数列求和题型归纳

数列求和题型归纳
数列求和题型归纳

数列求和

考点1

错位相减法:求{}n n b a 型数列的前n 项和,其中{}n a 是等差数列,{}n b 是等比数列 例1:已知等差数列{}n a 的前3项和为6,前8项和为-4. (Ⅰ)求数列{}n a 的通项公式;

(Ⅱ)设1(4)((0,)n n n b a q q n N -*=-≠∈,求数列{}n b 的前n 项和n S

例2:已知数列{a n }的前n 项和为S n ,且S n =2

2n n +,n ∈N ﹡,数列{b n }满足

a n =4log 2

b n +3,n ∈N ﹡.

(1)求a n ,b n ; (2)求数列{a n ·b n }的前n 项和T n .

练习1:推导等比数列求和公式q

q a S n n --=1)

1(1 (1≠q )

练习2:已知等差数列{a n }满足a 2=0,a 6+a 8= -10

(1)求数列{a n }的通项公式; (II )求数列12n n a -??

?

???

的前n 项和 练习3:在数列{}n a 中,11a =,2

112(1)n n a a n

+=+?.

(Ⅰ)证明数列2

{

}n

a n 是等比数列,并求{}n a 的通项公式; (Ⅱ)令11

2

n n n b a a +=-,求数列{}n b 的前n 项和n

S

考点二

裂项相消法:

(1)111)1(1+-=+?n n n n (2))1

1(1)(1d n n d d n n +-=+?

(3))11(1111

++-=n n n n a a d a a 其中d 是等差数列{}n a 的公差

例1:已知等差数列{}n a 满足:37a =,5726a a +=.{}n a 的前n 项和为n S . (Ⅰ)求n a 及n S ;(Ⅱ)令2

1

1

n n b a =-(n N +∈),求数列{}n b 的前n 项和n T .

例2:等比数列{}n a 的各项均为正数,且212326231,9.a a a a a +== (1)求数列{}n a 的通项公式.

(2)设 31323log log ......log ,n n b a a a =+++求数列1n b ??

????

的前项和.

练习1:已知二次函数()y f x =的图像经过坐标原点,其导函数为'

()62f x x =-,数列{}

n a 的前n 项和为n S ,点(,)()n n S n N *∈均在函数()y f x =的图像上。

(Ⅰ)、求数列{}n a 的通项公式;(Ⅱ)、设1

3

+=

n n n a a b ,求数列{}n b 的前n 项和n T

练习2:设正数数列{n a }的前n 项和n S 满足2)1(4

1

+=n n a S . (I )求数列{n a }的通项公式;(II )设1

1

+?=

n n n a a b ,求数列{n b }的前n 项和n T

数列求和方法和经典例题

数列求和方法和经典例题 求数列的前n 项和,一般有下列几种方法: 一、公式法 1、等差数列前n 项和公式 2、等比数列前n 项和公式 二、拆项分组求和法 某些数列,通过适当分组可得出两个或几个等差数列或等比数列,进而利用等差数列或等比数列求和公式求和,从而得出原数列的和。 三、裂项相消求和法 将数列中的每一项都分拆成几项的和、差的形式,使一些项相互拆消,只剩下有限的几项,裂项时可直接从通项入手,且要判断清楚消项后余下哪些项。 四、重新组合数列求和法 将原数列的各项重新组合,使它成为一个或n 个等差数列或等比数列后再求和 五、错位相减求和法 适用于一个等差数列和一个等比数列对应项相乘构成的数列求和 典型例题 一、拆项分组求和法 例1、求数列1111123,2482n n ??+ ???,,,,的前n 项和 例2、求和:222 221111n n x x x x x ??????++++++ ? ? ?????? ?

例3、求数列2211,12,122,,1222,n -+++++++的前n 项和 例4、求数列5,55,555,5555,的前n 项和 二、裂项相消求和法 例5、求和:()()11113352121n S n n =+++??-+ 例6、求数列1111,, ,,,12123123n +++++++的前n 项和 例7、求和:()11113242n S n n =+++??+

例8、数列{} n a 的通项公式n a =,求数列的前n 项和 三、重新组合数列求和法 例9、求2222222212345699100-+-+-++- 四、错位相减求和法 例10、求数列123,,,,,2482n n 的前n 项和 例11、求和:()23230n n S x x x nx x =++++≠

(完整版)数列题型及解题方法归纳总结

知识框架 111111(2)(2)(1)( 1)()22()n n n n n n m p q n n n n a q n a a a q a a d n a a n d n n n S a a na d a a a a m n p q --=≥=?? ←???-=≥?? =+-??-?=+=+??+=++=+??两个基等比数列的定义本数列等比数列的通项公式等比数列数列数列的分类数列数列的通项公式函数角度理解 的概念数列的递推关系等差数列的定义等差数列的通项公式等差数列等差数列的求和公式等差数列的性质1111(1)(1) 11(1)() n n n n m p q a a q a q q q q S na q a a a a m n p q ---=≠--===+=+???? ? ???????????????? ??? ???????????? ???? ????????????? ?????? ? ?? ?? ?? ?? ??? ???????? 等比数列的求和公式等比数列的性质公式法分组求和错位相减求和数列裂项求和求和倒序相加求和累加累积 归纳猜想证明分期付款数列的应用其他??????? ? ? 掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。 一、典型题的技巧解法 1、求通项公式 (1)观察法。(2)由递推公式求通项。 对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。 (1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常数) 例1、 已知{a n }满足a n+1=a n +2,而且a 1=1。求a n 。 例1、解 ∵a n+1-a n =2为常数 ∴{a n }是首项为1,公差为2的等差数列 ∴a n =1+2(n-1) 即a n =2n-1 例2、已知{}n a 满足11 2 n n a a +=,而12a =,求n a =? (2)递推式为a n+1=a n +f (n ) 例3、已知{}n a 中112a = ,121 41 n n a a n +=+-,求n a . 解: 由已知可知)12)(12(11-+= -+n n a a n n )1 21 121(21+--=n n 令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a 2-a 1)+(a 3-a 2)+…+(a n -a n-1) 2 43 4)1211(211--= --+=n n n a a n ★ 说明 只要和f (1)+f (2)+…+f (n-1)是可求的,就可以由a n+1=a n +f (n )以n=1,2,…,(n-1)代 入,可得n-1个等式累加而求a n 。 (3)递推式为a n+1=pa n +q (p ,q 为常数) 例4、{}n a 中,11a =,对于n >1(n ∈N )有132n n a a -=+,求n a . 解法一: 由已知递推式得a n+1=3a n +2,a n =3a n-1+2。两式相减:a n+1-a n =3(a n -a n-1) 因此数列{a n+1-a n }是公比为3的等比数列,其首项为a 2-a 1=(3×1+2)-1=4 ∴a n+1-a n =4·3n-1 ∵a n+1=3a n +2 ∴3a n +2-a n =4·3n-1 即 a n =2·3n-1 -1 解法二: 上法得{a n+1-a n }是公比为3的等比数列,于是有:a 2-a 1=4,a 3-a 2=4·3,a 4-a 3=4·32,…,a n -a n-1=4·3n-2 , 把n-1个等式累加得: ∴an=2·3n-1-1 (4)递推式为a n+1=p a n +q n (p ,q 为常数) )(3211-+-= -n n n n b b b b 由上题的解法,得:n n b )32(23-= ∴n n n n n b a )31(2)21(32-== (5)递推式为21n n n a pa qa ++=+

高考数学题型全归纳:数列求和的若干常用方法含答案

数列求和的若干常用方法 数列求和是数列的重要内容之一,也是高考数学的重点考查对象。除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧.如某些特殊数列的求和可采用分部求和法转化为等差数列或等比数列的和或用裂项求和法、错位相减法、逆序相加法、组合化归法,递推法等。本文就此总结如下,供参考。 一、分组求和法 所谓分组法求和就是:对一类既不是等差数列,也不是等比数列的数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并。 例1.数列{a n }的前n 项和12-=n n a S ,数列{b n }满)(,311* +∈+==N n b a b b n n n .(Ⅰ)证明数列{a n }为等比数列;(Ⅱ)求数列{b n }的前n 项和T n。 解析:(Ⅰ)由12,,1211-=∴∈-=++*n n n n a S N n a S , 两式相减得:,2211n n n a a a -=++01.,211≠=∈=∴*+n n n a a N n a a 知同, ,21=∴+n n a a 同定义知}{n a 是首项为1,公比为2的等比数列.(Ⅱ),22,211111-+-+-=-+==n n n n n n n n b b b b a ,2,2,2234123012=-=-=-b b b b b b ,221--=-n n n b b 等式左、右两边分别相加得: ,222 121322211 2101+=--+=++++=---n n n n b b n T n n n 2)2222()22()22()22()22(12101210+++++=++++++++=∴-- =.12222 121-+=+--n n n n 例2.已知等差数列{}n a 的首项为1,前10项的和为145,求:. 242n a a a +++ 解析:首先由31452 91010110=?=??+=d d a S 则:6223221)21(232)222(32 2323)1(1224221--?=---=-+++=+++∴-?=?-=-+=+n n n a a a a n d n a a n n n n n n n 二、裂项求和法

数列求和方法分类及经典例题

数列求和方法总结 一、公式法 ()()111122 n n a a n n n .na d +-==+等差型 S ()111111n n na q a q q q =??=-?≠?-? ,2.等比型 S , →3.分式型/阶乘型 裂项相消法 () 1111111n n n n n a a a d a a ++??=- ???? ,其中为等差; ( 12n a d = ,其中为等差; ()()() ()113=+1+1+1n n n!n !n!.n !n!n !-?=- , ()()()( )1111153759 11121121231233n n . .,n N n *???++++∈+++++++KK KK K KK 例1:求下列各数列的前项和S ,,, 二、等差等比混合型 (){}=n n n a b kn b q ??+?→ 1.等差等比 错位相减法 n n S 例2:求下列各数列的前项和 ()()112n n .a n =+? ()()12312n n .a n ??=-? ??? ()()()3312n n .a n =-+?-

{}111122n n k n b a q a q ±+++→ 2.等差等比 分组求和 n n S 例3:求下列各数列的前项和 ()1111123248 .,,,KK ()2211121333333 n n .,,,,+++KK → 3.奇偶项不同 分组求和 n n S 例4:求下列各数列的前项和 ()()()1115913143n n .n -=-+-++--K 相邻异号 例:S ()11211n n n .a ,a a ,S -=+= 和为常数 例:求()122314=+2n n n .a ,a ,a a ,S -== 差为常数 例:求()12+11142=63n n n n n .a a ,a a ,a S ??== ??? 比为常数 例:,求及 三、倒叙相加/相乘型 n n S 例5:求下列各数列的前项和 ()11110142n x n .f (x ),S f ()f ()f ()f ()n n -= =++++ 已知求;()211121220121201220112 x .f (x ),f ()f ()f ()f ()f ()f ()x =+++++++KK KK 已知求;()1312.n n n n n ++ 在和之间插入个正数,使这个数成等比数列,求插入个数之积; ()1412.n n n n n ++ 在和之间插入个正数,使这个数成等差数列,求插入个数之和; 22112n n n n n n n +++??== ??? T ,S

(完整版)数列求和经典题型总结

三、数列求和 数列求和的方法. (1)公式法:①等差数列的前n 项求和公式 n S =__________________=_______________________. ② 等 比 数 列 的 前 n 项 和 求 和 公 式 ? ? ?≠===)1(___________________)1(__________q q S n (2)....++=n n n b a C ,数列{}n C 的通项公式能够分解成几部分,一般用“分组求和法”. (3)n n n C a b =?,数列{}n C 的通项公式能够分解成等差数列和等比数列的乘积,一般用“错 位相减法”. (4)1 n n n C a b = ?,数列{}n C 的通项公式是一个分式结构,一般采用“裂项相消法”. (5)并项求和法:一个数列的前n 项和中,可两两结合求解,则称之为并项求和。适用于形如()()n f a n n 1-=的类型。举例如下: ()()() 5050 12979899100129798991002 22222=++???++++=-+???+-+-= n S 常见的裂项公式: (1) 111)1(1+-=+n n n n ;(2) =+-) 12)(12(1 n n ____________________;(3)1 1++n n =__________________ 题型一 数列求解通项公式 1. 若数列{a n }的前n 项的和1232 +-=n n S n ,则{a n }的通项公式是n a =_________________。 2. 数列}{n a 中,已知对任意的正整数n ,1321-=+???++n n a a a ,则22221n a a a +???++等 于_____________。 3. 数列中,如果数列是等差数列,则________________。 4. 已知数列{a n }中,a 1=1且 3 1 111+=+n n a a ,则=10a ____________。 5. 已知数列{a n }满足)2(1 1≥-= -n a n n a n n ,则n a =_____________.。 6. 已知数列{a n }满足)2(11≥++=-n n a a n n ,则n a =_____________.。 {}n a 352,1,a a ==1 { }1 n a +11a =

数列的通项公式与求和知识点及题型归纳总结

数列的通项公式与求和知识点及题型归纳总结 知识点精讲 一、基本概念 (1)若已知数列的第1项(或前项),且从第2项(或某一项)开始的任一项与它的前一项(或前几项)间的关系可以用一个公式来表示,那么该公式就叫做这个数列的递推公式.递推公式也是给出数列的一种方法. (2)数列的第n 项n a 与项数n 之间的函数关系,可以用一个公式()n a f n =来表示,那么n a 就是数列 的通项公式. 注:①并非所有的数列都有通项公式; ②有的数列可能有不同形式的通项公式; ③数列的通项就是一种特殊的函数关系式; ④注意区别数列的通项公式和递推公式. 题型归纳及思路提示 题型1 数列通项公式的求解 思路提示 常见的求解数列通项公式的方法有观察法、利用递推公式和利用n S 与n a 的关系求解. 观察法 根据所给的一列数、式、图形等,通过观察法归纳出其数列通项. 利用递推公式求通项公式 ①叠加法:形如1()n n a a f n +=+的解析式,可利用递推多式相加法求得n a ②叠乘法:形如1()n n a f n a -= (0)n a ≠*(2,)n n N ≥∈的解析式, 可用递推多式相乘求得n a ③构造辅助数列:通过变换递推公式,将非等差(等比)数列 构造成为等差或等比数列来求其通项公式.常用的技巧有待定系数法、取倒数法、对称变换法和同除以指数法. 利用n S 与n a 的关系求解 形如 1(,)()n n n f S S g a -=的关系,求其通项公式,可依据 1* 1(1)(2,) n n n S n a S S n n N -=? =?-≥∈?,求出n a 观察法 观察法即根据所给的一列数、式、图形等,通过观察分析数列各项的变化规律,求其通项.使用观察法时要注意:①观察数列各项符号的变化,考虑通项公式中是否有(1)n -或者1 (1) n -- 部分.②考虑各项的变化 规律与序号的关系.③应特别注意自然数列、正奇数列、正偶数列、自然数的平方{}2 n 、{}2n 与(1) n -有 关的数列、等差数列、等比数列以及由它们组成的数列. 例6.20写出下列数列的一个通项公式: (1)325374 ,,,,,,;751381911 - --L

数列求和汇总例题与答案)

数列求和汇总答案 一、利用常用求和公式求和 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2 )1(2)(11-+=+= 2、等比数列求和公式:?????≠--=--==)1(11)1()1(111q q q a a q q a q na S n n n 例1、已知3 log 1log 23-=x ,求???++???+++n x x x x 32的前n 项和. 解:由212log log 3log 1log 3323=?-=?-=x x x 由等比数列求和公式得n n x x x x S +???+++=32(利用常用公式) =x x x n --1)1(=2 11)211(21--n =1-n 21 练习:求22222222123456...99100-+-+-+--+的和。 解:2222222212345699100-+-+-+--+ 由等差数列的求和公式得 二、错位相减法求和 这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{a n }、{b n }分别是等差数列和等比数列. 例2求和:132)12(7531--+???++++=n n x n x x x S ………………………① 解:由题可知,{1)12(--n x n }的通项是等差数列{2n -1}的通项与等比数列{1-n x }的通项之积 设n n x n x x x x xS )12(7531432-+???++++=……………………….②(设制错位) ①-②得n n n x n x x x x x S x )12(222221)1(1432--+???+++++=--(错位相减) 再利用等比数列的求和公式得:n n n x n x x x S x )12(1121)1(1 ----?+=-- ∴2 1)1()1()12()12(x x x n x n S n n n -+++--=+ 练习:求数列??????,2 2,,26,24,2232n n 前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 2 1}的通项之积 设n n n S 2 226242232+???+++=…………………………………①

数列求和方法及典型例题

数列求和方法及典型例题 1.基本数列的前n 项和 ⑴ 等差数列{}n a 的前n 项和:n S ???? ??????+?-++=n b n a d n n na a a n n 211)1(212)( ⑵ 等比数列{}n a 的前n 项和n S : ①当1=q 时,1na S n =;②当1≠q 时,q q a a q q a S n n n --=--=11)1(11; 2. 数列求和的常用方法:公式法;性质法;拆项分组法;裂项相消法;错位相减法;倒序相加法. 题型一 公式法、性质法求和 1.已知n S 为等比数列{}n a 的前n 项和,公比7,299==S q ,则=++++99963a a a a 2.等差数列{}n a 中,公差2 1= d ,且6099531=++++a a a a ,则=++++100321a a a a . [例1]求数列 ,,,,,)21(813412211n n +的前n 项和n S . 题型二 拆项分组法求和 [练2]在数列{} n a 中,已知a 1=2,a n+1=4a n -3n +1,n ∈*N . (1)求数列{}n a 的通项公式;(2)设数列{}n a 的前n 项和为S n ,求S n 。 [练].求数列{}2)12(-n 的前n 项和n S . [例].求和:) 1(1431321211+++?+?+?n n . 题型三 裂项相消法求和 [例].求和: n n +++++++++11341231121 . [例]求和:n +++++++++++ 321132112111 [练4]已知数列{}n a 满足()*1112,1N n a a a n n ∈+==+

2022高三统考数学文北师大版一轮:第五章第四节 数列求和

第四节 数列求和 授课提示:对应学生用书第98页 [基础梳理] 1.等差数列的前n 项和公式 S n =n (a 1+a n )2=na 1 +n (n -1)2 d . 2.等比数列的前n 项和公式 S n =??? na 1,q =1, a 1-a n q 1-q =a 1(1-q n )1-q ,q ≠1. 3.数列求和方法 (1)公式法求和: 使用已知求和公式求和的方法,即等差、等比数列或可化为等差、等比数列的求和方法. (2)错位相减法: 如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可用此法来求,如等比数列的前n 项和就是用此法推导的. (3)倒序相加法: 如果一个数列{a n }的前n 项中首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法,如等差数列的前n 项和即是用此法推导的. (4)分组求和法: 一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和后再相加减. (5)并项求和法: 一个数列的前n 项和,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解. 1.先看数列通项特点,再想求和方法. 2.常见的拆项公式 (1)若{a n }为各项都不为0的等差数列,公差为d (d ≠0), 则1a n ·a n +1=1d (1a n -1a n +1 ); (2)1n (n +k )=1k (1n -1 n +k ); (3)1 n +n +1 =n +1-n ; (4)log a (1+1 n )=log a (n +1)-log a n (a >0且a ≠1). 3.一些常见数列的前n 项和公式

数列常见题型总结经典(超级经典)

高中数学《数列》常见、常考题型总结 题型一 数列通项公式的求法 1.前n 项和法(知n S 求n a )?? ?-=-11n n n S S S a )2()1(≥=n n 例1、已知数列}{n a 的前n 项和212n n S n -=,求数列|}{|n a 的前n 项和n T 1、若数列}{n a 的前n 项和n n S 2=,求该数列的通项公式。 2、若数列}{n a 的前n 项和32 3-= n n a S ,求该数列的通项公式。 3、设数列}{n a 的前n 项和为n S ,数列}{n S 的前n 项和为n T ,满足22n S T n n -=, 求数列}{n a 的通项公式。 2.形如)(1n f a a n n =-+型(累加法) (1)若f(n)为常数,即:d a a n n =-+1,此时数列为等差数列,则n a =d n a )1(1-+. (2)若f(n)为n 的函数时,用累加法. 例 1. 已知数列{a n }满足)2(3 ,1111≥+==--n a a a n n n ,证明2 13-=n n a

1. 已知数列{}n a 的首项为1,且*12()n n a a n n N +=+∈写出数列{}n a 的通项公式. 2. 已知数列}{n a 满足31=a ,)2() 1(11≥-+ =-n n n a a n n ,求此数列的通项公式. 3.形如 )(1n f a a n n =+型(累乘法) (1)当f(n)为常数,即:q a a n n =+1(其中q 是不为0的常数),此数列为等比且n a =11-?n q a . (2)当f(n)为n 的函数时,用累乘法. 例1、在数列}{n a 中111,1-+= =n n a n n a a )2(≥n ,求数列的通项公式。 1、在数列}{n a 中1111,1-+-= =n n a n n a a )2(≥n ,求n n S a 与。 2、求数列)2(1232,11 1≥+-==-n a n n a a n n 的通项公式。

数列题型及解题方法归纳总结

累加累积 归纳猜想证明 掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了 典型 题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。 一、典型题的技巧解法 1、求通项公式 (1)观察法。(2)由递推公式求通项。 对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。 ⑴递推式为a n+i =3+d 及a n+i =qa n (d ,q 为常数) 例1、 已知{a n }满足a n+i =a n +2,而且a i =1。求a n 。 例1、解 ■/ a n+i -a n =2为常数 ??? {a n }是首项为1,公差为2的等差数列 /? a n =1+2 (n-1 ) 即 a n =2n-1 1 例2、已知{a n }满足a n 1 a n ,而a 1 2,求a n =? 佥 1 2 解■/^ = +是常数 .■-傀}是以2为首顶,公比为扌的等比数 把n-1个等式累加得: .' ? an=2 ? 3n-1-1 ji i ? / ] — 3 ⑷ 递推式为a n+1=p a n +q n (p ,q 为常数) s 1 1 【例即己知何沖.衍二右札+ 吧求% 略解在如十冷)*的两边乘以丹得 2 严‘ *珞1 = ~〔2怙血)+1.令亠=2n 召 则也€%乜于是可得 2 2 n b n 1 n 1 n b n 1 b n (b n b n 1)由上题的解法,得:b n 3 2(—) ? a . n 3(—) 2(—) 3 3 2 2 3 ★说明对于递推式辺曲=+屮,可两边除以中叫得蹲= Q 計/斗引辅助财如(%=芒.徼十氣+护用 (5) 递推式为 a n 2 pa n 1 qa n 知识框架 数列 的概念 数列的分类 数列的通项公式 数列的递推关系 函数角度理解 (2)递推式为 a n+1=a n +f (n ) 1 2 例3、已知{a n }中 a 1 a n 1 a n 1 ,求 a n . 4n 2 1 等差数列的疋义 a n a n 1 d(n 2) 等差数列的通项公式 a n a 1 (n 1)d 等差数列 等差数列的求和公式 S n (a 1 a n ) na 1 n(n 1)d 2 2 等差数列的性质 a n a m a p a q (m n p q) 两个基 本数列 等比数列的定义 a n 1 q(n 2) 等比数列的通项公式 a n n 1 a 1q 数列 等比数列 a 1 a n q 3(1 q ) (q 1) 等比数列的求和公式 S n 1 q 1 q / n a 1(q 1) 等比数列的性质 S n S m a p a q (m n p q) 公式法 分组求和 错位相减求和 裂项求和 倒序相加求和 解:由已知可知a n 1 a n (2n 1)(2n 1)夕2n 1 2n 令n=1,2,…,(n-1 ),代入得(n-1 )个等式累加,即(a 2-a 1) + 1广 K z 1】、 =-[(1-" + J J 5 _■ 冷(一 Jr ★ 说明 只要和f ( 1) +f (2) 入,可得n-1个等式累加而求a n 。 ⑶ 递推式为a n+1=ps n +q (p , q 为常数) 1 a n a 1 (1 2 +?…+f 例 4、{a n }中,ai 1,对于 n > 1 (n € N) 有a n (a 3-a 2) + ? + (a n -a n-1) L )也 2n 1 4n 2 (n-1 )是可求的,就可以由 a n+1=a n +f (n )以n=1,2,…, 3a n 1 2 ,求 a n ? 数列 求和 解法一: 由已知递推式得 a n+1=3a n +2,a n =3a n-1+2。两式相减:a n+1-a n =3 (a n -a n-1) 因此数列{a n+1-a n }是公比为3的等比数列,其首项为 a 2-a 1= (3X 1+2) -1=4 --a n+1 -a n =4 ? 3 - a n+1 =3a n +2 - - 3a n +2-a n =4 ? 3 即 a n =2 ? 3 -1 解法_ : 上法得{a n+1-a n }是公比为 3 的等比数列,于是有: a 2-a 1=4, a 3-a 2=4 ? 3, a 4-a 3=4 ? 3 ? 3 , 数列的应用 分期付款 其他

数列求和与求通项方法汇总与经典例题

15 数列求通项问题 数列求通项方法一:累加法,解决形如型数列通项问题)(1n f a a n n =-+. 例.设数列}{a n 的前n 项和为S n ,}{a n }满足a 1=1,a n +1﹣a n =n d ,n ∈N *.若n d =3n ,求数列}{a n 的通项公式; 解:(1)若a n +1﹣a n =d n =3n ,则a 2﹣a 1=3, a 3﹣a 2=32,a 4﹣a 3=33,……a n ﹣a n ﹣1=3n ﹣1, 累加得:a n ﹣a 1==,又由a 1=1,∴a n =. 数列求和方法二:构造法,解决形如型或接近于等差或d pa n n +=+1a .等比数列型 例.已知数列{a n }满足a 1=1且a n +1=2a n +1,求a n ; 解:∵a n +1=2a n +1,∴a n +1+1=2a n +2=2(a n +1),又a 1+1=2≠0,所以, ∴数列{a n +1}是等比数列,公比q =2,首项为2.则, ∴; 例 数列{a n }中,a 1=1,a n +1=2a n +n ﹣1.求数列{a n }的通项公式. 解:根据题意,a n +1=2a n +n ﹣1,则a n +1+n +1=2a n +n ﹣1+n +1=2a n +2n =2(a n +n ) 所以,所以数列{a n +n }为等比数列. 数列{a n +n }为以2为公比的等比数列,又a 1=1,所以a 1+1=2. 所以,所以. 例.设S n 是数列{a n }的前n 项和,且a 1=﹣1,a n +1=S n ?S n +1,求{a n }的通项公式. 解:因为a n +1=S n +1﹣S n ,所以S n +1﹣S n =S n ?S n +1. 两边同除以S n ?S n +1得﹣=﹣1.因为a 1=﹣1,所以=﹣1. 因此数列{ }是首项为﹣1,公差为﹣1的等差数列. 得=﹣1+(n ﹣1)(﹣1)=﹣n ,S n =﹣.

数列求和方法及典型例题

数列求和方法及典型例题 1?基本数列的前n 项和 门佝 aQ 2 1 ⑴等差数列a n 的前n 项和:S n na n(n 1)d an bn ⑵等比数列a n 的前n 项和S n : ①当q 1时,S n na i ;②当q 1时,& a i (1 q n ) a 1 a .q ; ; 1 q 1 q 2.数列求和的常用方法: 公式法:性质法:拆项分组法:裂项相消法;错位相减法;倒序相加法 题型一公式法、性质法求和 a 99 ______________________ 2?等差数列 a n 中,公差d 2,且a1 a 3 a 5 a 99 60,贝V a 1 a ? a 3 a 100 111 [例1]求数列1 一,2 — ,3-, ,(n 右), 的前n 项和S n ? 题型二拆项分组法求和 (1)求数列a n 的通项公式;(2)设数列a n 的前n 项和为S n ,求S n 。 [练]?求数列(2n 1)2的前n 项和S n . [例]?求和: 1 n(n 1) 题型三裂项相消法求和 [例]?求和: 1 , 2 1 1 ■ 4 “3 [例]求和:1 [练4]已知数列a n 满足a 1 1,a n 1 2a n 1 nN 1?已知S n 为等比数列 a n 的前n 项和,公比q 2,S g9 7 ,贝V a 3 a 6 a 9 [练2]在数列 a n 中,已知 a 1=2, a n+1=4a n — 3n + 1, n € N

h 1 O h 1 1 nh 1 n (1)求数列a n的通项公式。⑵若数列b n满足41 4 2 4 3 4 n a n 1 ,求数列 2n 若c n,求数列c n的前n项和S n。 a n a n 1 题型四错位相减法求和 [例]?设数列a n为1 2,2 22,3 2 3,4 2 3 n 2n x 0求此数列前n项的和. [例]?设数列{a n}满足a1+ 3a2 + 32a3 + …+ 3n_ 1a n=£, n€ N*. (1)求数列{a n}的通项公式;⑵设b n= n,求数列{b n}的前n项和S n. [练1]已知数列{ a n}、{b n}满足a11 , a2 3, b n 1 2(n N*),b n a n 1 a n。 b n (1)求数列{b n}的通项公式; (2)数列{ C n}满足C n b n log 2( a n 1)(n * N ),求S n C1 C2 ........ C n。 [练4]等比数列a n中,已知对任意自然数n, a〔a? a3 a n 2n 1,求a;a;a3 2 A.2n 1 B.12n 1 C.4n 1 1 n . D.— 4 1 3 3 a;的值 b n的通项公式。(3)

高考数学数列知识点及题型大总结

20XX 年高考数学数列知识点及题型大总结 等差数列 知识要点 1.递推关系与通项公式 m n a a d n a a d d n a a d m n a a d n a a d a a m n n n m n n n n --= --= --=-+=-+==-+1; )1()()1(1111变式:推广:通项公式:递推关系: 为常数) 即:特征:m k m kn n f a d a dn a n n ,(,)(), (1+==-+= ),为常数,(m k m kn a n +=是数列{}n a 成等差数列的充要条件。 2.等差中项: 若c b a ,,成等差数列,则b 称c a 与的等差中项,且2 c a b +=;c b a ,,成等差数列是c a b +=2的充要条件。 3.前n 项和公式 2 )(1n a a S n n += ; 2)1(1d n n na S n -+= ) ,()(,)2(22212为常数即特征:B A Bn An S Bn An n f S n d a n d S n n n +=+==-+= 是数列 {}n a 成等差数列的充要条件。 4.等差数列 {}n a 的基本性质),,,(*∈N q p n m 其中 ⑴q p n m a a a a q p n m +=++=+,则若反之,不成立。 ⑵d m n a a m n )(-=- ⑶m n m n n a a a +-+=2

⑷n n n n n S S S S S 232,,--仍成等差数列。 5.判断或证明一个数列是等差数列的方法: ①定义法: )常数)(*+∈=-N n d a a n n (1?{}n a 是等差数列 ②中项法: )22 1*++∈+=N n a a a n n n (?{}n a 是等差数列 ③通项公式法: ),(为常数b k b kn a n +=?{}n a 是等差数列 ④前n 项和公式法: ),(2为常数B A Bn An S n +=?{}n a 是等差数列 练习:1.等差数列 {}n a 中, ) (3 1 ,1201191210864C a a a a a a a 的值为则-=++++ A .14 B .15 C .16 D .17 165 1203232)(32) 2(3 1 318999119=?==-=+-=-a d a d a a a a 2.等差数列 {}n a 中,12910S S a =>,,则前10或11项的和最大。 解:0912129 =-=S S S S , 003011111121110>=∴=∴=++∴a a a a a a ,又,, ∴ {}n a 为递减等差数列∴1110S S =为最大。 3.已知等差数列{}n a 的前10项和为100,前100项和为10,则前110项和为-110 解:∵ ,,,,,1001102030102010S S S S S S S --- 成等差数列,公差为D 其首项为 10010=S ,前10项的和为10100=S 解

详解数列求和的方法+典型例题

详解数列求和的常用方法 数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧。 第一类:公式法 利用下列常用求和公式求和是数列求和的最基本最重要的方法。 1、等差数列的前n 项和公式 2 )1(2)(11d n n na a a n S n n -+ =+= 2、等比数列的前n 项和公式 ?? ? ??≠--=--==)1(11)1()1(111q q q a a q q a q na S n n n 3、常用几个数列的求和公式 (1)、)1(2 1 3211+= +?+++== ∑=n n n k S n k n (2)、)12)(1(6 1 321222212++= +?+++== ∑=n n n n k S n k n (3)、23 3331 3)]1(21[321+=+?+++==∑=n n n k S n k n 第二类:乘公比错项相减(等差?等比) 这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列 }{n n b a ?的前n 项和,其中}{n a ,}{n b 分别是等差数列和等比数列。 例1:求数列}{1 -n nq (q 为常数)的前n 项和。 解:Ⅰ、若q =0, 则n S =0 Ⅱ、若q =1,则)1(2 1 321+=+?+++=n n n S n Ⅲ、若q ≠0且q ≠1, 则1 2 321-+?+++=n n nq q q S ① n n nq q q q qS +?+++=3232 ②

①式—②式:n n n nq q q q q S q -+?++++=--1 321)1( ?)1(11 132n n n nq q q q q q S -+?++++-= - ?)11(11n n n nq q q q S ----= ?q nq q q S n n n ----=1) 1(12 综上所述:????????? ≠≠----=+==)10(1) 1(1)1)(1(2 1 )0(02 q q q nq q q q n n q S n n n 且 解析:数列}{1 -n nq 是由数列{}n 与{}1-n q 对应项的积构成的, 此类型的才适应错位相减,(课本中的的等比数列前n 项和公式就是用这种方法推导出来的),但要注意应按以上三种 情况进行分类讨论,最后再综合成三种情况。 第三类:裂项相消法 这是分解与组合思想在数列求和中的具体应用。 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的通项分解(裂项)如: 1、乘积形式,如: (1)、1 1 1)1(1+- =+= n n n n a n (2)、)1 21 121(211)12)(12()2(2+--+=+-= n n n n n a n (3)、]) 2)(1(1 )1(1[21)2)(1(1++-+=++=n n n n n n n a n ( 4 ) 、 n n n n n n n n S n n n n n n n n n a 2 )1(1 1,2)1(12121)1()1(221)1(21+-=+-?=?+-+=?++= -则 2、根式形式,如:

高考数学-数列通项公式求解方法总结

高考数学-数列通项公式求解方法总结 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

求数列通项公式的十种方法 一、公式法 例1 已知数列{}n a 满足1232n n n a a +=+?,12a =,求数列{}n a 的通项公式。 解:1232n n n a a +=+?两边除以12n +,得113222n n n n a a ++=+,则113222 n n n n a a ++-=,故数列{}2n n a 是以 1222a 1 1== 为首项,以2 3 为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222n n a n =-。 评注:本题解题的关键是把递推关系式1232n n n a a +=+?转化为 11 3 222 n n n n a a ++-=,说明数列{}2n n a 是等差数列,再直接利用等差数列的通项公式求出31(1)22 n n a n =+-,进而求出数列{}n a 的通项公式。 二、累加法 例2 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。 解:由121n n a a n +=++得121n n a a n +-=+则 11232211 2 ()()()()[2(1)1][2(2)1](221)(211)1 2[(1)(2)21](1)1 (1)2(1)1 2 (1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-+++?++?++=-+-++++-+-=+-+=-++= 所以数列{}n a 的通项公式为2n a n =。 评注:本题解题的关键是把递推关系式121n n a a n +=++转化为121n n a a n +-=+,进而求出11232211()()()()n n n n a a a a a a a a a ----+-+ +-+-+,即得数列{}n a 的通项公式。 例3 已知数列{}n a 满足112313n n n a a a +=+?+=,,求数列{}n a 的通项公式。

数列经典例题(裂项相消法)20392

数列裂项相消求和的典型题型 1.已知等差数列}{n a 的前n 项和为,15,5,55==S a S n 则数列}1 {1 +n n a a 的前100项和为( ) A .100101 B .99101 C .99100 D .101100 2.数列,)1(1+=n n a n 其前n 项之和为,10 9 则在平面直角坐标系中,直线0)1(=+++n y x n 在y 轴上的截距 为( ) A .-10 B .-9 C .10 D .9 3.等比数列}{n a 的各项均为正数,且622 3219,132a a a a a ==+. (Ⅰ)求数列}{n a 的通项公式; (Ⅱ)设,log log log 32313n n a a a b +++= 求数列}1 { n b 的前n 项和. 4.正项数列}{n a 满足02)12(2 =---n a n a n n . (Ⅰ)求数列}{n a 的通项公式n a ; (Ⅱ)令,)1(1 n n a n b += 求数列}{n b 的前n 项和n T . 5.设等差数列}{n a 的前n 项和为n S ,且12,4224+==n n a a S S . (Ⅰ)求数列}{n a 的通项公式; (Ⅱ)设数列}{n b 满足 ,,2 1 1*2211N n a b a b a b n n n ∈-=+++ 求}{n b 的前n 项和n T . 6.已知等差数列}{n a 满足:26,7753=+=a a a .}{n a 的前n 项和为n S . (Ⅰ)求n a 及n S ; (Ⅱ)令),(1 1*2 N n a b n n ∈-= 求数列}{n b 的前n 项和n T . 7.在数列}{n a 中n n a n a a 2 11)11(2,1,+==+. (Ⅰ)求}{n a 的通项公式;

相关文档
最新文档