大BDP的用量。

2.2 BDP/MCA、纳米SiO

阻燃PPO/HIPS的阻燃性能

2

,纳米材料的加入可以使阻燃性能有所提高,为此,在体系中加入纳米SiO

2

阻燃PPO/HIPS的采用共混法制备PPO/HIPS纳米复合材料。BDP/MCA、纳米SiO

2

阻燃性能见表2。

由表2实验结果可以看出,加入极少量的纳米材料就可以提高体系的LOI,添加量达到0.5即可使LOI值达到34.9。但是添加量继续增大并不能使LOI值增加。这说明,体系中LOI值的增加主要是由于体系中可能存在纳米效应,而在纳米效应出现之后,继续加大纳米SiO

的量已经起不到作用了。

2

阻燃PPO/HIPS的阻燃性能

表2 BDP/MCA、纳米SiO

2

2.3 RDP/MCA阻燃PPO/HIPS的阻燃性能

RDP/MCA复配阻燃PPO/HIPS合金的氧指数(LOI)和阻燃性能(UL94V)见表3。

表3 RDP/MCA阻燃PPO/HIPS的LOI和UL94阻燃性

表3实验结果证明:1)如果没有RDP的协同作用,MCA对PPO/HIPS的LOI 和UL94阻燃性几乎没有贡献。2)MCA和RDP具有较好的协同阻燃性能,MCA添加量相同时,PPO/HIPS合金的LOI随RDP添加量增加而提高,但在RDP添加量达到6份以后就基本不再提高,在实验范围内,阻燃效率随RDP添加量的增加而减少。3)MCA添加量为20份、RDP为2份时,两者协同即能使PPO/HIPS达到UL94 V-0级。4)根据现有试验数据分析,采用RDP/MCA阻燃PPO/HIPS时,较好的试验方案是MCA添加量为20份、RDP为2份,但如果对于材料的LOI值有所要求,可以继续增大BDP的用量。

与BDP复配体系相比,RDP复配体系具有达到相同阻燃能力时添加量少的特点,这个特点由图1(略)可以看出。这可能是因为RDP的磷含量比BDP要高,分别是10.8%和8.9%。

2.4 热分析结果分析

阻燃PPO/HIPS的TGA和DTG曲线分别如图3(略)、4(略)所示,所得初始热分解温度列于表3。

由表4中可以看出,添加入BDP和RDP后,体系的5%和10%分解温度都较纯PPO/HIPS合金有所提前,其原因是由于体系中阻燃剂的分解温度较PPO/HIPS合金的分解温度为高,故在之前分解,导致温度降低。相比于空白PPO/HIPS合金来说,RDP/MCA和BDP/MCA阻燃PPO/HIPS的最大热失重速率峰的峰值均略向高温方向移动,热失重速率的绝对峰值都有所减小,这说明加入阻燃剂后可能减缓了PPO/HIPS合金快速降解的过程,增加了成炭化学反应,提高了阻燃性能。图2(略)、3的数据表明,阻燃PPO/HIPS合金的热分解分成两个阶段,第一阶段是

阻燃剂组分的分解,第二阶段是PPO/HIPS合金的分解,而且添加阻燃剂的体系其最大热分解速率降低。由于阻燃剂的提前分解,吸收了体系的热量,从而使凝聚相内温、度上升减慢,延缓了材料的热分解速度。阻燃剂受热分解后,释出自由基抑制剂,使火焰链锁反应的支化过程中断,减缓气相反应速度;同时阻燃剂受热分解后释出大量难燃气体,使空气中氧和气态可燃性分解产物得到稀释,降低可燃气以及聚合物表面温度,使燃烧终止。

表4 阻燃PPO/HIPS合金的TG数据

注:t

1,t

2

和t

3

分别为体系质量损失为5%,10%和50%时的温度。

2.5 CONE参数分析

分别对BDP/MCA/PPO/HIPS、BDP/MCA/n-SiO

2

/PPO/HIPS和RDP/MCA/PPO/HIPS 进行了CONE测试,得到了最大热释放速率(p-HRR)、平均热释放速率(av-HRR)、总释热量(THR)、平均有效燃烧热(av-EHC)、平均质量损失速率(av-MLR)、点燃

时间(TTI)以及残炭率、平均CO

2

及CO生成量等参数,列于表5。

表5 阻燃PPO/HIPS合金的CONE参数

由表中的CONE数据可以看出,对于BDP/MCA体系阻燃的PPO/HIPS合金,其最大热释放速率(p-HRR)、平均热释放速率(av-HRR)、总释热量(THR)、平均质量损失速率(av-MLR)、点燃时间(TTI)等各项参数要优于添加了纳米二氧化硅的阻燃体系及RDP/MCA体系,这可能要归因于PHMB5样品中的磷含量较高,使其更具有阻燃性。由CONE测试得到的RDP/MCA体系比BDP/MCA体系的残炭量要高(与热

及CO生成量比BDP/MCA 分析显示的数据有所差别可能是试验造成的),且平均CO

2

体系的要低,这说明RDP/MCA体系协同阻燃在凝聚相较之BDP/MCA体系更能发挥作用。

2.6 力学性能分析

对该材料的力学性能做了测试,阻燃PPO/HIPS合金的力学性能见表6。

表6 阻燃PPO/HIPS合金的力学性能

由表6可知,阻燃PPO/HIPS合金的机械性能也是比较高的,以阻燃效果较佳的PHMB3样品来看,对比未阻燃的PH样品,拉伸强度下降了15%,弹性模量下降了1%,断裂伸长率下降了9%,下降幅度不大。说明采用BDP/MCA,RDP/MCA 复配体系对PPO/HIPS实现无卤阻燃是可行的,可望能代替工业上广泛采用的溴类阻燃剂。

3 结论

1)采用BDP与MCA和纳米SiO

分别制备阻燃PPO/HIPS和阻燃PPO/HIPS纳

2

米材料。实验证明,BDP与MCA的复配体系对PPO/HIPS具有较好的阻燃性,BDP 添加8%使PPO/HIPS的LOI值由24%增长到33.6%,并使PPO/HIPS通过UL94V-0级。

2)采用RDP与MCA和纳米SiO

分别制备阻燃PPO/HIPS和阻燃PPO/HIPS纳

2

米材料。实验证明,RDP与MCA的复配体系对PPO/HIPS具有较好的阻燃性,BDP 添加6%使PPO/HIPS的LOI值由24%增长到34.7%,并使PPO/HIPS通过UL94V-0级。

的加入即可对整个体系的阻燃性有明显的贡献,特别体现

3)少量纳米SiO

2

在LOI上,由未添加时的33.6%提高到34.9%,是由于体系中产生了纳米效应。

4)在相同添加量的情况下RDP复配体系的阻燃效果优于BDP的复配体系。在实验范围内,添加8%的BDP和20%的MCA的复配体系使PPO/HIPS达到UL94V-0,LOI值达到33.6%,而要达到相同的阻燃级别和LOI值,只需添加4%的RDP和20%的MCA。

5)热分析证明阻燃剂的加入降低了PPO/HIPS的最高热分解速率。

不同阻燃剂的性能特点

磷系阻燃剂资源丰富,成本低廉,应用广泛,是很有发展前途的阻燃剂品种。甲基膦酸二甲酯(DMMP)有无色、透明、高效、低毒、使用广泛、成本低廉等优点,可用于PU泡沫塑料、UP、EP。磷系阻燃剂因具有阻燃、增塑双重功能而受到重视,它包括磷酸酯、含卤磷酸酯、复合磷酸酯及其衍生物、多磷酸酯和红磷5种类型,含磷胺类、反应型磷系化合物,特别是磷氮类膨胀型阻燃剂和高分子阻燃剂是非常有前途的阻燃剂。 有机硅系阻燃剂是无毒、耐高温、耐腐蚀的高分子化合物,我国已有几套万吨级装置,有发展高分子有机硅系阻燃剂的条件。 锑系阻燃剂以三氧化锑和五氧化二锑为主,一般用作溴系阻燃剂的协效剂。采用微米化、纳米化、微胶囊化后可减少添加量。 铝、镁系阻燃剂是环保型产品,主要品种为氢氧化铝和氢氧化镁,它们除阻燃作用外还可减少有毒气体和烟雾,但缺点是添加量大,但经偶联剂表而处理后可起到阻燃和填充双重功能,并赋予制品电性能、耐热、耐候和力学性能,因而值得发展。特别是,氢氧化镁是目前发展较快的品种。加强表而改性以进一步提高阻燃性是研究重点。 红磷微胶囊化和红磷/膨胀石墨都是值得发展的品种,现已形成生产能力,今后应提高阻燃效率和扩大生产能力。 我国硼资源丰富,应加大硼酸盐阻燃剂的合成与开发,提高其耐水解稳定性,研究复配技术。

卤系阻燃剂是目前全世界产量很大的阻燃剂,其中以溴系阻燃剂为主。工业上生产的氯系阻燃剂品种较少,主要为氯化石蜡、得克隆、海特酸及其酸酐,硬质聚氨酯泡沫中常用的含氯阻燃剂为三(2-氯异丙基)磷酸酯(TCPP)、磷酸三氯乙酯(TCEP)。 卤系阻燃剂虽然阻燃效果好、市场需求量大,但是卤系阻燃剂燃烧时生成大量的对人体和环境有害的烟、腐蚀性气体和有毒气体。随着全世界范围内环保意识的增强,各国陆续出台各种法规逐步限制和禁止含卤阻燃剂的使用,因此,从长期发展的角度看,无卤阻燃是今后阻燃剂发展的方向。 江西美隆木材保护有限公司是一家以新西兰木材保护工艺技术支持为背景,以国内行业精英为人才基础,以严谨、务实、双赢为经营理念的专业从事木材保护(木材阻燃设备、木材防腐设备、防腐、阻燃、防火、炭化、建材蒸压釜)设备机组、各类木材防腐、阻燃剂的生产和销售的公司。

不饱和聚酯力学性能和抗腐蚀性能研究

万方数据

万方数据

万方数据

万方数据

不饱和聚酯力学性能和抗腐蚀性能研究 作者:倪卓, 单晓凤, 梁伟杰, 栾岚, 苏晓敏, NI Zhuo, SHAN Xiao-feng, LIANG Wei-jie, LUAN Lan, SU Xiao-min 作者单位:深圳大学化学与化工学院,广东深圳,518060 刊名: 化学与黏合 英文刊名:Chemistry and Adhesion 年,卷(期):2011,33(4) 参考文献(8条) 1.HUANG GU Behaviours of glass fibre/unsaturated polyester composites under seawater environment 2009 2.TOMOH1RO GOTOU;MASASHI NODA;TOMONORI TOMIYAMA In situ health monitoring of corrosion resistant polymers exposed to alkaline solutions using pH indicators 2006 3.程树军;王耀先耐腐蚀玻璃钢常用树脂的结构性能和机理 1995(03) 4.王玉果三维编织碳纤维增强环氧树脂复合材料的吸湿特性[期刊论文]-天津大学学报 2009(10) 5.陈姝帆;李朗晨;洪海霞环氧改性酚醛树脂的耐腐蚀性能研究[期刊论文]-化工新型材料 2009(06) 6.倪卓;张萍;林艳玲不饱和聚酯/微胶囊复合材料自修复性能[期刊论文]-深圳大学学报(理工版) 2010(03) 7.张小苹不饱和聚酯及其新发展 2008(02) 8.陈红;刘小峰;范君仪2008-2009国外不饱和聚酯工业进展[期刊论文]-热固性树脂 2010(02) 本文链接:https://www.360docs.net/doc/bf11255389.html,/Periodical_hxynh201104003.aspx

阻燃性试验

阻燃性试验 阻燃性测试简介: 材料的可燃性是指在规定的试验条件下,材料或制品进行有焰燃烧的能力。它包括了是否容易点燃,以及能否维持燃烧的能力等有关的一些特性。经过多年的发展,阻燃性测试已经形成多种标准,成为相关业界非常重点的检测项目。 阻燃性测试目的: 通过对客户提供的样品进行燃烧测试,根据燃烧的结果进行相应的等级评级,协助客户对产品进行品质管控。阻燃等级是非常重要的安全性能之一,是许多认证必不可少的,也是很多国家强制要求的必检项目。 阻燃性测试应用范围: 主要应用于塑料、泡沫塑料、薄膜、纺织物、涂料、橡胶、汽车内饰件、电工电子等产品。 检测标准: 1. GB/T 2408-2008 塑料燃烧性能的测定水平法和垂直法 2. GB/T 5169.16-2008 电工电子产品着火危险试验第16部分: 试验火焰50W 水平与垂直火焰试验方法 3. GB 4943.1-2011 信息技术设备安全第1部分:通用要求 阻燃性测试步骤:

取样→预处理→开机调整夹具高度、火焰高度、燃气流量等→测试并记录结果→对应标准进行等级。 垂直燃烧名词解释: 余焰afterflame:引燃源移去后,在规定条件下材料的持续火焰。 余焰时间afterflame time(t1和t2):余焰持续的时间。 余辉afterglow:在火焰终止后,或者没有产生火焰时,移去引燃源后,在规定的试验条件下,材料的持续辉光。 余辉时间afterglow time(t3):余辉持续的时间。 测试仪器照片:

主要参数: 1.使用气体:99.99%纯度甲烷 2.功率: 50W (20mm喷嘴), 500W (125mm喷嘴) 3.火焰高度调节:按标准要求可从20mm 调至125mm 4.内容积≥0.8 m3 5.喷灯角度:20°,45°,90° 6.时间设置:施焰时间/余焰时间/余辉时间:0~99 min99 s可设定,时间精度≤0.1s要求 样品要求: 长×宽:125±5mm ×13.0±0.5mm,最大厚度不超过13mm。 等级判定: 垂直燃烧

聚碳酸酯的阻燃性质与特征研究

聚碳酸酯,英文简缩为PC,是五大工程材料之一。PC材料无色透明,耐热,具有良好的机械性能。因为其良好的加工性,所以其在生活中被广泛使用。例如,镜片,水桶等等。PC工程塑料的三大应用领域是汽车工业和电子、电器工业,其次还有工业机械零件、防护器材等。 聚碳酸酯是分子链中含有碳酸酯基的高分子聚合物,根据酯基的结构可分为脂肪族、芳香族等多种类型。其中由于脂肪族和脂肪族-芳香族聚碳酸酯的机械性能较低,从而限制了其在工程塑料方面的应用。聚碳酸酯是一种强韧的热塑性树脂,其名称来源于其内部的CO3基团。可由双酚A和氧氯化碳合成。现较多使用的方法为熔融酯交换法。 但在实际运用中,传统PC材料的阻燃性能还是达不到工业上的要求,阻燃PC材料便应运而生。阻燃即是阻止物体燃烧,即通过某种手段来提高聚合物具的阻燃性能。目前,阻燃中的阻燃剂主要是硅系阻燃体系。有机硅阻燃剂是按凝聚相阻燃机理运作的,即通过生成裂解炭层和提高炭层的抗氧化性来实现其阻燃功效的。既阻止了燃烧分解产物外逸,又抑制了高分子材料的热分解,同时达到了阻燃、低烟和低毒等目的。阻燃PC材料不但具有高的热变形温度,良好的阻燃性,它的机械性能也十分优异,阻燃PC材料具有的明显推迟火焰蔓延的性质,阻燃耐热性与母料相比显著增强,主要适用于高温的环境。

四类高效的阻燃系统,它们或者通过高效的气相阻燃,或者通过在凝聚相中抑制自由基的增长,或者通过催化作用改变聚合物的热分解模式并促进成炭而发挥阻燃功能。在用量极少的情况下即能满足很多领域的阻燃要求,这类阻燃系统有: (1)催化阻燃系统 (2)芳香族磺酸盐 (3)凝聚相中的自由基抑制剂 (4)高效气相阻燃剂 目前高聚物中使用的阻燃剂,效率低,用量大,恶化了原有的优异性能,增加高聚物燃烧或热解时的有毒气体量,增加了阻燃高聚物加工与回收方面的困难。因此,寻求高效的阻燃系统,是阻燃领域内人们长期的奋斗目标。据专家们预测,具有下述特征之一的阻燃系统,有可能成为具有发展前景的未来的高效阻燃剂,这些特征是: (1)能抑制凝聚相的氧化反应 (2)具有催化阻燃作用 (3)能发挥高效的气相阻燃作用 (4)能形成有效的含炭层或含其他阻燃元素的防护层

阻燃标准

我国纺织品阻燃标准简介 2011年3月2日中国纤检 火灾每年都给我国的人员生命和财产造成巨大损失,阻燃织物的运用能有效延缓火势蔓延,尤其是在公共场所使用阻燃织物可以避免人更多地员伤亡。我国纺织品的燃烧性能要求主要是针对防护服、公共场所内使用的织物、交通工具内饰物提出的。本文简要介绍我国现有的阻燃标准。 1 GB17591—2006《阻燃织物》 1.1适用范围 适用于装饰用、交通工具(包括飞机、火车、汽车和轮船)内饰用、阻燃防护服用的机织物和针织物。 1.2 燃烧性能要求 标准要求阻燃织物的燃烧性能应符合表1要求。 标准对标志的要求有:每个包装单元的使用说明还应包括燃烧性能等级如:阻燃织物B1级(装饰用);阻燃织物B2级(装饰用,耐水洗20次);阻燃织物B2级(汽车内饰用);阻燃织物B2级(阻燃防护服用,耐水洗12次)。 2 GB8965.1—2009《防护服装阻燃防护第1部分:阻燃服》 2.1适用范围 适用于服用者从事有明火、散发火花、在熔融金属附近操作和有易燃物质并有发火危险的场所穿的阻燃服,不适用于消防救援中穿用的阻燃防护服。 2.2 阻燃性能要求 面料阻燃性分为A、B、C三个等级,阻燃性能项目和指标见表2。缝纫线的阻燃性能为试验时,不熔融和烧焦现象。

2.3 阻燃性能试验方法按GB/T 5455执行。缝纫线的阻燃性试验按如下方法进行:高温烘箱加温至260℃稳定后,将100 m阻燃缝纫线放入烘箱5 min后取出。 2.4标识 产品标志应符合GB 5296.4有关规定,每套(件、条)服装应有认证许可标识及信息、产品执行标准、合格证、生产企业名称、厂址、产品名称、规格号型、材料组分、洗涤方法和检验章,每件产品应附有产品使用说明。 3 GB8965.2—2009《防护服装阻燃防护第2部分焊接服》 3.1适用范围 适用于焊接及相关作业场所,可能遭受熔融金属飞溅及其热伤害的作业人员用防护服。 3.2 阻燃性能要求 防护服面料的阻燃性能应符合表3的要求。 面料阻燃性能的检测按GB/T 5455执行。 3.4标志 每套焊接防护服上应有永久性标识,包括安全标志标识、合格证,合格证中的内容应有产品名称、产品类别、防护级别、生产日期、有效期、制造厂名、厂址等。防护服标志除满足上述要求外,还应符合GB/T 20097《防护服一般要求》的规定。 4 GB50222—2001《建筑内部装修设计防火规范》 4.1适用范围 适用于民用建筑内装饰织物(如窗帘、帷幕、床罩、家具包布等)。 4.2 燃烧性能要求 装饰织物的燃烧性能等级分别为B1和B2级,见表4。 表 4.3 测试方法根据GB/T 5455进行测试。 5 GB20286—2006《公共场所阻燃制品及组件燃烧性能要求和标识》 5.1适用范围 适用于各类公共场所所如影剧院、卡拉OK厅、商场、宾馆(饭店)、医院、养老院、寄宿制的学校、托儿所、幼儿园、公共图书馆等场所使用的阻燃制品及组件。 5.2 燃烧性能要求 公共场所阻燃制品及组件分为6大类,其中助燃织物按燃烧性能分为2个等级:一级非耐洗阻燃织物:阻燃1级(织物非耐洗);二级耐洗阻燃织物:阻燃2级(织物耐水洗30

聚丙烯阻燃改性及其性能分析

实验方案《无卤阻燃剂塑料的制备和性能测试》 介绍 国外在很早就研究塑料阻燃技术,日本在1974年为了引进和发展塑料阻燃技术就 建立了塑料阻燃剂恳谈会;嗣后在1979年改组,成立了日本阻燃剂恳谈会。近年来,对塑料阻燃剂的法规限制更加严格,日本阻燃剂恳谈会1996年1月再次改组,成立了日 本阻燃剂协会。协会由30家生产或经营阻燃剂的公司组成,整体把握整个阻燃剂的研 究和使用。溴系阻燃剂与其他阻燃剂相比,阻燃性、加工性、物性等综合性能优良,价格也适中,因而被用作大量使用的阻燃剂。1986年瑞士研究机构发现,多溴二苯醚在510~630 ℃热分解产生有剧毒的溴化二苯并二英和溴化二苯并呋喃。后来随着环保意 识的增强和环保法律的颁布,无机阻燃剂氢氧化铝和氢氧化镁在日本作为非卤阻燃剂自80年代后开始实用化。1975年协和公司成功研制了特殊大晶粒、低表面积的Mg(OH) 2 与聚丙烯制成阻燃复合材料投放市场。目前日本氢阻燃剂,随后三菱公司又将Mg(OH) 2 超氧化镁的生产厂家已超过10家,生产能力达到500 kt,其中用于阻燃剂的 Mg(OH) 2 过 24 kt,且以10%~12%的年增长率在增长。其中不少的无卤阻燃剂用于聚烯烃方面。美国 Greatlake公司生产的CN197系列季戊四醇基磷酸酯阻燃剂,可用于环氧和不饱和聚酯等复合材料的阻燃,并以CN197为中间体衍生出一系列新型阻燃剂。用CN19与丙烯酸反应制备出含有笼状磷酸酯结构的阻燃丙烯酸酯,它与聚磷酸铵复配,可用于PP 的阻燃,效果十分显著。该公司产的用于PP无卤阻燃剂还有Reogard1000, Reogard 2000和CN -329 等。日本AdekaCorporation公司生产的ADK ATAB FP-2200是一种新 型无卤磷系阻燃剂,主要用于聚烯烃。在PP材料中添加质量分数为18%~20%的ADK STABFP-2200,即可发挥优良的阻燃作用,并使该材料的阻燃级别达到UL94V-0标准。在欧洲阻燃塑料发展迅猛,欧盟在2003年禁止五溴二苯醚、八溴二苯醚的使用,在 2006 年,禁止了十溴二苯醚的使用。为了避开与欧盟的争议,世界各大阻燃剂公司纷纷研究开发阻燃剂新品种和替代品,其中十溴二苯乙烷(8010)就是美国雅宝公司率先开发的十溴二苯醚的替代品,该产品具有良好的热稳定性和高的溴含量,并且燃烧时绝对不产生致癌物质。最近,该公司又开发出 8010 系列产品 8010X、8010XX 和乙撑双(四溴邻 苯二甲酰亚胺)BF-93、BF-93W 等溴系产品用于聚烯烃的阻燃,其中包括聚丙烯的阻燃。法国的Gaelle Fontaine采用“一步法”合成一种中性膨胀阻燃剂,采用通常的测试方

纺织品燃烧性能测试方法大全

纺织品燃烧性能测试方法大全 关键词:燃烧实验法;限氧指数法;表面燃烧实验法;发烟性试验法;闪点和自燃点测定及点着温度测定;阻燃整理热分析;锥形量热计;锥形量热计 1、燃烧实验法 燃烧实验法,主要用来测定试样的燃烧广度(炭化面积和损毁长度)、续燃时间和阴燃时间。一定尺寸的试样,在规定的燃烧箱里用规定的火源点燃12s,除去火源后测定试样的续燃时间和阴燃时间。阴燃停止后,按规定的方法测出损毁长度。根据试样与火焰的相对位置,可以分为垂直法、倾斜法和水平法。垂直法是目前最为普遍的测定方法。这类实验比45°方向、水平方向燃烧更为剧烈。垂直燃烧实验又分垂直损毁长度法,垂直向火焰蔓延性能测定法、垂直向试样易点燃性测定法和表面燃烧性能测定法。GB/T5456-1997规定了纺织品燃烧性能垂直方向试样火焰蔓延性能的测定,该法用规定的点火器所产生的规定点火火焰,按规定点火时间对垂直向纺织试样点火,测定火焰在试样上蔓延至标记线(规定距离)所用的时间(以秒计)。亦可同时观察、测定和记录试样的其他有关火焰蔓延的性能。GB8746-88规定了纺织织物燃烧性能垂直向试样易点燃性的测定,该法用规定点火器产生的规定火焰,对垂直向纺织试样点火,测量织物点燃所需要的时间。GB8745-88规定了纺织织物表面燃烧性能的测定,在规定的试验条件下,在接近项部处点燃支承于垂直板上的干燥试样的起毛表面,测定火焰在织物表面向下蔓延至标记线的时间。垂直法可用于测定服装织物、装饰织物、帐篷织物等的阻燃性能;倾斜法适用于飞机内装饰用布;水平法适用于地毯之类的铺垫织物。 2、限氧指数法 限氧指数法是目前广泛使用的纺织品燃烧性能测试方法,它是指在规定的实验条件下,在氧、氮混合气体中,材料刚好能保持燃烧状态所需最低氧浓度,用LOI表示,LOI为氧所占混合气体的体积百分数。GB/T5454-1997规定了纺织品燃烧性能试验氧指数法,将试样夹于试样夹上垂直于燃烧筒内,在向上流动的氧氮气流中,点燃试样上端,观察其燃烧特性,并与规定的极限值比较其续燃时间或损毁长度。通过在不同氧浓度中一系列试样的试验,可以测得维持燃烧时氧气百分含量表示的最低氧浓度值,受试试样中要有40%-60%超过规定的续燃和阴燃时间或损毁长度。

塑胶材料的阻燃性

塑胶材料的阻燃性 关于塑胶材料的阻燃性能符号UL-94 V-2/1.5(V-0/3.0)是什么意思? UL-94,美国电子电器协会的阻燃标准,V-2指的是阻燃级别,分别有V0、V1、V2、HB等,1.5,3.0是阻燃产品的厚度,因为产品的厚度对阻燃的等级有影响,所以加以标示。 材料可燃性分级是根据UL94 划分的几个等级你说的UL90我是没见过 UL94分5VA-5VB-V0-V1-V2-HB40-HB75 从左至右阻燃越差 阻燃级别对应温度是多少?比如UL-94-v-0 应该与温度无关。 UL阻燃性分类体系如下: UL94 V0评定方法:从点燃后把火焰移开后样品能快速自熄到在一定时间间隙内无燃烧的熔体滴落(也就是说,燃烧着的熔体滴落在位于测试样品下面的一英尺(30.48cm)的棉花垫上,不能引燃棉花。 UL94 V1评定方法与V0类似,只不过它要求的自熄时间要长些。这种测试允许熔体滴落在棉花垫上,但不能点燃棉花。 UL94 V2和V1相同,只是它允许燃烧着的熔滴将一英尺下面的棉花点燃。 UL94 V5是最严格的检测方法,它涉及到塑料制品实际在火焰里的寿命。实验要求火焰长度为5in(127mm),对测试样品施加五次燃烧,其间不允许有熔滴滴落,不允许测试样品有明显的扭曲,也不能产生任何被烧出来的洞 在UL 认证中5V是塑料阻燃等级中要求最为苛刻的。在UL认证中,塑料燃烧性的认证方法有两种:一种是我们通常见到的最多的UL94 V0,V1,V2,V5,这是垂直燃烧方法;另一种是我们很少见到的UL94 HB,这是水平测试方法。 一般塑料阻燃等级:5V优于V-0,V-0优于V-1,V-1优于V-2,V-2优于HB. V-0:对样品进行两次10秒的燃烧测试后,火焰在10秒内熄灭(离开火焰试样就熄灭)。不能有燃烧物掉下。 V-1:对样品进行两次10秒的燃烧测试后,火焰在30秒内熄灭。不能有燃烧物掉下。 V-2:对样品进行两次10秒的燃烧测试后,火焰在30秒内熄灭。可以有燃烧物掉下。 HB:UL94和CSA C22.2 No 0.17标准中最底的阻燃等级。要求对于3到13 毫米厚的样品,燃烧速度小于40毫米每分钟;小于3毫米厚的样品,燃烧速度小于70毫米每分钟。在上述实验中,实验样条为国标的标准上指定的长130±3mm,宽13.0±0.3mm.厚3.0±0.2mm UL94耐燃等级系列说明

阻燃测试方法

[11] (GB2408-80、水平、垂直燃烧试验方法)1水平试验法是在实验室条件下测试试样水平支撑下的燃烧性能。 (1)试验装置 试验在燃烧箱内进行,箱体左内侧装有一支内径为9.5mm的本生灯。其内右侧有固定试件的试件夹。本生灯向上倾斜45度,并装有进退装置。试验用燃气为天然气、石油气或煤气,并备有秒表及卡尺。 (2)试验方法A. 试件制备每种材料需5个试件,每个试件要求平整光滑,无气泡,长125±5mm,宽13.0±0.3mm,厚3.0±0.2mm,对厚度为2-13mm的试样也可进行试验,但其结果只能在同样厚度之间比较。 B.试验步骤 首先在试样的宽面上距点火源25mm和100mm处各划一条标线,再将试件以长轴水平放置,其横截面轴线与水平成45度角固定在试件夹上。在其下方300mm 处放置一个水盘。点燃本生灯,调节火焰长度为25mm并成蓝色火焰,将火焰内核的尖端施用与试样下沿约6mm长度。并开始计时,施加火焰时间为30秒。在此期间内不得移动本生灯,但在试验中,若不到30秒时间试件已燃烧到第一标线,应立即停止施加火焰。停止火焰后应作如下观察记录。a.2S内有无可见火焰; b.如果试样继续燃烧,则记录火焰前沿从第一标线到第二标线所用时间t,求其燃烧速度V:V=75/t (mm/min) c.如果火焰到达第二标先前熄灭,记录燃烧长度S: S=(100-L)mm 式中:L——从第二标线到未燃部分的最短距离,精确到1mm。观察其他现象,如熔融,卷曲,结碳,滴落及滴落物是否燃烧等。C.结果的评定 每个试验按下列归类a.GB2408-80/Ⅰ:试样在火源撤离后2s 内熄灭 b.GB2408-80/Ⅱ:火焰前沿在到达第二标先前熄灭,此时应报告试样燃烧长度S (如燃烧长度50mm,报告为GB2408-80/Ⅱ-50mm)c.GB2408-80/Ⅲ:火焰前沿到达或超过第二标线,此时应报告燃烧速度V (如燃烧速度为20mm/min 报告为GB2408-80/Ⅲ-20mm/min). 试验结果以5个试件中数字最大的类别作为材料的评定结果,并报告最大燃烧长度或燃烧速度。 1 / 5 垂直燃烧法(GB2409-84) 垂直燃烧法是在规定条件下,对垂直放置具有一定规格的试样施加火焰作用后的燃烧进行分类的一种方法。(1)试验装置试验是在内部尺寸为329mm×329mm ×780mm的燃烧箱内进行。燃烧箱顶部开有直径150mm的排气孔,为防止外界气流对试验的影响,在距箱顶25mm处加一块顶板,燃烧箱右侧装有试件夹支座,并达到试件固定后能处于燃烧箱中心位置。箱体左侧装有向上倾斜45度的本生灯一个。固定在控制箱的水平滑道上。箱体下部放置一个放脱脂棉的支架。其他备用的还有秒表及卡尺。(2)试验方法 A.试件每组试样需5个试件,要求平整光滑无气泡。长130±3mm,宽13.0±0.3mm.厚3.0±0.2mm。制好的试件应在标准气候条件下调节48小时。 B.试验步骤试件垂直固定在实件夹上,试件上端夹住部分为6mm.放好脱脂棉。在距试件150mm处点燃本生灯,调节火焰高度为20±2mm,并呈蓝色火焰。将本生灯中心置于试件下端10mm位置,火焰对准试件下端中心部分。开始计时。当对试件施加火焰10s后移开火源,记录试

钢材的物理力学性能和机械性能表

钢材的物理力学性能和机械性能表 钢材的主要机械性能(也叫力学性能)通常是指钢材在标准条件下均匀拉伸.冷弯和冲击等. 单独作用下所显示的各种机械性能。钢材通常有五大主要的机械性能指标:通过一次拉伸试验可得到抗拉强度,伸长率和屈服点三项基本性能; 通过冷弯试验可得到钢材的冷弯性能; 通过冲击韧性试验可得到冲击韧性。 1.屈服点(σs) 钢材或试样在拉伸时,当应力超过弹性极限,即使应力不再增加,而钢材或试样仍继续发生明显的塑性变形,称此现象为屈服,而产生屈服现象时的最小应力值即为屈服点。 设Ps为屈服点s处的外力,Fo为试样断面积,则屈服点σs =Ps/Fo(MPa),MPa称为兆帕等于N(牛顿)/mm2,(MPa=106Pa,Pa:帕斯卡=N/m2) 2.屈服强度(σ0.2) 有的金属材料的屈服点极不明显,在测量上有困难,因此为了衡量材料的屈服特性,规定产生永久残余塑性变形等于一定值(一般为原长度的0.2%)时的应力,称为条件屈服强度或简称屈服强度σ0.2 。 3.抗拉强度(σb) 材料在拉伸过程中,从开始到发生断裂时所达到的最大应力值。它表示钢材抵抗断裂的能力大小。与抗拉强度相应的还有抗压强度、抗弯强度等。 设Pb为材料被拉断前达到的最大拉力,Fo为试样截面面积,则抗拉强度σb= Pb/Fo (MPa)。

4.伸长率(δs) 材料在拉断后,其塑性伸长的长度与原试样长度的百分比叫伸长率或延伸率。 5.屈强比(σs/σb) 钢材的屈服点(屈服强度)与抗拉强度的比值,称为屈强比。屈强比越大,结构零件的可靠性越高,一般碳素钢屈强比为0.6-0.65,低合金结构钢为 0.65-0.75合金结构钢为0.84-0.86。 6.硬度 硬度表示材料抵抗硬物体压入其表面的能力。它是金属材料的重要性能指标之一。一般硬度越高,耐磨性越好。常用的硬度指标有布氏硬度、洛氏硬度和维氏硬度。 ⑴布氏硬度(HB) 以一定的载荷(一般3000kg)把一定大小(直径一般为10mm)的淬硬钢球压入材料表面,保持一段时间,去载后,负荷与其压痕面积之比值,即为布氏硬度值(HB),单位为公斤力/mm2 (N/mm2)。 ⑵洛氏硬度(HR) 当HB>450或者试样过小时,不能采用布氏硬度试验而改用洛氏硬度计量。它是用一个顶角120°的金刚石圆锥体或直径为1.59、3.18mm的钢球,在一定载荷下压入被测材料表面,由压痕的深度求出材料的硬度。根据试验材料硬度的不同,分三种不同的标度来表示: HRA:是采用60kg载荷和钻石锥压入器求得的硬度,用于硬度极高的材料(如硬质合金等)。 HRB:是采用100kg载荷和直径1.58mm淬硬的钢球,求得的硬度,用于硬度较低的材料(如退火钢、铸铁等)。 HRC:是采用150kg载荷和钻石锥压入器求得的硬度,用于硬度很高的材

增强、增韧、阻燃尼龙三者特性区分

增强、增韧、阻燃尼龙三者特性区分 驰通金轮网销部讯:增强、增韧、阻燃尼龙属于改性尼龙中的三大分支,可以说这几种产品算是改性尼龙厂家的三宝,几乎成了台柱子,没有了这几种材料中的任何一种都会影响整体状况。今天我们就来简单介绍一下三者都是什么性能。 首先驰通金轮要说的是增强,这个可以模模糊糊看出来是一种比较刚性的感觉,通过添加玻璃纤维来提高材料的强度性能如拉伸强度、弯曲强度。这个材料的性能主要由玻纤含量决定,业内有个公开的秘密,30%玻纤含量的增强尼龙性价比高,强度大,价格也优惠很多。 性能的提升前面提到了,尤其是刚性,还有一些提升,比如耐热性,玻纤耐温很高,它的加入必然会带来耐温性的提升;再者收缩率下降,给制品的尺寸稳定性带来了一线生机,耐磨性提升。 由于强度和韧性是相对的,强度提升必然会带来韧性的降低,但仍有不错的抗冲击性,毕竟瘦死的骆驼比马大。玻纤的加入会增加材料与熔体的摩擦,也会加大与机器的摩擦,带来的后果就是流动性下降。 然后驰通金轮要说的是增韧尼龙,从名字里能看出来这是一种有韧性的材料,它的韧性也分强弱,在驰通金轮行业又分为增韧和超韧,超韧的韧性更好。它主要通过添加增韧剂来改性的,比如马来酸酐接枝POE和三元乙丙橡胶。 这种材料抗冲击能行都不错,主要是增韧剂的性能要好,而且还

需要与尼龙有很好的相容性。它的耐低温性也很优异,比如在低温环境中,很多材料都会变得奇脆无比,进行过增韧改性的材料会更好的客服这种环境,并且仍然能保持不错的韧性。 韧性好了,强度必然会下降,如果有极性接枝基团,强度还是不会拉低太多。增韧剂加入后,粘稠度下降,最终导致流行性变差。耐高温性能下降,主要是因为增韧剂的熔点较低,所以在注塑时温度会比纯尼龙低一些。耐磨性也会降低。 最后驰通金轮要说的是阻燃尼龙,这种材料的改性与力学性能关系不大,因为主要关注的是耐火性,要求材料具有阻燃性能,根据UL-94标准,对阻燃性进行了划分,从V-2、V-1到V-0,阻燃性依次变强。这种材料主要通过添加阻燃剂改性的,根据阻燃剂的分类,有可以分为含卤和无卤阻燃尼龙。 尼龙本身具有一定的阻燃性,改性后它的阻燃性得到了更好的提升。然而由于阻燃剂的添加,力学性能会受到很大影响。阻燃剂属于小分子物质,它的加入会使材料更加顺滑,流动性会更好,耐磨性降低。 然而在现在大家注重阻燃性和力学性能的时候又衍生出了更多的品种,比如增强阻燃尼龙、增韧阻燃尼龙、增强增韧尼龙,这些进行二次改性的材料也受到了大家的一致认可,能把材料的不足进行充分掩盖。

阻燃性测试

阻燃性测试 阻燃性测试,就是被测物推迟火焰延续、蔓延、扩散等能力的试验方法。经过多年的发展,阻燃性测试已经形成多种标准,成为相关业界非常重点的检测项目。 重点术语 ·易燃性——在规定的实验条件下,材料或制品进行有焰燃烧的能力·不燃性——在规定的实验条件下,材料不能进行有焰燃烧的能力。·阻燃性——材料所具有的减慢,终止或防止有焰燃烧的特性机理模式·凝固相阻燃——阻燃剂在聚合物的表面能够形成一层碳化层; ·气相阻燃——释出惰性气体,干扰燃烧链; ·物理效应——能够形成一种低热传导率的保护层。途径 ·以物理方法添加阻燃剂,这种方法成本较低,很快可以实现,但容易对环境和人体造成负面影响,通常受到各国环保指令的限制。(RoHS 对溴类阻燃剂的限制:欧盟RoHS指令2002/95/EC规定在2006年7月1日起新投放欧盟市场的电子电气设备中的PBB、PBDE的最高限量为1000ppm,2005/717/EC的指令中十溴联苯醚可获得豁免) ·对材料进行阻燃改性。 ·设计新的高聚物分子结构,使之具有本质高阻燃性,这种是最彻底的方法。 性能评价 按照现行国际标准或特殊规定(采购商制定)进行一些列的试验,测试下述参数,以评定材料的阻燃性: (1)点燃性和可燃性:即被引燃的难易程度;

(2)火焰传播速度:即火焰沿材料表面的蔓延速度; (3)耐火性:即火穿透材料构件的速度; (4)释放速度(HRR):即材料燃烧时放出的热量和放出的速度;(5)自熄的难易程度; (6)生烟性:包括生烟量、烟的释放速度及烟的组成; (7)有毒气体的生成:包括气体量、释放速度及组成。 制定标准的机构 所有主流的阻燃性测试,都是根据标准法规进行,而制定这些标准法规的机构分别是: UL美国保险业实验室(Underwriters Laboratories Inc) IEC 国际电工委员会 ASTM 美国材料和实验协会 EN 欧洲标准化委员会 FMVSS 美国联邦汽车安全标准 SAE 美国动力机械工程师协会 ISO 国际标准化组织 GB 国家标准化管理委员会 方法和标准 所有阻燃性测试的方法在相应的标准内均由阐述。测试者应该按照测试物的类型,以及根据出口地的要求选择合适的法规标准进行测试。如果采购商和当地政府的均有要求,则按照高的标准进行测试。 塑料类 1. 塑料可燃性的试验方法与标准(UL94可燃性试验) 2. 塑料极限氧指数的测定

钢铁材料的分类、力学性能及热处理

钢铁材料的分类、力学性能及热处理 一、 分类及力学性能: 1. 碳素钢:按含碳量的多少可分为低碳钢(含碳量小于0.25%)、中碳钢(含碳量在0.25%~0.5%)和高碳钢(含碳量大于0.5%)。随着含碳量的增加,钢的机械强度提高,但使它的塑性和韧性下降。 (1) 普通碳素钢:它的化学成分不准确,因而不宜进行热处理。 普通碳素钢的牌号标记如Q235(国标),表示屈服点MPa S 235=σ。 (2) 优质碳素钢:力学性能优于普通碳素钢,采用适当的热处理 方法可以获得很高的内部机械强度和表面硬度。低碳钢塑性高,焊接性好,适用于冲压、焊接零件。采用渗碳淬火处理可提高零件表面硬度;中碳钢具有综合性能好的特点,它的机械强度、塑性和韧性均较好,可进行调质、表面淬火处理;高碳钢具有高的机械强度和良好的韧性和弹性,常制成弹性零件。优质碳素钢的牌号如15、35、45(国标),表示含碳量平均值各为0.15%、0.35%、0.45%。 2. 合金钢:合金钢是在优质碳素钢中加入某些合金元素而形成的。它具有良好的力学性能和热处理性能,随着所加合金元素的不同,还可获得不同的特殊性能。合金钢的牌号如35Mn2、40Cr (国标),表示含碳量平均值为0.35%和0.40%,而含合金元素

Mn2%及Cr 小于1.5%。 3. 铸钢:铸钢的含碳量一般在0.15%~0.60%范围内,含碳量较高,塑性很差,容易产生龟裂,故不能锻造。铸钢的强度显著高于铸铁,但铸造性则比较差,收缩率较大。铸钢的牌号如ZG500-270,前组数字表示抗拉强度MPa B 500=σ,后组数字表示屈服点MPa S 270=σ。 4. 铸铁:铸铁是含碳量大于2%的铁碳合金。铸铁因含碳量高,故它的抗拉强度、塑性和韧性都较差,不能锻造,焊接性能也差。但它有较高的抗压强度,良好的减摩性和切削性能,吸振性好,价格又较低廉。常用的铸铁有灰铸铁(如HT150,抗拉强度MPa B 150=σ)、可锻铸铁(如KT300-6,抗拉强度MPa B 300=σ,最低伸长率为6%)和球墨铸铁(如QT500-7,抗拉强度MPa B 500=σ,最低伸长率为7%)。 二、 材料热处理: 1. 退火:退火是将钢件加热到临界温度以上30~50℃,在热处理炉内保温一段时间,然后随炉冷却到室温止。退火的目的在于使钢的晶粒细化,消除内应力和降低硬度,改善切削性能,提高韧性和塑性,有利于焊接和碾压工艺。 2. 正火:正火是将钢件加热到临界温度以上30~80℃,保温一段时间,随后工件从炉内取出,在空气中冷却。由于正火的冷却速度比退火的快,故钢的强度和硬度比退火的高,但消除内应力不如退火的好。

钢铁的物理力学性能和机械性能表

钢铁的物理力学性能和机械性能表 钢材的主要机械性能(也叫力学性能)通常是指钢材在标准条件下均匀拉伸.冷弯和冲击等. 单独作用下所显示的各种机械性能。钢材通常有五大主要的机械性能指标:通过一次拉伸试验可得到抗拉强度,伸长率和屈服点三项基本性能; 通过冷弯试验可得到钢材的冷弯性能; 通过冲击韧性试验可得到冲击韧性。 1.屈服点(σs) 钢材或试样在拉伸时,当应力超过弹性极限,即使应力不再增加,而钢材或试样仍继续发生明显的塑性变形,称此现象为屈服,而产生屈服现象时的最小应力值即为屈服点。 设Ps为屈服点s处的外力,Fo为试样断面积,则屈服点σs =Ps/Fo(MPa),MPa称为兆帕等于N(牛顿)/mm2,(MPa=106Pa,Pa:帕斯卡=N/m2) 2.屈服强度(σ0.2) 有的金属材料的屈服点极不明显,在测量上有困难,因此为了衡量材料的屈服特性,规定产生永久残余塑性变形等于一定值(一般为原长度的0.2%)时的应力,称为条件屈服强度或简称屈服强度σ0.2 。 3.抗拉强度(σb) 材料在拉伸过程中,从开始到发生断裂时所达到的最大应力值。它表示钢材抵抗断裂的能力大小。与抗拉强度相应的还有抗压强度、抗弯强度等。 设Pb为材料被拉断前达到的最大拉力,Fo为试样截面面积,则抗拉强度σ b= Pb/Fo (MPa)。 4.伸长率(δs) 材料在拉断后,其塑性伸长的长度与原试样长度的百分比叫伸长率或延伸率。 5.屈强比(σs/σb) 钢材的屈服点(屈服强度)与抗拉强度的比值,称为屈强比。屈强比越大,结构零件的可靠性越高,一般碳素钢屈强比为0.6-0.65,低合金结构钢为 0.65-0.75合金结构钢为0.84-0.86。 6.硬度 硬度表示材料抵抗硬物体压入其表面的能力。它是金属材料的重要性能指标之一。一般硬度越高,耐磨性越好。常用的硬度指标有布氏硬度、洛氏硬度和维氏硬度。 ⑴布氏硬度(HB) 以一定的载荷(一般3000kg)把一定大小(直径一般为10mm)的淬硬钢球压入材料表面,保持一段时间,去载后,负荷与其压痕面积之比值,即为布氏硬度值(HB),单位为公斤力/mm2 (N/mm2)。

阻燃性能试验方法

国内常用阻燃性能实验方法 1.炽热棒法(GB2407-80) 炽热棒法适用于评定在试验试室条件下硬质塑料的燃烧性能。 (1)实验装置 炽热棒试验仪包括底座,支架,炽热棒,立柱,试验夹,平衡重锤,定位棒等部分。炽热棒由碳化硅制成,其炽热部分直径8mm,长100mm,水平固定在绝缘版上,以便于炽热棒离开或接触试件。炽热棒用电加热,稳定温度为950℃。炽热棒支架上的平衡重锤用于调节炽热棒与试样端面的接触压力(0.3.N). (2)试验方法 A.试件制备 每组试验需五个试件,每个试件表面要求光滑无缺欠,长125mm,宽10mm,厚4mm。 B.试验步骤 在试样宽面距点火端25mm和100mm处,各划一条标线。将试样水平固定在试件夹中。 将炽热棒加热到950℃,在转动支架使炽热棒与试件接触,并开始计时。3分钟后将炽热棒与试件转离。从开始计时起详细观察试件有无可见火焰,如试件有燃烧,则记录火焰前沿从第一标线到第二标线所需的时间。并计算其燃烧速度。 V= 75/t (mm/min) 若火焰前沿未达到第二标线之前就熄灭,则记录燃烧长度。 S=100-L(mm) 式中: L——从第二标线到未燃部分的最短距离 C.结果评定 每个试样结果按下列规定归类 a.GB2407-80/Ⅰ:没有可见火焰 b.GB2407-80/Ⅱ:火焰的前沿到达第二标线之前熄灭,应报告试样燃烧长度(如燃烧长度为50mm.则报告为GB2407-80/Ⅱ-50mm)。 c.GB407-80/Ⅲ:火焰前沿到达或超过第二标线,应该报告燃烧速度(如燃烧速度为20mm/min,则报告为 GB2407-80/Ⅲ-20mm/min) 试验结果以五个试样中数字最大的类别作为该材料的评定结果,并报告最大的燃烧长度或燃烧速度。 2.水平燃烧试验方法(GB2408-80) 水平试验法是在实验室条件下测试试样水平自支撑下的燃烧性能。 (1)试验装置 试验在燃烧箱内进行,箱体左内侧装有一支内径为9.5mm的本生灯。其内右侧有固定试件的试件夹。本生灯向上倾斜45度,并装有进退装置。试验用燃气为天然气、石油气或煤气,并备有秒表及卡尺。 (2)试验方法 A.试件制备 每种材料需5个试件,每个试件要求平整光滑,无气泡,长125±5mm,宽13.0±0.3mm,厚3.0±0.2mm,对厚

地毯阻燃性能测试美标

U.S. CONSUMER PRODUCT SAFETY COMMISSION Office of Compliance Requirements 1 for Carpets and Rugs 16 C.F.R. Parts 1630 and 1631 1 The following is a general unofficial summary of the requirements for the flammability of carpets and rugs and does not replace the requirements published in 16 C.F.R. 1630 and 1631. This summary does not include all of the details included in those requirements. For those details, please refer to the regulation or contact the Office of Compliance. What is the purpose of the carpet and rug standards? These standards reduce the risks of death, personal injury, and property damage associated with fires that result from the ignition of carpets and rugs.The standards provide a test to determine the surface flammability of carpets and rugs when exposed to a small ignition source. Where can I find the requirements for the surface flammability of carpets and rugs?The Standard for the Surface Flammability of Carpet and Rugs can be found at 16 C.F.R. Part 1630. The Standard for the Surface Flammability of Small Carpet and Rugs can be found at 16C.F.R. Part 1631. You can obtain a copy of the flammability standards from CPSC’s Web Site at: https://www.360docs.net/doc/bf11255389.html, What is a carpet or rug? (1) A carpet or rug (large) is a finished fabric or similar product intended to be used as a floor covering and has dimensions of over 6 feet long and an area greater than 24 ft 2. This definition also includes “carpet squares” intended to be installed in dimensions of over 6 feet long and an area greater than 24 ft 2. This definition excludes resilient floor coverings such as linoleum and vinyl tile. (2) A small carpet or rug is the same as the definition above but has no dimension over 6feet long and an area not greater than 24 ft 2. What are the requirements for carpets and rugs ?All carpets and rugs manufactured, imported or sold in the United States must meet the flammability (acceptance) criterion of the standards. Small carpets and rugs not meeting the standard may be manufactured, imported or sold in the United States provided they are permanently labeled with the following statement:FLAMMABLE (FAILS U.S. DEPARTMENT OF COMMERCE STANDARD FF 2-70): SHOULD NOT BE USED NEAR SOURCES OF IGNITION. How do you test for surface flammability?This test consists of exposing eight 9” x 9” conditioned specimens to a timed burning tablet in a specified test chamber. The apparatus and test materials required to conduct the test are specified in 16 C.F.R.1630.4(a) and 1631.4(a). In summary, each specimen is placed in the center of the floor of the test chamber, traffic side up.Place the flattening frame on the specimen and position a methenamine timed burning tablet on one of its flat sides in the center of the 8”

相关文档
最新文档