XTrans技术白皮书

XTrans技术白皮书
XTrans技术白皮书

XTrans 技术白皮书

2013年8月

摘要

Creatcomm公司专注于长距离无线通信产品的研发和销售,公司的TurboBridge系列产品包括无线网桥,WiFi基站,CPE等等。该产品最远的传输距离可达50公里,并且具有优异的远距离传输性能,传输速率>20Mbps@10公里。可以用于室外远距离的视频、宽带数据传输以及无线接入和覆盖,包括无线视频监控、运营商偏远覆盖、以及铁路、电力、石油等各种行业市场。

TurboBridge系列产品能够达到如上性能的关键是内置的XTrans操作系统,该系统集成了TDMA协议栈、5M/10M/20M/40MHz带宽灵活配置、速率自动控制、ACK超时自动调节等多项业界领先的技术,可以为客户提供运营商级别的无线传输距离和传输速率。本文介绍了CreatComm独有XTrans操作系统所包含的技术,并提供了这些技术在实际环境中的测试效果。

目录

XTrans简介 (1)

XTrans之TDMA (1)

隐藏节点问题1

其它方案2

XTrans TDMA介绍2

XTrans TDMA使用场景3

XTrans 5M/10M/20M/40MHz带宽配置 (4)

XTrans 速率控制算法 (5)

XTrans ACK超时自动调节 (6)

ACK超时的作用6

其它ACK超时方案6

XTrans AutoACK方案7

XTrans总结 (8)

XTrans 是什么

目前,大多数远距离无线宽带网桥以及远距离无线接入和覆盖产品都是在802.11无线局域网的技术上发展而来。CreatComm 公司研发的TurboBridge 系列产品,内置XTrans 操作系统,集成了TDMA ,5M/10M/20M/40MHz 带宽灵活配置,速率控制,ACK 超时自动调节等多项业界领先的技术,是理想的远距离无线宽带接入产品。

其中,TDMA 有效地解决了困扰大型点对多点无线局域网经常碰到的隐藏节点问题(Hidden-Node Problem ),使得点对多点接入的接入个数更多,各个节点的速率分配更加均匀,适合无线视频传输以及运营商无线覆盖的应用场合。 5M/10M/20M/40MHz 带宽灵活配置在紧缺的无线带宽资源和复杂工作场景之间达到平衡:较窄的无线带宽配置用在空闲无线信道少,单个用户无线接入速率要求不高的情况;较宽的无线带宽配置用在空闲无线信道多,单个用户无线接入速率要求高的情况。而且较窄的无线带宽配置在有遮挡的环境下更有效。 XTrans 操作系统采用先进的速率控制算法,在快速地适应信道质量变化的同时尽可能地保持速率的稳定,非常适合远距离地无线传输。

ACK 超时自动调节技术自动检测接入点和客户端的距离,调节无线参数,使设备性能达到最优。

隐藏节点问题

图一:隐藏节点

802.11的隐藏节点问题是大型点对多点无线局域网经常碰到的问题。在802.11无线局域网当中,客户端在发送数据之前必须先侦听其它节点是否在发送数据。如果有其它节点在发送数据,则此客户端退避一段时间后再尝试发送数据,从而避免冲突。这就是802.11中的CSMA/CA (Carrier Sense Multiple Access with Collision Avoidance ,带有冲突避免的载波侦听多路访问)协议。但是当

XTrans 简介

XTrans 之TDMA

802.11无线局域网有客户端相隔很远或中间有障碍物阻隔信号的传输,这些客户端将会各自侦听不到对方的信号,那这些客户端就互为“隐藏节点”。如下图一所示,客户端A和C都分别可以和接入点B通信。但A和C由于相距太远侦听不到对方的信号,所以A和C互为“隐藏节点”。如果互为“隐藏节点”的客户端同时发送数据,冲突将不可避免,这导致系统性能的下降。

其它方案

当前802.11使用请求发送(Request to Send,RTS)帧和允许发送(Clear to Send,CTS)帧来避免冲突。另外开源FreeBSD在其无线驱动上集成了TDMA 机制(https://www.360docs.net/doc/b212205564.html,/~sam/FreeBSD_TDMA-20090921.pdf)来解决隐藏节点问题。

为了避免隐藏节点导致冲突,802.11允许接入点和客户端使用很小的RTS帧和CTS帧来清空发送区域。由于RTS与CTS帧会延长数据交易过程并且隐藏节点发出的RTS帧也可能发生冲突,因而RTS/CTS机制有其局限性,并不能根本解决隐藏节点问题。

FreeBSD TDMA通过给每个客户端分配固定的时隙(Slot)来解决隐藏节点问题。客户端只能在指定的时隙上发送速率,因此不存在冲突的可能。但是FreeBSD TDMA有如下缺陷:

?目前还不能提供链路层的应答机制,这会影响到上层协议如TCP的传输性能。

?当前还只能最多支持8个客户端。

?发送速率还只能固定,因为没有应答帧,不能反馈发送状态来调节发送速率。

XTrans TDMA介绍

XTrans提供了一种新型802.11 MAC调度方法,使得基于802.11a/b/g/n技术的大型点对多点无线局域网能有效地解决隐藏节点问题。本发明在现有的802.11技术基础上,如认证,关联,Block ACK(块确认),聚合帧,速率控制等等,增加一种基于优先级的调度机制。在本调度机制中接入点依次分配给客户端不重叠的发送窗口。客户端只能在接入点指定的发送窗口内发送数据帧。所以各个客户端,无论是否互为隐藏节点,发出的数据帧都不会发生冲突。这样无线带宽资源得到有效的利用。

为了方便配置XTrans,用户只需在AP侧使能XTrans。具有XTrans功能的STA会自动优先以XTrans方式接入。同时,打开XTrans的AP会拒绝没有XTrans功能STA的关联请求。如果AP没有使能XTrans,则无论STA是否支持XTrans功能,都以标准的802.11流程接入。

下表一是用测试工具chariot测得的一对多情况下XTrans的性能。

表一:XTrans TDMA性能

注:Chariot无显示说明这条流的吞吐率在整个测试过程中维持在一个很低的水平(小于0.5Mbps)。

XTrans TDMA使用场景

图二:容易出现隐藏节点的网络环境

XTrans TDMA 适用于存在隐藏节点的无线网络环境。当客户端相距较远或被障碍物阻隔时,这非常有可能出现隐藏节点问题,如上图所示。

上面两个场景中虽然节点A 和C 都能与B 通信,但A 和C 都检测不到对方的信号,所以802.11中的CSMA/CA 将会失效。此时如果仍然使用标准802.11通信,系统性能会很低。但如果打开XTrans TDMA 功能,系统性能相比标准802.11会有很大的提升。这可以从表一的测试结果看出打开和关闭XTrans TDMA 功能的性能对比。因此XTrans TDMA 将会极大地提升点对多点的接入效果。

XTrans 5M/10M/20M/40MHz 带宽配置

目前市面上绝大多数802.11产品都只支持20MHz 和40MHz 的无线带宽分配。对于2.4G 产品而言,最多只能配置3个互不干扰的20MHz 宽度的无线信道(信道1,6和11)和一个互不干扰的40MHz 宽度的无线信道。5G 由于信道个数比2.4G 产品多,所以情况要好一些。随着无线应用的普及,无线带宽资源越来越匮乏,20MHz 和40MHz 的无线带宽分配也就不能满足用户日益增长的带宽需求。

上图中有两处空闲的无线带宽资源,分别为15MHz 和10MHz 。如果只能进行20MHz 和40MHz 的无线带宽分配,这势必会产生严重的干扰。但如果在空闲的无线带宽资源上分配5MHz 和10MHz 的带宽,这将不会产生干扰,稀缺的无线带宽资源得到充分的利用。

XTrans 速率控制算法

XTrans 的速率控制方法使得基于802.11a/b/g/n 技术的无线宽带传输系统发送速率能快速适应信道环境的变化。它充分考虑802.11n 新引入技术对速率控制的影响。如果802.11接入点和客户端都支持802.11n ,那么本速率控制方法将尽可能地利用这些新技术带来的性能提升。总之,这种方法既要使系统吞吐率趋近于当前条件下的最大值,又要使得802.11的接入点和客户端发送速率稳定。XTrans 速率控制的优点是:

1、尽可能地利用802.11n 新引入的MIMO 技术,SGI 和帧聚合等技术。这些技术能大幅提升系统的性能。

XTrans 之5M/10M/20M/ 40MHz 带宽配置

XTrans 之速率控制算法

已占用无线带宽

已占用无线带宽

空闲

10MHz

空闲15MHz

2、优先使用SGI,交替使用MIMO和MCS来提升发送速率。XTrans速率控

制方法能找到当前环境下最适合的速率上升方式。

3、利用上升信用阀值来控制速率上升的频率,从而提高发送速率的稳定

性。

4、不仅能准确地反映当前信道质量与发送速率的对应关系,而且又能真实

地反映信道变化的趋势。因此XTrans速率控制方法能准确,及时地调节发送速率。

5、对只支持802.11a/b/g的节点同样适用。XTrans速率控制方法考虑到了

不同节点处理能力的不同,提供了最广泛的兼容性。

下面两图是在市区环境下利用chariot实测的点对点发送速率曲线,前者为20M无线带宽,后者为40M无线带宽。图中pair1为上行速率曲线,pair2为下行速率曲线。

图三:20M带宽发送速率曲线

图四:40M带宽发送速率曲线

ACK 超时的作用

802.11无线局域网最初的传输范围是室外300米,室内100米。随着无线通信技术的发展,尤其是MIMO 技术的引入,基于802.11标准的无线产品经改进后并安装上高增益天线可以实现几十公里,甚至上百公里的远距离无线固定接入。这满足了偏远地区和特殊行业的数据接入需求。因此远距离无线宽带网桥产品应运而生。相比较传统的有线数据网接入,它具有成本低,安装方便和易于维护等特点。

无线宽带网桥相对于一般的802.11无线局域网产品,为了达到远距离通信的目的,其中一个最大的改进在于调节ACK 确认应答的等待时间。802.11技术使用RTS-CTS/Date-ACK 的应答确认机制。CTS/ACK 超时时间(以下都简称ACK 超时时间)值对远距离无线传输的性能影响非常大:ACK 超时时间设置过小,发送端在还没有收到接收端发送过来的ACK 之前就重传数据帧;ACK 超时时间设置过大,在经历额外不必要的等待后,发送端才重发丢失的数据帧。以上两种情况都导致无线资源的浪费和系统性能的下降。

大多数厂家利用GPS 或接收信号强度的衰减来估计接入点和客户端的通信距离,然后通过距离来计算ACK 超时时间。更简单的方法是通过手动设置通信距离来设置ACK 超时时间。

其它ACK 超时方案

目前使用最广的是802.11驱动是MADWIFI (Multiband Atheros Driver for WiFi )Linux 驱动。Madwifi 提供接口可以让用户设置接入点/客户端的通信距离,然后根据用户设置的通信距离,Madwifi 计算出对应的ACK 超时时间值。这对用户是个很大的挑战。一方面在远距离无线传输(通常大于20KM )的应用场景中,用户很难估计出一个准确的距离;另一方面由于无线电波的反射和多径影响,通信距离往往不是接入点/客户端的直线距离。因此需要一种ACK 超时时间的自动调整机制来方便远距离无线传输的应用。

利用GPS 或其它定位系统能精确定位两点间的距离,但同样不能计算出无线电波的反射和多径影响。在某些实现方案中利用接收信号强度的衰减来估计距离。估计出来的距离可以用来计算出对应的ACK 超时时间值。这可以实现ACK 超时时间值的自动调整。但是由于接收信号强度受环境影响很大,所以这种方法计算出的ACK 超时时间不准确。

XTrans 之ACK 超时自动调节

XTrans AutoACK方案

XTrans AutoACK提供一种ACK超时时间的自动调节方法,使得基于802.11技术的远距离无线宽带传输系统性能达到最优。这种方法既要解决用户手动设置的不方便,又要解决其它自动调节方法中ACK超时时间计算不准确的缺陷。

XTrans AutoACK技术直接以ACK超时时间为对象进行处理,与通信距离不直接关联,这样相比于用接收信号强度和GPS进行定位和估算通信距离来说,本技术受通信环境中的无线电波的反射和多径效应的影响较小,对ACK超时时间估计和调整的准确度高。此外,XTrans AutoACK支持点对点和点对多点的组网方式,可以全部用软件来实现,不需要增加额外成本。在实际测试中发现它占用资源少,稳定性好,能准确地调整ACK超时时间。下表二是不同环境下的测试结果。

表二:AutoACK性能

从上表可以看出,AutoACK的测试环境既有空旷的郊区也有繁忙的马路,还有室内环境。从多个不同实际环境对它的性能进行了测试。上表中最优ACK 超时时间换算成空间距离后,与实际距离的误差能够控制在±0.3km以内,充分说明在一次ACK超时时间调节过程中,最终得到的最优ACK超时时间是非常准确的。

XTrans总结

XTrans操作系统所集成的TDMA,5M/10M/20M/40MHz带宽灵活配置,速

率控制,ACK超时自动调节等技术,使得TurboBridge系列产品成为理想的远

距离无线宽带接入产品。

具有下列的优势:

?传输距离远

?传输无线吞吐率高

?传输无线速率稳定

?点对多点接入数目多

?点对多点带宽分配均匀

TurboBridge系列产品可以用于室外远距离视频和宽带数据的点对点(PTP),点

对多点(PTMP)的无线传输。包括:

?无线视频监控(交通、城市、公安、油气田管道、森林防火防盗、小区等重

点区域监控)

?运营商无线骨干网传输

?运营商WISP大客户接入

?Wi-Fi无线覆盖

?农村信息化建设无线网络覆盖

数据中心交换机buffer需求分析白皮书

数据中心交换机 buffer 需求分析白皮书

目录 1引言 (3) 1.1DC 的网络性能要求 (3) 1.2国内OTT 厂商对设备Buffer 的困惑 (4) 1.3白皮书的目标 (4) 2Buffer 需求的经典理论 (5) 2.11BDP 理论 (5) 2.2Nick Mckeown 理论 (6) 2.3经典理论的适用性 (6) 3基于尾丢弃的buffer 需求 (9) 3.1丢包的影响 (9) 3.1.2丢包对带宽利用率的影响 (9) 3.1.3丢包对FCT 的影响 (12) 3.2大buffer 的作用 (13) 3.2.1吸收突发,减少丢包,保护吞吐 (13) 3.2.2带宽分配均匀 (14) 3.2.3优化FCT (15) 3.3DC 内哪需要大buffer (15) 3.4需要多大buffer (17) 3.5带宽升级后,buffer 需求的变化 (19) 3.6 小结 (19) 4基于ECN 的buffer 需求 (21) 4.1ECN 的作用 (21) 4.2ECN 水线设置 (23) 4.3基于ECN 的buffer 需要多大 (24) 5基于大小流区分调度的buffer 需求 (27) 5.1大小流差异化调度 (27) 5.2大小流差异化调度如何实现大buffer 相当甚至更优的性能 (27) 5.3基于大小流差异化调度的buffer 需要多大 (28) 6 总结 (28) 7 缩略语 (29)

1 引言 1.1DC 的网络性能要求 近几年,大数据、云计算、社交网络、物联网等应用和服务高速发展,DC 已经成为承 载这些服务的重要基础设施。 随着信息化水平的提高,移动互联网产业快速发展,尤其是视频、网络直播、游戏等行业的爆 发式增长,用户对访问体验提出了更高的要求;云计算技术的广泛应用带动数据存储规模、 计算能力以及网络流量的大幅增加;此外,物联网、智慧城市以及人工智能的发展也都对DC 提出了更多的诉求。 为了满足不断增长的网络需求,DC 内的网络性能要求主要体现在: ?低时延。随着深度学习、分布式计算等技术的兴起和发展,人工智能、高性能计算等时延敏感型业务增长迅速。计算机硬件的快速发展,使得这些应用的瓶颈已经逐渐由计 算能力转移到网络,低时延已经成为影响集群计算性能的关键指标。因此,时延敏感型 应用对DC 网络时延提出了更高的要求。目前DC 内,端到端5-10 微秒时延已经成为 主流的目标要求。 ?高带宽高吞吐。数据时代的到来,产生了海量的数据,如图1-1。基于数据的应用(如图像识别)的推广,使得网络数据呈爆发式增长,小带宽已经无法满足应用对传输 速率的需求。部分应用场景下,带宽成为制约用户体验的瓶颈。高带宽高吞吐对于提升大 数据量传输的应用性能有着至关重要的影响。为了应对大数据量传输的 应用需求,目前,百度、腾讯、阿里巴巴等互联网企业的DC 都已经全面部署100GE 网络,阿里巴巴更是规划2020 年部署400GE 网络。 图1-1 数据中心内存储的实际数据 数据来源:中国IDC 圈

网络功能虚拟化白皮书-中文版 v1.2

网络功能虚拟化 ----概念、益处、推动者、挑战及行动呼吁 目标 本文是由网络运营商撰写的无版权白皮书。 本文的主要目标是概要的描述网络功能虚拟化(不同于云和软件定义网络SDN)的益处,推动者及面临的挑战,以及为什么要鼓励国际间的合作,来加速推动基于高市场占有率的行业标准服务器通信解决方案的开发和部署。 推动组织和作者 AT&T: Margaret Chiosi. BT: Don Clarke, Peter Willis, Andy Reid. CenturyLink: James Feger, Michael Bugenhagen, Waqar Khan, Michael Fargano. China Mobile: Dr. Chunfeng Cui, Dr. Hui Deng. Colt: Javier Benitez. Deutsche Telekom: Uwe Michel, Herbert Damker. KDDI: Kenichi Ogaki, Tetsuro Matsuzaki. NTT: Masaki Fukui, Katsuhiro Shimano. Orange: Dominique Delisle, Quentin Loudier, Christos Kolias. Telecom Italia: Ivano Guardini, Elena Demaria, Roberto Minerva, Antonio Manzalini. Telefonica: Diego López, Francisco Javier Ramón Salguero. Telstra: Frank Ruhl. Verizon: Prodip Sen. 发布日期 2012年10月22至24日,发布于软件定义网络(SDN)和OpenFlow世界大会, Darmstadt-德国。

社会医疗保险数据中心管理平台技术白皮书(20090730)

社会医疗保险数据中心管理平台 技术白皮书 创智和宇

目录 1简介 (4) 1.1应用背景 (4) 1.2范围 (4) 1.3参考资料 (4) 2系统概述 (5) 2.1医疗保险数据中心管理平台概述 (5) 2.2总体结构图 (5) 2.2.1医疗保险数据中心管理平台的的总体结构 (6) 2.2.2医疗保险数据中心管理平台的逻辑结构 (6) 2.2.3医疗保险数据中心管理平台的的网络拓扑结构 (7) 2.3.1数据库内部组成 (7) 2.3.2生产库定义(地市级) (7) 2.3.3交换库定义(地市级) (7) 2.3.4决策分析库(地市级) (8) 2.3.5决策分析库(省级) (8) 2.4 医疗保险数据中心管理平台与其他系统关系 (8) 2.4.1与本公司开发的社保产品关系及实现接口 (8) 2.4.2与其它公司开发的社保产品关系及实现接口 (8) 2.4.3与全国联网软件关系 (9) 3业务逻辑的总体设计 (9) 3.1数据抽取建立交换数据库 (9) 3.2数据分析与决策 (9) 3.3数据交换服务 (10) 4系统采用的关键技术 (11) 4.1数据抽取 (11) 4.2增量更新 (11) 4.2.1增量更新实现步骤 (11) 4.2.3 历史数据变化情况记录 (12) 4.3数据展现 (12) 4.4数据传输 (12) 4.4.1数据传输涉及的三大元素及关系 (12) 4.4.2数据传输策略总体设计思路. (12) 4.4.3数据传输策略总体设计方案图 (12) 4.4.4数据传输策略实现概要. (14) 4.4.5打包数据的来源 (14) 4.4.6传输策略的维护 (14) 5系统开发平台和运行平台 (14) 5.1开发平台 (14) 5.2运行平台 (14) 6医疗保险数据中心管理平台功能介绍 (15) 6.1参保情况管理 (16)

工业大数据白皮书2017版

一张图读懂工业大数据 1. 工业大数据 工业大数据是指在工业领域中,围绕典型智能制造模式,从客户需求到销售、订单、计划、研发、设计、工艺、制造、采购、供应、库存、发货和交付、售后服务、运维、报废或回收再制造等整个产品全生命周期各个环节所产生的各类数据及相关技术和应用的总称。 工业大数据的主要来源有三类: 第一类是生产经营相关业务数据。主要来自传统企业信息化范围,被收集存储在企业信息系统内部。此类数据是工业领域传统的数据资产,正在逐步扩大范围。 第二类是设备物联数据。主要指工业生产设备和目标产品在物联网运行模式下,实时产生收集的涵盖操作和运行情况、工况状态、环境参数等体现设备和产品运行状态的数据。此类数据是工业大数据新的、增长最快的来源。 第三类是外部数据。指与工业企业生产活动和产品相关的企业外部互联网来源数据。 2. 工业大数据的地位 2.1 在智能制造标准体系中的定位 工业大数据位于智能制造标准体系结构图的关键技术标准的左侧,属于智能制造标准体系五大关键技术之一。

2.2与大数据技术的关系 工业领域的数据累积到一定量级,超出了传统技术的处理能力,就需要借助大数据技术、方法来提升处理能力和效率,大数据技术为工业大数据提供了技术和管理的支撑。 首先,工业大数据可以借鉴大数据的分析流程及技术,实现工业数据采集、处理、存储、分析、可视化。其次,工业制造过程中需要高质量的工业大数据,可以借鉴大数据的治理机制对工业数据资产进行有效治理。 2.3与工业软件和工业云的关系 工业软件承载着工业大数据采集和处理的任务,是工业数据的重要产生来源,工业软件支撑实现工业大数据的系统集成和信息贯通。 工业大数据技术与工业软件结合,加强了工业软件分析与计算能力,提升场景可视化程度,实现对用户行为和市场需求的预测和判断。 工业大数据与工业云结合,可实现物理设备与虚拟网络融合的数据采集、传输、协同处理和应用集成,运用数据分析方法,结合领域知识,形成包括个性化推荐、设备健康管理、物品

FusionSphere虚拟化套件存储虚拟化技术白皮书

华为FusionSphere 6.5.0虚拟化套件存储虚拟化技术白皮书

目录 1简介/Introduction (3) 2解决方案/Solution (4) 2.1 FusionSphere 存储虚拟化解决方案 (4) 2.1.1架构描述 (4) 2.1.2特点描述 (5) 2.2存储虚拟化的磁盘文件解决方案 (6) 2.2.1厚置备磁盘技术 (6) 2.2.2厚置备延时置零磁盘技术 (6) 2.2.3精简置备磁盘技术 (6) 2.2.4差分磁盘技术 (7) 2.3存储虚拟化的业务管理解决方案 (7) 2.3.1磁盘文件的写时重定向技术 (7) 2.3.2磁盘文件的存储热迁移 (8) 2.3.3磁盘文件高级业务 (8) 2.4存储虚拟化的数据存储扩容解决方案 (9) 2.4.1功能设计原理 (9) 2.5存储虚拟化的数据存储修复解决方案 (10) 2.5.1功能设计原理 (10)

1 简介/Introduction 存储设备的能力、接口协议等差异性很大,存储虚拟化技术可以将不同存储设备进行格式化,将各种存储资源转化为统一管理的数据存储资源,可以用来存储虚拟机磁盘、虚拟机配置信息、快照等信息。用户对存储的管理更加同质化。 虚拟机磁盘、快照等内存均以文件的形式存放在数据存储上,所有业务操作均可以转化成对文件的操作,操作更加直观、便捷。 基于存储虚拟化平台提供的众多存储业务,可以提高存储利用率,更好的可靠性、可维护性、可以带来更好的业务体验和用户价值。 华为提供基于主机的存储虚拟化功能,用户不需要再关注存储设备的类型和能力。存储虚拟化可以将存储设备进行抽象,以逻辑资源的方式呈现,统一提供全面的存储服务。可以在不同的存储形态,设备类型之间提供统一的功能。

华为fusionsphere6.0云套件安全技术白皮书(云数据中心)

华为F u s i o n S p h e r e6.0 云套件安全技术白皮书(云 数据中心) -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

华为FusionSphere 云套件 安全技术白皮书(云数据中心) 文档版本 发布日期 2016-04-30 华为技术有限公司

华为FusionSphere 云套件安全技术白皮书 (云数据中心) Doc Number:OFFE00019187_PMD966ZH Revision:A 拟制/Prepared by: chenfujun ; 评审/Reviewed by: huangdenghui 00283052;zouxiaowei 00348656;pengzhao jun 00286002;youwenwei 00176512;yanzhongwei 00232184 批准/Approved by: youwenwei 00176512 2015-12-29 Huawei Technologies Co., Ltd. 华为技术有限公司 All rights reserved 版权所有侵权必究

版权所有 ?华为技术有限公司 2016。保留一切权利。 非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部,并不得以任何形式传播。 商标声明 和其他华为商标均为华为技术有限公司的商标。 本文档提及的其他所有商标或注册商标,由各自的所有人拥有。 注意 您购买的产品、服务或特性等应受华为公司商业合同和条款的约束,本文档中描述的全部或部分产品、服务或特性可能不在您的购买或使用范围之内。除非合同另有约定,华为公司对本文档内容不做任何明示或暗示的声明或保证。 由于产品版本升级或其他原因,本文档内容会不定期进行更新。除非另有约定,本文档仅作为使用指导,本文档中的所有陈述、信息和建议不构成任何明示或暗示的担保。 华为技术有限公司 地址:深圳市龙岗区坂田华为总部办公楼邮编:518129 网址:

FusionSphere虚拟化套件分布式虚拟交换机技术白皮书

华为FusionSphere 6.5.0 虚拟化套件分布式虚拟交换机技术白皮书

目录 1 分布式虚拟交换机概述 (1) 1.1 产生背景 (1) 1.2 虚拟交换现状 (2) 1.2.1 基于服务器CPU实现虚拟交换 (2) 1.2.2 物理网卡实现虚拟交换 (2) 1.2.3 交换机实现虚拟交换 (3) 2 华为方案简介 (5) 2.1 方案是什么 (5) 2.2 方案架构 (7) 2.3 方案特点 (7) 3 虚拟交换管理 (8) 3.1 主机 (8) 3.2 分布式虚拟交换机 (8) 3.3 端口组 (8) 4 虚拟交换特性 (9) 4.1 物理端口/聚合 (9) 4.2 虚拟交换 (9) 4.2.1 普通交换 (9) 4.2.2 SR-IOV直通 (10) 4.2.3 用户态交换 (10) 4.3 流量整形 (11) 4.3.1 基于端口组的流量整形 (11) 4.4 安全 (11) 4.4.1 二层网络安全策略 (11) 4.4.2 广播报文抑制 (12) 4.4.3 安全组 (12) 4.5 Trunk端口 (12) 4.6 端口管理 (13) 4.7 存储面三层互通 (13) 4.8 配置管理VLAN (13)

4.9 业务管理平面 (13) 5 虚拟交换应用场景 (14) 5.1 集中虚拟网络管理 (14) 5.2 虚拟网络流量统计功能 (14) 5.3 分布式虚拟端口组 (14) 5.4 分布式虚拟上行链路 (14) 5.5 网络隔离 (14) 5.6 网络迁移 (15) 5.7网络安全 (15) 5.8 配置管理VLAN (15) 5.9 业务管理平面 (15) 6 缩略语 (16)

互联网数据中心交换网络技术白皮书

互联网数据中心交换网络的设计 1 引言 互联网数据中心(internet data center,IDC)是指拥有包括高速宽带互联网接入、高性能局域网络、提供安全可靠的机房环境的设备系统、专业化管理和完善的应用级服务的服务平台。在这个平台上,IDC服务商为企业、ISP、ICP和ASP等客户提供互联网基础平台服务以及各种增值服务。 作为业务承载与分发的基础网络系统,就成为IDC平台的动脉。随着中国IDC产业不断发展和业务需求多样化,基础网络逐步发展出一套相对比较通用和开放的方案架构。 2 当前主要的IDC基础网络架构 虽然各IDC机房各有度身定制的业务需求,网络设计也有各自的关于带宽、规模、安全和投资的考虑因素,但最基本的关注点仍然集中在高可靠、高性能、高安全和可扩展性上。 2.1 通用的IDC架构 在整体设计上,层次化和模块化是IDC架构的特征,如图1,这种架构设计带来了整体网络安全和服务部署的灵活性,给上层应用系统的部署也提供了良好的支撑。 图1IDC层次化&模块化设计架构 分区结构采用模块化的设计方法,它将数据中心划分为不同的功能区域,用于部署不同的应用,使得整个数据中心的架构具备可伸缩性、灵活性和高可用性。数据中心的服务器根据用户的访问特性和核心应用功能,分成不同组,并部署在不同的区域中。由于整个数据中心的很多服务是统一提供的,例如数据备份和系统管理,因此为保持架构的统一性,避免不必要的资源浪费,功能相似的服务将统一部署在特定的功能区域内,例如与管理相关的服务器将被部署在管理区。 分区结构另一个特点是以IDC的客户群为单位进行划分,将具体客户应用集中在一个物理或逻辑范围内,便于以区域模块为单位,提供管理和其它增值服务。 层次化是将IDC具体功能分布到相应网络层、计算层和存储层,分为数据中心前端网络和后端管理等。网络本身根据不同的IDC规模,可以有接入层、汇聚层和核心层。一般情况下,数据中心网络分成标准的核心层、汇聚层和接入层三层结构。1)核心层:提供多个数据中心汇聚模块互联,并连接园区网核心;要求其具有高交换能力和突发流量适应能力;大型数据中心核心要求多汇聚模块扩展能力,中小型数据中心共用园区核心;当前以10G 接口为主,高性能的将要求4到8个10GE端口捆绑。2)汇聚层:为服务器群(server farm)提供高带宽出口;要求提供大密度GE/10GE 端口,实现接入层互联;具有较多槽位数提供增值业务模块部署。3)接入层:支持高密度千兆接入和万兆接入;接入总带宽和上行带宽存在收敛比和线速两种模式;基于机架考虑,1RU 更具灵活部署能力;支持堆叠,更具扩展能力;上行双链路冗余能力。

HC大数据产品技术白皮书

H3C大数据产品技术白皮书杭州华三通信技术有限公司 2020年4月

目录 1 H3C大数据产品介绍 (1) 1.1产品简介 (1) 1.2产品架构 (1) 1.2.1 数据处理 (2) 1.2.2 数据分层 (3) 1.3产品技术特点 (4) 先进的混合计算架构 (4) 高性价比的分布式集群 (4) 云化ETL (5) 数据分层和分级存储 (5) 数据分析挖掘 (6) 数据服务接口 (6)

可视化运维管理 (7) 1.4产品功能简介 (7) 管理平面功能: (12) 业务平面功能: (14) 2DataEngine HDP核心技术 (15) 3DataEngine MPP Cluster核心技术 (16) 3.1MPP + Shared Nothing架构 (16) 3.2核心组件 (16) 3.3高可用 (17) 3.4高性能扩展能力 (18) 3.5高性能数据加载 (18) 3.6OLAP函数 (19) 3.7行列混合存储 (19)

1H3C大数据产品介绍 1.1产品简介 H3C大数据平台采用开源社区Apache Hadoop2.0和MPP分布式数据库混合计算框架为用户提供一套完整的大数据平台解决方案,具备高性能、高可用、高扩展特性,可以为超大规模数据管理提供高性价比的通用计算存储能力。H3C大数据平台提供数据采集转换、计算存储、分析挖掘、共享交换以及可视化等全系列功能,并广泛地用于支撑各类数据仓库系统、BI 系统和决策支持系统帮助用户构建海量数据处理系统,发现数据的内在价值。 1.2产品架构 H3C大数据平台包含4个部分: 第一部分是运维管理,包括:安装部署、配置管理、主机管理、用户管理、服务管理、监控告警和安全管理等。 第二部分是数据ETL,即获取、转换、加载,包括:关系数据库连接Sqoop、日志采集Flume、ETL工具 Kettle。

FusionSphere虚拟化套件技术白皮书

华为FusionSphere 6.5.0 虚拟化套件技术白皮书 pg. i

1 摘要 云计算并不是一种新的技术,而是在一个新理念的驱动下产生的技术组合。这个理念就是—敏捷IT。在云计算之前,企业部署一套服务,需要经历组网规划,容量规划,设备选型,下单,付款,发货,运输,安装,部署,调试的整个完整过程。这个周期在大型项目中需要以周甚至月来计算。在引入云计算后,这整个周期缩短到以分钟来计算。 IT业有一条摩尔定律,芯片速度容量每18个月提升一倍。同时,IT行业还有一条反摩尔定律,所有无法追随摩尔定律的厂家将被淘汰。IT行业是快鱼吃慢鱼的行业,使用云计算可以提升IT设施供给效率,不使用则会拖慢产品或服务的扩张脚步,一步慢步步慢。 云计算当然还会带来别的好处,比如提升复用率缩减成本,降低能源消耗,缩减维护人力成本等方面的优势,但在反摩尔定律面前,已经显得不是那么重要。 业界关于云计算技术的定义,是通过虚拟化技术,将不同的基础设施标准化为相同的业务部件,然后利用这些业务部件,依据用户需求自动化组合来满足各种个性化的诉求。云着重于虚拟化,标准化,和自动化。 FusionSphere是一款成熟的Iaas层的云计算解决方案,除满足上面所述的虚拟化,标准化和自动化诉求外,秉承华为公司二十几年电信化产品的优秀基因,向您提供开放,安全可靠的产品。 本文档向您讲述华为FusionSphere解决方案中所用到的相关技术,通过阅读本文档,您能够了解到: ?云的虚拟化,标准化,自动化这些关键衡量标准是如何在FusionSphere解决方案中体现的; ?FusionSphere解决方案是如何做到开放,安全可靠的;

数据中心空调系统节能技术白皮书

数据中心空调系统节能技术白皮书目录 1. 自然冷却节能应用 3 概述 3 直接自然冷却 3 中国一些城市可用于直接自然冷却的气候数据: 8间接自然冷却 8 中国一些城市可用于间接自然冷却的气候数据: 16 2. 机房空调节能设计 17 动态部件 17 压缩机 17 风机 18 节流部件 19 加湿器 19 结构设计 21 冷冻水下送风机组超大面积盘管设计 21 DX型下送风机组高效后背板设计 22 控制节能 22

主备智能管理 22 EC风机转速控制 23 压差控制管理 23 冷水机组节能控制管理 26 1.自然冷却节能应用 概述 随着数据中心规模的不断扩大,服务器热密度的不断增大,数据中心的能耗在能源消耗中所占的比例不断增加。制冷系统在数据中心的能耗高达40%,而制冷系统中压缩机能耗的比例高达50%。因此将自然冷却技术引入到数据中心应用,可大幅降低制冷能耗。 自然冷却技术根据应用冷源的方式有可以分为直接自然冷却和间接自然冷却。直接自然冷却又称为新风自然冷却,直接利用室外低温冷风,作为冷源,引入室内,为数据中心提供免费的冷量;间接自然冷却,利用水(乙二醇水溶液)为媒介,用水泵作为动力,利用水的循环,将数据中心的热量带出到室外侧。 自然冷却技术科根据数据中心规模、所在地理位置、气候条件、周围环境、建筑结构等选择自然冷却方式。 直接自然冷却 直接自然冷却系统根据风箱的结构,一般可分为简易新风自然冷却新风系统和新风自然冷却系统。 简易新风直接自然冷却系统主要由普通下送风室内机组和新风自然冷却节能风帽模块组成。节能风帽配置有外部空气过滤器,过滤器上应装配有压差开关,并可以传递信号至控制器,当过滤器发生阻塞时,开关会提示过滤器报警。该节能风帽应具备新风阀及回风阀,可比例调节风阀开度,调节新风比例。 该系统根据检测到的室外温度、室内温度以及系统设定等控制自然冷却的启动与停止。

FusionSphere虚拟化套件安全技术白皮书

华为FusionSphere 虚拟化套件安全技术白皮书

目录 1虚拟化平台安全威胁分析 (1) 1.1概述 (1) 1.2云安全威胁分析 (1) 1.2.1传统的安全威胁 (1) 1.2.2云计算带来的新的安全威胁 (3) 1.3云计算的安全价值 (4) 2 FusionSphere安全方案 (6) 2.1 FusionSphere总体安全框架 (6) 2.2网络安全 (7) 2.2.1网络平面隔离 (7) 2.2.2 VLAN隔离 (8) 2.2.3防IP及MAC仿冒 (9) 2.2.4端口访问限制 (9) 2.3虚拟化安全 (10) 2.3.1 vCPU调度隔离安全 (10) 2.3.2内存隔离 (11) 2.3.3内部网络隔离 (11) 2.3.4磁盘I/O隔离 (11) 2.4数据安全 (11) 2.4.1 数据加密 (11) 2.4.2用户数据隔离 (12) 2.4.3数据访问控制 (12) 2.4.4剩余信息保护 (12) 2.4.5数据备份 (13)

2.4.6软件包完整性保护 (14) 2.5运维管理安全 (14) 2.5.1管理员分权管理 (14) 2.5.2账号密码管理 (14) 2.5.3日志管理 (14) 2.5.4传输加密 (15) 2.5.5数据库备份 (15) 2.6基础设施安全 (15) 2.6.1操作系统加固 (16) 2.6.2 Web安全 (16) 2.6.3数据库加固 (17) 2.6.4 Web容器加固 (17) 2.6.5安全补丁 (17) 2.6.6防病毒 (18)

1 虚拟化平台安全威胁分析 1.1 概述 云计算虚拟化平台作为一种新的计算资源提供方式,用户在享受它带来的便利性、低 成本等优越性的同时,也对其自身的安全性也存在疑虑。如何保障用户数据和资源的 机密性、完整性和可用性成为云计算系统急需解决的课题。本文在分析云计算带来的 安全风险和威胁基础上,介绍了华为云计算虚拟化平台针对这些风险和威胁所采取策 略和措施,旨在为客户提供安全可信的服务器虚拟化解决方案。 1.2 云安全威胁分析 1.2.1 传统的安全威胁 来自外部网络的安全威胁的主要表现 ?传统的网络IP攻击 如端口扫描、IP地址欺骗、Land攻击、IP选项攻击、IP路由攻击、IP分片报 文攻击、泪滴攻击等。 ?操作系统与软件的漏洞 在计算机软件(包括来自第三方的软件,商业的和免费的软件)中已经发现了 不计其数能够削弱安全性的缺陷(bug)。黑客利用编程中的细微错误或者上下 文依赖关系,已经能够控制操作系统,让它做任何他们想让它做的事情。常见 的操作系统与软件的漏洞有:缓冲区溢出、滥用特权操作、下载未经完整性检 查的代码等。 ?病毒、木马、蠕虫等。 ?SQL注入攻击

虚拟实验室技术白皮书

虚拟实验室 技术白皮书 上海庚商网络信息技术有限公司 2015年9月

目录 1 产品概述 (3) 1.1 云教育基础架构分类 (5) 1.1.1 服务器虚拟化 (5) 1.1.2 桌面虚拟化 (6) 1.2 教育虚拟技术应用分类 (7) 1.1.1 模拟 (7) 1.1.2 仿真 (8) 1.1.3 虚拟现实 (8) 1.1.4 增强现实 (9) 1.1.5 远程实验 (9) 2 总体设计 (13) 2.1 系统架构 (13) 2.2 系统说明 (13) 3 系统功能 (17) 3.1开放管理 (17) 3.2知识地图 (18) 3.3二维码 (20) 3.4微课与实验支架 (21) 3.5虚拟实验 (22) 3.6 可视化环境监控 (23) 3.7 电流检测 (23) 3.8 科研协同 (24) 3.9 云桌面 (26) 4 预算清单 (28)

1 产品概述 随着计算机技术和网络技术的迅速发展,以及科学研究进一步深入的需要,虚拟仿真实验技术日渐成熟和完善,虚拟实验作为继理论研究和实验研究之后的第三种科学研究方法,对社会发展和科技进步起到了越来越重要的作用,代表着科学研究方法的重要发展方向。 虚拟实验是指以计算机为控制中心,利用软件技术,构建系统的逻辑结构模型,基于模块化和层次化的设计思想,采用软硬件相结合的方式,协调相关硬件和效应设备,形成虚拟实验系统,并利用网络技术,实现虚拟实验系统的网络化,形成运行在个人计算机上、实现自行设计与开发,以及远程控制与协作的实验方式。

庚商虚拟实验室作为实验资源综合服务平台,不同于传统的虚拟平台,割裂实体资源与在线资源的联系,而是面向最终实践教学、科研与管理活动,对数据与应用资源的整合与开发,是实体资源的延伸与增强。同时,通过对实践教学、科研等核心活动数据的采集,为管理活动提供第一手的信息,有效辅助管理决策。系统建设目标如下: 1)提供良好实验平台,提高实验教学水平 传统教学中,理论教学与实验教学是分开的。理论课上没有实验,建设虚拟实验室,借助虚拟仿真实验,就可以将实验带进理论课。 2)整合实验教学资源,实现实验室的真正开放 虚拟实验室可以提供开放式实验环境,真正实现实验室向学生开放。学生可以打破时间和地域的限制完成相关的教学实验。由于虚拟仪器系统的支持,学生可以自拟、自选实验题目,自行组织实验,使用现成的仪器为开发自己的仪器进行实验,摒弃传统的灌输式教学方式,让学生自主参与到教学中来,最大限度地发挥学生的主动性和创造性。

深信服服务器虚拟化-技术白皮书

深信服服务器虚拟化产品技术白皮书 深信服科技

声明 市深信服电子科技所有,并保留对本文档及本声明的最终解释权和修改权。 本文档中出现的任何文字叙述、文档格式、插图、照片、方法、过程等容,除另有特别注明外,其著作权或其它相关权利均属于市深信服电子科技。未经市深信服电子科技书面同意,任何人不得以任何方式或形式对本文档的任何部分进行复制、摘录、备份、修改、传播、翻译成其他语言、将其全部或部分用于商业用途。 免责条款 本文档仅用于为最终用户提供信息,其容如有更改,恕不另行通知。 市深信服电子科技在编写本文档的时候已尽最大努力保证其容准确可靠,但市深信服电子科技不对本文档中的遗漏、不准确、或错误导致的损失和损害承担责任。 信息反馈 如果您有任何宝贵意见,请反馈: 信箱:省市学苑大道1001号南山智园A1栋邮编:518055 电话:09 传真:09 您也可以访问深信服科技:https://www.360docs.net/doc/b212205564.html,获得最新技术和产品信息

缩写和约定 英文缩写英文全称中文解释 Hypervisor Hypervisor 虚拟机管理器(和VMM同 义) VMM VMM Virtual Machine Manager 虚拟机监视器 HA HighAvailability 高可用性 vMotion vMotion 实时迁移 DRS Distributed Resource Scheduler 分布式资源调度程序 FC Fibre Channel 光纤通道 HBA Host Bus Adapter 主机总线适配器 RAID Redundant Arrays of Independent Disks 磁盘阵列 IOPS Input/Output Operations Per Second 每秒读写(I/O)操作的次数VM Virtual Machine 虚拟机 LUN Logical Unit Number 逻辑单元号

数据中心空调系统节能技术白皮书

数据中心空调系统节能技术白皮书 数据中心空调系统节能技术白皮书

目录 1.自然冷却节能应用 (3) 1.1概述 (3) 1.2直接自然冷却 (3) 1.2.1简易新风自然冷却系统 (3) 1.2.2新风直接自然冷却 (5) 1.2.3 中国一些城市可用于直接自然冷却的气候数据: (8) 1.3间接自然冷却 (8) 1.3.1间接自然冷却型机房精密空调解决方案 (8) 1.3.2风冷冷水机组间接自然冷却解决方案 (12) 1.3.3水冷冷水机组间接自然冷却解决方案 (15) 1.3.4 中国一些城市可用于间接自然冷却的气候数据: (16) 2.机房空调节能设计 (17) 2.1动态部件 (17) 2.1.1压缩机 (17) 2.1.2风机 (18) 2.1.3节流部件 (19) 2.1.4加湿器 (19) 2.2结构设计 (21) 2.2.1冷冻水下送风机组超大面积盘管设计 (21) 2.2.2DX型下送风机组高效后背板设计 (22) 2.3控制节能 (22) 2.3.1主备智能管理 (22) 2.3.2EC风机转速控制 (23) 2.3.3压差控制管理 (23) 2.3.4冷水机组节能控制管理 (26)

1.自然冷却节能应用 自然冷却节能应用 概述 1.1概述 随着数据中心规模的不断扩大,服务器热密度的不断增大,数据中心的能耗在能源消耗中所占的比例不断增加。制冷系统在数据中心的能耗高达40%,而制冷系统中压缩机能耗的比例高达50%。因此将自然冷却技术引入到数据中心应用,可大幅降低制冷能耗。 自然冷却技术根据应用冷源的方式有可以分为直接自然冷却和间接自然冷却。直接自然冷却又称为新风自然冷却,直接利用室外低温冷风,作为冷源,引入室内,为数据中心提供免费的冷量;间接自然冷却,利用水(乙二醇水溶液)为媒介,用水泵作为动力,利用水的循环,将数据中心的热量带出到室外侧。 自然冷却技术科根据数据中心规模、所在地理位置、气候条件、周围环境、建筑结构等选择自然冷却方式。 直接自然冷却 1.2直接自然冷却 直接自然冷却系统根据风箱的结构,一般可分为简易新风自然冷却新风系统和新风自然冷却系统。 简易新风自然冷却系统 1.2.1简易新风自然冷却系统 1.2.1.1简易新风自然冷却系统原理 简易新风自然冷却系统原理 简易新风直接自然冷却系统主要由普通下送风室内机组和新风自然冷却节能风帽模块组成。节能风帽配置有外部空气过滤器,过滤器上应装配有压差开关,并可以传递信号至控制器,当过滤器发生阻塞时,开关会提示过滤器报警。该节能风帽应具备新风阀及回风阀,可比例调节风阀开度,调节新风比例。

Citrix桌面虚拟化实施部署白皮书

Citrix桌面虚拟化技术白皮书 思杰系统信息技术有限公司 Citrix Systems Information Technology Co., Ltd. 2013年05月

目录 序言:关于方法论 (3) 一、Access (3) 二、Design (3) 三、Deploy (4) 四、Maintain (4) 五、项目计划 (4) 第一部分:Access (5) 一、业务驱动力 (5) 二、数据搜集 (5) 三、用户数据搜集 (6) 四、应用程序数据搜集 (8) 五、用户分类 (9) 1. FlexCast模型比较 (9) 2. FlexCast模型选择 (10) 六、应用程序评估 (12) 七、项目管理 (13) 1. Roadmap (13) 2. 项目团队 (13) 第二部分:Design (21) 一、概况 (21) 二、用户层 User Layer (21) 1. 终端类型的选择 (21) 2. Receiver的选择 (24) 3. 资源需求 (27) 三、访问层 Access Layer (30) 四、桌面层 Desktop Layer (35) 1. 应用程序交付 (35) 五、控制层 Control Layer (39) 1. 远程访问架构 (39) 2. StoreFront (42) 3. 桌面控制器 (47) 4. Provisioning Services(PVS的设计) (47)

序言:关于方法论 Citrix Virtual Desktop handbook会紧密遵循Citrix顾问实施方法论,即如下图所示: 一、Access Access阶段主要提供Design阶段所需要的信息,包括: 1.业务驱动力; 2.数据搜集:包括用户、应用程序、设备以及基础架构; 3.用户的分类:用户要根据需要的分类而分成不同的组别,随之应对着不同的FlexCast 方法论; 4.应用程序分类:旧的应用程序应该被删除、应用程序版本应该标准化、非公司程序应该 删除,等等这些构成了应用程序的标准化和合理化; 5.计划:每个用户组都要根据对业务的影响程度指定不同的实施时间优先级,优先级实施 进度结果应该随时更新项目进度和计划。 二、Design 设计阶段主要聚焦在五层的一个方法论上: 1.用户层:描述推荐的终端以及所需要的用户功能体验; 2.访问层:描述用户层是如何连接到他们的桌面,例如本地桌面是直接连接StoreFront, 而外界用户往往要通过Firewall层才能进来,这就涉及到了FW、VPN等技术; 3.桌面层:主要指用户的虚拟桌面实现技术,即FlexCast技术,主要好汉三个主要成分, 分别是镜像文件、应用程序,以及个性化内容; 4.控制层:如何管理和维护其他层,又分为访问控制、桌面控制,以及基础架构控制;

工业大数据技术架构白皮书

工业大数据技术架构白皮书

编写说明 党的十九大报告中提出要“加快建设制造强国,加快发展先进制造业,推动互联网、大数据、人工智能和实体经济的深度融合”。再一次强调了运用新兴技术促进信息化和工业化的深度融合,以实现制造强国的战略目标。 工业是国民经济的主导,每一次工业届的重大变革都会对社会发展形成重大的影响。我国政府高度重视并积极推动以互联网为代表的新一代新兴技术与工业系统深度融合,以加速工业体系的智能化变革。工业互联网的建设重点概括为“网络”、“数据”、“安全”三大领域,而“数据”是实现工业智能化的核心驱动。在工业领域中合理地运用大数据技术能有效促进企业信息化发展,提升企业生产运行效率、加速生产信息在制造过程中的流动、助力企业升级转型并形成全新的智能制造模式。 为了加速新一代信息技术与传统产业的融合,工业互联网联盟(AII)针对工业领域的技术创新、标准制定、试验验证、应用实践等进行了一系列调查研究,在工业大数据领域也开展了相关工作,先后发布了《中国工业大数据技术与应用白皮书》,《工业大数据创新竞赛白皮书——风机结冰故障分析指南》等成果,以推动大数据技术在工业领域的深入应用。 本白皮书从实际出发,在现有研究的基础上,结合生产过程中的经典案例,介绍和分析了工业生产环境中大数据技术的应用方法,为工业企业建设大数据系统提供了基础架构层面的建议和指导,从数据的采集与交换、集成与处理、建模与分析、决策与控制几个层面,形成完整的大数据管理与分析架构,供相关行业伙伴参考使用,适用于广义的工业领域,包括制造业、采伐工业、原材料工业以及其他衍生的工业范围。

目录 第一章工业大数据系统综述 (1) 1.1 建设意义及目标 (1) 1.2 重点建设问题 (2) 第二章工业大数据技术架构概述 (3) 2.1 数据采集与交换 (5) 2.2 数据集成与处理 (6) 2.3 数据建模与分析 (8) 2.4 决策与控制应用 (9) 2.5 技术发展现状 (10) 第三章工业大数据技术架构实现 (12) 3.1 技术组件选择 (12) 3.1.1 数据采集 (12) 3.1.2 数据存储 (16) 3.1.3 数据计算 (17) 3.1.4 混合云架构 (18) 3.2 建设标准 (19) 3.2.1 基础业务能力 (19) 3.2.2 数据管理能力 (20) 3.2.3 运维管理能力 (21) 3.2.4 安全管理 (22) — 1 —

DreamBI大数据分析平台-技术白皮书

DreamBI大数据分析平台 技术白皮书

目录 第一章产品简介 (4) 一、产品说明 (4) 二、产品特点 (4) 三、系统架构 (4) 四、基础架构 (7) 五、平台架构 (7) 第二章功能介绍 (7) 2.1.元数据管理平台 (7) 2.1.1.业务元数据管理 (8) 2.1.2.指标元数据管理 (10) 2.1.3.技术元数据管理 (14) 2.1.4.血统管理 (15) 2.1.5.分析与扩展应用 (16) 2.2.信息报送平台 (17) 2.2.1.填报制度管理 (17) 2.2.2.填报业务管理 (33) 2.3.数据交换平台 (54) 2.3.1.ETL概述 (55) 2.3.2.数据抽取 (56) 2.3.3.数据转换 (56) 2.3.4.数据装载 (57) 2.3.5.规则维护 (58) 2.3.6.数据梳理和加载 (65) 2.4.统计分析平台 (67) 2.4.1.多维在线分析 (67) 2.4.2.即席查询 (68) 2.4.3.智能报表 (70) 2.4.4.驾驶舱 (74)

2.4.5.图表分析与监测预警 (75) 2.4.6.决策分析 (79) 2.5.智能搜索平台 (83) 2.5.1.实现方式 (84) 2.5.2.SolrCloud (85) 2.6.应用支撑平台 (87) 2.6.1.用户及权限管理 (87) 2.6.2.统一工作门户 (94) 2.6.3.统一消息管理 (100) 2.6.4.统一日志管理 (103) 第三章典型用户 (106) 第四章案例介绍 (108) 一、高速公路大数据与公路货运统计 (108) 二、工信部-数据决策支撑系统 (110) 三、企业诚信指数分析 (111) 四、风险定价分析平台 (112) 五、基于斯诺模型的增长率测算 (113) 六、上交所-历史数据回放引擎 (114) 七、浦东新区能耗监控 (115)

数据中心虚拟化解决方案技术白皮书

H3C数据中心虚拟化解决方案技术白皮书 关键词:数据中心,虚拟化 摘要:根据市场的需求及业界的发展趋势,数据中心第五期解决方案围绕“虚拟化”主题展开。核心是网络网虚拟化、计算虚拟化、存储虚拟化。 缩略语清单: 缩略语英文全名中文解释 IDC Internet Data Center 互联网数据中心 Forwarding 虚拟路由器转发 VRF Virtual Router Multi-Processing 对称多处理 SMP Symmetrical SNIA Storage Networking Industry Association 存储网络工业协会 TCO Total Cost of Ownership 总拥有成本 ROI Return on Investment 投资回报

目录 1 技术背景 (5) 1.1 虚拟化简介 (5) 1.2 网络虚拟化简介 (6) 1.2.1 网络虚拟化 (6) 1.2.2 MCE(精简版VRF)的原理 (6) 1.3 计算虚拟化简介 (7) 1.3.1 计算虚拟化的概念 (7) 1.3.2 计算虚拟化的特性 (8) 1.3.3 计算虚拟化的架构 (9) 1.4 存储虚拟化简介 (10) 1.4.1 定义 (10) 1.4.2 虚拟化的方法 (11) 1.4.3 网络虚拟化技术 (11) 1.4.4 虚拟存储的意义 (13) 2 数据中心虚拟化解决方案 (14) 2.1 方案概述 (14) 2.1.1 传统的应用孤岛式的数据中心 (14) 2.1.2 虚拟化方案 (14) 2.1.3 数据中心虚拟化方案架构 (15) 2.2 网络虚拟化 (16) 2.3 计算虚拟化 (17) 2.3.1 计算虚拟化方案架构 (17) 2.3.2 计算虚拟化方案VMware ESX Server的网络组件 (19) 2.3.3 虚拟交换机Virtual Switch (19) 2.3.4 VMware ESX Server的虚拟特性规格 (21) 2.4 存储虚拟化 (21) 2.4.1 整体架构 (21) 2.4.2 存储虚拟方案的目标与特点 (23) 3 数据中心虚拟化解决方案的典型组网 (24) 3.1 典型组网1 (24) 3.2 典型组网2 (25) 4 数据中心虚拟化解决方案应用 (26) 5 方案总结 (27)

华为数据中心网络安全技术白皮书

HUAWEI 数据中心网络安全技术白皮书

目录 1数据中心网络安全概述 (6) 1.1“三大平面”安全能力与风险防御目标 (7) 2网络安全威胁分析 (9) 2.1拒绝服务 (9) 2.2信息泄漏 (9) 2.3破坏信息完整性 (9) 2.4非授权访问 (10) 2.5身份欺骗 (10) 2.6重放攻击 (10) 2.7计算机病毒 (10) 2.8人员不慎 (11) 2.9物理入侵 (11) 3管理平面安全 (12) 3.1接入控制 (12) 3.1.1认证和授权 (12) 3.1.2服务启停控制 (12) 3.1.3服务端口变更 (12) 3.1.4接入源指定 (13) 3.1.5防暴力破解 (13) 3.2安全管理 (13) 3.2.1SSH (13) 3.2.2SNMPv3 (14) 3.3软件完整性保护 (14) 3.4敏感信息保护 (14) 3.5日志安全 (14) 4控制平面安全 (16) 4.1TCP/IP安全 (16) 4.1.1畸形报文攻击防范 (16) 4.1.2分片报文攻击防范 (17) 4.1.3洪泛报文攻击防范 (17) 4.2路由业务安全 (18)

4.2.1邻居认证 (18) 4.2.2GTSM (19) 4.2.3路由过滤 (19) 4.3交换业务安全 (20) 4.3.1生成树协议安全 (20) 4.3.2ARP攻击防御 (22) 4.3.3DHCP Snooping (25) 4.3.4MFF (27) 5数据平面安全 (28) 5.1应用层联动 (28) 5.2URPF (28) 5.3IP Source Gard (29) 5.4CP-CAR (29) 5.5流量抑制及风暴控制 (30)

相关文档
最新文档