X射线衍射结构分析实验

X射线衍射结构分析实验
X射线衍射结构分析实验

X射线衍射结构分析实验报告

11990302 陈嘉琦

【摘要】本实验是通过X射线衍射现象对物质进行结构分析,首先通过对X射线相关原理及其衍射现象原理的了解,对实验步骤有所理解。对已知NaCl晶体晶格常数,求其密勒指数以及晶面间距,利用布拉格方程进行求解,得到NaCl 晶体密勒指数为(1,0,0),实验求得的晶面间距为0.5557nm,相对误差为1.47%,说明实验结果还是比较正确的。

一、引言

X射线的发现始于对阴极射线的研究,1895年11月8日,德国物理学家伦琴将阴极射线管放在一个黑纸袋中,关闭了实验室灯源,他发现当开启放电线圈电源时,一块涂有氰亚铂酸钡的荧光屏发出荧光,用一本厚书、2-3厘米木板、液体、铜、银、金、铂、铝等金属也能看到荧光,只要不太厚,他将这种穿透力极强的位置射线命名为X射线。1912年劳厄等利用晶体作为产生X射线衍射的光栅,使入射的X射线经过晶体后发生衍射,证实了X射线与无线电波、可见光和γ射线等其他各种高能射线无本质上的区别,也是一种电磁波,只是它的波长更短,介于紫外线和γ射线之间,约10nm~0.001nm。

二、实验目的

①了解X射线的产生、特点和应用

②了解X射线仪的结构和工作原理

③掌握X射线衍射物相定性分析的方法和步骤

三、实验原理

1、X射线的产生和谱线特征

X射线的产生是高速运动的电子撞击物质后,与物质中的原子相互作用发生能量转移,损失的能量通过两种形式释放出X射线。如果被靶阻挡的电子的能量不越过一定限度时,发射的是连续光谱的辐射,这种辐射叫做轫致辐射。当电子的能量超过一定的限度时,可以发射一种不连续的、只有几条特殊的谱线组成的线状光谱,这种发射线状光谱的辐射叫做特征辐射。连续光谱的性质与靶材料无关,而特征光谱和靶材料有关,不同的材料有不同的特征光谱。

对于特征光谱作进一步解释:

阴极射线的电子流轰击到靶面,如果能量足够高,靶内一些原子的内层电子会被轰出,使原子处于能级较高的激发态,下图表示原子基态和K、L、M、N 等激发态的能级图:

图1 原子能级图

原子的激发态是不稳定的,内层轨道上的空位将被离核更远的轨道上的电子所补充,从而使原子能级降低,多于的能量便以光量子的形式辐射出来。处于K激发态的原子,当不同外层的电子向K层跃迁时放出的能量各不相同,产生一系列辐射统称为L系辐射。同样,L层电子被轰出后,原子处于L激发态,所产生的一系列辐射统称为L系辐射,以此类推。基于上述机制产生的X射线,其波长只与原子处于不同能级时发生电子跃迁的能级差有关,而原子的能级是由原子结构决定的,不同的原子结构又是由不同元素决定的,即不同靶元素放出的X 射线波长会有所不同。这就是为何要测量X射线波长的缘故。

2、布拉格公式

光波经过狭缝将产生衍射现象,为此,狭缝的大小必须与光波波长同数量级或更小。对X射线,由于它的波长在0.2nm的数量级,要造出相应大小的狭缝以观察X射线的衍射,就相当困难,劳厄首先建议用晶体这个天然光栅来研究X 射线的衍射,因为晶格正好与X射线的波长同数量级。

布拉格公式的推导原理图如下:

图2 布拉格公式的推导

当入射X射线与晶面相交θ角时,假定晶面就是镜面(即布拉格面,入射角与出射角相等),那么容易看出,图中两条射线1、2的光程差是:

δsin

θ

+

DB=

=

2d

BF

当它为波长的整数倍是(假定入射光为单色的,只有一种波长),在θ方向射出的X射线即得到衍射加强,其衍射公式为:

θn

λ

2,

sin

d=

=

n

,2,1

即为X射线在晶体中的衍射公式,称为布拉格公式。在上述假定下,d是晶格之间的距离,也是相邻两布拉格面之间的距离。λ是入射X射线的波长,θ是掠射角(注意是入射X射线与布拉格面之间的夹角)。n是一个整数,为衍射级次。

根据布拉格公式,即可以利用已知的晶体(d已知)通过测θ角来研究未知X射线的波长,也可以利用已知X射线(λ已知)来测量未知晶体的晶面间距。

但事实上,晶格中的原子可以构成很多组方向不同的平行面,d是不相同的。在不同的平行面上,原子数的密度也不一样,故测得的反射线的强度就有差距。

3、晶体几何学基础

晶体是由原子周期排列构成的,它可以看作是由一系列相同的点在空间有规则地作周期性的无限分布,这些点子的整体构成了空间点阵。点阵中的每一个阵点可以是一个原子或一群原子,这个原子称为基元,基元在空间的重复排列就形成晶体的结构。

通过点阵的结点,可以作许多平行的直线族(晶列族)和平行的平面族(晶面族),这样的平行六面体称为晶胞,晶胞是由其三边边长a、b、c和三遍夹角α、β、γ来表示,如下图所示:

图3 晶胞

根据这六个参数,晶体可分为七大晶系,即:三斜晶系、单斜晶系、正交晶系、三角晶系、四方晶系、立方晶系、六角晶系。

为了表示晶面族的差异,可用密勒指数来表示晶面族,密勒指数就可以这样确定,即限晶面族中离原点最近的晶面,若此晶面在三个基本矢量a 、b 、c 上的截距为l c k b h a ///、、(l k h 、、为不可约整数),则密勒指数为(l k h 、、)。

晶面族的(l k h 、、)不同,面间距也不同,立方晶系的晶面距d 为:

2

2

2

0l

h k a d ++=

(1)

其中0a 为晶格常数。 布拉格方程为:

λθn d =sin 2 (2)

布拉格方程还可以写成:

d

n 2sin λ

θ=

则可得:

()()()()

2

2220

2

)2(sin l n k n h n a n ?+?+?=λθ

4、X 射线衍射物相分析

任何结晶物质,无论它是单晶体还是多晶体都具有特定的晶体结构类型、晶胞大小、晶胞中原子、离子、或分子数目的多少、以及他们所在的位置,因此给出特定多晶体X 射线衍射花样,更明确地说,一种多晶物质,无论是纯相还是存在于多相混合试样中,它都给出特定的衍射花样。另一方面,未知混合物的花样是混合物中各相物质衍射花样的总和,每种相的各衍射线条的d 值、相对强度不变,这就是能用X 射线衍射方法作物相定性分析的基础。

四、实验仪器

X 射线实验仪。

五、实验内容

本实验中,采用NaCl 晶体(晶格常数为564.02pm ),已知X 射线的靶元素是钼,实验求得晶面距以及密勒指数。

首先是对试验样品的安装:

①把样品轻轻放在靶台上,向前推到底;

②将靶台轻轻向上抬起,使样品被支架上的凸楞压住;

③顺时针方向轻轻转动锁定杆,使靶台被锁定。

其次启动软件“X-ray Apparatus ”,按F4键清屏,再打开X 射线衍射仪,调节参数,设置X 光管的高压U=35.0KV ,电流I=1.00mA ,测量时间s t 10=?,步频?=?1.0β,按COUPLED 键,再按β键,设置下限角为4.0°,上限角为24°。

调节好参数后,最后按SCAN 键进行自动扫描,扫描完毕后,按F2键存储文件。根据实验结果计算所需的结果。

六、注意事项

1、安全使用X 射线。

2、NaCl 晶体价格昂贵、易碎、易潮解,要注意保护。

3、数据采集完毕,样品恢复原样,关闭衍射仪。

七、数据处理

实验结果测量图(实验数据见附录)如下:

图4 实验结果图

图中,横坐标代表靶台和传感器的角位置,纵坐标则是代表计数率。因为计数N 与所测X 射线强度成正比,所以以计数率代表X 射线强度是合理的。

由(1)(2)两式可得:

λ

θ

n a h l k sin 22

2

2

=++

查资料得,钼靶X 射线管在35KV 电压下的谱线其特征X 射线分别位于

1λ=0.063nm 和2λ=0.071nm 处。

结合原子散射因子和结构因子,对于NaCl 结构,当n 为奇数时会产生消光作用。所以在计算过程中,n 应取偶数。

①取n =2时,数据分析表如下:

可得:

I )对于1λ=0.063nm 的特征X 射线,掠射角为θ=6.6°。其对应的密勒指数为:(1,0,0)。同时算的晶面间距为:

nm n d 5483.01149

.02063

.02sin 21=??==

θλ

又因为:

nm h

l k a d 5640.02

2

2

0=++=

实验所得相对误差为:

%78.25640.0|5640.05483.0|=÷-=?

II )对于1λ=0.071nm 的特征X 射线,掠射角为θ=7.4°。其对应的密勒指数为:(1,0,0)。同时算的晶面间距为:

nm n d 5512.01288

.02071

.02sin 22=??==

θλ

又因为:

nm h

l k a d 5640.02

2

2

0=++=

实验所得相对误差为:

%27.25640.0|5640.05512.0|=÷-=?

θ/°

θsin

波长λ/nm 222h l k ++ 6.6 0.1149 0.063 1.02865 0.071 0.91275 7.4

0.1288

0.063 1.1531 0.071

1.02315

②取n =4时,数据分析表如下:

θ/°

θsin

波长λ/nm 222h l k ++

13.1 0.2267 0.063 1.0148 0.071 0.9004 14.7

0.2538

0.063 1.1361 0.071

1.0081

可得:

I )对于1λ=0.063nm 的特征X 射线,掠射角为θ=13.1°。其对应的密勒指数为:(1,0,0)。同时算的晶面间距为:

nm n d 5558.02267

.02063

.04sin 23=??==

θλ

又因为:

nm h

l k a d 5640.02

2

2

0=++=

实验所得相对误差为:

%45.15640.0|5640.05558.0|=÷-=?

II )对于1λ=0.071nm 的特征X 射线,掠射角为θ=14.7°。其对应的密勒指数为:(1,0,0)。同时算的晶面间距为:

nm n d 5595.02538

.02071

.04sin 24=??==

θλ

又因为:

nm h

l k a d 5640.02

2

2

0=++=

实验所得相对误差为:

%798.05640.0|5640.05595.0|=÷-=?

③取n =6时,数据分析表如下:

θ/°

θsin

波长λ/nm 222h l k ++

19.8 0.3387 0.063 1.0108 0.071 0.8969 22.3

0.3795

0.063 1.1325 0.071

1.0049

可得:

I )对于1λ=0.063nm 的特征X 射线,掠射角为θ=19.8°。其对应的密勒指数为:(1,0,0)。同时算的晶面间距为:

nm n d 5580.03387

.02063

.06sin 25=??==

θλ

又因为:

nm h

l k a d 5640.02

2

2

0=++=

实验所得相对误差为:

%06.15640.0|5640.05580.0|=÷-=?

II )对于1λ=0.071nm 的特征X 射线,掠射角为θ=22.3°。其对应的密勒指数为:(1,0,0)。同时算的晶面间距为:

nm n d 5612.03795

.02071

.06sin 26=??==

θλ

又因为:

nm h

l k a d 5640.02

2

2

0=++=

实验所得相对误差为:

%496.05640.0|5640.05612.0|=÷-=?

综上,NaCl 晶体的密勒指数为(1,0,0)。测得的晶面间距为:

nm

d

d i

i

5557.06

5612

.05580.05595.05558.05512.05483.06

=+++++=

=

相对误差为:%47.15640.05640.05557.0=÷-=?

八、实验小结

首先对于实验仪器参数的设定,有了几点认识:第一,不同的管高压,可以得到不同的特征X射线的波长,但是如果过于低,则不会产生特征光谱;第二,电流I可以控制电子发射量;t?是指平均接收量,所以时间越长则越好,本实验

中,我们设定为10s;β

?是指间隔多少角度测量一次,自然越小越准确,本实验中我们设定为0.1°;β则是指掠射角的大小范围,本实验设定为4°~24°,之所以不从0°开始设置,是因为0°的时候,X射线强度太强,还有另外一个重要原因,即X射线也具有一定的宽度,在0°到4°间的转动是几乎没意义的。另外,对于实验仪器的机械调零问题,在本实验中,如果结果在7.2°±0.3°范围内都认为机械调零已成功。

通过本次实验,对X射线的相关原理进行了一定了解,对于其衍射现象,结合固体物理和光学知识,有了进一步的掌握,实验操作虽然很简单,但在实验过程中的注意事项是至关重要的,谨慎严谨的态度是做好实验的基础。

透射电镜实验报告

透射电镜实验报告 实验报告 课程名称电镜技术成绩姓名学号实验日期 2013.3.27 实验名称透射电子显微镜原理、结构、性能及成像方指导教师 式 一、实验目的与任务 1. 初步了解透射电镜操作过程 2. 初步掌握样品的制样方法(主要是装样过程) 3.拍摄多晶金晶体的低分辨率照片(<300000倍)和高分辨率照片(>300000 倍),并对相关几何参数、形态给予描述。用能谱分析仪对样品的成分进行分析。 二、实验基本原理 1.仪器原理 透射电子显微镜是以图像方式提供样品的检测结果,其成像的决定因素是样品对入射电子的散射,包括弹性散射和非弹性散射两个过程。样品成像时,未经散射的电子构成背景,而像的衬底取决于样品各部分对电子的不同散射特性。采用不同的实验条件可以得到不同的衬底像,透射电子显微镜不仅能显示样品显微组织的形貌,而且可以利用电子衍射效应同样获得样品晶体学信息。本次实验将演示透射电镜的透射成像方式和衍射成像方式。 (1)成像方式 电子束通过样品进入物镜,在其像面形成第一电子像,中间镜将该像放大,成像在自己的像面上,投影镜再将中间镜的像放大,在荧光屏上形成最终像。 (2)衍射方式

如果样品是晶体,它的电子衍射花样呈现在物镜后焦面上,改变中间镜电流,使其对物镜后焦面成像,该面上的电子衍射花样经中间镜和投影镜放大,在荧光屏上获得电子衍射花样的放大像。 2.仪器结构 主机主要由:照明系统、样品室、放大系统、记录系统四大部分构成。 3.透射电子显微镜的样品制备技术 4.图像观察拍照技术 透射电镜以图像提供实验结果。在观察样品之前对电子光学系统进行调查,包括电子枪及象散的消除。使仪器处于良好状态。观察过程中选合适的加速电压和电流。明场、暗场像及选区电子衍射的观察和操作方法不同,应按况选择。三、实验方法与步骤 1( 登陆计算机 2( 打开操作软件 3( 检查电镜状态 4( 装载样品 5( 插入样品杆 6( 加灯丝电流 7( 开始操作 8( 结束操作 9( 取出样品杆 10( 卸载样品 11( 刻录数据 12( 关闭操作软件 13( 退出计算机

2017X射线衍射及物相分析实验报告写法

请将以下内容手写或打印在中原工学院实验报告纸上。 实验报告内容:文中红体字部分请删除后补上自己写的内容班级学号姓名 综合实验X射线衍射仪的使用及物相分析 实验时间,地点 一、实验目的 1.了解x射线衍射仪的构造及使用方法; 2.熟悉x射线衍射仪对样品制备的要求; 3.学会对x射线衍射仪的衍射结果进行简单物相分析。 二、实验原理 (X射线衍射及物相分析原理分别见《材料现代分析方法》第一、二、三、五章。)三、实验设备 Ultima IV型变温全自动组合粉末多晶X射线衍射仪。 (以下为参考内容) X衍射仪由X射线发生器、测角仪、记录仪等几部分组成。

图1 热电子密封式X射线管的示意图 图1是目前常用的热电子密封式X射线管的示意图。阴极由钨丝绕成螺线形,工作时通电至白热状态。由于阴阳极间有几十千伏的电压,故热电子以高速撞击阳极靶面。为防止灯丝氧化并保证电子流稳定,管内抽成1.33×10-9~1.33×10-11的高真空。为使电子束集中,在灯丝外设有聚焦罩。阳极靶由熔点高、导热性好的铜制成,靶面上被一层纯金属。常用的金属材料有Cr,Fe,Co,Ni,Cu,Mo,W等。当高速电子撞击阳极靶面时,便有部分动能转化为X射线,但其中约有99%将转变为热。为了保护阳极靶面,管子工作时需强制冷却。为了使用流水冷却和操作者的安全,应使X射线管的阳极接地,而阴极则由高压电缆加上负高压。x射线管有相当厚的金属管套,使X射线只能从窗口射出。窗口由吸收系数较低的Be片制成。结构分析用X射线管通常有四个对称的窗口,靶面上被电子袭击的范围称为焦点,它是发射X射线的源泉。用螺线形灯丝时,焦点的形状为长方形(面积常为1mm×10mm),此称为实际焦点。窗口位置的设计,使得射出的X射线与靶面成60角(图2),从长方形的短边上的窗口所看到的焦点为1mm2正方形,称点焦点,在长边方向看则得到线焦点。一般的照相多采用点焦点,而线焦点则多用在衍射仪上。 图2 在与靶面成60角的方向上接收X射线束的示意图 自动化衍射仪采用微计算机进行程序的自动控制。图3为日本生产的Ultima IV型变温全自动组合粉末多晶X射线衍射仪工作原理方框图。入射X射线经狭缝照射到多晶试样上,衍射线的单色化可借助于滤波片或单色器。衍射线被探测器所接收,电脉冲经放大后进人脉冲高度分析器。信号脉冲可送至计数率仪,并在记录仪上画出衍射图。脉冲亦可送至计数器(以往称为定标器),经徽处理机进行寻峰、计算峰积分强度或宽度、扣除背底等处理,并在屏幕上显示或通过打印机将所需的图形或数据输出。控制衍射仪的专用微机可通过带编码器的步进电机控制试样(θ)及探测器(2θ)进行连续扫描、阶梯扫描,连动或分别动作等等。目前,衍射仪都配备计算机数据处理系统,使衍射仪的功能进一步扩展,自动化水平更加提高。衍射仪目前已具有采集衍射资料,处理图形数据,查找管理文件以及自动进行物相定性分析等功能。 物相定性分析是X射线衍射分析中最常用的一项测试,衍射仪可自动完成这一过程。首先,仪器按所给定的条件进行衍射数据自动采集,接着进行寻峰处理并自动启动程序。

电子衍射实验报告

电子衍射实验 本实验采用与当年汤姆生的电子衍射实验相似的方法,用电子束透过金属薄膜,在荧光屏上观察电子衍射图样,并通过衍射图测量电子波的波长。 一、 实验目的: 测量运动电子的波长,验证德布罗意公式。理解真空中高速电子穿过晶体薄膜时的衍射现象,进一步理解电子的波动性。掌握晶体对电子的衍射理论及对立方晶系的指标化方法;掌握测量立方晶系的晶格常数方法。 二、实验原理 在物理学的发展史上,关于光的“粒子性”和“波动性”的争论曾延续了很长一段时期。人们最终接受了光既具有粒子性又具有波动性,即光具有波粒二象性。受此启发,在1924年,德布罗意(deBeroglie )提出了一切微观粒子都具有波粒二象性的大胆假设。当时,人们已经掌握了X 射线的晶体衍射知识,这为从实验上证实德布罗意假设提供了有利因素。 1927年戴维逊和革末发表了他们用低速电子轰击镍单晶产生电子衍射的实验结果。两个月后(1928年),英国的汤姆逊和雷德发表了他们用高速电子穿透物质薄片直接获得的电子衍射花纹,他们从实验测得的电子波的波长,与按德布罗意公式计算出的波长相吻合,从而成为第一批证实德布罗意假设的实验。 薛定谔(Schrodinger )等人在此基础上创立了描述微观粒子运动的基本理论——量子力学,德布罗意、戴维逊和革末也因此而获得诺贝尔尔物理学奖。现在,电子衍射技术已成为分析各种固体薄膜和表面层晶体结构的先进方法。 1924 年德布罗意提出实物粒子也具有波粒二象性的假设,他认为粒子的特征波长λ与动量 p 的关系与光子相同,即 h p λ'= 式中h 为普朗克常数,p 为动量。 设电子初速度为零,在电位差为V 的电场中作加速运动。在电位差不太大时,即非相对论情况下,电子速度 c ν=(光在真空中的速度),故2 002m=m 1m c ν-≈其中0m 为电子的静止质量。 它所达到的速度v 可 由电场力所作的功来决定:2 21p eV=m 22m ν=(2) 将式(2)代入(1)中,得:2em V λ'=(3) 式中 e 为电子的电荷, m 为电子质量。将34h 6.62610 JS -=?、310m 9.1110kg -=?、-19e=1.60210C ?,各值代入式(3),可得:A V λ'&(4) 其中加速电压V 的单位为伏特(V ),λ的单位为1010-米。由式(4)可计算与电子德布罗意平面单色波的波 长。而我们知道,当单色 X 射线在多晶体薄膜上产生衍射时,可根据晶格的结构参数和衍射环纹大小来计算 图 1的波长。所以,类比单色 X 射线,也可由电子在多晶体薄膜上产生衍射时测出电子的波长λ 。如λ'与λ在误差范围内相符,则说明德布罗意假设成立。下面简述测量λ的原理。 根据晶体学知识,晶体中的粒子是呈规则排列的,具有点阵结构, 因此可以把晶体看作三维光栅。这种光栅的光栅常数要比普通人工刻 制的光栅小好几个量级。当高速电子束穿过晶体薄膜时所发生的衍射 现象与X 射线穿过多晶体进所发生的衍射现象相类似。它们衍射的方 向均满足布拉格公式。 1晶体是由原子(或离子)有规则地排列而组成的,

x光衍射实验报告doc

x光衍射实验报告 篇一:X射线衍射实验方法和数据分析 X射线衍射实验报告 摘要: 本实验通过了解到X射线的产生、特点和应用;理解X 射线管产生连续X射线谱和特征X射线谱的基本原理,了解D8xX射线衍射仪的基本原理和使用方法,通过分析软件对测量样品进行定性的物相分析。 关键字:布拉格公式晶体结构,X射线衍射仪,物相分析 引言: X射线最早由德国科学家W.C. Roentgen在1895年在研究阴极射线发现,具有很强的穿透性,又因x射线是不带电的粒子流,所以在电磁场中不偏转。1912年劳厄等人发现了X射线在晶体中的衍射现象,证实了X射线本质上是一种波长很短的电磁辐射,其波长约为10nm到10–2nm之间,与晶体中原子间的距离为同一数量级,是研究晶体结构的有力工具。物相分析中的衍射方法包括X射线衍射,电子衍射和中子衍射三种,其中X射线衍射方法使用最广,它包括德拜照相法,聚集照相法,和衍射仪法。 实验目的:1. 了解X射线衍射仪的结构及工作原理 2. 熟悉X射线衍射仪的操作

3. 掌握运用X射线衍射分析软件进行物相分析的方法 实验原理: (1) X射线的产生和X射线的光谱 实验中通常使用X光管来产生X射线。在抽成真空的X 光管内,当由热阴极发出的电子经高压电场加速后,高速运动的电子轰击由金属做成的阳极靶时,靶就发射X射线。发射出的X射线分为两类:(1)如果被靶阻挡的电子的能量不越过一定限度时,发射的是连续光谱的辐射。这种辐射叫做轫致辐射;(2)当电子的能量超过一定的限度时,可以发射一种不连续的、只有几条特殊的谱线组成的线状光谱,这种发射线状光谱的辐射叫做特征辐射。 对于特征X光谱分为 (1)K系谱线:外层电子填K层空穴产生的特征X射线Kα、Kβ… (2)L系谱线:外层电子填L层空穴产生的特征X射线Lα、Lβ…如下图1图1 特征X射线 X射线与物质的作用 X射线与物质相互作用产生各种复杂过程。就其能量转换而言,一束X射线通过物质分为三部分:散射,吸收,透过物质沿原来的方向传播,如下图2,其中相干散射是产生衍射花样原因。 图2X射线与物质的作用

X射线衍射实验报告

X射线衍射实验报告 摘要: 本实验通过了解到X射线的产生、特点和应用;理解X射线管产生连续X 射线谱和特征X射线谱的基本原理,了解D8xX射线衍射仪的基本原理和使用方法,通过分析软件对测量样品进行定性的物相分析。 关键字:布拉格公式晶体结构,X射线衍射仪,物相分析 引言: X射线最早由德国科学家W.C. Roentgen在1895年在研究阴极射线发现,具有很强的穿透性,又因x射线是不带电的粒子流,所以在电磁场中不偏转。1912年劳厄等人发现了X射线在晶体中的衍射现象,证实了X射线本质上是一种波长很短的电磁辐射,其波长约为10nm到10–2nm之间,与晶体中原子间的距离为同一数量级,是研究晶体结构的有力工具。物相分析中的衍射方法包括X射线衍射,电子衍射和中子衍射三种,其中X射线衍射方法使用最广,它包括德拜照相法,聚集照相法,和衍射仪法。 实验目的:1. 了解X射线衍射仪的结构及工作原理 2. 熟悉X射线衍射仪的操作 3. 掌握运用X射线衍射分析软件进行物相分析的方法 实验原理: (1)X射线的产生和X射线的光谱 实验中通常使用X光管来产生X射线。在抽成真空的X光管内,当由热阴极发出的电子经高压电场加速后,高速运动的电子轰击由金属做成的阳极靶时,靶就发射X射线。发射出的X射线分为两类:(1)如果被靶阻挡的电子的能量不越过一定限度时,发射的是连续光谱的辐射。这种辐射叫做轫致辐射;(2)当电子的能量超过一定的限度时,可以发射一种不连续的、只有几条特殊的谱线组成的线状光谱,这种发射线状光谱的辐射叫做特征辐射。 对于特征X光谱分为 (1)K系谱线:外层电子填K层空穴产生的特征X射线Kα、Kβ…

晶体X射线衍射实验报告全解

晶体X射线衍射实验报告全解

中南大学 X射线衍射实验报告 材料科学与工程学院材料学专业1305班班级 姓名学号0603130500 同组者无 黄继武实验日期2015 年12 月05 日指导教 师 评分分评阅人评阅日 期 一、实验目的 1)掌握X射线衍射仪的工作原理、操作方法; 2)掌握X射线衍射实验的样品制备方法; 3)学会X射线衍射实验方法、实验参数设置,独立完成一个衍射实验测试; 4)学会MDI Jade 6的基本操作方法; 5)学会物相定性分析的原理和利用Jade进行物相鉴定的方法; 6)学会物相定量分析的原理和利用Jade进行物相定量的方法。 本实验由衍射仪操作、物相定性分析、物相定量分析三个独立的实验组成,实验报告包含以上三个实验内容。 二、实验原理

1 衍射仪的工作原理 特征X射线是一种波长很短(约为20~0.06nm)的电磁波,能穿透一定厚度的物质,并能使荧光物质发光、照相乳胶感光、气体电离。在用电子束轰击金属“靶”产生的X射线中,包含与靶中各种元素对应的具有特定波长的X射线,称为特征(或标识)X射线。考虑到X射线的波长和晶体内部原子间的距离相近,1912年德国物理学家劳厄(M.von Laue)提出一个重要的科学预见:晶体可以作为X射线的空间衍射光,即当一束X射线通过晶体时将发生衍射,衍射波叠加的结果使射线的强度在某些方向上加强,在其他方向上减弱。分析在照相底片上得到的衍射花样,便可确定晶体结构。这一预见随即为实验所验证。1913年英国物理学家布拉格父子(W. H. Bragg, W. L Bragg)在劳厄发现的基础上,不仅成功地测定了NaCl、KCl等的晶体结构,并提出了作为晶体衍射基础的著名公式──布拉格定律: 2dsinθ=nλ 式中λ为X射线的波长,n为任何正整数。当X射线以掠角θ(入射角的余角,又称为布拉格角)入射到某一点阵晶格间距为d的晶面面上时,在符合上式的条件下,将在反射方向上得到因叠加而加强的衍射线。 2 物相定性分析原理 1) 每一物相具有其特有的特征衍射谱,没有任何两种物相的衍射谱是完全相同 的 2) 记录已知物相的衍射谱,并保存为PDF文件 3) 从PDF文件中检索出与样品衍射谱完全相同的物相 4) 多相样品的衍射谱是其中各相的衍射谱的简单叠加,互不干扰,检索程序能 从PDF文件中检索出全部物相 3 物相定量分析原理 X射线定量相分析的理论基础是物质参与衍射的体积活重量与其所产生的衍射强度成正比。 当不存在消光及微吸收时,均匀、无织构、无限厚、晶粒足够小的单相时,多晶物质所产生的均匀衍射环上单位长度的积分强度为: 式中R为衍射仪圆半径,V o为单胞体积,F为结构因子,P为多重性因子,M为温度因子,μ为线吸收系数。 三、仪器与材料 1)仪器:18KW转靶X射线衍射仪 2)数据处理软件:数据采集与处理终端与数据分析软件MDI Jade 6 3)实验材料:CaCO3+CaSO4、Fe2O3+Fe3O4

实验四选区电子衍射及晶体取向分析

实验四选区电子衍射与晶体取向分析 一、实验内容及实验目的 1.通过选区电子衍射的实际操作演示,加深对选区电子衍射原理的了解。 2.选择合适的薄晶体样品,利用双倾台进行样品取向的调整,使学生掌握利用电子衍射花样测定晶体取向的基本方法。 二、选区电子衍射的原理和操作 1.选区电子衍射的原理 简单地说,选区电子衍射借助设置在物镜像平面的选区光栏,可以对产生衍射的样品区域进行选择,并对选区范围的大小加以限制,从而实现形貌观察和电子衍射的微观对应。选区电子衍射的基本原理见图4-1。选区光栏用于挡住光栏孔以外的电子束,只允许光栏孔以内视场所对应的样品微区的成像电子束通过。使得在荧光屏上观察到的电子衍射花样,它仅来自于选区范围内晶体的贡献。实际上,选区形貌观察和电子衍射花样不能完全对应,也就是说选区衍射存在一定误差,所选区域以外样品晶体对衍射花样也有贡献。选区范围不宜太小,否则将带来太大的误差。对于100kV的透射电镜,最小的选区衍射范围约0.5μm;加速电压为1000kV时,最小的选区范围可达0.1μm。 图-1 选区电子衍射原理示意图 1-物镜2-背焦面3-选区光栏4-中间镜5-中间镜像平面6-物镜像平面 2.选区衍射电子的操作 为了确保得到的衍射花样来自所选的区域,应当遵循如下操作步骤: (1) 在成像的操作方式下,使物镜精确聚焦,获得清晰的形貌像。 (2) 插人并选用尺寸合适的选区光栏围住被选择的视场。 (3) 减小中间镜电流,使其物平面与物镜背焦面重合,转入衍射操作方式。近代的电镜此步操作可按“衍射”按钮自动完成。 (4) 移出物镜光栏,在荧光屏显示电子衍射花样可供观察。 (5) 需要拍照记录时,可适当减小第二聚光镜电流,获得更趋近平行的电子束,使衍射斑点尺寸变小。 三、选区电子衍射的应用 单晶电子衍射花样可以直观地反映晶体二维倒易平面上阵点的排列,而且选区衍射和形貌观察在微区上具有对应性,因此选区电子衍射一般有以下几个方面的应用。 (1) 根据电子衍射花样斑点分布的几何特征,可以确定衍射物质的晶体结构;再利用电子衍射基本公式Rd=Lλ,可以进行物相鉴定。 (2) 确定晶体相对于入射束的取向。

x射线衍射仪原理

x射线衍射仪原理及应用 课程名称材料分析测试技术 系别金属材料工程系 专业金属材料工程 班级材料**** 姓名______ * *_ 学号******** 化学工程与现代材料学院制

x射线衍射仪原理及应用 基本原理: x射线的波长和晶体内部原子面之间的间距相近,晶体可以作为X射线的空间衍射光栅,即一束X射线照射到物体上时,受到物体中原子的散射,每个原子都产生散射波,这些波互相干涉,结果就产生衍射。衍射波叠加的结果使射线的强度在某些方向上加强,在其他方向上减弱。分析衍射结果,便可获得晶体结构。以上是1912年德国物理学家劳厄提出的一个重要科学预见,随即被实验所证实。1913年,英国物理学家布拉格父子,在劳厄发现的基础上,不仅成功的测定了NaCl,KCl等晶体结构,还提出了作为晶体衍射基础的著名公式——布拉格方程:2dsinθ=nλ。 基本特征: X射线及其衍射X射线是一种波长(0.06-20nm)很短的电磁波,能穿透一定厚度的物质,并能使荧光物质发光、照相机乳胶感光、气体电离。用高能电子束轰击金属靶产生X射线,它具有靶中元素相对应的特定波长,称为特征X射线。如铜靶对应的X射线波长为0.154056 nm。对于晶体材料,当待测晶体与入射束呈不同角度时,那些满足布拉格衍射的晶面就会被检测出来,体现在XRD图谱上就是具有不同的衍射强度的衍射峰。对于非晶体材料,由于其结构不存在晶体结构中原子排列的长程有序,只是在几个原子范围内存在着短程有序,故非晶体材料的XRD图谱为一些漫散射馒头峰 基本构成: 1,高稳定度X射线源提供测量所需的X射线, 改变X射线管阳极靶材质可改变X射线的波长, 调节阳极电压可控制X射线源的强度。

X射线衍射图谱的分析

X射线衍射图谱的分析 ---------------------------------------------------------------------------------------------------------------------------------------------- A 衍射峰的有无、位置 B 衍射峰的强度 C 衍射峰的峰形 E 衍射测试实验条件选择 F 其他相关知识 ----------------------------------------------------------------------------------------------------------------------------------------------

---------------------------------------------------------------------------------------------------------------------------------------------- A 衍射峰的有无、位置 1、衍射方向取决于晶体的周期或晶胞的大小。 2、X射线入射到结晶物质上,产生衍射的充分必要条件是 3、第一个公式确定了衍射方向。在一定的实验条件下衍射方向取决于晶面间距d。而d是晶胞参数的函数, ;第二个公式示出衍射强度与结构因子F(hkl)的关系,衍射强度正比于F(hkl)模的平方, 4、F(hkl)的数值取决于物质的结构,即晶胞中原子的种类、数目和排列方式,因此决定X射线衍射谱中衍射方向和衍射强度的 一套d和I的数值是与一个确定的结构相对应的。这就是说,任何一个物相都有一套d-I特征值,两种不同物相的结构稍有差异其衍射谱中的d和I将有区别。这就是应用X射线衍射分析和鉴定物相的依据。 5、若某一种物质包含有多种物相时,每个物相产生的衍射将独立存在,互不相干。该物质衍射实验的结果是各个单相衍射图 谱的简单叠加。因此应用X射线衍射可以对多种物相共存的体系进行全分析。 6、一种物相衍射谱中的(是衍射图谱中最强峰的强度值) 的数值取决于该物质的组成与结构,其中称为相 对强度。当两个样品的数值都对应相等时,这两个样品就是组成与结构相同的同一种物相。因此,当一未知物相的样品其衍射谱上的的数值与某一已知物相M的数据相合时,即可认为未知物即是M相。由此看来,物相分析就是将未知物的衍射实验所得的结果,考虑各种偶然因素的影响,经过去伪存真获得一套可靠的数据后与已知物相的相对照,再依照晶体和衍射的理论对所属物相进行肯定与否定。当今在科学家们的努力下,已储备了相当多的物相的数据,若未知物是在储备范围之内,物相分析工作即是实际可行的。 7、衍射图,图中的每一个峰就是一族晶面的衍射线,

x射线衍射实验

X-射线衍射法进行物相分析 一. 实验题目 X射线衍射物相定性分析 二. 实验目的及要求 学习了解X射线衍射仪的结构和工作原理;掌握X射线衍射物相定性分析的方法和步骤;给定实验样品,设计实验方案,做出正确分析鉴定结果。 三. 实验原理 根据晶体对X射线的衍射特征-衍射线的位置、强度及数量来鉴定结晶物质之物相的方法,就是X 射线物相分析法。 每一种结晶物质都有各自独特的化学组成和晶体结构。没有任何两种物质,它们的晶胞大小、质点种类及其在晶胞中的排列方式是完全一致的。因此,当X射线被晶体衍射时,每一种结晶物质都有自己独特的衍射花样,它们的特征可以用各个衍射晶面间距d和衍射线的相对强度I/I0来表征。其中晶面间距d与晶胞的形状和大小有关,相对强度则与质点的种类及其在晶胞中的位置有关。所以任何一种结晶物质的衍射数据d和I/I0是其晶体结构的必然反映,因而可以根据它们来鉴别结晶物质的 物相。 四. 实验仪器 图一X射线衍射仪 页脚内容1

本实验使用的仪器是Y-2000射线衍射仪( 丹东制造)。X射线衍射仪主要由X射线发生器(X射线管)、测角仪、X射线探测器、计算机控制处理系统等组成。衍射仪如图一所示。 1.X射线管 X射线管主要分密闭式和可拆卸式两种。广泛使用的是密闭式,由阴极灯丝、阳极、聚焦罩等组成,功率大部分在1~2千瓦。可拆卸式X射线管又称旋转阳极靶,其功率比密闭式大许多倍,一般为12~60千瓦。常用的X射线靶材有W、Ag、Mo、Ni、Co、Fe、Cr、Cu等。X射线管线焦点为1×10平方毫米,取出角为3~6度。 选择阳极靶的基本要求:尽可能避免靶材产生的特征X射线激发样品的荧光辐射,以降低衍射花样的背底,使图样清晰。 测角仪是粉末X射线衍射仪的核心部件,主要由索拉光阑、发散狭缝、接收狭缝、防散射狭缝、样品座及闪烁探测器等组成。 (1)衍射仪一般利用线焦点作为X射线源S。如果采用焦斑尺寸为1×10平方毫米的常规X射线管,出射角6°时,实际有效焦宽为0.1毫米,成为0.1×10平方毫米的线状X射线源。 (2)从S发射的X射线,其水平方向的发散角被第一个狭缝限制之后,照射试样。这个狭缝称为发散狭缝(DS),生产厂供给1/6°、1/2°、1°、2°、4°的发散狭缝和测角仪调整用0.05毫米宽的狭缝。 (3)从试样上衍射的X射线束,在F处聚焦,放在这个位置的第二个狭缝,称为接收狭缝(RS).生产厂供给0.15毫米、0.3毫米、0.6毫米宽的接收狭缝。 (4)第三个狭缝是防止空气散射等非试样散射X射线进入计数管,称为防散射狭缝(SS)。SS和DS 配对,生产厂供给与发散狭缝的发射角相同的防散射狭缝。 页脚内容2

选区电子衍射分析完整版

选区电子衍射分析 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

选区电子衍射分析实验报告 一、实验目的 1、掌握进行选区衍射的正确方法; 2、学习如何对拍摄的电子衍射花样进行标定; 3、通过选区衍射操作,加深对电子衍射原理的了解。 二、实验内容 1、复习电镜的操作程序、了解成像操作、衍射操作的区别与联系; 2、以复合材料(Al2O3+TiB2)/Al为观察对象,进行选区衍射操作,获得衍射花样; 3、对得到的单晶和多晶电子衍射花样进行标定。 三、实验设备和器材 JEM-2100F型TEM透射电子显微镜 四、实验原理 选区电子衍射就是对样品中感兴趣的微区进行电子衍射,以获得该微区电子衍射图的方法。选区电子衍射又称微区衍射,它是通过移动安置在中间镜上的选区光栏(又称中间镜光栏),使之套在感兴趣的区域上,分别进行成像操作或衍射操作,实现所选区域的形貌分析和结构分析。 图1即为选区电子衍射原理图。 平行入射电子束通过试样后,由于试 样薄,晶体内满足布拉格衍射条件的 晶面组(hkl)将产生与入射方向成 2θ角的平行衍射束。由透镜的基本性 质可知,透射束和衍射束将在物镜的 后焦面上分别形成透射斑点和衍射斑 点,从而在物镜的后焦面上形成试样 晶体的电子衍射谱,然后各斑点经干 涉后重新在物镜的像平面上成像。如 果调整中间镜的励磁电流,使中间镜 的物平面分别与物镜的后焦面和像平

面重合,则该区的电子衍射谱和像分别被中间镜和投影镜放大,显示在荧光屏上。 显然,单晶体的电子衍射谱为对称于中心透射斑点的规则排列的斑点群。多晶体的电子衍射谱则为以透射斑点为中心的衍射环。非晶则为一个漫散的晕斑。 (a)单晶(b)多晶(c)非晶 图2电子衍射花样 五、实验步骤 通过移动安置在中间镜上的选区光栏(又称中间镜光栏),使之套在感兴趣的区域上,分别进行成像操作或衍射操作,实现所选区域的形貌分析和结构分析。具体步骤如下: (1)由成像操作使物镜精确聚焦,获得清晰形貌像。 (2)插入尺寸合适的选区光栏,套住被选视场,调整物镜电流,使光栏孔内的像清晰,保证了物镜的像平面与选区光栏面重合。 (3)调整中间镜的励磁电流,使光栏边缘像清晰,从而使中间镜的物平面与选区光栏的平面重合,这也使选区光栏面、物镜的像平面和中间镜的物平面三者重合,进一步保证了选区的精度。 (4)移去物镜光栏(否则会影响衍射斑点的形成和完整性),调整中间镜的励磁电流,使中间镜的物平面与物镜的后焦面共面,由成像操作转变为衍射操作。电子束经中间镜和投影镜放大后,在荧光屏上将产生所选区域的电子衍射图谱,对于高档的现代电镜,也可操作“衍射”按钮自动完成。 (5)需要照相时,可适当减小第二聚光镜的励磁电流,减小入射电子束的孔径角,缩小束斑尺寸,提高斑点清晰度。微区的形貌和衍射花样可存同一张底片上。 六、电子衍射花样的标定方法 电子衍射花样的标定:即衍射斑点指数化,并确定衍射花样所属的晶带轴指数

X射线衍射实验

X 射线布拉格衍射实验 一、 实验目的 1) 观察用X 射线对NaCl 单晶的Bragg 衍射。 2) 确定X 射线αK 和βK 线的波长。 3) 验证Bragg 衍射定律 4) 明确X 射线的波长的性质。 二、 实验装置 德国莱宝教具公司生产的X 射线装置是用微处理器控制的可进行多种实验的小型X 射线装置。该装置的高压系统、X 光管和实验区域被完全密封起来,正面装有两扇铅玻璃门,当它们其中任意一扇被打开时会自动切断高压,具有较大的安全性。其测量结果通过计算机实时采集和处理,使用极其方便。 本实验所用装置为554 81X-RAY APPARATUS 。 在X 射线装置中,左侧上方是控制面板,其下方是连接面板。中间是X 光管室,装有Mo (钼)阳极的X 光管,其高度可通过底部的调解螺杆进行调整。右面是实验区域,如图1所示,其中左边装有准直器和锆滤片;中间是靶台,NaCl 和LiF 单晶就安装在靶台上;右边 是测角器,松开锁定杆可调整测角器的位 图1 实验区域图 置,端窗型G-M 计数管也安装在测角器上。X 射线装置的左侧面是主电源开关,右侧面有一圆形的荧光屏,它是一种表面涂有荧光物质的铅玻璃平板,用于在“透照法”实验中观察X 光线,平时用盖板罩起来以避免损坏荧光物质。其下方是空通道,它构成实验区域内外沟通的渠道,被设计成迷宫,以不使X 射线外泄。装置的底部有四个脚,上方有两个提手柄。 如图2,是控制面板的示意图。

b5 图 2 控制面板 其中b1是显示位置,其顶部显示当前计数率,底部显示所用键的设置参数。在“耦合”模式下,靶的角度位置显示在显示区域的底部而顶部则显示传感器的计数率与角度位置。b2是调节旋钮,所有的参数设置均通过它来调节。b3是参数选择区域,它们是:U (管电压)、I (管电流)、△t (测量时间)、△β(测角器转动的角 步幅)、β(测角器的转动范围,即上限角和下限角)。b4扫描模式区域,共有SENSOR (传感器)、TARGET (靶)和COUPLED (耦合,即传感器和靶以2:1的方式运动)三种模式,ZERO 按钮用于复位到系统的零位置。b5是操作键区域,主要有:RESET (复位到系统的缺省值)、REPLAY (将最后的测量数据传送至XY 记录仪或PC 机)、SCAN ON/OFF (开启/关闭自动扫描)、 (开启声音脉冲)、HV ON/OFF (开启/关闭高压),当开启高压时,其上方的指示灯将发出闪烁的红光,表示正在发射X 射线。 三、 实验原理 1) X 射线的产生和性质 X射线的产生一般利用高速电子和物质原子的碰撞实现。常见的X射线管是一个真空二极管,管内阴极是炽热的钨丝,可发射电子,阳极是表面嵌有靶材料的钼块。两极加上几十千伏的高压,由此产生很强的电场使电子到达阳极时获得高速。高速运动的电子打在阳极靶面上,它的动能一部分转化为X射线的能量,其余大部分变为热能使阳极温度迅速升高,工作时需要对阳极散热。 从X射线管发出的X射线可以分为两部分:一是具有连续波长的X射线,构成连续x射线谱;另一部分是具有特定波长的标识谱,又名特征谱,它叠加在连续谱上成为几个尖锐的峰,如图3所示。 产生连续谱和标识谱的机理不同: 连续谱:高速电子到达阳极表面时,电子的运动 突然受阻,根据电磁场理论,这种电子产生韧制辐射, 图3 X 射线光谱图

X射线衍射分析

X-射线衍射分析 化学系 0907401班贺绍飞 [摘要] 研究晶体材料,X-射线衍射分析非常理想也非常有效,而对于液体和非晶态固体,这种方法也能提供许多基本的重要数据。所以X-射线衍射分析被认为是研究固体最有效的工具。本文首先对X-射线衍射分析技术进行了简单介绍,然后分别举例说明X-射线衍射分析在晶体分析中的作用。 [关键词] X-射线衍射分析;晶体;晶体分析 1 引言 1912年劳埃等人根据理论预见,并用实验证实了X射线与晶体相遇时能发生衍射现象,证明了X射线具有电磁波的性质,成为X射线衍射学的第一个里程碑。当一束单色X射线入射到晶体时,由于晶体是由原子规则排列成的晶胞组成,这些规则排列的原子间距离与入射X射线波长有相同数量级,故由不同原子散射的X 射线相互干涉,在某些特殊方向上产生强X射线衍射,衍射线在空间分布的方位和强度,与晶体结构密切相关。这就是X射线衍射的基本原理。衍射线空间方位与晶体结构的关系可用布拉格方程表示: λ θn 2 d= sin 式中:λ是X射线的波长;θ是衍射角;d是结晶面间隔;n是整数。波长λ可用已知的X射线衍射角测定,进而求得面间隔,即结晶内原子或离子的规则排列状态。将求出的衍射X射线强度和面间隔与已知的表对照,即可确定试样结晶的物质结构,此即定性分析。从衍射X射线强度的比较,可进行定量分析。 2 X-射线衍射分析 2.1 X-射线衍射分析的原理 X-射线衍射分析是利用晶体形成的X射线衍射,对物质进行内部原子在空间分布状况的结构分析方法。 将具有一定波长的X射线照射到结晶性物质上时,X射线因在结晶内遇到规则排列的原子或离子而发生散射,散射的X射线在某些方向上相位得到加强,从而显示与结晶结构相对应的特有的衍射现象。衍射X射线满足布拉格(W.L.Bragg)方程: θn λ 2 sin d= 式中:λ是X射线的波长;θ是衍射角;d是结晶面间隔;n是整数。波长λ可用已知的X射线衍射角测定,进而求得面间隔,即结晶内原子或离子的规则排列状态。将求出的衍射X射线强度和面间隔与已知的表对照,即可确定试样结晶的物质结构,此即定性分析。从衍射X射线强度的比较,可进行定量分析。本法的特点在于可以获得元素存在的化合物状态、原子间相互结合的方式,从而可进行价态分析,可用于对环境固体污染物的物相鉴定,如大气颗粒物中的风砂和土壤成分、工业排放的金属及其化合物(粉尘)、汽车排气中卤化铅的组成、水体沉积物或悬浮物中金属存在的状态等等。 2.2 X-射线衍射分析的方法 在各种X-射线衍射实验方法中,基本方法有单晶法、多晶法和双晶法。

光电效应测普朗克常数-实验报告

综合、设计性实验报告 年级 ***** 学号********** 姓名 **** 时间********** 成绩 _________

一、实验题目 光电效应测普朗克常数 二、实验目的 1、通过实验深刻理解爱因斯坦的光电效应理论,了解光电效应的基本规律; 2、掌握用光电管进行光电效应研究的方法; 3、学习对光电管伏安特性曲线的处理方法,并用以测定普朗克常数。 三、仪器用具 ZKY—GD—3光电效应测试仪、汞灯及电源、滤色片(五个)、光阑(两个)、光电管、测试仪 四、实验原理 1、光电效应与爱因斯坦方程 用合适频率的光照射在某些金属表面上时,会有电子从金属表面逸出,这种现象叫做光电效应,从金属表面逸出的电子叫光电子。为了解释光电效应现象,爱因斯坦提出了“光量子”的概念,认为对于频率为的光波,每个光子的能量为 式中,为普朗克常数,它的公认值是 = 。 按照爱因斯坦的理论,光电效应的实质是当光子和电子相碰撞时,光子把全部能量传递给电子,电子所获得的能量,一部分用来克服金属表面对它的约束,其余的能量则成为该光电子逸出金属表面后的动能。爱因斯坦提出了著名的光电方程: (1)式中,为入射光的频率,为电子的质量,为光电子逸出金属表面的初速度,为被光线照射的金属材料的逸出功,为从金属逸出的光电子的最大初动能。 由(1)式可见,入射到金属表面的光频率越高,逸出的电子动能必然也越大,所以即使阴极不加电压也会有光电子落入阳极而形成光电流,甚至阳极电位比阴极电位低时也会有光电子落到阳极,直至阳极电位低于某一数值时,所有光电子都不能到达阳极,光电流才为零。这个相对于阴极为负值的阳极电位被称为光电效应的截止电压。 显然,有 (2)代入(1)式,即有 (3)由上式可知,若光电子能量,则不能产生光电子。产生光电效应的最低频率是,通常称为光电效应的截止频率。不同材料有不同的逸出功,因而也不同。由于光的强弱决定于光量子的数量,所以光电流与入射光的强度成正比。又因为一

X射线衍射试验指导书

实验指导书 实验一“衍射仪的结构、原理及物相分析” 一.实验目的及要求 学习了解X射线衍射仪的结构和工作原理;掌握X射线衍射物相定性分析的方法和步骤。 二.实验原理 根据晶体对X射线的衍射特征-衍射线的位置、强度及数量来鉴定结晶物质之物相的方法,就是X射线物相分析法。每一种结晶物质都有各自独特的化学组成和晶体结构。没有任何两种物质,它们的晶胞大小、质点种类及其在晶胞中的排列方式是完全一致的。因此,当X射线被晶体衍射时,每一种结晶物质都有自己独特的衍射花样,它们的特征可以用各个衍射晶面间距d和衍射线的相对强度I/I1来表征。其中晶面间距d与晶胞的形状和大小有关,相对强度则与质点的种类及其在晶胞中的位置有关。所以任何一种结晶物质的衍射数据d和I/I1是其晶体结构的必然反映,因而可以根据它们来鉴别结晶物质的物相。 三.实验仪器 本实验使用的仪器是D/max 2500 X射线衍射仪(日本理学)。X射线衍射仪主要由X射线发生器(X射线管)、测角仪、X射线探测器、计算机控制处理系统等组成。图1是D/max 2500 X射线衍射仪。 图1 Rigaku D/max2500

1.X射线管 衍射用X射线管实际都属于热电子二极管,有密闭式和转靶式两种。广泛使用的是密闭式,由阴极灯丝、阳极、聚焦罩等组成,功率大部分在1~2.5千瓦,转靶式一般在10千瓦以上,其特点是阳极以极快的速度转动,使电子轰击面不断改变,即不断改变发热点,从而达到提高功率的目的。本实验中使用的日本理学D/max 2500X射线衍射仪采用旋转靶,最高功率高达18kw。图2是X射线管结构示意图。阴极由钨丝绕成螺线形,工作时通电至白热状态。由于阴阳极间有几十千伏的电压,故热电子以高速撞击阳极靶面。为防止灯丝氧化并保证电子流稳定,转靶X射线管采用机械泵+分子泵二级真空泵系统保持管内真空度。为使电子束集中,在灯丝外设有聚焦罩。阳极靶由熔点高、导热性好的铜制成,靶面上镀一层纯金属。常用的金属材料有Cr,Fe,Co,Ni,Cu,Mo,W等,本实验中靶材料为Cu。当高速电子撞击阳极靶面时,便有部分动能转化为X射线,但其中约有99%将转变为热。为了保护阳极靶面,管子工作时需强制冷却。为了使用流水冷却,也为了操作者的安全,应使X射线管的阳极接地,而阴极则由高压电缆加上负高压。X射线管有相当厚的金属管套,使X射线只能从窗口射出。窗口由吸收系数较低的Be片制成。 图2 X射线管示意图 选择阳极靶的基本要求:尽可能避免靶材产生的特征X射线激发样品的荧光辐射,以降低衍射花样的背底,使图样清晰。 2. 测角仪 测角仪是粉末X射线衍射仪的核心部件,实现对衍射角的测量。本实验中测角仪

实验一-X射线衍射技术及物相分析

实验一 X射线衍射技术及物相分析 一、实验目的与要求 1.学习了解X射线衍射仪的结构和工作原理; 2.掌握X射线衍射物相定性分析的方法和步骤; 3.给定实验样品,设计实验方案,做出正确分析鉴定结果。 二、实验仪器 本实验使用的仪器是Rigaku UltimaⅣX射线衍射仪。主要由冷却循环水系统、X射线衍射仪和计算机控制处理系统三部分组成。X射线衍射仪主要由X射线发生器即X射线管、测角仪、X射线探测器等构成。 1.X射线管 X射线管主要分密闭式和可拆卸式两种。广泛使用的是密闭式,由阴极灯丝、阳极、聚焦罩等组成,功率大部分在1~2千瓦。可拆卸式X射线管又称旋转阳极靶,其功率比密闭式大许多倍,一般为12~60千瓦。常用的X射线靶材有W、Ag、Mo、Ni、Co、Fe、Cr、Cu等。X射线管线焦点为1×10平方毫米,取出角为3~6度。此X射线管为密闭式,功率为2千瓦。X射线靶材为Cu。 选择阳极靶的基本要求:尽可能避免靶材产生的特征X射线激发样品的荧光辐射,以降低衍射花样的背底,使图样清晰。 2.测角仪 测角仪是粉末X射线衍射仪的核心部件,主要由索拉光阑、发散狭缝、接收狭缝、防散射狭缝、样品座及闪烁探测器等组成。 (1)衍射仪一般利用线焦点作为X射线源S。如果采用焦斑尺寸为1×10平方毫米的常规X射线管,出射角6°时,实际有效焦宽为0.1毫米,成为0.1×10平方毫米的线状X射线源。 (2)从S发射的X射线,其水平方向的发散角被第一个狭缝限制之后,照射试样。这个狭缝称为发散狭缝(DS),生产厂供给1/6°、1/2°、1°、2°、4°的发散狭缝和测角仪调整用0.05毫米宽的狭缝。 (3)从试样上衍射的X射线束,在F处聚焦,放在这个位置的第二个狭缝,称为接收狭缝(RS).生产厂供给0.15毫米、0.3毫米、0.6毫米宽的接收狭缝。 (4)第三个狭缝是防止空气散射等非试样散射X射线进入计数管,称为防散射狭缝(SS)。SS和DS配对,生产厂供给与发散狭缝的发射角相同的防散射狭缝。 (5)S1、S2称为索拉狭缝,是由一组等间距相互平行的薄金属片组成,它限制入射X射线和衍射线的垂直方向发散。索拉狭缝装在叫做索拉狭缝盒的框架里。这个框架兼作其他狭缝插座用,即插入DS,

X射线衍射结构分析实验报告

X 射线衍射结构分析实验 【摘要】在一定条件下,每一种物质在被电子流轰击时都会产生特定的X 射线。而X 射线的波长很小,可利用晶体这个天然的光栅使X 射线发生衍射。本实验通过轰击钼靶产生一定波长的X 射线,并将NaCl 晶体作为光栅使其发生衍射。通过一级衍射峰θ的值的测量,可测定NaCl 晶体的晶格结构。 【关键词】X 射线 衍射 布拉格方程 晶格常树 引言:X 射线是波长介于紫外线和γ射线之间的电磁辐射,是一种波长很短的电磁波,能 穿透一定厚度的物质,并能使荧光物质发光、照相乳胶感光、气体电离。X 射线最早是由德国科学家伦琴在1895年在研究阴极射线发现,它具有很强的穿透性,又因为X 射线是不带电的粒子流,所以在电磁场中不偏转。1912年劳厄等人发现了X 射线在晶体中的衍射现象,证实了X 射线本质上是一种波长很短的电磁辐射,其波长约为10nm 到10–2nm 之间,与晶体中原子间的距离为同一数量级,用已知的X 射线可测定各种晶体的晶格结构。 也可以用已知晶体结构的晶体来测定未知X 射线的波长,从而确定未知物质的成分。 正文: 1、实验目的: 1. 了解X 射线的产生、特点和应用; 2. 了解X 射线衍射仪的结构和工作原理 3. 掌握X 射线衍射物相定性分析的方法和步骤 2、实验原理: 1、由于X 光的波长与一般物质中原子的间距同数量级,因此X 光成为研究物质微观结构的有力工具。当X 光射入原子有序排列的晶体时,会发生类似于可见光入射到光栅时的衍射现象。1913年英国科学家布拉格父子(W.H.Bragg 和W.L.Bragg )证明了X 光在晶体上衍射的基本规律为(如图2所示): λθn d =sin 2 (1) 根据布拉格公式,既可以利用已知的晶体(d 已知)通过测量θ角来研究未知X 光的波长,也可以利用已知的X 光(λ已知)来测量未知晶体的晶面间距。本实验利用已知钼的X 光特征谱线来测量氯化钠(NaCl )晶体的晶面间距,从而得到其晶体结构。 立方晶体的晶面距(d )与密勒指数的关系: 2 2 2 0l h k a d ++=

高分子物理实验报告(精)

光学解偏振法测聚合物的结晶速度 一、实验目的 1、加深对聚合物的结晶动力学特征的认识。 2、了解光学解偏振法测定结晶速度的基本原理。 3、熟悉 JJY -3型结晶速度仪的操作。 4、掌握光学解偏振法测定等规聚丙烯结晶速度的实验技术。二、实验原理 熔融态结晶的聚合物大多数都呈现为球晶结构。通过电子显微镜观察球晶长大的过程时, 起始晶核先转变成一个小的微纤维, 在结晶的过程中, 它又以一些匀称的空间角度向外支化出微纤束, 当长得足够大时, 这些微纤束就构成球状结晶。电子衍射实验证明了球晶中分子链(c 轴总是垂直于球晶的半径方向,而 b 轴总是沿着球晶半径方向,如图 1所示,其中 a 、 b 、 e 轴表示单位晶胞在各方向上的取向。

分子链的取向排列使球晶在光学性质上是各向异性的, 都会发生双折射。光学解偏振法是根据聚合物结晶过程中伴随着双折射性质变化的原理, 即由置于正交偏光镜之间的聚合物熔体结晶时产生的解偏振光强度变化来确定结晶速度。 由实验测定等温结晶的解偏振光强-时间曲线 (图 2 ,从曲线可以看出,在达到样品的热平衡时间后, 首先是结晶速度很慢的诱导期, 在此期间没有透过光的解偏振发生, 而随着结晶开始, 解偏振光强的增强越来越快, 并以指数函数形式增大到某一数值后又逐渐减小, 直到趋近于一个平衡值。对于聚合物而言, 因链段松弛时间范围很宽, 结晶终止往往需要很长时间, 为了实验测量的方便,通常采用 1t 作为 表征聚合物结晶速度的参数, t 为半结晶期,可从图 2中直接求得,即令 2 1 0=--∞∞I I I I t 时 所对应的时间。 根据过冷熔体本体结晶的球状对称生长理论,阿夫拉米(Avrami 指出,聚合物结晶过程可用下面的方程式描述: 解偏振光强 时间 图 2 等温结晶的解偏振光强—时间曲线 n Kt e

相关文档
最新文档