用示波器观测铁磁材料的磁化曲线和磁滞回线

用示波器观测铁磁材料的磁化曲线和磁滞回线
用示波器观测铁磁材料的磁化曲线和磁滞回线

用示波器观测铁磁材料的磁化曲线和磁滞回线

41用示波器观测铁磁材料的磁化曲线和磁滞回线

铁磁材料应用广泛,从常用的永久磁铁、变压器铁芯到录音、录像、计算机存储用的磁带、磁盘等都采用铁磁性材料。磁滞回线和基本磁化曲线反映了铁磁材料的主要特征。根据磁滞回线的不同,可将铁磁材料分为硬磁和软磁两大类,其根本区别在于矫顽磁力Hc的大小不同。硬磁材料的磁滞回线宽,剩磁和矫顽磁力大(大于102A/m),因而磁化后,其磁感应强度可长久保持,适宜做永久磁铁。软磁材料的磁滞回线窄,矫顽磁力Hc一般小于102A/m,但其磁导率和饱和磁感强度大,容易磁化和去磁,故广泛用于电机、电器和仪表制造等工业部门。

本实验通过示波器来观测不同磁性材料的磁滞回线和基本磁化曲线,以加深对材料磁特性的认识。

【实验目的】

1、掌握磁滞、磁滞回线和磁化曲线的概念,加深对铁磁材料的主要物理量:矫顽力、

剩磁和磁导率的理解。

2、学会用示波器法观测基本磁化曲线和磁滞回线。

3、根据磁滞回线确定磁性材料的饱和磁感应强度Bs、剩磁Br和矫顽力

Hc的数值。

4、研究不同频率下动态磁滞回线的区别。

5、改变不同的磁性材料,比较磁滞回线形状的变化。

【实验仪器】

DH4516N型动态磁滞回线测试仪,示波器。

【实验原理】

1、磁化曲线

如果在由电流产生的磁场中放入铁磁物质,则磁场将明显增强,此时铁磁物质中的磁

感应强度比单纯由电流产生的磁感应强度增大百倍,甚至在千倍以上。铁磁物质内部的磁

场强度H与磁感应强度B有如下的关系:

B=μH

对于铁磁物质而言,磁导率μ并非常数,而是随H的变化而改变的物理量,即μ=f(H),

为非线性函数。所以如图1所示,B与H也是非线性关系。

铁磁材料的磁化过程为:其未被磁化时的状态称为去磁状态,这时若在铁磁材料上加

一个由小到大的磁化场,则铁磁材料内部的磁场强度H与磁感应强度B 也随之变大,其

B-H变化曲线如图1所示。但当H增加到一定值(Hs)后,B几乎不再随H

的增加而增加,说明磁化已达饱和,从未磁化到饱和磁化的这段磁化曲线称为材料的起始磁化曲线。如图1中的OS端曲线所示。

图1磁化曲线和μ~H曲线

2、磁滞回线

当铁磁材料的磁化达到饱和之后,如果将磁化场减少,则铁磁材料内部的B 和H也随之减少,但其减少的过程并不沿着磁化时的OS段退回。而且当磁化场撤消,H=0时,磁感应强度仍然保持一定数值B=Br,称为剩磁(剩余磁感应强度),如图2所示。

若要使被磁化的铁磁材料的磁感应强度B减少到0,必须加上一个反向磁场并逐步增大。当铁磁材料内部反向磁场强度增加到H=-Hc时(图2上的c点),磁感应强度B

才是0,达到退磁。图2中的的bc段曲线为退磁曲线,Hc为矫顽磁力。继续增加反向磁场,铁磁质的磁化达到反向饱和。如果减小反向磁场强度,同样出现剩磁现象。如图2所示,所形成的封闭曲线abcdefa称为磁滞回线。这种B的变化始终落后于H的变化的现象,称为磁滞现象。

当从初始状态(H=0,B=0)开始周期性地改变磁场强度的幅值时,在磁场由弱到强单调增加过程中,可以得到面积由大到小的一簇磁滞回线,如图3

所示。其中最大面积的磁滞回线称为极限磁滞回线。

把图3中原点O和各个磁滞回线的顶点a1,a2,...a所连成的曲线,称为铁磁性材料的基本磁化曲线。不同的铁磁材料其基本磁化曲线是不相同的。为了使样品的磁特性可以重复出现,也就是指所测得的基本磁化曲线都是由原始状态(H=0,B=0)开始,因此在测量前必须进行退磁,消除样品中的剩余磁性,以保证外加磁场H=0,B=0。在理论上,要消除剩磁Br,只需通一反向励磁电流,使外加磁场正好等于铁磁材料的矫顽磁力即可。实际上,矫顽磁力的大小通常并不知道,因而无法确定退磁电流的大小。我们从磁滞回线得到启示,如果使铁磁材料磁化达到磁饱和,然后不断改变励磁电流的方向(如采用交变电流),与此同时逐渐减小励磁电流,直到为零。则该材料的磁化过程就是一连串逐渐缩小而最终趋于原点的环状曲线,如图4所示。当H减小到零时,B亦同时降为零,达到完全退磁。

实验表明,经过多次反复磁化后,B-H的量值关系形成一个稳定的闭合的“磁滞回线”。通常以这条曲线来表示该材料的磁化性质。这种反复磁化的过程称为“磁锻炼”。本实验使用交变电流,所以每个状态都是经过充分的“磁锻炼”,随时可以获得磁滞回线。

3、示波器法观测磁滞回线原理

用示波器测量B—H曲线的实验线路如图5所示。

图5

在圆环状磁性样品上绕有励磁线圈N1匝(原线圈)和测量线圈N2匝(次线圈),当

N1通以交变电流i1时,样品内将产生磁场,根据安培环路定律有:

H L

?

N1

式中L为的环状样品的平均磁路长度。R1两端的电压UR1为:

U?LR1HR1

上式表明磁场强度H与UR1成正比,将R1两端的电压送到示波器的X输入端,即

UX???UR1

??

d???N SdB

2dt2dt

式中S为线圈N2的横截面积。回路中的电流为:

3

i2

R22???(1?c)2]

1

式中ω为电源的角频率。若适当选择R2和C使,则:

R??

2?C

电容C两端的电压为:i2?

≈?2

R2(4)

Q1N S

2

U????∫??

i dt B(6)

C2

C C CR2

将电容C两端电压送至示波器的Y轴输入端,即UY???,则示波器Y方向偏转量的大

UC

小反映了磁感应强度B的大小。

可见,只要通过示波器测出UX、UY的大小,即可得到相应的H和B

值。当励磁

电流周期性变化时,并由小到大调节信号发生器的输出电压时,即能在荧光屏上观察到由小到大扩展的磁滞回线图形。如果逐次记录其正顶点的坐标,并在座标纸上把它连成光滑的曲线,就得到样品的基本磁化曲线。

【实验内容与步骤】

1.实验前先熟悉实验仪器的构成。本实验所用DH4516N型动态磁滞回线测试仪由测试样品、功率信号源、可调标准电阻、标准电容和接口电路等组成。仪器面板如图6所示。

测试样品有两种,一种是圆形罗兰环,材料是锰锌功率铁氧体,磁滞损耗较小;另一种是EI型硅钢片,磁滞损耗较大些。信号源的频率在20~200Hz间可调;可调标准电阻R1、R2均为无感交流电阻,R1的调节范围为0.1~11?;R2的调节范围为1~110k?。标准电容有0.1μF~11μF可选,其介质损耗很小。实验样品的参数如下:

样品1:平均磁路长度L=0.130m,铁芯实验样品截面积S=1.24×10-4m2,线圈匝数:N1=150匝,N2=150匝;N3=150匝。

样品2:平均磁路长度L=0.075m,铁芯实验样品截面积S=1.20×10-4m2,线圈匝数:N1=150匝,N2=150匝;N3=150匝。

图6DH4516N型动态磁滞回线测试仪

2.观测样品1在不同频率交流信号下的磁化曲线和磁滞回线。

(1)按图5所示的线路图接线。

注意:由于信号源、电阻R1和电容C的一端已经与地相连,所以不能与其他接线端相

连接。否则会短路信号源、UR或UC,从而无法正确做出实验。

标有红色箭头的线表示接线的方向,样品的更换通过换接接线位置来完成。

(2)逆时针调节幅度调节旋钮到底,使信号输出最小。调示波器显示工作方式为X-Y

方式,示波器X输入和Y输入选择为DC方式。

(3)接通示波器和DH4516N型动态磁滞回线测试仪电源,适当调节示波器辉度,以

免荧光屏中心受损。预热10分钟后开始测量。

(4)将示波器光点调至显示屏中心,调节实验仪频率调节旋钮,频率显示窗显示

50.00Hz。

(5)退磁。

①单调增加励磁电流,即缓慢顺时针调节幅度调节旋钮,使示波器显示的磁滞回线上

B值缓慢增加,达到饱和。改变示波器上X、Y输入衰减器开关(偏转因数旋钮),并将他

们的微调旋钮顺时针旋转到底(此时偏转因数旋钮对应的数值处于校准状态),调节R1、

R2的大小,使示波器显示出典型美观的磁滞回线图形,并使磁滞回线顶点在

水平方向上的读数为(-5.00,+5.00)格,此后,保持示波器上X、Y输入偏转因数旋钮和R1、R2值固定不变,以便进行H、B的测量。

②单调减小励磁电流,即缓慢逆时针调节幅度调节旋钮,直到示波器最后显示为一点,位于显示屏的中心,即X和Y轴线的交点,如不在中间,可调节示波器的X和Y位移旋钮。实验中可用示波器X、Y输入的接地开关检查示波器的中心是

否对准屏幕X、Y坐标的交点。

注意:励磁电流在实验过程中只允许单调增加或减少,不能时增时减。

在频率较低时,由于相位失真,磁滞回线经常会出现如图7所示的畸变。这时需要选择合适的R1、R2和C的阻值,可避免这种畸变,得到最佳磁滞回线图形。

图7

(6)测磁化曲线(即测量大小不同的各个磁滞回线的顶点的连线)。

①单调增加磁化电流,即缓慢顺时针调节幅度调节旋钮,使磁滞回线顶点在X方向读数分别为0、0.40、0.80、1.20、1.60、2.00、2.40、3.00、4.00、5.00,单位为格(指一大格),记录磁滞回线顶点在Y方向上读数。将数据填入表1。

表1

序号12345678910

X/格00.400.80 1.20 1.60 2.00 2.40 3.00 4.00

5.00

Y/格

注意:测量过程中保持示波器上X、Y输入偏转因数旋钮和R1、R2值固定不变,并记录下列数据:

R1=Ω;R2=Ω;C=F;

Sx=V/格(X偏转因数调节钮的读数);

Sy=V/格(Y偏转因数调节钮的读数)。

②计算相应的H(A/m)和B(mT)值。

根据X、Y的读数可以得到输入到示波器X偏转板和Y偏转板上的电压: UX?Sx?X

UY?Sy?Y

由公式(2)和(6)可知:

UX???UR1???LR1H

N S

2

U U

????B Y C CR

2

则有:

?

H??N1SxX

LR1

C R Sy

??

2

B?Y

N2S

③根据得到的H和B值绘制磁化曲线,并给出饱和磁感应强度的大小。④计算磁导率μ(指相对磁导率),并绘制μ-H曲线。

磁导率定义为:

通常铁磁材料的μ是温度T、磁化场H、频率f的函数。基本磁化曲线上的点与原点的连线的斜率即为磁导率。H→0时的磁导率称为起始磁导率,即

i H→0

B

?0

(7)测绘动态磁滞回线

①当示波器显示的磁滞回线的顶点在X方向上读数为(-5.00,+5.00)格时(即在饱和状态),记录磁滞回线在X坐标分别为-5.00、-4.00、-3.00、-2.00、

-1.50、-1.00、-0.50、0.00、0.50、1.00、1.50、2.00、3.00、4.00、5.00格时,相对应的Y坐标,将数据填入表2。

表2

序号12345678

X/格-5.00-4.00-3.00-2.00-1.50-1.00-0.050.00

Y1/格

Y2/格

续表

序号9101112131415

X/格0.50 1.00 1.50 2.00 3.00 4.00 5.00

Y1/格

Y2/格

②计算相应的H和B值,并绘制B-H图(磁滞回线)。

③给出剩磁和矫顽力的大小。

(8)逆时针调节(幅度调节旋钮到底),使信号输出最小,调节实验仪频率调节旋钮,频率显示窗分别显示150.0Hz,重复上述(5)-(7)的操作,比较磁滞回线形状的变化。3.观测样品2在交流信号频率为50赫兹时的磁化曲线和磁滞回线,并与样品1进行比较。

测量方法同样品1

【思考题】

1.什么叫磁滞回线?测绘磁滞回线和磁化曲线为何要先退磁?

2.怎样使样品完全退磁,使初始状态在H=0,B=0点上?

3.用示波器法观测磁滞回线时,通过什么方法获

得B和H两个磁学量?

4.如何判断铁磁材料属于软、硬磁材料?

5.磁滞回线的形状随交流信号频率如何变化?为什么?

注:做本实验前请预习或复习示波器的使用方法(实验20)。

磁性材料的基本特性

一.磁性材料的基本特性 1.磁性材料的磁化曲线 磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H作用下,必有相应的磁化强度M或磁感应强度B,它们随磁场强度H的变化曲线称为磁化曲线(M~H或B~H曲线)。磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。 材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。 2.软磁材料的常用磁性能参数 ?饱和磁感应强度Bs: 其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列; ?剩余磁感应强度Br: 是磁滞回线上的特征参数,H回到0时的B值. 矩形比: Br/Bs; ?矫顽力Hc: 是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等); ?磁导率m:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关; ?初始磁导率mi、最大磁导率mm、微分磁导率md、振幅磁导率ma、有效磁导率me、脉冲磁导率mp; ?居里温度Tc: 铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性, 该临界温度为居里温度. 它确定了磁性器件工作的上限温度; ?损耗P: 磁滞损耗Ph及涡流损耗Pe P=Ph+Pe=af+bf2+cPeμf2t2/,r 降低磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe的方法是减薄磁性材料的厚度t及提高材料的电阻率r; ?在自由静止空气中磁芯的损耗与磁芯的温升关系为:总功率耗散(亳瓦特)/表面积(平方厘米) 3.软磁材料的磁性参数与器件的电气参数之间的转换 ?设计软磁器件通常包括三个步骤:正确选用磁性材料;

铁磁材料的滞回线和基本磁化曲线实验报告修订稿

铁磁材料的滞回线和基本磁化曲线实验报告 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

南昌大学物理实验报告 课程名称:普通物理实验(2) 实验名称:铁磁材料的磁滞回线和基本磁化曲线 学院:专业班级: 学生姓名:学号: 实验地点:座位号: 实验时间: 一、实验目的: 1、掌握用磁滞回线测试仪测绘磁滞回线的方法。 2、了解铁磁材料的磁化规律,用示波器法观察磁滞回线比较两种典型铁磁物质的动态磁化特性。 3、测定样品的磁化特性曲线(B-H曲线),并作μ-H曲线。 4、测绘样品在给定条件下的磁滞回线,估算其磁滞损耗以及相关H C、B R、B M、 H、B的等参量。 二、实验仪器:

TH—MHC型智能磁滞回线测试仪、示波器。 三、实验原理: 1.铁磁材料的磁滞特性 铁磁物质是一种性能特异,用途广泛的材料。铁、钴、镍及其众多合金以及含铁的氧化物(铁氧体)均属铁磁物质。其特性是在外磁场作用下能被强烈磁化,即磁导率μ很高。另一特征是磁滞,铁磁材料的磁滞现象是反复磁化过程中磁场强度H与磁感应强度B之间关系的特性。即磁场作用停止后,铁磁物质仍保留磁化状态,图1为铁磁物质的磁感应强度B与磁场强度H之间的关系曲线。 图中的原点O表示磁化之前铁磁物质处于磁中性状态,即B=H=O,当磁场强度H从零开始增加时,磁感应强度B随之从零缓慢上升,如曲线Oa,继之B随H迅速增长,如曲线ab所示,其后B的增长又趋缓慢,并当H增至H S时,B达到饱和值B S这个过程的OabS曲线称为起始磁化曲线。如果在达到饱和状态之后使磁场强度H减小,这时磁感应强度B的值也要减小。图1表明,当磁场从H S逐渐减小至零,磁感应强度B 并不沿起始磁化曲线恢复到“O”点,而是沿另一条新的曲线SR下降,对应的B值比原先的值大,说明铁磁材料的磁化过程是不可逆的过程。比较线段OS和SR可知,H减小B相应也减小,但B的变化滞后于H的变化,这种现象称为磁滞。磁滞的明显特征是当H=O时,磁感应强度B值并不等于0,而是保留一定大小的剩磁Br。 当磁场反向从0逐渐变至-H D,磁感应强度B消失,说明要消除剩磁,可以施加反向磁场。H D称为矫顽力,它的大小反映铁磁材料保持剩磁状态的能力,曲线RD称为退磁曲线。 图1还表明,当磁场按H S→O→H C→?H S→O→H D′→H S次序变化,相应的磁感应强度B则沿闭合曲线SRDS′R′D′S变化,可以看出磁感应强度B值的变化总是滞后于磁场强度H的变化,这条闭合曲线称为磁滞回线。当铁磁材料处于交变磁场中时(如变压器中的铁心),将沿磁滞回线反复被磁化→去磁→反向磁化→反向去磁。磁滞是铁磁材料的重要特性之一,研究铁磁材料的磁性就必须知道它的磁滞回线。各种不同铁磁材料有不同的磁滞回线,主要是磁滞回线的宽、窄不同和矫顽力大小不同。 当铁磁材料在交变磁场作用下反复磁化时将会发热,要消耗额外的能量,因为反复磁化时磁体内分子的状态不断改变,所以分子振动加剧,温度升高。使分子振动加剧的能量是产生磁场的交流电源供给的,并以热的形式从铁磁材料中释放,这种在反复磁化过程中能量的损耗称为磁滞损耗,理论和实践证明,磁滞损耗与磁滞回线所围面积成正比。

铁磁材料的磁性能

铁磁材料的磁性能 1、铁磁性物质的磁化 当把一根铁棒插入通有电流的线圈时,可以发现铁棒能够吸引铁屑,这是由于铁棒被磁化的缘故。所谓磁化是指使原来没有磁性的物质具有磁性的过程。只有铁磁性物质能够被磁化,非铁磁性物质不能被磁化。 铁磁性物质能够被磁化的主要原因是其内部存在大量的磁性小区域,即磁畴。在无外磁场作用时,铁磁物质中磁畴的排列杂乱无章,磁性相互抵消,物质对外界并不显磁性。但是,在外磁场作用下,磁畴将沿着磁场的方向排列,从而产生附加磁场,如图 4.1所示。附加磁场与外磁场叠加在一起,使得总磁场增强。有些铁磁性物质在去掉外磁场后对外仍显磁性,于是它们变成了永久磁铁。 (a)(b) 图4.1铁磁性物质的磁畴 2、磁化曲线 铁磁性物质在外磁场作用下,其内部将产生磁场。表征铁磁性物质内磁感应强度B随外磁场强度H变化的曲线,称为磁化曲线,也称为B-H曲线。如果铁磁性物质从完全无磁的状态进行磁化所得到的磁化曲线称为起始磁化曲线。磁化曲线是非线性的。起始磁化曲线应经过坐标原点,如图4.2所示。

图4.2铁磁性物质的磁化曲线 在磁化曲线起始的Oa段,曲线上升缓慢,这是由于铁磁物质内部磁畴的惯性造成的,这个阶段称为起始磁化阶段。随着H的增大,B也增大,磁化曲线中ab段的变化接近于直线,这是由于大量的磁畴在外磁场作用下沿着磁场的方向排列,附加磁场增强。然后,在bc段,随着H的增大,B也增大,但增大的速度变慢,这是由于铁磁性物质内部只剩下了少数的磁畴。最后,在cd段,由于铁磁性物质几乎全部被磁化,继续增大H,B几乎没有变化,即B达到了饱和值。不同的铁磁性物质具有不同的磁化曲线。 3、磁滞回线 上面介绍的磁化曲线只反映了铁磁性物质在外磁场由零逐渐增强时的磁化过程。但是,在实际使用中,许多铁磁性材料往往工作在大小和方向交替变化的磁场中,这时由于铁磁性物质具有滞后效应和粘滞性,使得B的值不仅与相应的H有关,还与物质之前的磁化状态有关。 实验表明,如果B达到饱和值后,逐渐减小H,这时B并不是沿着图4.2中的磁化曲线减小,而是沿着另一条曲线下降,如图4.3所示的de段。当H减小至零时,B的值不是零,而是Br,Br称为剩磁。 图4.3磁滞回线 为了消除剩磁,必须施加反向的磁场。当反向磁场由零增大到Hc时,B的值为零。Hc 称为矫顽力,它反映了铁磁性物质保持剩磁的能力。继续增大反向磁场,B的值将从零变为负值,即B的方向发生改变,铁磁性物质被反向磁化。反向磁化使B达到饱和值后,减小反向磁场,磁化曲线将沿gk段变化,在k点处H为零。继续增大正向磁场,磁化曲线将沿khd变化。从磁化的整个过程可以看出,B的变化总是落后于H的变化,这种现象称为磁滞现象。磁化过程所形成的闭合的、对称于原点的曲线defgkhd,称为磁滞回线。

磁性材料的磁性能

磁性材料的磁性能 一、高导磁性 磁性材料的 μr >>1,可达数百、数千、乃至数万之值。能被强烈的磁化,具有很高的导磁性能。 磁性材料在外磁场作用下,磁畴转向与外磁场相同的方向,产生一个很强的与外磁场同方向的磁化磁场,磁性物质内的磁感应强度大大增加,即磁性物质被强烈的磁化。磁力线集中于磁性物质中通过。 磁性材料主要指铁、镍、钴及其合金等。在此主要介绍其磁性能。 磁性物质的高导磁性被广泛地应用于电工设备中,如电机、变压器及各种铁磁元件的线圈中都放有铁心。实现用小的励磁电流产生较大的磁通和磁感应强度。

磁性物质由于磁化所产生的磁化磁场不会随着外磁场的增强而无限的增强。当外磁场增大到一定程度时,磁性物质的全部磁畴的磁场方向都转向与外部磁场方向一致,磁化磁场的磁感应强度达到饱和值。如图。 二、磁饱和性 B J 磁场内磁性物质的磁化磁场 的磁感应强度曲线; B 0 磁场内不存在磁性物质时的 磁感应强度直线; B 为B J 曲线和B 0直线的纵坐标 相加即磁场的 B -H 磁化曲线。 O H B B 0 B J B ? a ? b

? B -H 磁化曲线的特征 Oa 段:B 与H 几乎成正比地增加; ab 段: B 的增加缓慢下来; b 点以后:B 增加很少,达到饱和。 O H B B 0 B J B ? a ? b ? 有磁性物质存在时,B 与 H 不成 正比,磁性物质的磁导率μ不是常数, 随H 而变,如图。 ? 有磁性物质存在时,Φ 与I 不成 正比。 ? 磁性物质的磁化曲线在磁路计算 上极为重要,其为非线性曲线,实际 中通过实验得出。 O H B,μ B μ

铁磁材料(一)

铁磁材料(一) 论文关键词:铁磁材料磁导率磁滞软磁材料硬磁材料矩磁材料 论文摘要:铁磁材料在现代科学技术中得到广泛的应用,随着材料科学的发展,它已成为一种重要的智能材料。本文主要介绍铁磁材料的原理,分类,及其应用;并对三类主要铁磁材料详细介绍,包括软磁材料,硬磁材料,矩磁材料。 引言 随着电力工及电讯技术的兴起,开始使用低碳钢制造电机和变压器,在电话线路中的电感线圈的磁芯中使用了细小的铁粉。氧化铁。细铁丝等。到20世纪初,研制出了硅钢片代替低碳钢,提高了变压器的效率,降低了损耗。直至现在硅钢片在电力工业用软磁材料中仍居首位。到20年代,无线电技术的兴起,促进了高导磁材料的发展,出现了坡莫合金及坡莫合金磁粉芯等。从40年代到60年代,是科学技术飞速发展的时期,雷达。电视广播。集成电路的发明等,对软磁材料的要求也更高,生产出了软磁合金薄带及软磁铁氧体材料。进入70年代,随着电讯。自动控制。计算机等行业的发展,研制出了磁头用软磁合金,除了传统的晶态软磁合金外,又兴起了另一类材料—非晶态软磁合金。 铁磁材料是受到外磁场作用时显示很强磁性的材料。例如铁,钴,镍和它们的一些合金,稀土族金属以及一些氧化物都属于铁磁材料,具有明显而特殊的磁性。首先,它们都有很大的磁导率μ;其次,它们都有明显的磁滞效应。 磁导率(magneticpermeability):表征磁介质磁性的物理量。常用符号μ表示,μ为介质的磁导率,或称绝对磁导率。磁滞----铁磁体在反复磁化的过程中,它的磁感应强度的变化总是滞后于它的磁场强度,这种现象叫磁滞。高磁导率是铁磁材料应用特别广泛的主要原因。磁滞特性使永磁体的制造成为可能,但在许多其他应用中却带来不利影响。当铁磁材料处于交变磁场中时将沿磁滞回线反复被磁化。在反复磁化的过程中要消耗额外的能量,以热的形式从铁磁材料中释放,这种能量损耗称为磁滞损耗,磁滞损耗不仅造成能量的浪费,而且使铁芯的温度升高,导致绝缘材料的老化,所以应尽量减少。 软磁材料(softmagneticmaterial):具有低矫顽力和高磁导率的磁性材料。软磁材料易于磁化,也易于退磁,广泛用于电工设备和电子设备中。软磁材料在工业中的应用始于19世纪末。软磁材料主要有,以金属软磁材料(以硅钢片,坡莫合金等为代表,包括Fe系,FeSiAl 系和FeGo系等)和铁氧体软磁材料(如MnZn系,NiZn系和MgZn系等)为代表的晶体材料,非晶态软磁合金(主要分为Fe基和Go基两种)以及近年来发展起来的纳米晶软磁合金,如纳米粒状组织软磁合金,纳米结构软磁薄膜和纳米线等等。应用最多的软磁材料是铁硅合金(硅钢片)以及各种软磁铁氧体等。 硬磁材料是指磁化后不易退磁而能长期保留磁性的一种铁氧体材料,也称为永磁材料或恒磁材料。硬磁铁氧体的晶体结构大致是六角晶系磁铅石型,其典型代表是钡铁氧体BaFe12O19。这种材料性能较好,成本较低,不仅可用作电讯器件如录音器、电话机及各种仪表的磁铁,而且在医学、生物和印刷显示等方面也得到了应用。硬磁材料常用来制作各种永久磁铁、扬声器的磁钢和电子电路中的记忆元件等。在电学中硬磁材料的主要作应是产生磁力线,然后让运动的导线切割磁力线,从而产生电流。 磁带录音原理:硬磁性材料被磁化以后,还留有剩磁,剩磁的强弱和方向随磁化时磁性的强弱和方向而定。录音磁带是由带基、粘合剂和磁粉层组成。带基一般采用聚碳酸脂或氯乙烯等制成。磁粉是用剩磁强的r-Fe2O3或CrO2细粉。录音时,是把与声音变化相对应的电流,经过放大后,送到录音磁头的线圈内,使磁头铁芯的缝隙中产生集中的磁场。随着线圈电流的变化,磁场的方向和强度也作相应的变化。当磁带匀速地通过磁头缝隙时,磁场就穿过磁带并使它磁化。由于磁带离开磁头后留有相应的剩磁,其极性和强度与原来的声音相对应。磁带不断移动,声音也就不断地被记录在磁带上。

铁磁材料的磁滞回线和基本磁化曲线

铁磁材料的磁滞回线和基本磁化曲线 【实验目的】 1.认识铁磁物质的磁化规律,比较两种典型的铁磁物质的动态磁化特性。 2. 测定样品的基本磁化曲线,作μ -H曲线。 3.测定样品的H D、B r、B S和(H m·B m)等参数。 4.测绘样品的磁滞回线,估算其磁滞损耗。 【实验仪器】 DH4516型磁滞回线实验仪,数字万用表,示波器。 【实验原理】 铁磁物质是一种性能特异,用途广泛的材料。铁、钴、镍及其众多合金以及含铁的氧化物(铁氧体)均 属铁磁物质。其特征是在外磁场作用下能被强烈磁化,故磁导率μ很高。另一特征是磁滞,即磁化场作用停止后,铁磁质仍保留磁化状态,图1为铁磁物质的磁感应强度B与磁化场强度H之间的关系曲线。 图中的原点O表示磁化之前铁磁物质处于磁中性状态,即B=H=O,当磁场H从零开始增加时,磁感应强度B随之缓慢上升,如线段oa所示,继之B随H迅速增长,如ab所示,其后B的增长又趋缓慢,并当H 增至H S时,B到达饱和值B S,oabs称为起始磁化曲线。图1表明,当磁场从H S逐渐减小至零,磁感应强度B 并不沿起始磁化曲线恢复到“O”点,而是沿另一条新的曲线SR下降,比较线段OS和SR可知,H减小B 相应也减小,但B的变化滞后于H的变化,这现象称为磁滞,磁滞的明显特征是当H=O时,B不为零,而保 留剩磁Br。 当磁场反向从O逐渐变至-H D时,磁感应强度B消失,说明要消除剩磁,必须施加反向磁场,H D称 为矫顽力,它的大小反映铁磁材料保持剩磁状态的能力,线段RD称为退磁曲线。 图1还表明,当磁场按H S→O→H D→-H S→O→H D′→H S次序变化,相应的磁感应强度B则沿闭合曲线SRDS' R'D'S 变化,这闭合曲线称为磁滞回线。所以,当铁磁材料处于交变磁场中时(如变压器中的铁心),将沿磁滞回线反复被磁化→去磁→反向磁化→反向去磁。在此过程中要消耗额外的能量,并以热的形式从铁磁 材料中释放,这种损耗称为磁滞损耗,可以证明,磁滞损耗与磁滞回线所围面积成正比。

12铁磁材料的磁滞回线和基本磁化曲线

实验报告:铁磁材料的磁滞回线和基本磁化曲线 一、实验题目: 铁磁材料的磁滞回线和基本磁化曲线 二、实验目的: 1认识铁磁物质的磁化规律,比较两种典型的铁磁物质动态磁化特性。 2测定样品的基本磁化曲线,作卩-H曲线。 3计算样品的H=、B r、出和(Hn- B m )等参数。 4测绘样品的磁滞回线,估算其磁滞损耗。 三、实验原理: 1铁磁材料的磁滞现象 铁磁物质是一种性能特异,用途广泛的材料。铁、钴、镍及其众多合金以及含铁的氧 化物(铁氧体)均属铁磁物质。其特征是在外磁场作用下能被强烈磁化,故磁导率卩很高。 另一特征是磁滞,即磁化场作用停止后,铁磁质仍保留磁化状态,图1为铁磁物质磁感应强 度B与磁化场强度H之间的关系曲线。 图中的原点0表示磁化之前铁磁物质处于磁中性状态,即B=H=0当磁场H从零开始增 加时,磁感应强度B随之缓慢上升,如线段0a所示,继之B随H迅速增长,如ab所示,其后B的增长又趋缓慢,并当H增至H m时,B到达饱和值,0abs称为起始磁化曲线,图1表 明,当磁场从H m逐渐减小至零,磁感应强度B并不沿起始磁化曲线恢复到“ 0 ”点,而是沿 另一条新曲线SR下降,比较线段0S和SR可知,H减小B相应也减小,但B的变化滞后于H

的变化,这现象称为磁滞,磁滞的明显特征是当 4 Bkm 1 TFi ^Hc /~0/ Ho H n B线和磁滞回线当磁场反向从0逐渐变至-H e时,磁感应强度H=0时,B不为零,而保留剩磁Br。 一簇磁滞回线图2同一铁 B消失,说明要消除剩磁,必须施加反向 i

i 磁场,f 称为矫顽力,它的大小反映铁磁材料保持剩磁状态能力,线段 图1还表明,当磁场按 H 宀H --H m ~ 0^ H e — f 次序变化,相应的磁感 应强度 B 则沿 闭合曲线SRDS R D S 变化,这条闭合曲线称为磁滞回线, 所以,当铁磁材料处于交变磁场 中时(如变压器中的铁心),将沿磁滞回线反复被磁化—去磁—反向磁化—反向去磁。在此 过程中要消耗额外的能量, 并以热的形式从铁磁材料中释放, 这种损耗称为磁滞损耗。 可以 证明,磁滞损耗与磁滞回线所围面积成正比。 应该说明,当初始态为 H=B=O 的铁磁材料,在交变磁场强度由弱到强依次进行磁化, 依次进行磁化,可以得到面积由小到大向外扩张的一簇磁滞回线, 如图2所示。这些磁滞回 线顶点的连线称为铁磁材料的基本磁化曲线,由此可近似确定其磁导率卩 =B/H ,因B 与H 的关系成非线性,故铁磁材料卩的不是常数,而是随 H 而变化(如图3所示)。铁磁材料相 对磁导率可高达数千乃至数万,这一特点是它用途广泛主要原因之一。 图3 铁磁材料与H 的关系 图4不同材料的磁滞回线 可以说磁化曲线和磁滞回线是铁磁材料分类和选用的主要依据,图 4为常见的两种典 型的磁滞回线。其中软磁材料磁滞回线狭长、 矫顽力、剩磁和磁滞损耗均较小,是制造变压 器、电机、和交流磁铁的主要材料。而硬磁材料磁滞回线较宽,矫顽力大,剩磁强,可用来 制造永磁体。 2用示波器观察和测量磁滞回线的实验原理和线路 观察和测量磁滞回线和基本磁化曲线的线路如图五所示。 RD 称为退磁曲线。 待测样品EI 型矽钢片,N 为励磁绕组, N 2为用来测量磁感应强度 B 而设置的绕组。R 为励磁电流取样电阻,设通过 Ni 的交流励磁电流为 i ,根据安培环路定律, L 为样品的平均磁路长度,其中 N i i L U H R ,所以有H NJ LR , 样品的磁化场强 U H

实验十二 铁磁材料的磁滞回线和基本磁化曲线

实验十二 铁磁材料的磁滞回线和基本磁化曲线 一、实验目的 1.认识铁磁质的磁化规律,比较两种典型的铁磁质的动态磁特性。 2.测定样品的基本磁化曲线,作μr -H 曲线。 3.测定样品的H D 、B r 、B m 和[H ·B]max 等参数。 4.测绘样品的磁滞回线,估算其磁滞损耗。 二、实验原理 1.铁磁物质及其磁滞曲线 根据介质在磁场中的表现,一般将磁介质分为顺磁质、抗磁质和铁磁质。 设想在真空中(没有磁介质时)有一磁场的磁感应强度是B 0,其大小是B 0,将磁介质放入这个磁场中,若磁介质中的磁感应强度比B 0小一点,那末这个介质是抗磁质;若磁介质中的磁感应强度比B 0大一点,那末这个介质是抗磁质;若磁介质中的磁感应强度比B 0大得多,甚至数百数万倍的增长,那末这个介质是铁磁质。实验表现是铁磁质移近磁极时被吸住,顺磁质稍微有被磁极吸引,而抗磁质反而被磁极稍微推开。 下表是一些材料的相对磁导率,根据相对磁导率很容易区分顺磁质、抗磁质和铁磁质。

铁磁质材料包含铁、钴、镍、某些稀有金属及其众多合金以及它们的许多氧化物的混合物(铁氧体)等。铁磁质是一种性能特异、用途广泛的材料,我们一般情况提到磁介质均指铁磁质。其特征是在外磁场作用下能被强烈磁化,磁导率μ很高;另一特征是磁滞,即磁化场消失后,介质仍保留磁性,即有剩磁。图1为铁磁质的磁感应强度B 与磁化场强度H 之间的关系曲线。 图1 铁磁质的B -H 关系曲线 图2 铁磁质的μ-H 关系曲 S S

线 图1中的原点O表示磁化之前铁磁质处于磁中性状态,即B=H=0,当磁场H从零开始增加时,磁感应强度B随之缓慢上升,如线段Oa所示,继之B 随H迅速增长,如ab所示,其后B的增长又趋缓慢,并当H增至H S时,B到达饱和值B S,OabS称为起始磁化曲线。(注意:这里说的饱和值B S,并不是说B的最大值。其实在达到B S后磁感应强度B仍然在随磁化场强度H变化,这时的B-H关系几乎是线性的。定义M=B/μ0-H为磁化强度,则在B到达饱和值B S后,磁化强度M是几乎不变的,达到饱和磁化强度M S。饱和磁化强度M S以及如图2所示的起始磁导率μI、最大磁导率μM是研究软磁材料的三个重要参量。)当磁场从H S逐渐减小至零,磁感应强度B并不沿起始磁化曲线恢复到O点,而是沿另一条新的曲线SQ下降,比较线段OS和SQ可知,H减小B相应也减小,但B的变化滞后于H的变化,这现象称为磁滞,磁滞的明显特征是当H=0时,B不为零,而保留剩磁Br。 当磁场反向从O逐渐变至-H C时,磁感应强度B消失,说明要消除剩磁,必须施加反向磁场,H C称为矫顽力,它的大小反映铁磁材料保持剩磁状态的能力,线段QC称为退磁曲线。当磁场按H S→O→H C→-H S→O→H C→H S次序变化,相应的磁感应强度B则沿闭合曲线SQCS'Q'C'S变化,这闭合曲线称为磁滞回线。 当铁磁材料处于交变磁场中时(如变压器中的铁心),将沿磁滞回线反复被磁化—去磁—反向磁化—反向去磁。在此过程中要消耗额外的能量,并以热的形式从铁磁材料中释放,这种损耗称为磁滞损耗,理论和实践证明,磁滞损耗与磁滞回线所围面积成正比。

第二章第三节磁性材料的磁性能

第二章第三节: 1、铁磁材料被磁化时,当磁化电流越大,铁磁材料所呈现的磁性______。 A.越弱 B.强度不变 C.越强 D.增强但趋于饱和 2、交流电机、电气设备中所用的硅钢片铁芯,属于______磁材料;其剩磁及矫 顽力都______。 A.硬/小 B.硬/大 C.软/小 D.软/大 3、在铁芯线圈通电后,线圈内产生的磁感应强度与线圈电流(或磁势)的关系 ______。 A.成正比 B.成反比 C.无关 D.呈磁滞性、磁饱和性 4、铁磁材料在磁化时,其磁通密度随励磁电流的增加的量越来越少时称之为磁 化过程的______。 A.线性段 B.半饱和段 C.饱和段 D.反比段 5、对于各种电机、电气设备要求其线圈电流小而产生的磁通大,通常在线圈中 要放有铁芯,这是基于铁磁材料的______特性。 A.磁饱和性 B.良导电性 C.高导磁性 D.磁滞性 6、磁滞损耗与铁芯材料的磁滞回线所包围的面积______。 A.成正比

B.成反比 C.无关 D.不成比例 7、对硬磁材料的下列说法,错误的是______。 A.碳钢、钴钢是硬磁材料 B.磁滞回线较宽 C.矫顽力较大 D.是制造电机铁芯的材料 8、软磁材料的特点是______。 A.磁滞回线面积较大,剩磁较小 B.磁滞回线面积较大,剩磁较大 C.磁滞回线面积较小,剩磁较大 D.磁滞回线面积较小,剩磁较小 9、关于铁磁材料的下列说法错误的是______。 A.具有磁滞特征 B.具有磁饱和特征 C.磁导率非常数 D.具有高磁阻特征 10、铁芯线圈通以交变电流后,与线圈绝缘的铁芯会发热,这是由于______。A.电流的磁效应 B.电流的力效应 C.线圈中的电流产生热效应 D.线圈中的电流产生热效应及铁损引起的热效应 11、一般船用电机铁芯材料用______。 A.软磁材料 B.永磁材料 C.矩磁材料 D.有色金属 12、铁磁性材料不具有的特性是______。 A.剩磁性和磁滞性 B.磁饱和性 C.高导电性

5.4 铁磁性物质的磁化

5.4 铁磁性物质的磁化 一、选择题: 1、由铁磁性物质的磁化曲线可知,铁磁性物质的磁导率最大出现在磁化曲线的( ) A.起始段 B.直线段 C.饱和段 D.接近饱和段 2、如图1所示( ) A.(1)材料导磁性能强 B.(2)材料导磁性能强 C.两种材料的导磁性能一样 D.不能确定 3、如图2所示,退磁曲线为图中的() A.ab B.bc C.cd D: de 图1 图2 4、半导体收音机的铁氧体磁棒是 ( ) A.硬磁性材料 B.软磁性材料 C.矩磁性材料 D.非铁磁性材料 5、下列说法正确的是() A.电磁铁的铁芯是由软磁材料制成的 B.铁磁材料磁化曲线饱和点的磁导率最大; C.铁磁材料的磁滞回线越宽,说明它在反复磁化过程中的磁滞损耗和涡流损耗大; D.通入线圈中的电流越大,产生的磁场越强 6、电磁铁的铁心在交变电流作用下反复磁化,其内部的磁畴反复翻转,这种由翻转所产生的损耗叫( ) A.铜损 B.涡流损耗 C.磁滞损耗 D.漏磁损耗 7、录音磁头所用铁心材料和录音磁带所用磁性材料分别是( ) A.硬磁材料,软磁材料 B.硬磁材料,矩磁材料 C.软磁材料,矩磁材料 D.软磁材料,硬磁材料 8、适用制造永久磁铁的材料是( ) A.软磁性材料 B.硬磁性材料 C.矩磁性材料 D.顺磁性材料 9、正常工作时,电动机、变压器的铁芯一般工作在磁化曲线的 ( ) A.起始段 B.直线段 C.过渡段 D.饱和段 10、为减小剩磁,电磁线圈的铁心应采用( )。 A.硬磁性材料 B.非磁性材料 C.软磁性材料 D.矩磁性材料 11、铁磁性物质的磁滞损耗与磁滞回线面积的关系是( ) A.磁滞回线包围的面积越大,磁滞损耗也越大 B.磁滞回线包围的面积越小,磁滞损耗越大 C.磁滞回线包围的面积大小与磁滞损耗无关 D.以上答案均不正确 12、如果线圈的匝数和流过它的电流不变,只改变线圈中的媒介质,则线圈内 ( ) A.H不变,B变化 B.H变化,B不变

铁磁材料磁滞回线和基本磁化曲线的测量

实验26 铁磁材料磁滞回线和基本磁化曲线的测量 铁磁性材料分为硬磁材料和软磁材料。软磁材料的矫顽力小于100A/m ,常用于电机、电力变压器的铁芯和电子仪器中各种频率小型变压器的铁芯。铁磁材料的磁化过程和退磁过程中磁感应强度和磁场强度是非线性变化的,磁滞回线和基本磁化曲线是反映软磁材料磁性的重要特性曲线。矫顽力、饱和磁感应强度、剩余磁感应强度、初始磁导率、最大磁导率、磁滞损耗等参数均可以从磁滞回线和基本磁化曲线上获得,这些参数是磁性材料研制、生产和应用的总要依据。采用直流励磁电流产生磁化场对材料样品反复磁化测出的磁滞回线称为静态磁滞回线;采用交变励磁电流产生磁化场对材料样品反复磁化测出的磁滞回线称为动态磁滞回线。本实验利用交变励磁电流产生磁场对不同性能的铁磁材料进行磁化,测绘基本磁化曲线和动态磁滞回线。 【实验目的】 ①了解用示波器显示和观察动态磁滞回线的原理和方法。 ②掌握测绘铁磁材料动态磁滞回线和基本磁化曲线的原理和方法,加深对铁磁材料磁化规律的理解。 ③学会根据磁滞回线确定矫顽力 、剩余磁感应强度 、饱和磁感应强度 、磁滞损耗等磁化参数。 【实验仪器与用具】 FB310型动态磁滞回线实验仪,双踪示波器,导线。 【实验原理】 1.磁性材料的磁化特性及磁滞回线 研究磁性材料的磁化规律时,一般是通过测量磁化场的磁场强度H 与磁感应强度B 之间的关系来进行的。铁磁性材料磁化时,它的磁感应强度B 要随磁场强度H 变化而变化。但是B 与H 之间的函数关系是非常复杂的。主要特点如下: (1)当磁性材料从未磁化状态(H =0且B =0)开始磁化时,B 随H 的增加而非线性增加由此画出的H B 曲线称为起始磁化曲线,如图3.26.1(O-a )段曲线。起始磁化曲线大致分为三个阶段,第一阶段曲线平缓,第二阶段曲线较陡,第三阶段曲线又趋于平缓。最后当H 增大到一定值m H 后,B 增加十分缓慢或基本不再增加,这时磁化达到饱和状态,称为磁饱和。达到磁饱和时的m H 和s B 分别称为饱和磁场强度和饱和磁感应强度,对应图3.26.1中的a 点。

铁磁材料的磁化曲线和磁滞回线

铁磁材料的磁化曲线和磁滞回线 铁磁材料分为硬磁和软磁两类。硬磁材料(如铸钢)的磁滞回线宽,剩磁和矫顽磁力较大(120-20000安/米,甚至更高),因而磁化后,它的磁感应强度能保持,适宜制作永久磁铁。软磁材料(如硅钢片)的磁滞回线窄,矫顽磁力小(一般小于120安/米),但它的磁导率和饱和磁感应强度大,容易磁化和去磁,故常用于制造电机、变压器和电磁铁。可见,铁磁材料的磁化曲线和磁滞回线是该材料的重要特性,也是设计电磁机构或仪表的依据之 一。通过实验研究这些性质不仅能掌握用示波器观察磁滞回线以及基本磁化曲线的测绘方法,而且能从理论和实际应用上加深对材料磁特性的认识。 一 实验目的 1、 掌握用示波器观察磁滞回线以及基本磁化曲线的测绘方法 2、 观察磁滞现象,加深对铁磁材料主要物理量(如矫顽力、剩磁和磁导率等)的理解。 二 实验原理 (一)起始磁化曲线、基本磁化曲线和磁滞回线 铁磁材料(如铁、镍、钴和其他铁磁合金)具有独特的磁化性质。取一块未磁化的铁磁材料,譬如以外面密绕线圈的钢圆环样品为例。如果流过线圈的磁化电流从零逐渐增大,则钢圆环中的磁感应强度B 随激励磁场强度H 的变化如图1中oa 段所示。这条曲线称为起始磁化曲线。继续增大磁化电流,即增加磁场强度H 时,B 上升很缓慢。如果H 逐渐减小,则B 也相应减小,但并不沿ao 段下降,而是沿另一条曲线ab 下降。 B 随H 变化的全过程如下: 当H 按 O →H m →O →-c H →-H m →O →c H →H m 的顺序变化时, B 相应沿 O →m B →r B →O →-m B →-r B →O →m B 的顺序变化。 将上述变化过程的各点连接起来,就得到一条封闭曲线abcdefa,这条曲线称为磁滞回线。 从图1可以看出: B H B m B r a b -H m f o H C c d H m -H C -B r -B m e 图 1

物理实验报告铁磁材料的磁滞回线和基本磁化曲线

物理实验报告铁磁材料的磁滞回线和基本磁化 曲线 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

实验20铁磁材料的磁滞回线及基本 磁化曲线 铁磁物质是一种性能特异、用途广泛的材料。如航天、通信、自动化仪表及控制等都无不用到铁磁材料(铁、钴、镍、钢以及含铁氧化物均属铁磁物质)。因此,研究铁磁材料的磁化性质,不论在理论上,还是在实际应用上都有重大的意义。本实验使用单片机采集数据,测量在交变磁场的作用下,两个不同磁性能的铁磁材料的磁化曲线和磁滞回线。

【预习重点】 (1)看懂实验原理图及接线图。 (2)复习示波器的使用方法。 参考书:《电磁学》下册,赵凯华、陈熙谋着,第五、六章;《大学物理学》电磁学部分,杨仲耆等编,第六章。 【仪器】 磁滞回线实验组合仪、双踪示波器。 【原理】 1)铁磁材料的磁化及磁导率 铁磁物质的磁化过程很复杂,这主要是由于它具有磁滞的特性。一般都是通过测量磁化场的磁场强度H和磁感应强度B之间的关系来研究其磁性规律的。

图20—1起始磁化曲线和磁滞回线 图20—2基本磁化曲线

当铁磁物质中不存在磁化场时,H和B均为零,即图20—1中B~H曲线的坐标原点0。随着磁化场H的增加,B也随之增加,但两者之间不是线性关系。当H增加到一定值时,B不再增加(或增加十分缓慢),这说明该物质的磁化已达到饱和状态。Hm 和Bm 分别为饱和时的磁场强度和磁感应强度(对应于图中a点)。如果再使H逐渐退到零,则与此同时B也逐渐减少。然而H和B对应的曲线轨迹并不沿原曲线轨迹a0返回,而是沿另一曲线ab下降到Br ,这说明当H下降为零时,铁磁物质中仍保留一定的磁性,这种现象称为磁滞,Br 称为剩磁。将磁化场反向,再逐渐增加其强度,直到H=-Hc ,磁感应强度消失,这说明要消除剩磁,必须施加反向磁场Hc 。Hc 称为矫顽力。它的大小反映铁磁材料保持剩磁状态的能力。图20—1表明,当磁场按Hm →0→-H c →-Hm →0→Hc →Hm 次序变化时,B所经历的相应变化为Bm →Br →0 →-Bm →-Br →0→Bm 。于是得到一条闭合的B~H曲线,称为磁滞回线。所以,当铁磁材料处于交变磁场中时(如变压器中的铁心),它将沿磁滞回线反复被磁化→去磁→反向磁化→反向去磁。在此过程中要消耗额外的能量,并以热的形式从铁磁材料中释放,这种损耗称为磁滞损耗。可以证明,磁滞损耗与磁滞回线所围面积成正比。 应该说明,对于初始态为H=0,B=0的铁磁材料,在交变磁场强度由弱到强依次进行磁化的过程中,可以得到面积由小到大向外扩张的一簇磁滞回线,如图20—2所示。这些磁滞回线顶点的连线称

铁磁材料的磁滞回线和基本磁化曲线

铁磁材料的磁滞回线和基本磁化曲线 在各类磁介质中,应用最广泛的是铁磁物质。在20世纪初期,铁磁材料主要用在电机制造业和通讯器件中,如发电机、变压器和电表磁头,而自20世纪50年代以来,随着电子计算机和信息科学的发展,应用铁磁材料进行信息的存储和纪录,例如现以成为家喻户晓的磁带、磁盘,不仅可存储数字信息,也可以存储随时间变化的信息;不仅可用作计算机的存储器,而且可用于录音和录像,已发展成为引人注目的系列新技术,预计新的应用还将不断得到发展。因此,对铁磁材料性能的研究,无论在理论上或实用上都有很重要的意义。 磁滞回线和基本磁化曲线反映了铁磁材料磁特性的主要特征。本实验仪用交流电对铁磁材料样品进行磁化,测绘的B-H曲线称为动态磁滞回线。测量铁磁材料动态磁滞回线的方法很多,用示波器测绘动态磁滞回线具有直观、方便、迅速及能在不同磁化状态下(交变磁化及脉冲磁化等)进行观察和测绘的独特优点。 一、实验目的 1.认识铁磁物质的磁化规律,比较两种典型的铁磁物质的动态磁化特性。 2.掌握铁磁材料磁滞回线的概念。 3.掌握测绘动态磁滞回线的原理和方法。 4.测定样品的基本磁化曲线,作μ-H曲线。 5.测定样品的H C、B r、H m和B m等参数。 6.测绘样品的磁滞回线,估算其磁滞损耗。 二、实验原理 1.铁磁材料的磁滞特性 铁磁物质是一种性能特异,用途广泛的材料。铁、钴、镍及其众多合金以及含铁的氧化物(铁氧体)均属铁磁物质。其特性之一是在外磁场作用下能被强烈磁化,故磁导率μ=B/H很高。另一特征是磁滞,铁磁材料的磁滞现象是反复磁化过程中磁场强度H与磁感应强度B之间关系的特性。即磁场作用停止后,铁磁物质仍保留磁化状态,图1为铁磁物质的磁感应强度B与磁场强度H之间的关系曲线。 将一块未被磁化的铁磁材料放在磁场中进行磁化,图中的原点O表示磁化之前铁磁物质处于磁中性状态,即B=H=O,当磁场强度H从零开始增加时,磁感应强度B随之从零缓慢上升,如曲线oa所示,继之B随H迅速增长,如曲线ab所示,其后B的增长又趋缓慢,并当H 增至H S时,B达到饱和值B S,这个过程的oabS曲线称为起始磁化曲线。如果在达到饱和状态之后使磁场强度H减小,这时磁感应强度B的值也要减小。图1表明,当磁场从H S逐渐减小至零,磁感应强度B并不沿起始磁化曲线恢复到“O”点,而是沿另一条新的曲线SR下降,对应的B值比原先的值大,说明铁磁材料的磁化过程是不可逆的过程。比较线段OS和SR可知,H减小B相应也减小,但B的变化滞后于H的变化,这种现象称为磁滞。磁滞的明显特征是当H=O时,磁感应强度B值并不等于0,而是保留一定大小的剩磁Br。

实验 铁磁材料的磁滞回线和基本磁化曲线

实验铁磁材料的磁滞回线和基本磁化曲线 电源网讯铁磁物质是一种性能特异,用途广泛的材料。铁、钴、镍及其众多合金以及含铁的氧化物(铁氧体)均属铁磁物质。铁磁材料的性能需通过相关曲线及有关参数进行了解,以便根据不同的需要合理地选取铁磁材料。本实验主要学习铁磁材料有关曲线的描绘方法及材料参数的测量方法。 一、实验目的 1、认识铁磁物质的磁化规律,比较两种典型的铁磁物质的动态磁化特性。 2、测定样品的基本磁化曲线,作μ—H曲线。 3、测定样品的Hc、Br、Hm、Bm和(H?B)等参数。 4、测绘样品的磁滞回线,估算磁损耗。 二、实验原理

铁磁材料在外磁化场作用下可被强烈磁化,故磁导率μ很高。另一特征是磁滞,就是磁化场作用停止后,铁磁物质仍保留磁化状态。用图形表示铁磁物质磁滞现象的曲线称为磁滞回线,它可以通过实验测得,如图3.3-1所示。 图3.3-1 铁磁材料磁滞回线图 当磁化场H逐渐增加时,磁感应强度B将沿OM增加,M点对应坐标为(Hm、Bm),即当H增大到Hm时、B达到饱和值Bm。OM称为起始磁化曲线,如果将磁化场H减小,B并不沿原来的曲线原路返回,而是沿MR曲线下降,即使磁化场H减小到零时,B仍保留一定的数值Br,OR表示磁化场为零时的磁感应强度,称为剩余磁感应强度(Br)。 当反向磁化场达到某一数值时,磁感应强度才降到零。强制磁感应强度B降为零的外加磁化场的大小Hc,称为矫顽力。当反向继续增加磁化场,反向磁感应强度很快达到饱和 (-Hm、-Bm)点,再逐渐减小反向磁化场时,磁感应强度又逐渐

增大。图3.3-1还表明,当磁化场按Hm→O→Hc→-Hm→O→ →Hm次序变化时,相应的磁感应强度B则沿闭合曲线MRC M 变化,这闭合曲线称为磁滞回线。由于铁磁物质处在周期性交变磁场中,铁磁物质周期性地被磁化,相应的磁滞回线称为交流磁滞回线,它最能反映在交变磁场作用下样品内部的磁状态变化过程,磁滞回线所包围的面积表示在铁磁物质通过一磁化循环中所消耗的能量,叫做磁滞损耗,在交流电器中应尽量减小磁滞损耗。 从铁磁物质的性质和使用方面来说,它主要按矫顽力的大小分为软磁材料和硬磁材料两大类。软磁材料矫顽力小,磁滞回线狭长,它所包围的“面积”小,在交变磁场中磁滞损耗小,因此适用于电子设备中的各种电感元件、变压器、镇流器中的铁芯等。硬磁材料的特点是矫顽力大,剩磁Br也大,这种材料的磁滞回线“肥胖”,磁滞特性非常显著,制成永久磁铁用于各种电表、扬声器中等,软磁与硬磁材料的磁滞回线如图3.3-2所示。 应该说明,当初始状态为H=B=0的铁磁材料,在交变磁场强度由弱到强依

测定铁磁材料的磁化曲线概要

测定铁磁材料的磁化曲线 实验目的: 1、了解铁磁材料的基本性质和用示波器获得动态磁滞回线的原理和方法; 2、学习示波器和交流毫伏表的使用方法; 3、学会测量基本磁化曲线的一种方法。 背景知识: 一、磁介质的分类 磁介质中的磁感应强度可以表示为B B B '+=0,其中0B 为真空中的磁感应强 度,B '为磁化而产生的附加磁场。定义0 B B r =μ为相对磁导率,则根据r μ的不同, 磁介质可以分为三类: 1、顺磁质:B '与0B 同向,即0B B >,故1>r μ,如锰、铝、氧等; 2、抗磁质:B '与0B 反向,即0B B <,故1>,1>>r μ,如钴、铁、镍等。 顺磁质和抗磁质均属于弱磁性物质,而铁磁质属于强磁性物质。铁磁质有一临界温度——居里点T c ,工作温度高于T c 时,铁磁质将丧失其铁磁性而转变为顺磁质。 二、铁磁材料的特点 铁磁材料的磁性有两个显著特点: 1、磁导率非常高,比顺磁质和抗磁质高109倍以上,而且随磁场而变化; 2、磁化过程有磁滞现象,因而磁化规律很复杂。 铁磁材料的磁化曲线和磁滞回线是设计电磁机构和电磁仪表的重要依据之一。测定铁磁材料的磁化曲线可以采用冲击电流计法和示波器法,前者准确度高但操作复杂,所测得的是铁磁材料在直流磁场下所表现的特性,称为静态磁特性;后者准确度稍低,但形象直观,简单方便,并且能够在脉冲磁化下进行测量,所测得的是铁磁材料在交变磁场下所表现的特性,称为动态磁特性。 三、铁磁材料的磁化规律 研究铁磁材料的磁化规律时,通常把样品做成截面均匀的圆环(Torus ),环上绕有磁化线圈和测量磁感应强度用的探测线圈,这种有铁芯的圆环线圈称为罗

铁磁材料的磁滞回线和基本磁化曲线

铁磁材料的磁滞回线和基本磁化曲线 实验讲义 铁磁材料按特性分硬磁和软磁两大类,铁磁材料的磁化曲线和磁滞回线,反映该材料的重要特性,也是设计选用材料的重要依据。 一:实验目的: 1...认识铁磁材料的磁化规律,比较两种典型铁磁物质的动态磁特性。 2...测定样品的基本磁化特性曲线(B m-H m曲线),并作μ—H曲线。 3...测绘样品在给定条件下的磁滞回线,以及相关的H c,B r,B m,和[H B ]等参数。 二:实验原理: 铁磁物质是一种性能特异,在现代科技和国防上用途广泛的材料。铁,钴,镍及其众多合金以及含铁的氧化物(铁氧体)均属铁磁物质。其特征是在外磁场作用下能被强烈磁化,磁导率μ 很高。另一特性是磁滞,Β与磁场强 度H H 图一铁磁物质的起始磁化曲线和磁滞回线 图中的原点。表示磁化之前铁磁物质处于磁中性状态,即B=H=O 。当外磁场H从零开始增加时,磁感应强度B随之缓慢上升,如线段落0a所示;继之B随H迅速增长,如ab段所示;其后,B的增长又趋缓慢;当H值增至Hs 时,B 的值达到Bs ,在S点的B s和H s,通常又称本次磁滞回线的B m和H m。曲线oabs段称为起始磁化曲线。 当磁场从H s逐渐减少至零时,磁感应强度B并不沿起始磁化曲线恢复到o点,而是沿一条新的曲线sr下降,比较线段os和sr,我们看到:H减小,B也相应减小,但B的变化滞后于H的变化,这个现象称为磁滞,磁滞的明显特征就是当H=0时,B不为0,而保留剩磁B r。 当磁场反向从o逐渐变为-H c时,磁感应强度B=O,这就说明要想消除剩磁,必须施加反向磁场,H c称为矫顽力。它的大小反映铁磁材料保持剩磁状态的能力,线段rc称为退磁曲线。 图一还表明,当外磁场按H s →0→-H c→-H s→0 → H c→ H s次序变化时,相应的磁感应强度则按闭合曲线srcs’r’c’s变化时,这闭合曲线称为磁滞回线。所以,当铁磁材料处于交变磁场中时(如变压器铁心),将沿磁滞回线反复被磁化→去磁→反向磁化→反向去磁,由于磁畴的存在,此过程要消耗能量,以热的形式从铁磁材料中释出。这种损耗称为磁滞损耗,可以证明,磁滞损耗与磁滞回线所围面积成正比。 当初始态为H=B=O的铁磁材料,在峰值磁场强度H由弱到强的交变磁场作用下磁化,可以得到面积由小到大向外扩张的一组磁滞回线,如图二所示。

实验-铁磁材料的磁滞回线和基本磁化曲线

实验-铁磁材料的磁滞回线和基本磁化曲线

实验铁磁材料的磁滞回线和基本磁化曲线 电源网讯铁磁物质是一种性能特异,用途广泛的材料。铁、钴、镍及其众多合金以及含铁的氧化物(铁氧体)均属铁磁物质。铁磁材料的性能需通过相关曲线及有关参数进行了解,以便根据不同的需要合理地选取铁磁材料。本实验主要学习铁磁材料有关曲线的描绘方法及材料参数的测量方法。 一、实验目的 1、认识铁磁物质的磁化规律,比较两种典型的铁磁物质的动态磁化特性。 2、测定样品的基本磁化曲线,作μ—H曲线。 3、测定样品的Hc、Br、Hm、Bm和(H?B)等参数。 4、测绘样品的磁滞回线,估算磁损耗。

二、实验原理 铁磁材料在外磁化场作用下可被强烈磁化,故磁导率μ很高。另一特征是磁滞,就是磁化场作用停止后,铁磁物质仍保留磁化状态。用图形表示铁磁物质磁滞现象的曲线称为磁滞回线,它可以通过实验测得,如图3.3-1所示。 图3.3-1 铁磁材料磁滞回线图 当磁化场H逐渐增加时,磁感应强度B将沿OM增加,M点对应坐标为(Hm、Bm),即当H增大到Hm时、B达到饱和值Bm。OM称为起始磁化曲线,如果将磁化场H减小,B并不沿原来的曲线原路返回,而是沿MR曲线下降,即使磁化场H减小到零时,B仍保留一定的数值Br,OR表示磁化场为零时的磁感应强度,称为剩余磁感应强度(Br)。 当反向磁化场达到某一数值时,磁感应强度才降到零。强制磁感应强度B降为零的外加磁化场的大小Hc,称为矫顽力。当反向继续增加磁化场,反向磁感应强度很快达到饱

和 (-Hm、-Bm)点,再逐渐减小反向磁化场时,磁感应强度又逐渐增大。图3.3-1还表明,当磁化场按 Hm→O→Hc→-Hm→O→ →Hm次序变化时,相应的磁感应强度B则沿闭合曲线MRC M变化,这闭合曲线称为磁滞回线。由于铁磁物质处在周期性交变磁场中,铁磁物质周期性地被磁化,相应的磁滞回线称为交流磁滞回线,它最能反映在交变磁场作用下样品内部的磁状态变化过程,磁滞回线所包围的面积表示在铁磁物质通过一磁化循环中所消耗的能量,叫做磁滞损耗,在交流电器中应尽量减小磁滞损耗。 从铁磁物质的性质和使用方面来说,它主要按矫顽力的大小分为软磁材料和硬磁材料两大类。软磁材料矫顽力小,磁滞回线狭长,它所包围的“面积”小,在交变磁场中磁滞损耗小,因此适用于电子设备中的各种电感元件、变压器、镇流器中的铁芯等。硬磁材料的特点是矫顽力大,剩磁Br也大,这种材料的磁滞回线“肥胖”,磁滞特性非常显著,制成永久磁铁用于各种电表、扬声器中等,软磁与硬磁材料的磁滞回线如图3.3-2所示。 应该说明,当初始状态为H=B=0的铁磁材料,在交变磁场强度由弱到强依

相关文档
最新文档