有机氯对316L不锈钢填料的腐蚀行为分析(论文)

有机氯对316L不锈钢填料的腐蚀行为分析(论文)
有机氯对316L不锈钢填料的腐蚀行为分析(论文)

有机氯对316L不锈钢填料的腐蚀行为分析

作者:张志刚, 马大永, Zhang Zhigang, Ma Dayong

作者单位:张志刚,Zhang Zhigang(中国石油化工股份有限公司沧州分公司 河北沧州061000), 马大永,Ma Dayong(辽宁石油化工大学机械工程学院 辽宁抚顺113001)

刊名:

石油化工腐蚀与防护

英文刊名:Corrosion & Protection in Petrochemical Industry

年,卷(期):2015,32(1)

引用本文格式:张志刚.马大永.Zhang Zhigang.Ma Dayong有机氯对316L不锈钢填料的腐蚀行为分析[期刊论文]-石油化工腐蚀与防护 2015(1)

工业冷却水对不锈钢换热器腐蚀的研究及对策

编号:AQ-JS-03383 ( 安全技术) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 工业冷却水对不锈钢换热器腐 蚀的研究及对策 Study on Corrosion of stainless steel heat exchanger by industrial cooling water and Countermeasures

工业冷却水对不锈钢换热器腐蚀的 研究及对策 使用备注:技术安全主要是通过对技术和安全本质性的再认识以提高对技术和安全的理解,进而形成更加科 学的技术安全观,并在新技术安全观指引下改进安全技术和安全措施,最终达到提高安全性的目的。 摘要:不锈钢换热器在石化、电力工业的生产中有着广泛的应用。但是,不锈钢管局部腐蚀(主要是孔蚀和应力腐蚀破裂)的发展速度和所造成的破坏也是惊人的。本文简要介绍了不锈钢的腐蚀类型;针对火电厂运行、基建机组凝汽器不锈钢管的防腐蚀工作,阐述了相应的化学处理措施和成功的工作实例。 关键词:不锈钢;凝汽器;孔蚀;应力腐蚀破裂;防腐;化学处理 1不锈钢换热器的应用情况 不锈钢是铁、铬和镍的合金,最早出现在20世纪初。铬镍钢,特别是18Cr-8Ni型奥氏体不锈钢,由于它在许多化学介质中具有高度的稳定性,并且能耐高温气体腐蚀,所以在化学工业中得到最

广泛的应用,在许多有机产品和聚合物的生产过程中(如尿素、醋酸、聚丙烯、聚乙烯醇等),大多数设备都是由铬镍合金钢和奥氏体不锈钢制造的。其中大量与各种工业水接触的列管换热器、冷凝器和夹套反应器多用奥氏体不锈钢(主要类型为AISI304、304L、316、316L)制造。 在电力工业中,不锈钢的应用范围也越来越广泛。在发电厂,不锈钢主要用来制造凝汽器的冷却管。 凝汽器是汽轮发电机组的重要辅机之一,它的性能好坏直接影响机组的运行。而它的主要传热组件—冷却管,是凝汽器的最重要部分,价格占其总价的一半以上。因此,冷却管的选材和选型是凝汽器的设计关键。 早在20世纪90年代初,我国就开始应用螺旋槽管传热理论,研制新型凝汽器。经过反复论证和试验,研制出理想的冷却管凝汽器—高效不锈钢波螺焊管凝汽器。 不锈钢波螺焊管比铜管的总体传热系数提高25~30%,在几家热电厂的实际运行当中,当保持真空度不变的情况下,循环水量比

不锈钢的品质特性及其要求

不锈钢的品质特性及其要求 1不锈钢的品质特性: 2不锈钢的品质特性及其要求 各产品由于用途的不同,其加工工艺和原料的品质要求也不同 (1)材质: ①DDQ(deep drawing quality)材:是指用于深拉(冲)用途的材料,也就是大家所说的的软料,这种材料的主要特点是延伸率较高(≧53%),硬度较低(≦170%),内部晶粒等级在7.0~8.0之间,深冲性能极佳。目前许多生产保温瓶、锅类的企业,其产品的加工比(BLANKING SIZE/制品直径)一般都比较高,它们的加工比分别达3.0、1.96、2.13、1.98。SUS304 DDQ用材主要就是用于这些要求较高加工比的产品,当然加工比超过2.0的产品一般都需经过几道次的拉伸才能完成。如果原料延伸方面达不到的话,在加工深拉制品时产品极易产生裂纹、拉穿的现象,影响成品合格率,当然也就加大了厂家的成本; ②一般材:主要用于除了DDQ用途外的材料,这种材料的特点是延伸率相对较低(≧45%),而硬度相对较高(≦180),内部晶粒度等级在8.0~9.0

间,与DDQ用材比较,它的深冲性能相对稍差,它主要用于不需伸拉就能得到的制品,象一类餐具的勺、匙、叉、电器用具、钢管用途等。但它与DDQ材相比有一个优点,就是BQ性相对较好,这主要是由于它的硬度稍高的缘故。 (2)表面品质: 不锈钢薄板是一种价格非常高的材料,客户对它的表面质量要求也非常高。但不锈薄板在生产过程中不可避免会出现各种缺陷,如划伤、麻点、折痕、污染等,从而其表面质量,象划伤、折痕等这些缺陷不管是高级材还是低级都不允许出现,而麻点这种缺陷在勺、匙、叉、制作时也是决不允许的,因为抛光时很难抛掉它。我们根据表面各种缺陷出现的程度和频率,来确定其表质量等级,从而来确定产品等级。(见表:) (3)厚度公差: 一般来说不锈钢制品的不同,其要求原料厚度公差也各不相同,象二类餐具和保温杯等,厚度公差一般要求较高,为-3~5%,而一类餐具厚度公差一般要求

氯离子对不锈钢的腐蚀

氯离子对不锈钢的腐蚀 问题描述:对于奥氏体不锈钢在氯离子环境下的腐蚀,各种权威的书籍均有严格的要求,氯离子含量要小于25ppm,否则就会发生应力腐蚀、孔蚀、晶间腐蚀。但是事实上在工程应用中我们有很多高浓度的氯离子含量的情况下在使用奥氏体不锈钢,因些分析氯离子对不锈钢的腐蚀,采取预防措施,延长使用寿命,或合理选材。 不锈钢的腐蚀失效分析: 1、应力腐蚀失:不锈钢在含有氧的氯离子的腐蚀介质环境产生应力腐蚀。应力腐蚀失效所占的比例高达45 %左右。常用的防护措施:合理选材,选用耐应力腐蚀材料主要有高纯奥氏体铬镍钢,高硅奥氏体铬镍钢,高铬铁素体钢和铁素体—奥氏体双相钢。其中,以铁素体—奥氏体双相钢的抗应力腐蚀能力最好。控制应力:装配时,尽量减少应力集中,并使其与介质接触部分具有最小的残余应力,防止磕碰划伤,严格遵守焊接工艺规范。严格遵守操作规程:严格控制原料成分、流速、介质温度、压力、pH 值等工艺指标。在工艺条件允许的范围内添加缓蚀剂。铬镍不锈钢在溶解有氧的氯化物中使用时,应把氧的质量分数降低到1. 0 ×10 - 6 以下。实践证明,在含有氯离子质量分数为500. 0 ×10 - 6的水中,只需加入质量分数为150. 0 ×10 - 6的硝酸盐和质量分数为0. 5 ×10 - 6亚硫酸钠混合物,就可以得到良好的效果。 2、孔蚀失效及预防措施 小孔腐蚀一般在静止的介质中容易发生。蚀孔通常沿着重力方向或横向方向发展,孔蚀一旦形成,即向深处自动加速。,不锈钢表面的氧化膜在含有氯离子的水溶液中便产生了溶解,结果在基底金属上生成孔径为20μm~30μm小蚀坑这些小蚀坑便是孔蚀核。只要介质中含有一定量的氯离子,便可能使蚀核发展成蚀孔。常见预防措施:在不锈钢中加入钼、氮、硅等元素或加入这些元素的同时提高铬含量。降低氯离子在介质中的含量。加入缓蚀剂,增加钝化膜的稳定性或有利于受损钝化膜得以再钝化。采用外加阴极电流保护,抑制孔蚀。 3、点腐蚀:由于任何金属材料都不同程度的存在非金属夹杂物,这些非金属化合物,在Cl 离子的腐蚀作用下将很快形成坑点腐蚀,在闭塞电池的作用,坑外的Cl离子将向坑内迁移,而带正电荷的坑内金属离子将向坑外迁移。在不锈钢材料中,加Mo的材料比不加Mo的材料在耐点腐蚀性能方面要好,Mo含量添加的越多,耐坑点腐蚀的性能越好。 4.缝隙腐蚀 缝隙腐蚀与坑点腐蚀机理一样,是由于缝隙中存在闭塞电池的作用,导致Cl离子富集而出现的腐蚀现象。这类腐蚀一般发生在法兰垫片、搭接缝、螺栓螺帽的缝隙,以及换热管与管板孔的缝隙部位,缝隙腐蚀与缝隙中静止溶液的浓缩有很大关系,一旦有了缝隙腐蚀环境,其诱导应力腐蚀的几率是很高的。 总结 1:几种不锈钢在含氯(Cl—)水溶液中的适用条件 一、板片材料的选用 (1)注:不含气体、PH值为7(即中性)、流动的含氯水溶液。 (2)奥氏体不锈钢对硫化物(SO2 、SO3)腐蚀有一定的抗力。但是,Ni含量越高,耐蚀性将降低(因生成低熔点NiS),可能引起硫化物应力腐蚀开裂。硫化物应力腐蚀开 裂同材料的硬度有关,奥氏体不锈钢的硬度应≤HB228;Ni-Mo或Ni–Mo–Cr合金的 硬度不限;碳素钢的硬度应≤HB225; 3)必须注意板片材料与垫片或胶粘剂的相容性。例如,应避免将含氯的垫片或胶粘剂(如氯丁橡胶或以其为溶质的胶粘剂)与不锈钢板片组配,或者将氟橡胶、聚四氟乙烯(PTFE)垫片与钛板板片组配;

化工安全与防腐案例分析

化工安全与防腐案例分析 —真空制盐钛制换热器腐蚀失效实例分析 班级:xxxxxx 姓名:xx 学号:xxxxxxxx

真空制盐钛制换热器腐蚀失效实例分析 一般认为在温度不太高的NaCl溶液中,钛的腐蚀速度非常低。但是随着钛在制盐行业的大量使用,发生腐蚀失效事故也开始增多,引起各制盐企业的重视,钛腐蚀的原因大致可归为四类:缝隙腐蚀、氢损失、应力腐蚀、铁污染等,且受材质成分、设计制作、工况介质等具体情况影响,腐蚀原因往往较为复杂,多为一个主要因素诱导,几种辅助因素共同作用的结果。以下分析国内发生的两起制盐钛制换热器腐蚀失效案例。 1.案例一首效换热管腐蚀失效分析: 2004年四川某制盐厂30 万吨/年装置 检修时,发现首效换热管发生较严重的腐蚀。该加热室总共1454 根钛管,本次检修共发 现158 根换热管有不同程度的腐蚀穿孔。 已拔出的部分换热管进行检查,发现孔损、破损、脆裂较严重,有的管子从1米左右高处自然落下即断成两半或破裂,断口晶粒粗大,破裂片用手可掰断,吸氢脆化现象明显。该装置首效加热蒸汽约0.4MPa,原料卤水 为天然卤水和岩卤的混合卤水,用石灰乳预处理卤水,进罐pH约为8。该套装置首效 加热室采用某种钛合金材料,Ⅱ~Ⅳ效采用TA2 工业纯钛换热管。在检修只发现了首效换热管有腐蚀,其余各效换热管未见腐蚀现象。 1.1.化学成分分析 因抽换出的换热管已明显脆化(可以从“从1米左右高处自然落下即断成两半或破裂”看出),据此判断材料吸氢肯定比较严重,为此分别取3段腐蚀较明显的管样和1段外观形貌较好的管样分别分析气体含量。分析结果见表1,从表中可以看出,腐蚀样中氢含量明显高于未发生腐蚀样品,据此可以判断是失效换热管可能失效的一种方式是氢损伤。 1.2.化学成分比较 采用化学分析和电镜(JSM6460)扫描 相结合的方式,对腐蚀样和非腐蚀样进行较全面的化学成分分析。分析结果与工业纯钛和钛钼镍合金的成分对比表见表2, 从表中们可以看出,腐蚀管样的Mo、Ni 含量很少,几乎可以认为未检出,而主要成分和工业纯钛(TA2)比较接近,合金元素 与钛钼镍合金(TA10)差距较大。 1.3.力学性能分析 腐蚀样和未腐蚀样进行力学性能检测,并将检测数据与TA2 进行对比,详见表3, 由表3可知,腐蚀管样的力学性能也与工业 纯钛一致,那么结合化学成分分析可以得出,该换热器首效管所选材料是工业纯钛。 1.4.腐蚀原因分析及其可能采取防腐 措施 由图1可以知道,工业纯钛在高温(>120℃)氯化钠溶液中较钛钼镍合金更易发 生缝隙腐蚀;由图2可以知道,在发生电化 学腐蚀的情况下,钛钼镍合金有更低的电流密度,这表明钛钼镍合金能显著改变电化学行为,促进钝化,有效降低腐蚀速率

外文文献304不锈钢晶间腐蚀研究

晶间腐蚀在石油石化行业的危害及防护 帕德·马纳班 每一个石油化工企业年度改革、更新和超过6/809的维修费用,都是由于腐蚀和废弃设备、管道及金属非金属结构更新维护造成的,腐蚀易引起恶性破坏事故,不仅会带来巨大的经济损失,而且经常会引起火灾和爆炸、伤害和灾难性的环境污染等的罪恶,并导致严重的社会后果。腐蚀损坏,必须尽力设法避免。因为消除腐蚀是不可能的,成功的方法是控制腐蚀,或进入是为了防止腐蚀。因此,这些腐蚀问题已引起人们的关注来控制。本文主要针对表面产生晶间腐蚀的危害的石油工业,并介绍了如何防止和减缓腐蚀采取 的措施。 1晶间腐蚀的定义 晶间腐蚀是局部腐蚀的一种,是沿着金属晶粒间的分界面向内部扩展的沿着或紧挨着金属的晶粒边界发生的腐蚀。晶间腐蚀(Intergranular corrosion),又叫晶界腐蚀。现在对晶间腐蚀的科技名词定义如下: 沿着或挨着晶粒边界发生的腐蚀。:海洋工程(1级主题);船舶腐蚀与防护(要求等级2的主题)。 由于金属部件中这一媒介溶解率远远高于粮食本体的速度从局部腐蚀溶解。是金属强度、塑性和韧性大大降低危险的大量的腐蚀类型。所属主题:电力(一级学科);核能(要求等级2的话题)。 沿着或挨着金属颗粒边界腐蚀。所属属主题:机械工程(1级主题);腐蚀与防护(二级学科);腐蚀类型(三级学科)。 晶间腐蚀由微电池作用而引起局部破坏,这种局部破坏是从表面开始,沿晶界向内发展,直至整个金属由于晶界破坏而完全丧失强度,这是一种危害很大的局部腐蚀。 2晶间腐蚀发生的条件

金属及其结构在其所处的环境中,许多因素往往和环境化学因素及电化学因素一起, 参与和影响金属腐蚀过程。除化学因素及金属的冶金因素(成分、金相组织和结构等)外,影响金属腐蚀的环境因素还包括:应力、振动、冲刷、摩擦与磨损等力学、机械学因素;生物学因素等。这些因素与化学因素对腐蚀的影响,往往不是各个因素单独作用时所发生影响的简单加和,在多数情况下起着彼此相张的作用,因而,常常使腐蚀加速,造成更大的破坏性后果。 而晶间腐蚀的发生因素主要有内因和外因,如下: ⑴内因:即金属或合金本身晶粒与晶界化学成分差异、晶界结构、元素的固溶特点、 沉淀析出过程、固态扩散等金属学问题,导致电化学不均匀性,使金属具有品间腐蚀倾向。 ⑵外因:在腐蚀介质中能显示晶粒与晶界的电化学不均匀性。 3晶间腐蚀的机理 20世纪30年代以来,对晶间腐蚀进行了大量研究,所提出的贫化理论,特别是对奥 氏体不锈钢的贫铬理论已得到证实,并将贫化理论应用到铝铜合金的贫铜及镍钼合金的贫钼等方面。前者在晶界上析出了CuAl 2,后者在晶界上析出了Mo 2C 。 ⑴ 贫铬理论 不锈钢具有耐腐蚀能力的必要条件是铬的质量分数必须大于10~12%。当温度升高 时,碳在不锈钢晶粒内部的扩散速度大于铬的扩散速度。因为室温时碳在奥氏体中的溶解度很小,约为0.02%~0.03%,而一般奥氏体不锈钢中 的含碳量均超过此值,故多余的碳就不断地向奥氏体晶粒边界扩散,并和铬化合,在晶间形成碳化铬的化合物,如(CrFe )23C6等。数据表明,铬沿晶界扩 散的活化能力162~252KJ/mol ,而铬由晶粒内扩散活化能约540KJ/mol ,即:铬由晶粒内扩散速度比铬沿晶界扩散速度小,内部的铬来不及向 晶界扩散,所以在晶间所形成的碳化铬所需的铬主要不是来自奥氏体晶粒内部,而是来自晶界附近,结果就使晶界附近的含铬量大为减少,当晶界的铬的质量分数

各种不锈钢的耐腐蚀性能

各种不锈钢的耐腐蚀性能 304 是一种通用性的不锈钢,它广泛地用于制作要求良好综合性能(耐腐蚀和成型性)的设备和机件。 301 不锈钢在形变时呈现出明显的加工硬化现象,被用于要求较高强度的各种场合。 302 不锈钢实质上就是含碳量更高的304不锈钢的变种,通过冷轧可使其获得较高的强度。 302B 是一种含硅量较高的不锈钢,它具有较高的抗高温氧化性能。 303和303Se 是分别含有硫和硒的易切削不锈钢,用于主要要求易切削和表而光浩度高的场合。303Se不锈钢也用于制作需要热镦的机件,因为在这类条件下,这种不锈钢具有良好的可热加工性。 304L 是碳含量较低的304不锈钢的变种,用于需要焊接的场合。较低的碳含量使得在靠近焊缝的热影响区中所析出的碳化物减至最少,而碳化物的析出可能导致不锈钢在某些环境中产生晶间腐蚀(焊接侵蚀)。 304N 是一种含氮的不锈钢,加氮是为了提高钢的强度。 305和384 不锈钢含有较高的镍,其加工硬化率低,适用于对冷成型性要求高的各种场合。 308 不锈钢用于制作焊条。 309、310、314及330 不锈钢的镍、铬含量都比较高,为的是提高钢在高温下的抗氧化性能和蠕变强度。而30S5和310S乃是309和310不锈钢的变种,所不同者只是碳含量较低,为的是使焊缝附近所析出的碳化物减至最少。330不锈钢有着特别高的抗渗碳能力和抗热震性. 316和317 型不锈钢含有铝,因而在海洋和化学工业环境中的抗点腐蚀能力大大地优于304不锈钢。其中,316型不锈钢由变种包括低碳不锈钢316L、含氮的高强度不锈钢316N以及合硫量较高的易切削不锈钢316F。 321、347及348 是分别以钛,铌加钽、铌稳定化的不锈钢,适宜作高温下使用的焊接构件。348是一种适用于核动力工业的不锈钢,对钽和钻的合量有着一定的限制。 镍与不锈钢基础知识—镍在不锈钢中的作用 镍在不锈钢中的主要作用在于它改变了钢的晶体结构。在不锈钢中增加镍的一个主要原因就是形成奥氏体晶体结构,从而改善诸如可塑性、可焊接性和韧性等不锈钢的属性,所以镍被称为奥氏体形成元素。普通碳钢的晶体结构称为铁氧体,呈体心立方(BCC)结构,加入镍,促使晶体结构从体心立方(BCC) 结构转变为面心立方(FCC)结构,这种结构被称为奥氏体。然而,镍并不是唯一具有此种性质的元素。常见的奥氏体形成元素有:镍、碳、氮、锰、铜。这些元素在形成奥氏体方面的相对重要性对于预测不锈钢的晶体结构具有重要意义。目前,人们已经研究出很多公式来表述奥氏体形成元素的相对重要性,最著名的是下面的公式: 奥氏体形成能力=Ni%+30C%+30N%+0.5Mn%+0.25Cu% 从这个等式可以看出:碳是一种较强的奥氏体形成元素,其形成奥氏体的能力是镍的30倍,但是它不能被添加到耐腐蚀的不锈钢中,因为在焊接后它会造成敏化腐蚀和随后的晶间腐蚀问题。氮元素形成奥氏体的能力也是镍的30倍,但是它是气体,想要不造成多孔性的问题,只能在不锈钢中添加数量有限的氮。添加锰和铜会造成炼钢过程中耐火生命减少和焊接的问题。 从镍等式中可以看出,添加锰对于形成奥氏体并不非常有效,但是添加锰可以使更多的氮溶解到不锈钢中,而氮正是一种非常强的奥氏体形成元素。在200系列的不锈钢中,正是用足够的锰和氮来代替镍形成100%的奥氏体结构,镍的含量越低,所需要加入的锰和氮数量就越高。例如在201型不锈钢中,只含有4.5%的镍,同时含有0.25%的氮。由镍等式可知这些氮在形成奥氏体的能力上相当于7.5%的镍,所以同样可以形成100%奥氏体结构。这也是200系列不锈钢的形成原理。在有些不符合标准的200系列不锈钢中,由于不能加入足够数量的锰和氮,为了形成100%的奥氏体结构,人为的减少了铬的加入量,这必然导致了不锈钢抗腐蚀能力的下降。 在不锈钢中,有两种相反的力量同时作用:铁素体形成元素不断形成铁素体,奥氏体形成元素不断形成奥氏体。最终的晶体结构取决于两类添加元素的相对数量。铬是一种铁素体形成元素,所以铬在不锈钢晶体结构的形成上和奥氏体形成元素之间是一种竞争关系。因为铁和铬都是铁素体形成元素,所以400系列不锈钢是完全铁素体不锈钢,具有磁性。在把奥氏体形成元素-镍加入到铁-铬不锈钢的过程中,随着镍成分增加,形成的奥氏体也会逐渐增加,直至所有的铁素体结构都被转变为奥氏体结构,这样就形成了300系列不锈钢。如果仅添加一半数量的镍,就会形成50%的铁素体和50%的奥氏体,这种结构被称为双相不锈钢。 400系列不锈钢是一种铁、碳合铬的合金。这种不锈钢具有马氏体结构和铁元素,因此具有正常的磁特性。400系列不锈钢具有很强的抗高温氧化能力,而且与碳钢相比,其物理特性和机械特性都有进一步的改善。大多数400系列不锈钢都可以进行热处理。

不锈钢在各种环境中的耐腐蚀性能

不锈钢在各种环境中的耐腐蚀性能 来源:电源谷作者: 发布时间:2007-09-29 18:04:12 https://www.360docs.net/doc/b514615151.html,/jiaocheng/jingti/2007-09-29/2590.html 不锈钢的耐腐蚀性能一般随铬含量的增加而提高,其基本原理是,当钢中有足够的铬时,在钢的表面形成非常薄的致密的氧化膜,它可以防止进一步的氧化或腐蚀。氧化性的环境可以强化这种膜,而还原性环境则必然破坏这种膜,造成钢的腐蚀。 在各种环境中的耐腐蚀性能 ①大气腐蚀 不锈钢耐大气腐蚀基本上是随着大气中的氯化物的含量而变化的。因此,靠近海洋或其他氯化物污染源对不锈钢的腐蚀是极为重要的。一定量的雨水,只有对钢表面的氯化物浓度起作用时才是重要的。 农村环境1Cr13 、1 Cr 17 和奥氏体型不锈钢可以适应各种用途,其外观上不会有显著的改变。因此,在农村暴露使用的不锈钢可以根据价格,市场供应情况,力学性能、制作加工性能和外观来选择。 工业环境在没有氯化物污染的工业环境中,1Cr17 和奥氏体型不锈钢能长期工作,基本上保持无锈蚀,可能在表面形成污膜,但当将污膜清除后,还保持着原有的光亮外观。在有氯化物的工业环境中,将造成不锈钢锈蚀。 海洋环境1Cr13 和1 Cr 17 不锈钢在短时期就会形成薄的锈膜,但不会造成明显的尺寸上的改变。奥氏体型不锈钢如1 Cr 17Ni7 、 1 Cr 18Ni9 和0 Cr 18Ni9 ,当暴露于海洋环境时,可能出现一些锈蚀。锈蚀通常是浅薄的,可以很容易地清除。0 Cr 17 Ni 12M 02 含钼不锈钢在海洋环境中基本上是耐腐蚀的。 除了大气条件外,还有另外两个影响不锈钢耐大气腐蚀性能的因素,即表面状态和制作工艺。精加工级别影响不锈钢在有氯化物的环境中的耐腐蚀性能。无光表面(毛面)对腐蚀非常敏感,即正常的工业精加工表面对锈蚀的敏感性较小。表面精加工级别还影响污物和锈蚀的清除。从高精加工的表面上清除污物和锈蚀物很容易,但从无光的表面上清除则很困难。对于无光表面,如果要保持原有的表面状态则需要更经常的清理。 ②淡水 淡水可定义为不分酸性、盐性或微咸,来源于江河、湖泊、池塘或井中的水。 淡水的腐蚀性受水的pH 值、氧含量和成垢倾向性的影响。结垢(硬)水,其腐蚀性主要由在金属表面形成垢的数量和类型来决定。这种垢的形成是存在其中的矿物质和温度的作

典型案例分析

典型案例剖析 1、违章操作命丧黄泉 某公司机加车间三级车工张某,在C620车床上加工零部件。当时磁铁座千分表放在车床外导轨上,他用185转/分的车速校好零件后,没有停车右手就从转动零部件上方跨过去拿千分表。由于人体靠近零部件,衣服下面两个衣扣未扣,衣襟散开,被零部件的突出支臂钩住。一瞬间,张某的衣服和右部同时被绞入零部件与轨道之间,头部受伤严重,抢救无效死亡。 [点评]从事机械加工人员必须穿戴好防护用品,上衣要做到“三紧”女工要戴好工作帽。同时规定不准跨过转动的零部件拿取工具。这是一起严重地违反操作规定和护品穿戴不规范而引发的一起死亡事故。教训告诉我们,遵章守纪,安全才有保障。 2、棒料超长甩弯伤人 某单位一名机加操作者在C620车床加工一根长3100mm、直径40mm钢棒,装卡后工件超出主轴尾端1250mm,转速由原来的230转/分变为600转/分时,将露出主轴的钢棒甩弯,打中了路过车床的顾某头部,当场死亡。

[编后语]这起事故的主要原因是加工材料过长,转速过高且未安装防护托架而造成的。在事故的调查过程,该单位曾发生过料长甩弯打坏工具箱等事情,但没有引起领导的高度重视,使事故隐患没有得到及时消除,加之操作安全意识淡薄,图方便省事,存有侥幸心理。因此,发现事故隐患必须立即整改,侥幸要不得。 3、脚踏开关无防护痛失一手 某单位剪料工李某操作剪板机下料。当他将大块钢板剪到最后一块时,将料头推向压块,身体根着前移,右脚误踏开关,剪板机动作,将右手压掉。 [点评]这起事故是由于脚踏开关没有安装防护罩误踏而造成的。而且有明确规定,冲剪区作业人员,在作业中,手不准进入剪板压脚区和冲压模具区。 4、起重机失控钢水包撞倒他人 某钢铁公司炼钢车间徐某操作起重机吊运重1.8t的钢水包,准备将其放到平车上。当吊车开到平车上方时,由于钢水包未对正平车不能下落。地面指挥人员要徐某稍动大车,徐某稍一转动大车操纵手柄,接触器头跳火,大车失控吊着离地1m高的钢水包向前疾驶,驶到

不锈钢腐蚀的机理

不锈钢腐蚀的机理 1 氯离子对不锈钢腐蚀的机理 在化工生产中,腐蚀在压力容器使用过程中普遍发生,是导致压力容器产生各种缺陷的主要因素之一。普通钢材的耐腐蚀性能较差,不锈钢则具有优良的机械性能和良好的耐腐蚀性能。Cr 和Ni 是不锈钢获得耐腐蚀性能最主要的合金元素。Cr 和Ni 使不锈钢在氧化性介质中生成一层十分致密的氧化膜,使不锈钢钝化,降低了不锈钢在氧化性介质中的腐蚀速度,使不锈钢的耐腐蚀性能提高[1 ] 。 氯离子的活化作用对不锈钢氧化膜的建立和破坏均起着重要作用。虽然至今人们对氯离子如何使钝化金属转变为活化状态的机理还没有定论,但大致可分为 2 穿透氧化膜内极小的孔隙,到达金属表面,并与金属相互作用形成了可溶性化合 ,氯离子破坏氧化膜的根本原因是由于氯离子有很强的可被金属吸附的能力,它们优先被金属吸附,并从金属表面把氧排掉。因为氧决定着金属的钝化状态,氯离子和氧争夺金属表面上的吸附点,甚至可以取代吸附中的钝化离子,与金属形成氯化物,氯化物与 法研究不锈钢钝化状态的结果表明,氯离子对金属表面的活化作用只出现在一定的范围内,存在着1 个特定的电位值,在此电位下,不锈钢开始活化。这个电位便是膜的击穿电位,击穿电位越大,金属的钝态越稳定。因此,可以通过击穿电位值来衡量不锈钢钝化状态的稳定性以及在各种介质中的耐腐蚀能力。 2 应力腐蚀失效及防护措施 2. 1 应力腐蚀失效机理[2 ] 在压力容器的腐蚀失效中,应力腐蚀失效所占的比例高达45 %左右。因此,研究不锈钢制压力容器的应力腐蚀失效显得尤为重要。所谓应力腐蚀,就是在拉伸应力和腐蚀介质的联合作用下而引起的低应力脆性断裂。应力腐蚀一般都是在特定条件下产生: ①只有在拉应力的作用下。②产生应力腐蚀的环境总存在特定的腐蚀介质,不锈钢在含有氧的氯离子的腐蚀介质及H2SO4 、H2S 溶液中才容易发生应力腐蚀。③一般在合金、碳钢中易发生应力腐蚀。研究表明,应

不锈钢的性能与特性.

不锈钢的性能与特性 一、不锈钢的组织性能 目前已知的化学元素有100多种,在工业中常用的钢铁材料中可以遇到的化学元素约二十多种。对于人们在与腐蚀现象作长期斗争的实践而形成的不锈钢这一特殊钢系列来说,最常用的元素有十几种,除了组成钢的基本元素铁以外,对不锈钢的性能与组织影响最大的元素是:碳、铬、镍、锰、硅、钼、钛、铌、钛、锰、氮、铜、钴等。这些元素中除碳、硅、氮以外,都是化学元素周期表中位于过渡族的元素。 实际上工业上应用的不锈钢都是同时存在几种以至十几种元素的,当几种元素共存于不锈钢这一个统一体中时,它们的影响要比单独存在时复杂得多,因为在这种情况下不仅要考虑各元素自身的作用,而且要注意它们互相之间的影响,因此不锈钢的组织决定于各种元素影响的总和。 合金元素的作用—— 不锈钢含有基本金属(Base)铁和主要元素Cr、Ni,通过添加Cr、Ni以外的元素制造具有各种特性的不锈钢。 二、不锈钢的特性 1.一般特性

◆表面美观以及使用可能性多样化 ◆耐腐蚀性能好,比普通钢长久耐用 ◆耐腐蚀性好 ◆强度高,因而薄板使用的可能性大 ◆耐高温氧化及强度高,因此能够抗火灾 ◆常温加工,即容易塑性加工 ◆因为不必表面处理,所以简便、维护简单 ◆清洁,光洁度高 ◆焊接性能好 2、品质特性 2-1不锈钢的品质特性

2-2不锈钢的品质特性要求 ※各产品由于用途的不同,其加工工艺和原料的品质要求也不同。 2-3 品质要求特性微细项目 (1) 材质: ①DDQ(deep drawing quality)材:是指用于深拉(冲)用途的材料,也就是大家所说的的软料,这种材料的主要特点是延伸率较高(≧53%),硬度较低(≦170%),内部晶粒等级在7.0~8.0之间,深冲性能极佳。目前许多生产保温瓶、锅类的企业,其产品的加工比一般都比较高,SUS304 DDQ用材主要就是用于这些要求较高加工比的产品,当然加工比超过2.0的产品一般都需经过几道次的拉伸才能完成。如果原料延伸方面达不到的话,在加工深拉制品时产品极易产生裂纹、拉穿的现象,影响成品合格率,当然也就加大了厂家的成本;

不锈钢腐蚀的分析

电化学腐蚀 电化学腐蚀就是金属和电解质组成两个电极,组成腐蚀原电池。例如铁和氧,因为铁的电极电位总比氧的电极电位低,所以铁是阳极,遭到腐蚀。特征是在发生氧腐蚀的表面会形成许多直径不等的小鼓包,次层是黑色粉末 状溃疡腐蚀坑陷。 一、基本介绍: 不纯的金属跟电解质溶液接触时,会发生原电池反应,比较活泼的金属失去电子而被氧化,这种腐蚀叫做电化学腐蚀。钢铁在潮湿的空气中所发生的腐蚀是电化学腐蚀最突出的例子。 我们知道,钢铁在干燥的空气里长时间不易腐蚀,但潮湿的空气中却很快就会腐蚀。原来,在潮湿的空气里,钢铁的表面吸附了一层薄薄的水膜,这层水膜里含有少量的氢离子与氢氧根离子,还溶解了氧气等气体,结果在钢铁表面形成了一层电解质溶液,它跟钢铁里的铁和少量的碳恰好形成无数微小的原电池。在这些原电池里,铁是负极,碳是正极。铁失去电子而被氧化.电化学腐蚀是造成钢铁腐蚀的主要原因。 金属材料与电解质溶液接触,通过电极反应产生的腐蚀。电化学腐蚀反应是一种氧化还原反应。在反应中,金属失去电子而被氧化,其反应过程称为阳极反应过程,反应产物是进入介质中的金属离子或覆盖在金属表面上的金属氧化物(或金属难溶盐);介质中的物质从金属表面获得电子而被还原,其反应过程称为阴极反应过程。在阴极反应过程中,获得电子而被还原的物质习惯上称为去极化剂。 在均匀腐蚀时,金属表面上各处进行阳极反应和阴极反应的概率没有显著差别,进行两种反应的表面位置不断地随机变动。如果金属表面有某些区域主

要进行阳极反应,其余表面区域主要进行阴极反应,则称前者为阳极区,后者为阴极区,阳极区和阴极区组成了腐蚀电池。直接造成金属材料破坏的是阳极反应,故常采用外接电源或用导线将被保护金属与另一块电极电位较低的金属相联接,以使腐蚀发生在电位较低的金属上。 二、相关原理: 金属的腐蚀原理有多种,其中电化学腐蚀是最为广泛的一种。当金属被放置在水溶液中或潮湿的大气中,金属表面会形成一种微电池,也称腐蚀电池(其电极习惯上称阴、阳极,不叫正、负极)。阳极上发生氧化反应,使阳极发生溶解,阴极上发生还原反应,一般只起传递电子的作用。腐蚀电池的形成原因主要是由于金属表面吸附了空气中的水分,形成一层水膜,因而使空气中N5等溶解在这层水膜中,形成电解质溶液,而浸泡在这层溶液中的金属又总是不纯的,如工业用的钢铁,实际上是合金,即除铁之外,还含有石墨、渗碳体(F勺C)以及其它金属和杂质,它们大多数没有铁活泼。这样形成的腐蚀电池的阳极为铁,而阴极为杂质,又由于铁与杂质紧密接触,使得腐蚀不断进行。 三、方程式: (1)析氢腐蚀(钢铁表面吸附水膜酸性较强时) 负极(Fe): 蠱-2L fF严 F^+2H2O-^Fe(OH)2 + 2H+ + 2e J H2 正极(杂质): 电池反应: Fe+2H3O = Fe(OH}2 + H3T 由于有氢气放出,所以称之为析氢腐蚀。

不锈钢的腐蚀研究

无机酸对316L不锈钢的腐蚀 1.前言 不锈钢是含铬11%以上或同时含镍的钢种的统称。它在常温氧化性环境(如大气、水、强氧化性酸等)中容易钝化,使表面产生一层氧化铬为主,保护性很强的薄膜,其腐蚀速率极低。但当温度增高或环境的氧化能力减小时,将由钝态变为活态,腐蚀显著增大。各类不锈钢对有机酸、有机化合物、碱、中性溶液和多种气体都有良好耐蚀性。在非氧化性酸(硫酸、盐酸等)中腐蚀严重。不锈钢设备的腐蚀常常为局部腐蚀,当处于钝态和活态边缘,在含有卤素离子的盐溶液中,可能产生孔蚀。在含有对应力腐蚀敏感离子(如Cl-、OH-等)的溶液中,受应力的部分(如焊缝附近)则可能产生危险的应力腐蚀破裂。焊缝两侧的敏化区还易产生晶间腐蚀。 铬镍钢的耐蚀性和机械性能都超过单纯铬钢。镍的加入促进奥氏体结构的生成,可以得到更好的机械性能,特别是使韧性提高,同时又增大了钝化范围,使它更容易钝化。 316L不锈钢和一般的铬镍不锈钢相似,但由于加入了2%的钼,所以在许多方面比铬镍不锈钢更为优越,特别是在非氧化性酸和热的有机酸、氯化物中的耐蚀性要比铬镍不锈钢好得多,抗孔蚀的能力也较好。 2.不锈钢成分牌号对照表 各种不锈钢的成分表 中外不锈钢牌号对照表

3.无机酸对316L 不锈钢的腐蚀 铬镍钢对一切浓度和温度的盐酸都不适用,316L 在盐酸中的溶解度少许降低一些,但也只能用于极稀的酸。如某些氯化物的溶液中,由于水解作用可能产生极微量的盐酸,可使用316L 不锈钢,但一般容易发生孔蚀。 铬镍不锈钢可使用于常温下5%以下的稀硫酸和90%以上的浓硫酸,316L 的耐蚀性比较好,但使用温度也不宜超过50~70 ℃。对于中等浓度的硫酸和发烟酸,所有的铬镍钢腐蚀都很大,不适用。所有的铬钢对一般浓度的不充气的硫酸都不适用。硫酸中如含有其它物质,如铬酸、重铬酸钠、硝酸钠和大多数硫酸盐类,对不锈钢具有缓蚀效果。 各种牌号的铬和铬镍不锈钢对硝酸都有良好的耐蚀性。对70%以下的稀硝酸,适用温度可到沸点上下。 浓度更高的硝酸,常温下还是适用,但超过50℃则腐蚀很快,特别是90~99%的高浓酸。一般不锈钢只用于常温的浓硝酸。 无机酸对304不锈钢的腐蚀

不锈钢特性及氯离子腐蚀

腐蚀与不锈钢 应力腐蚀 应力腐蚀是指零件在拉应力和特定的化学介质联合作用下所产生的低应力脆性断裂现象。 应力腐蚀由残余或外加应力导致的应变和腐蚀联合作用产生的材料破坏过程。应力腐蚀导致材料的断裂称为应力腐蚀断裂。 它的发生一般有以下四个特征: 一、一般存在拉应力,但实验发现压应力有时也会产生应力腐蚀。 二、对于裂纹扩展速率,应力腐蚀存在临界KISCC,即临界应力强度因子要大于KISCC,裂纹才会扩展。 三、一般应力腐蚀都属于脆性断裂。 四、应力腐蚀的裂纹扩展速率一般为10- 6~10-3 mm/min,而且存在孕育期,扩展区和瞬段区三部分 应力腐蚀机理的机理一般认为有阳极溶解和氢致开裂 晶间腐蚀 说明:局部腐蚀的一种。沿着金属晶粒间的分界面向内部扩展的腐蚀。主要由于晶粒表面和内部间化学成分的差异以及晶界杂质或内应力的存在。晶间腐蚀破坏晶粒间的结合,大大降低金属的机械强度。 AHA12GAGGAGAGGAFFFFAFAF

而且金属表面往往仍是完好的,但不能经受敲击,所以是一种很危险的腐蚀。通常出现于黄铜、硬铝和一些含铬的合金钢中。不锈钢焊缝的晶间腐蚀是化学工厂的一个重大问题。 晶间腐蚀是沿着或紧靠金属的晶界发生腐蚀。腐蚀发生后金属和合金的表面仍保持一定的金属光泽,看不出被破坏的迹象,但晶粒间结合力显著减弱,力学性能恶化。不锈钢、镍基合金、铝合金等材料都较易发生晶间腐蚀。 AHA12GAGGAGAGGAFFFFAFAF

不锈钢的晶间腐蚀: 不锈钢在腐蚀介质作用下,在晶粒之间产生的一种腐蚀现象称为晶间腐蚀。产生晶间腐蚀的不锈钢,当受到应力作用时,即会沿晶界断裂、强度几乎完全消失,这是不锈钢的一种最危险的破坏形式。晶间腐蚀可以分别产生在焊接接头的热影响区、焊缝或熔合线上,在熔合线上产生的晶间腐蚀又称刀状腐蚀。 不锈钢具有耐腐蚀能力的必要条件是铬的质量分数必须大于12%。当温度升高时,碳在不锈钢晶粒内部的扩散速度大于铬的扩散速度。因为室温时碳在奥氏体中的熔解度很小,约为0.02%~0.03%,而一般奥氏体不锈钢中的含碳量均超过此值,故多余的碳就不断地向奥氏体晶粒边界扩散,并和铬化合,在晶间形成碳化铬的化合物,如(CrFe)23C6等。但是由于铬的扩散速度较小,来不及向晶界扩散,所以在晶间所形成的碳化铬所需的铬主要不是来自奥氏体晶粒内部,而是来自晶界附近,结果就使晶界附近的含铬量大为减少,当晶界的铬的质量分数低到小于12%时,就形成所谓的“贫铬区”,在腐蚀介质作用下,贫铬区就会失去耐腐蚀能力,而产生晶间腐蚀。 不锈钢的晶间腐蚀 含碳量超过0.03%的不稳定的奥氏体型不锈钢(不含钛或铌的牌 AHA12GAGGAGAGGAFFFFAFAF

不锈钢腐蚀实验报告

不锈钢腐蚀行为及影响因素的综合评价 洪宇浩 实验一、钝化曲线法评价不同种不锈钢在同一介质中的腐蚀能力 1.实验目的 ●掌握金属腐蚀原理和金属钝化原理 ●掌握不锈钢阳极钝化曲线的测量 ●掌握恒电位仪软件的操作 2.实验原理 3.实验步骤 本实验测试430不锈钢(黑)和304不锈钢(黄)在0.25mol/L H2SO4和含1.0% NaCl 的0.25mol/L H2SO4中钝化曲线. 电位:-0.60 →1.20 V,50 mV/s 4.注意事项 ●电极的处理 ●灵敏度的选择 5.实验结果 1、304钢在0.25mol/L H2SO4的钝化曲线

-800 -600-400-20002004006008001000 -8-6 -4 -2 2 电流(m A ) 电位(mV) -293,1.841 -139,0.635410,0.235 904,0.708 2、304钢在含1.0% NaCl 的0.25mol/L H 2SO 4中的钝化曲线. -800 -600-400-20002004006008001000 -7-6-5-4-3-2-1 01电流(m A ) 电位(mV) (-267, 0.59829) (-69, 0.38967) (398, 0.20901) (799, 0.38485) 3、430钢在0.25mol/L H 2SO 4中的钝化曲线.

-800 -600-400-200020040060080010001200 -4-202468 1012电流( m A ) 电位(mV) (-287, 11.133) (930, 1.7327) (174, 1.1011) (-21, 1.5724) 4、430钢在含1.0% NaCl 的0.25mol/L H 2SO 4中的钝化曲线. -600 -400 -200 200 400 -10 -5 5 10 15 20 电流(m A ) 电位(mV) (-221, 15.914) (180, 1.1999) (328, 1.9463) (-84, 4.9479)

不锈钢腐蚀牌制作方法

不锈钢腐蚀牌制作方法 金属腐蚀标牌大体分为凹字标牌.凸字标牌和凸凹字结合标牌这三种。腐蚀标牌的基本要求:图案美观.线条清晰.深度合适.底面平整.色彩饱满.拉丝均匀.表面色泽一致。腐蚀标牌的特点:耐候.耐溶剂性较强;即使油漆脱落仍然具有铭牌的功能。金属标牌怎样才能达到审美要求和客户的要求哪?我们必须抛弃八九十年代甚至六七十年代的落后技术和盆盆罐罐的陈旧设备。学习先进的生产技术,使用便捷的耗材和腐蚀液,更换专用设备。 我们青岛睿智达(标牌)表面装饰研究所是研究标牌生产工艺.设备和耗材的专业单位, 积累了较丰富的经验和技巧。就以上问题谈几点看法供大家参考。 一. 学习先进的生产技术。要想学习先进的技术必须做到以下几点: 1.打破陈旧的生产模式。许多标牌厂家有的已有几十年的历史,但至今仍沿用着建厂时的生产模式和技术,如自己熬骨胶.摔胶.太阳晒版.盆盆罐罐腐蚀.手工注漆等,有些技术在当时是先进的,可现在哪?耗费大量的人力物力,成本高.效率低.质量差.做不出理想的标牌。当然,有些老的技术手段至今还有使用价值,甚至还离不开它。但是,时代在发展,技术在进步,我们有些厂家固守陈规,为什么?值得我们思考。 2.加强与同行和标牌研究单位的交流。我认为改革开放的主要意义在于:走出去,拿进来。走出厂房.走出地域.甚至走出国门。去学习先进的管理模式,先进的生产技术,去借鉴.去筛选.拿来发展自己的企业。当然,有人会说,国门我走不出,同行不愿交流,研究单位找不到等一系列的问题。我想问,你去真诚的交流了吗?标牌的研究单位你真地去努力找了吗? 3.合理定位,切勿“好高骛远” 。合理定位就是以多数客户的市场的需求定位,以自己的生产能力定位。各位老板,请问你们标牌的主打产品是什么?我想多数人的回答应该是设备标牌。因为设备标牌市场广阔,批量大,占标牌总量的80% 以上,且制作相对简单,定 型后几乎长期不变。只要你的质量过关,价格合理,可常年为同一客户生产。这里有两个关键词:质量过关.价格合理,也就是说质量决定价格。标牌不仅是设备的铭牌,同时也有为设备画龙点睛之妙笔。可以想象假如你生产的标牌拿在客户手中爱不释手,他还与你讨价还价吗?他还去找其他厂家吗?我想不会的。但反之则不然。切勿“好高骛远” 。如果基本的设备标牌都没做好,你还想去学所谓高档的标牌吗?即使你学会了,有市场吗?我个人认为,从基础做起,先做好基本的,再寻求所谓高档的。 二. 选用耐腐蚀油墨的问题。金属腐蚀标牌使用的耐蚀刻油墨必须具备以下几点要求:便于丝

不锈钢管道点腐蚀的理论分析

不锈钢管道点腐蚀的理论分析 1 循环水旋转滤网反冲洗系统简介 循环水过滤系统(CFI)的主要设备是旋转海水滤网,在其运行中要不断清除滤出的污物,通过反冲洗系统来实现。反冲洗的水源与主循环水一样引自旋转滤网后的海水水室,后经两级泵加压和中间过滤输至旋转滤网的特定部位冲洗污物,设计流速2.3m/s。反冲洗海水管道设计采用公称直径150mm(壁厚7.11mm)的316L不锈钢管。输送的海水含氯量为17g/L,摩尔浓度为0.48mol/L,为防止回路中海生物滋生,注入次氯酸钠溶液,使循环水入口次氯酸钠的质量分数控制在1×10-6。 2 316L不锈钢管道的使用情况 CFI系统于2000-05-17完成安装交付调试,进行单体调试及系统试运。2001年4月,1号机组管道首次出现泄漏,泄漏部位位于管道竖直段与水平段弯头焊口处,泄漏点表现为穿透性孔,孔的直径很小,但肉眼可见,管道内壁腐蚀处呈扩展状褐色锈迹,判断为典型的不锈钢点腐蚀。当时的处理措施是切除泄漏的管段,更换同材质的新管段,并在新管段底部增加了一个疏水阀,目的是在管道停运期间排空管内积水以防止腐蚀的再次发生。但在2001年9月,1号机管道又发现漏点。2001年10月电厂决定将所有反冲洗管道更换为碳钢衬胶管道。改造后运行至今未发生泄漏。 3 316L不锈钢的抗腐蚀性分析 316L不锈钢属300系列Fe-Cr-Ni合金奥氏体不锈钢,由于铬、镍含量高,是最耐腐蚀的不锈钢之一,并具有很好的机械性能。字母“L”表示低碳(碳含量被控制在0.03%以下),以避免在临界温度范围(430~900℃)内碳化铬的晶界沉淀,在焊后提供特别好的耐蚀性。但316L不锈钢抗氯离子点腐蚀的能力较差。

不锈钢的腐蚀汇总

第三部分 不锈钢的腐蚀 一、概述 1、不锈钢的定义 不锈钢是一系列在空气,水,盐的水溶液,酸以及其它腐蚀介质中具有高度化学稳定性的钢种。在空气中耐腐蚀的钢称为“不锈钢”,在各种腐蚀性较强的介质中耐腐蚀的钢种称为“耐酸钢”。 通常,我们把不锈钢与耐酸钢统称为不锈耐酸钢,或简称为不锈钢。根据习惯用法,不锈钢一词常包括耐酸钢在内。 现有的不锈钢从化学成分来看,都是高铬钢。由于在大气中,当钢中的铬含量超过大约12%时,就基本上不会生锈。钢的这种不锈性一般认为与钢在氧化性介质中的钝化现象有关。 2、不锈钢的分类 不锈钢分类主要有以下几种方式: 1)按化学成分分有----铬钢(及铬钼钢),铬镍钢,铬锰钢(或铬锰氮钢),铬锰镍钢等。 2)按显微组织分有----奥氏体钢,铁素体钢,马氏体钢,奥氏体+铁素体双相钢,铁素体+马氏体双相钢奥氏体钢等 3)按用途分有----耐海水不锈钢,耐点蚀不锈钢(统一在某一钢种上),耐应力腐蚀破裂不锈钢,耐浓硝酸腐蚀不锈钢,耐硫酸腐蚀不锈钢,深冲用不锈钢,高强度不锈钢,易切削不锈钢,耐热不锈钢等。 二、不锈钢的点蚀 1、点蚀现象和识别 点蚀是在不锈钢表面上局部形成的具有一定深度的小孔或锈斑。由于点蚀常常被锈层,腐蚀产物等覆盖,因而难以发现。在金相显微镜下观察点蚀,其断面有多种形貌。 点蚀一般系在特定腐蚀介质中,特别是在含有Clˉ(包括Brˉ,Iˉ)离子的介质中产生。使不锈钢产生点蚀的常见介质有:大气,水介质及水蒸气,海水,漂白液,各种有机和无机氯化物等。 点蚀可在室温下出现并随腐蚀介质温度升高而更易产生并更趋严重。点蚀不仅可导致设备,管线等穿孔而破坏,而且常常诱发晶间腐蚀,应力腐蚀和疲劳腐蚀。虽然,不锈钢的点蚀事故仅占化工,石油等系统腐蚀破坏的~20%,但在大气中使用的不锈钢,却有近80%是由于点蚀和锈斑而损坏。见图1(a)、(b)。 2、机理 一般认为,不锈钢的点蚀是在金属表面非金属夹杂物,析出相,晶界,位错露头等缺

相关文档
最新文档