标 准 号 标 准 内 容 备 注

标 准 号 标 准 内 容 备 注
标 准 号 标 准 内 容 备 注

标准号标准内容备注

GB/T3098.1-2000 紧固件机械性能螺栓、螺钉和螺柱 ISO898-1:1999

GB/T3098.2-2000 紧固件机械性能螺母粗牙螺纹 ISO898-2:1992

GB/T3098.3-2000 紧固件机械性能紧定螺钉 ISO898-5:1998

GB/T3098.4-2000 紧固件机械性能螺母细牙螺纹 ISO898-6:1994

GB/T3098.5-2000 紧固件机械性能自攻螺钉 ISO2702:1992

GB/T3098.6-2000 紧固件机械性能不锈钢螺栓、螺钉和螺柱 ISO3506-1:1997 GB/T3098.7-2000 紧固件机械性能自挤螺钉 ISO7085:1999

GB/T3098.14-2000 紧固件机械性能螺母扩孔试验 ISO10484:1997

GB/T3098.15-2000 紧固件机械性能不锈钢螺母 ISO3506-2:1998

GB/T3098.16-2000 紧固件机械性能不锈钢紧定螺钉 ISO3506-3:1997

GB/T1237-2000 紧固件标记方法 ISO8991:1986

GB/T 41-2000 六角螺母 C级 ISO4034:1999

GB/T 65-2000 开槽圆柱头螺钉 ISO1207:1992

GB/T 67-2000 开槽盘头螺钉 ISO1580:1994

GB/T 68-2000 开槽沉头螺钉 ISO2009:1994

GB/T 69-2000 开槽半沉头螺钉 ISO2010:1994

GB/T 70.1-2000 内六角圆柱头螺钉 ISO4762:1997

GB/T 70.2-2000 内六角平圆头螺钉 ISO7380:1997

GB/T 70.3-2000 内六角沉头螺钉 ISO10642:1997

GB/T 77-2000 内六角平端紧定螺钉 ISO4026:1993

GB/T 78-2000 内六角锥端紧定螺钉 ISO4027:1993

GB/T 79-2000 内六角圆柱端紧定螺钉 ISO4028:1993

GB/T 80-2000 内六角凹端紧定螺钉 ISO4029:1993

GB/T 5779.1-2000 紧固件表面缺陷螺栓、螺钉和螺柱一般要求 ISO6157-1:1988

GB/T 5779.2-2000 紧固件表面缺陷螺母 ISO6157-2:1995

GB/T 5779.3-2000 紧固件表面缺陷螺栓、螺钉和螺柱特殊要求 ISO6157-3:1988

GB/T 5780-2000 六角头螺栓 C级 ISO4016:1999

GB/T 5781-2000 六角头螺栓全螺纹 C级 ISO4018:1999

GB/T 5782-2000 六角头螺栓 ISO4014:1999

GB/T 5783-2000 六角头螺栓全螺纹 ISO4017:1999

GB/T 5785-2000 六角头螺栓细牙 ISO8765:1999

GB/T 5786-2000 六角头螺栓细牙全螺纹 ISO8676:1999

GB/T 6170-2000 1 型六角螺母 ISO4032:1999

GB/T 6171-2000 1 型六角螺母细牙 ISO8673:1999

GB/T 6172.1-2000 六角薄螺母 ISO4035:1999

GB/T 6172.2-2000 非金属嵌件六角锁紧薄螺母 ISO10511:1997

GB/T 6173-2000 六角薄螺母细牙 ISO8675:1999

GB/T 6174-2000 六角薄螺母无倒角 ISO4036:1999

GB/T 6175-2000 2 型六角螺母 ISO4033:1999

GB/T 6176-2000 2 型六角螺母细牙 ISO8674:1999

GB/T 6177.1-2000 六角法兰面螺母 ISO4161:1999

GB/T 6177.2-2000 六角法兰面螺母细牙 ISO10663:1999

GB/T 6182-2000 2型非金属嵌件六角锁紧螺母 ISO7041:1997

GB/T 6183.1-2000 非金属嵌件六角法兰面锁紧螺母 ISO7043:1997

GB/T 6183.2-2000 非金属嵌件六角法兰面锁紧螺母细牙 ISO12125:1997 GB/T 6184-2000 1型全金属六角锁紧螺母 ISO7719:1997

GB/T 6185.1-2000 2型全金属六角锁紧螺母 ISO7042:1997

GB/T 6185.2-2000 2型全金属六角锁紧螺母细牙 ISO10513:1997

GB/T 6186-2000 2型全金属六角锁紧螺母 9级 ISO7720:1997

GB/T 6187.1-2000 全金属六角法兰面锁紧螺母 ISO7044:1997

GB/T 6187.2-2000 全金属六角法兰面锁紧螺母细牙 ISO12126:1997 GB/T 6188-2000 螺栓和螺钉用内六角花形 ISO10664:1999

GB/T 819.1-2000 十字槽沉头螺钉第1部分:4.8级 ISO7046-1:1994 GB/T 819.2-1997 十字槽沉头螺钉第2部分:8.8级 ISO7046-2:1990

不锈钢A2-70和有色金属CU2或CU3

GB/T 820-2000 十字槽半沉头螺钉 ISO7047:1994

GB/T 822-2000 十字槽圆柱头螺钉 ISO7048:1994

GB/T 889.1-2000 1型非金属嵌件六角锁紧螺母 ISO7040:1997

GB/T 889.2-2000 1型非金属嵌件六角锁紧螺母细牙 ISO10512:1997 GB/T 18195-2000 精密机械用六角螺母 ISO4166:1979

下穿高速铁路监测方案

下穿高速铁路监测方案 Document serial number【KK89K-LLS98YT-SS8CB-SSUT-SST108】

宁波市高速公路江北连接线(污水管道)工程下穿杭甬高铁监控方案 上海先科桥梁隧道加固检测工程 技术有限公司 二0一四年元月

宁波市高速公路江北连接线(污水管道)工程下穿杭甬高铁监测方案 编写: 审核: 批准: 上海先科桥梁隧道加固检测工程 技术有限公司 2014年1月 目录

宁波市高速公路江北连接线(污水管道)工程下穿杭 甬高铁监测方案 1.工程概况 本工程位于宁波市江北区慈城镇民丰村附近,南侧寺慈线乡道,北侧为S61省道,西侧为G15沈海高速公路.本工程下穿杭甬高铁宁西特大桥里程为K291+384处,位于369#和370#桥墩之间。详见图1-1、图1-2 工程位置关系图。 图1-1 工程位置关系图 图1-2 公路与杭甬高铁位置关系图污水管道外径120cm,壁厚21cm,内径80cm,埋设深度6米,(管顶距地面距离),总长为60米。管道线路跟铁路交角78度,线路中心线离370#桥墩最近距离为6米。 在高铁两侧分别设有一座工作井和一座接受井,靠杭甬高铁中心线南侧26米处为工作井,工作井外径6.6米,壁厚50cm,深度8米,井口高度1.8米。 靠近杭甬高铁北侧接受井,外径3,8米,壁厚50cm,深度8.15米,井口高度1.7米。 2.监测意义和目的 由于桥下顶管施工可能引起杭甬高速铁路桥梁结构地基应力发生变化,产生位移,若地基发生沉降,可致使桥梁结构发生位移过大,导致梁体混凝土局部应力过大,产生损伤;同时也会导致桥上高铁线路产生轨道不平顺,危及高铁行车安全,这类病害将会极大的影响桥梁结构及高铁的行车安全性,因此必须在施工期和施工后一段时期内对高铁桥墩的变形、沉降及地面沉降的进行监控测量,把施工引起的一系列动态变化信息及时反馈到业主及相关单位,使之能够在现场及时调整施工参数,优化和改进施工方法,确保高铁设备的安全。 本次工程监测的目的主要有:

水位远程监测系统方案

水位远程监测系统 方案

水位远程监测系统方案上海智达电子有限公司

目录 一、客户需求....................................................................................2二、方案概述....................................................................................2三、系统组成....................................................................................2 3.1控制中心主站 (3) 3.2通讯网络....................................................................................3 3.3现场主要监测设备 (3) 四、地下水位监测系统主要特点 (4) 五、系统软件功能及特点 (5) 5.1功

能..........................................................................................5 5.2特点..........................................................................................6六、主要硬件设备概述 (9) 6.1G P R S无线通讯设备 (10) 6.2水资源控制器 (11) 6.3水位计 (14) 6.4室外专用监测箱 (16) 6.5开关电源 (17)

下穿高速铁路监测方案

宁波市高速公路江北连接线(污水管道)工程下穿杭甬高铁监控方案上海先科桥梁隧道加固检测工程 技术有限公司 一四年元月0二 宁波市高速公路江北连接线(污水管道)工程下穿杭甬高铁监测方案 编写: 审核: 批准: 上海先科桥梁隧道加固检测工程 技术有限公司 2014年1月 目录 1. 工程概 况 (2) 2. 监测意义和目 的 (2) 3. 作业依据和原 则 (3) 3.1 作业依据 (3) 3.2 编制原则 (3)

4. 变形监测内 容 (4) 5. 监测方法技 术 (4) 5.1 起算数据系统 (4) 5.2 监测等级 (4) 5.3 平面基准点 (5) 5.3.1 基准点布设 (5) 5.3.2 平面基准点观测 (5) 5.4 沉降基准点 (5) 5.4.1 沉降基准点布设 (5) 5.4.2 沉降基准点测量 (5) 5.5 平面监测点 (6) 5.5.1 平面监测点布设 (6) 5.5.2 平面监测点测量 (7) (7) 沉降监测点5.6 5.6.1 沉降监测点布设 (7) 5.6.2 沉降监测点测量 (7) 6. 监测计划及频 率 (8) 7. 监测报警 值 (9) 8. 监控工 期 (9) 9. 资料整理与成果提 交 (10) 9.1 资料整理 (10) 9.2 信息传递 (10) 9.3 成果提交 (10) 10. 人员组织及设备投 入 (10) 10.1 人员配置 (10) 10.2 仪器配备 (11) 11. 质量保证体 系 (13) 11.1 项目组织机构 (13) 11.2 质量保证措施 (13) ..........................................................14服务与承诺11.3 宁波市高速公路江北连接线(污水管道)工程下穿杭甬高铁监测方案 1. 工程概况

在线监测系统运营解决方案

在线监测系统运营解决方案 污染源在线监测系统是环保监测与环境预警的信息平台。系统采用先进的无线网络,涵盖水质监测、烟气自动监测(CEMS)、空气质量监测、以及视频监测等多种环境在线监测应用;系统以污染源在线监测为基础,充分贯彻总量管理、总量控制的原则,包含了环境监理信息系统的许多重要功能,充分满足各级环保部门环境信息网络的建设要求,支持各级环保部门的环境监理与环境监测工作,满足不同层级用户的管理需求。 1.污染源在线监测系统的构成 一套完整的污染源在线监测系统能连续、及时、准确地监测排污口各监测参数及其变化状况;中心控制室可随时取得各子站的实时监测数据,统计、处理监测数据,可打印输出日、周、月、季、年平均数据以及日、周、月、季、年最大值、最小值等各种监测、统计报告及图表(棒状图、曲线图、多轨迹图、对比图等),并可输入中心数据库或上网。收集并可长期存储指定的监测数据及各种运行资料、环境资料备检索。系统具有监测项目超标及子站状态信号显示、报警功能;自动运行,停电保护、来电自动恢复功能;维护检修状态测试,便于例行维修和应急故障处理 污染源在线监测系统特点 ?整合污染源在线监测系统与视频监测系统,在全面监测企业污染物排放状况的同时,还可以将企业现场的实时画面传送到环保局,实现污染源可视化管理。 ?采用GPRS无线数据传输方式,彻底摆脱“有线”的束缚,适用范围广,运行成本低。 ?利用GPRS无线网络实时在线的特点,建立污染源在线监测系统(环境监理信息系统)的无线网络,及时准确地掌握各个企业污染物排放口的实际运行情况和污染物排放的发展趋势与动态。 ?人性化的报警和预警功能,可以提醒管理人员及时地关注和处理可能发生或已经发生的事件。 ?监测仪表的类型不受限制,只要在系统中进行相应的设置即可对任意仪表类型自动进行识别,从而扩大了系统的监测种类和应用范围。 ?涵盖在线监测的多种应用,包括水质在线监测、烟尘在线监测。

铁路专用线安全监控方案

仅供参考[整理] 安全管理文书 铁路专用线安全监控方案 日期:__________________ 单位:__________________ 第1 页共22 页

铁路专用线安全监控方案 工程概况 祁东地处湖南省南部、衡阳市西南部、湘江中游北岸,南连永州,北抵邵东,东邻衡阳,西接桂林,境内地势自西北向东南倾斜,西部四明山脉逶迤,中部祁山绵延。湘桂铁路、322国道从境内并行而过,衡枣高速公路及其连接线贯穿境内,素有“湘桂咽喉”之称。 拟建铁路在既有湘桂线xx镇车站接轨,xx镇车站站中心里程为 K74+305,专用线正线在xx镇站房对侧衡阳端(K73+561.923)接出,与既有湘桂线帮宽地带约长180米,再偏向东南经过太平村,从读书村七组与八组之间穿过,再进入园区企业站,专用线正线全长约5.9km。 接轨站(xx镇站)站房对侧增加到发线2股,拆除正线Ⅱ道及到发线3道间站台,将到发线3道及新增的2条到发线按技术标准设置线间距,拆除站对侧工区部分围墙,改造既有车站衡阳端咽喉,使站内股道有效长均达到650m以上。相关路基、涵洞、站场工程同步改造到位。 (一)、铁路主要技术标准 铁路等级:Ⅲ级(GB50012-2012); 正线数目:单线; 限制坡度:12‰; 最小曲线半径:一般500m,困难300m; 牵引种类:内燃; 机车类型:DF4K; 牵引质量:2850t; 到发线有效长度:650m; 闭塞类型:半自动闭塞。 第 2 页共 22 页

(二)、既有铁路相关设备现状 1、广州通信段:光电缆埋设点有(1)、xx镇站埋设有穿铁路电话线(车站到工区);(2)、xx镇站Ⅱ、3道间站台下埋设有通信线;(3)K73+780~xx镇车站沿站台及线路左侧埋设有应急电缆。 2、长沙电务段:电缆埋设点有(1)、K74+840-xx镇站埋设有电缆线;(2)、xx镇站Ⅱ、3道间站台下埋设有电缆线;(3)、K74+000-K73+800段埋设有电缆线;(4)、K73+800-DK0+185(两个信号机之间)既有线路肩埋设有电缆线。 3、长沙供电段:xx镇车站对侧电线杆(低压明线)。 4、永州工务段:既有线路基帮宽区域以填方为主,局部挖方,挖方区域有既有侧沟,填方区域坡脚有排水沟;有5个既有涵洞,需要接长;既有3道改建并延长,东咽喉道岔群改造,增建2股道。 5、衡阳房建公寓段:需要拆除的设备有xx镇站既有Ⅱ、3道间站台及站台上相关标牌,需要迁改的有工区靠线路部分围墙、工区仓库部分围墙等站场建筑物。 6、其中广州通信段、长沙供电段、衡阳房建公寓段的相关设备在2014年拆除或迁改到位。无车辆设备。 编制依据 1、湖南省xx有限公司铁路专用线工程相关设计图纸及补充说明等 2、《铁路运输管理条例》、《铁路安全管理条例》 3、广铁运发〔2013〕73号《广铁集团铁路营业线施工配合管理办法(试行)》、广铁办发〔2012〕324号广铁(集团)公司安全风险过程控制管理办法、广铁运发〔2012〕310号《广铁集团铁路营业线施工安全管理实施细则》、广铁运发〔2013〕252号广铁(集团)公司关于发布 第 3 页共 22 页

智能无线电监测网系统解决方案

一、智能无线电监测网系统解决方案 目前,各省市无线电监测网建设所面临的异构系统难以整合、监测手段被动低效、业务决策缺乏依据、指挥调度流程不畅等难题依然存在。华日公司的智能监测网系统,通过整合各类已建的固定监测站(含小型站)、移动监测站及网格化监测系统资源,并增补适当的智能化监测设备,对现有监测软件进行升级改造,形成全时全域频谱监测能力,同时结合云计算和大数据技术,大大提升了整个监测网的管理运行自动化水平,为无线电管理工作模式带来了巨大变化。 大数据时代的智能监测网系统,可为智慧无线电管理提供诸多有力的支撑: ●监测网运行模式从临时被动任务执行转向长时主动数据收集; ●数据采集从手工碎片化转向自动连续化; ●提高设备使用效率,降低设备闲置率; ●增强监测网管理能力,减轻运维人员工作压力; ●从单维监测数据分析转向多维频谱管理决策; ●干扰处置、考试保障、重大活动保障等的异常预警和全程支持; ●可根据工作需要,通过软件动态改变系统工作模式和工作内容。 系统能力 1)全域监测设施联合作业能力 智能监测网的核心运行基础是通过面向服务中间件和标准的接口规范实现对来自于不同厂商的监测系统的整合,并提供统一的设备控制、数据管理和分析界面,形成监测一体化平台,从而盘活全网资源,提升异构系统联合作业的能力。当重大活动或突发事件发生时,这种能力将大为突破现有监测系统在监测资源调度上的瓶颈。

2)保障系统可靠运行的智能网络管理能力 伴随精细化管理的需要,大量新型监测设备接入系统,使监测网的规模和运维难度日益增大。华日智能网络管理系统可以以网络拓扑和地理分布为视点,对站点环境、站点设备、网络流量、设备资源消耗等进行监控,能对在网站点进行统一的监测任务调度、遥控开关机、设备自检,并提供基于设备自检和网络检测的故障告警和基于7X24小时电磁环境数据采集分析的设备数据异常预警,从而系统运维带来极大便利。 3)监测网自动运行能力 除支持常规监测功能外,智能监测网全网均在系统后台服务器的调度下,根据频谱监测数据自动化分析的需要,7X24小时不间断执行各类电磁环境数据、信号特征数据、多模式组合定位数据等的采集任务,并将所获取的数据自动分类压缩汇入各类专题数据库中。移动监测站、可搬移设备、无人升空监测平台等设备的数据也可在线或离线汇入系统。这种“大小结合,移动补盲”的联合作业模式,在大幅降低监测站人员工作量的同时极大提高了监测设备的利用率,使无线电管理机构更实时严密地掌握所辖区域的完整电磁态势。 4)海量监测数据存储能力 随着监测站的增多与全时全域电磁环境数据采集模式的建立,全网积累的数据量将会有爆发式增长,对数据存储和处理模式都提出了巨大的挑战。华日智能监测网依托成熟、安全、可靠的云存储与云计算服务,采用虚拟化存储等技术,可适应海量电磁环境数据大规模存储的需求,减轻用户在数据存储设备运维方面的压力,并在对应用层屏蔽了数据物理存储位置信息的同时为各类业务系统提供统一的数据服务,形成无线电管理云数据库,使数据应用具有更好的弹性,能满

隧道监控测量专项方案

一、编制依据 1、《铁路隧道监控量测技术规程》TB10121-2007 2、《铁路隧道喷锚构筑法技术规范》TB10108-2002 3、《铁路隧道设计规范》TB1000-2005 4、《铁路隧道施工规范》TB10204-2002 5、《工程测量规范》GB50026-93 6、《国家一、二等水准测量规范》GB12897-91 7、施工设计图纸和沿线地质调查资料 二、编制目的 通过本计划指导本项目部隧道施工监控量测工作,在隧道施工过程中,通过对围岩、地表变形以及支护结构应力、围岩与支护结构、支护与支护之间接触压力等量测,了解围岩稳定状态和支护结构、衬砌的可靠程度。 1、确保施工安全及结构的长期稳定性; 2、验证支护结构效果,确认支护参数和施工方法的准确性或为调整支护参 数和施工方法提供依据; 3、确定二次衬砌施作时间; 4、监控工程对周围环境的影响; 5、积累测量数据为信息化设计与施工提供依据; 三、适用范围 适用于采用喷锚构筑法修建的隧道及浅埋隧道施工中的监控量测工序,使其处于受控状态,本计划适用于我项目部所有的隧道监控量测施工。 四、职责:

物资部负责量测仪器设备的采购。 工程部负责提供仪器设备采购计划,编制监控量测设计。 技术主管负责量测计划安排、量测资料的整理,并根据量测结果及时向施工负责人汇报洞内围岩的稳定状态,指导现场施工。 量测组在技术人员的指导下,负责测点的埋设和日常的量测工作,并作好量测记录。 五、工程概况 新建向塘至莆田铁路位于赣东和闽中地区,西起江西省南昌市,自乐化东站(不含)引出,经江西抚州、南城、南丰,福建建宁、泰宁、将乐、沙县、尤溪至永泰分岔,同时引入到外福铁路福州站和福厦铁路莆田站。 我项目部管段内有音头隧道、后洋隧道、大坪隧道三座隧道,其中音头隧道最长,起止里程DK387+437~DK390+043,全长2606m, 在线路前进方向右侧,与线路交点里程DK389+800处设置一斜井,斜井采用无轨运输,为双车道断面,斜井长235米;后洋隧道起止里程DK390+430~DK391+380,全长950m,大坪隧道长190m。线路设计时速200km,预留250km,为双线电气化铁路有碴轨道隧道。 四、监控量测 1、监控量测流程图见附图

无线透传实施方案

变电站无线监测系统 透传模式实施方案 1、概述: 电力调度自动化系统由调度中心主站系统和变电站监控系统(RTU)两大部分组成。主站系统通过RTU可实现实时数据的采集、电网实时运行状态的监视与显示、实现远程控制与调节、事故报警、越限/变位报警、数据计算统计、自动化系统运行状态监视、事故追忆等功能。 目前, RTU和主站系统之间的传输通道主要有光纤、微波、电力线载波和通信电缆等多种通信方式。随着电力市场化的不断推进,要求为社会提供更加可靠、优质的电能。随着电力系统的不断完善电力管理的范围也不断地扩大,很多用户终端站和偏远的变电站都纳入了管理的范围,但是由于这部分变电站都地处偏远,不具备安装上述有线通道的条件(主要是铺设的成本过高)。而各通信运营商的无线数据网络却能覆盖这些区域,因此,利用现有的无线数据网络传输电力数据,就能够实现这些变电站的数据监控和管理,而且还能降低铺设和运行的成本。同时还可以降低日常的维护成本。在申请了无线业务后,无线数据网能够可靠的提供一个传送速率在150kBps的能够24小时进行传输的通道,完全能够满足电力数据传输的需要,通过申请vpdn的业务可以保证网络数据传输的安全。因此,在投入成本不是很高的情况下,增加无线数据通道作为偏远变电站的数据通道或者是变电站的备用通道,是完全能够满足电力系统的要求的。 2、系统简介 无线透传模式是我公司TY400无线监控系统中一种较经济而又稳定高效的运行方式,该模式下TY400系统在厂站---通道---主站的调度监控系统中提供通道的功能。系统本身的各功能模块融为一体成为一条数据通道。对于厂站和主站来说与其他常规通道变电站的运行没有区别。形像的说TY400就像厂站与主站间的一条光纤,不对数据做任何处理,只提供数据的传输。系统由以下三个部分组

XX公路下穿XX铁路地道工程基坑施工监测方案

XXXX工程第四合同段【XXX公路下穿XXX铁路地道】 施工监测专项方案 编制: 审核: 批准: 二〇〇九年六月

1.编制依据 (3) 2.工程概况 (3) 2.1工程位置及工程范围 (3) 2.2 工程地质条件 (4) 3.监测的目的及意义 (4) 4.监测内容及监测控制标准 (5) 4.1主要监测项目及监测频率 (5) 4.2主要监测项目控制标准 (5) 5.主要监测项目实施方法 (6) 5.1地表沉降监测 (6) 5.2地表建(构)筑物沉降监测 (7) 5.3桩顶水平位移 (8) 5.4围护桩桩体水平位移 (9) 5.5围护结构钢筋应力 (10) 5.6钢支撑轴力 (10) 5.7地下水位观测 (11) 6.信息化施工管理程序 (11) 6.1变形管理等级 (11) 6.2施工监测反馈程序 (12) 6.3监测数据分析 (13) 7.监控量测保证措施 (13) 8.工程突发情况及监测应急措施 (14)

XXX工程第四合同段 【XXX公路下穿XXX铁路地道】施工监测专项方案 1.编制依据 (1)建筑地基基础设计规范(GB5007-2002) (2)工程测量规范(GB50026-93) (3)建筑桩基技术规范(JGJ94-94) (4)建筑变形测量规程(JGJ/T8-97) (5)地基基础设计规范(DGJ08-11-1999) (6)基坑工程设计规程(DBJ08-61-97) (7)城市道路设计规范(CJJ 37-90) (8)XXX工程第四合同段【XXX公路下穿XXX铁路地道】设计资料 (9)其他相关技术资料。 2.工程概况 2.1工程位置及工程范围 本工区为XXX公路下穿XXX铁路地道工区(含泵站),位于XXX主线两侧,并与XXX 并行K15+986.670~K16+446.070段。 XXX公路下穿XXX铁路地道,与铁路交角为90度,共分2幅,每幅边线距XXX设计中线16.5m,单幅为3车道,并设置非机动车道。下穿地道全长459.4m,由两部分组成,即下穿封闭段箱体及两侧敞开段整体U型槽结构;其中U型槽长420m,箱体长39.4m;U型槽面积约为16800平米,箱体面积约为1599.64平米;地道泵站位于XXX铁路以西,双桥高架立交桥下;面积约为1854平米。 具体布置如下: 封闭式箱体:修筑起点为K16+226.670,终点为K16+266.070,总长39.4m。沉降缝与道路中线正交。 西侧U型槽:修筑起点为K15+986.670,终点为K16+226.670,总长240m。沉降缝与道路中线正交,其具体分段为:12×20m。 东侧U型槽:修筑起点为K16+266.070,终点为K16+446.070,总长180m。沉降缝与道

水质无线监测系统方案

水质无线监测系统方案 上海正伟数字技术有限公司授权网络免费发布 https://www.360docs.net/doc/b716882282.html, 一、概述 环境监测是环境保护工作的重要组成部分,是环境管理的基础和技术支持。随着我国工业化和城市化的迅速发展,环境保护也相应大力发展起来。这样就迫切需要加快全国环境管理基础能力的建设,提高环境监测能力和环境监督执法管理水平。 排污口水环境实时自动监测系统的研制在我国刚刚起步,欧美一些发达国家在这方面已趋向成熟,例如美国等一些工业发达国家,几乎在每个排污口都安装了有关监测仪器,对污水处理设施的运行情况以及排污流量、PH值、DO、电导、烛度、温度等值进行自动监控,在监控中心可以随时知道排污口染物的排放情况。在韩国已有50%的企业做到了对以下四项指标的实时自动监控:污水处理设备运行情况、流量、PH值和溶氧。 我国目前大部分地区的水环境监测主要是以化学化为主。即人工定期(或不定期)的现场采样、化验、水质分析。这样工作量大且具有随机性,不能准确反映整个水量水质的变化过程,因而不能做到为水环境评价和环境治理的可靠依据。 由于我国经济发展过程中出现越来越多的水环境污染问题,近年来国家已充分重视和加强对环境污染的治理。为了配合这项工作,改进水环境监测手段和方法已显得尤为重要。上海正伟数字技术有限公司在充分调研、考察、征询客户意见等基础上,研制开发了集自动化、即时化、智能化于一体的经济实用的水质量无线监测系统。该系统可以对排污口污水的PH值、DO、温度、电导和排污流量进行实时监控,通过GPRS/CDMA无线终端将数据传送到监控中心和环境管理部门,工作人员可以在监控中心或办公室进行远程监测,随时得到即时数据报告,实现远端无人值守。 二、系统组成、工作原理 系统主要是由一个监测中心,若干个固定监测站和专用GPRS/CDMA无线终端组成。监测中心对各个监测站进行控制指挥,各监测站收集各种污染参数,两者间的控制信号和监

铁路隧道瓦斯监测检测方案

中国电建凯里环城高速公路北段PPP项目EPC总承包部隧道瓦斯监测及检测专项方案 审核: 复核: 编制: 中国电建凯里环城高速公路北段PPP项目 EPC总承包四分部 2017年10月14日

目录 第一章瓦斯工区等级的划分及确定方法.......................... - 1 -第二章瓦斯监测及检测方案 ................................... - 1 - 一、瓦斯监测及检测......................................... - 1 - (一)、瓦斯监测的内容及目的............................ - 1 - (二)、监测依据及执行标准.............................. - 1 - (三)、瓦斯监测体系.................................... - 2 - (四)、监测数据的收集与分析............................ - 7 - 三、防爆措施............................................... - 8 - (一)、防止瓦斯浓度超限和瓦斯积聚....................... - 8 - (二)、防止引爆瓦斯措施................................. - 9 -

第一章瓦斯工区等级的划分及确定方法 根据《铁路瓦斯隧道技术规范》(TB10120-2002)4.1.3节中规定:低瓦斯工区和高瓦斯工区可按绝对瓦斯涌出量进行判定。当全工区的瓦斯涌出量小于0.5m3/min时,为低瓦斯工区;大于或等于0.5m3/min时,为高瓦斯工区。在隧道施工中发现有瓦斯涌出,必须经专业机构检测鉴定,根据鉴定结果按相关规定进行瓦斯等级管理。 第二章瓦斯监测及检测方案 一、瓦斯监测及检测 (一)、瓦斯监测的内容及目的 瓦斯爆炸是施工中最大的安全隐患。瓦斯爆炸的3个必要条件:一是要有一定浓度的瓦斯(主要为CH4);二是要有火源;三是要有足够的氧气。要达到安全生产的目的,就必须从瓦斯监测、通风、设备防爆等综合预防措施下手,杜绝洞内同时具备瓦斯爆炸的3个必要条件。通过对瓦斯的实时监测,控制和防止瓦斯浓度超限,是防止瓦斯爆炸发生的关键。 在施工中,对安全生产影响最大的是瓦斯(主要成分是CH 4)、二氧化碳(C0 2 )的浓度。故 在本隧道施工中,主要以CH 4、C0 2 为监测对象,监控隧道内有害气体的浓度。 瓦斯监测的目的: ①防止在施工过程中,有害气体浓度超限造成灾害,以确保施工安全和施工的正常进行; ②根据监测到的洞内有害气体的浓度大小,及时采取相应的技术措施; ③检验防排瓦斯技术措施效果,正确指导隧道施工,为科学组织施工提供依据。(二)、监测依据及执行标准 1、监测依据 铜锣山隧道瓦斯的监测,主要以《煤矿安全规程》(2009年版);《铁路瓦斯隧道技术规范》(TB10120-2002)、《防治煤矿瓦斯突出细则》、《煤矿安全监控系统及检测仪器使用管理规范》〔AQ1029-2007〕为主要依据,根据上述规程进行有害气体的监测、控制。 2、瓦斯限值与处理

在线监测系统运营建设方案

污染源在线监测系统是环保监测与环境预警的信息平台。系统采用先进的无线网络,涵盖水质监测、烟气自动监测(CEMS)、空气质量监测、以及视频监测等多种环境在线监测应用;系统以污染源在线监测为基础,充分贯彻总量管理、总量控制的原则,包含了环境监理信息系统的许多重要功能,充分满足各级环保部门环境信息网络的建设要求,支持各级环保部门的环境监理与环境监测工作,满足不同层级用户的管理需求。 【部分正文预览】污染源在线监测系统是环保监测与环境预警的信息平台。系统采用先进的无线网络,涵盖水质监测、烟气自动监测(CEMS)、空气质量监测、以及视频监测等多种环境在线监测应用;系统以污染源在线监测为基础,充分贯彻总量管理、总量控制的原则,包含了环境监理信息系统的许多重要功能,充分满足各级环保部门环境信息网络的建设要求,支持各级环保部门的环境监理与环境监测工作,满足不同层级用户的管理需求。 1. 污染源在线监测系统的构成 一套完整的污染源在线监测系统能连续、及时、准确地监测排污口各监测参数及其变化状况;中心控制室可随时取得各子站的实时监测数据,统计、处理监测数据,可打印输出日、周、月、季、年平均数据以及日、周、月、季、年最大值、最小值等各种监测、统计报告及图表(棒状图、曲线图、多轨迹图、对比图等),并可输入中心数据库或上网。收集并可长期存储指定的监测数据及各种运行资料、环境资料备检索。系统具有监测项目超标及子站状态信号显示、报警功能;自动运行,停电保护、来电自动恢复功能;维护检修状态测试,便于例行维修和应急故障处理 污染源在线监测系统特点 ?整合污染源在线监测系统与视频监测系统,在全面监测企业污染物排放状况的同时,还可以将企业现场的实时画面传送到环保局,实现污染源可视化管理。 ?采用GPRS无线数据传输方式,彻底摆脱“有线”的束缚,适用范围广,运行成本低。 ?利用GPRS无线网络实时在线的特点,建立污染源在线监测系统(环境监理信息系统)的无线网络,及时准确地掌握各个企业污染物排放口的实际运行情况和污染物排放的发展趋势与动态。 ?人性化的报警和预警功能,可以提醒管理人员及时地关注和处理可能发生或已经发生的事件。 ?监测仪表的类型不受限制,只要在系统中进行相应的设置即可对任意仪表类型自动进行识别,从而扩大了系统的监测种类和应用范围。 ?涵盖在线监测的多种应用,包括水质在线监测、烟尘在线监测。 ?围绕污染源在线监测的核心,拓展了在环境监理方面的功能,使得本系统同时也是一套环境监理信息系统。 污染源在线监测系统功能

基坑监测方案

新建铁路川藏线拉萨至林芝段站前工程LLZQ-8标铁路基坑围护桩施工变形监测 专项监控量测方案 四川交大工程检测咨询有限公司 二O一六年四月

新建铁路川藏线拉萨至林芝段站前工程LLZQ-8标铁路基坑围护桩施工变形监测 专项监控量测方案 编制: 复核: 审核: 四川交大工程检测咨询有限公司 二O一六年四月

目录 一、工程概况 (1) 1.1 朗镇3 号桥概况 (1) 1.2 朗镇2 号桥概况 (5) 1.3 朗镇4 号桥概况 (6) 1.4 朗镇1 号桥概况 (8) 二、编制依据 (8) 三、监测目的 (8) 四、监测项目 (9) 五、监测项目实施 (10) 5.1 围护结构顶水平位移、竖向位移监测 (10) 5.2 围护桩倾斜 (12) 5.3 钢支撑轴力 (16) 5.4 地表沉降监测 (18) 六、总体测试安排 (19) 七、监测技术成果 (21) 7.1 监测数据处理与分析 (21) 7.2 常规报告 (23) 八、组织机构、人员及设备配置 (24) 8.1 组织机构 (24) 8.2 人员安排 (24) 8.3 仪器设备 (25) 九、质量保证体系及措施 (25) 9.1 质量方针 (25) 9.2 质量目标 (25) 9.3 质量管理体系 (26) 9.4 质量措施 (27)

一、工程概况 新建川藏铁路拉萨至林芝段(简称“拉林铁路”)位于西藏自治区东南部,线路从既有拉日铁路协荣站引出,向南穿过冈底斯山余脉进入雅鲁藏布江河谷,于贡嘎跨过 雅鲁藏布江后向东经扎囊、乃东、桑日、加查、朗县、米林至林芝。 新建铁路川藏线拉萨至林芝段站前工程LLZQ-8 标段起点位于山南地区加查县冷 达乡,经陇南乡、仲达镇、沿S306 省道前行,于林芝地区朗镇终止。线路穿越雅鲁 藏布峡谷地带,四跨雅鲁藏布江,起讫里程为D3K230+703~DK263+844.62,正线 长度32.23km;其中隧道7 座16.613km,占正线长度51.5%;桥梁11 座9642.35延长 米,占正线长度29.9%;路基12 段4.719km, 占正线长度14.6%;涵洞337.5横延米/21 座,其中盖板涵98.4 横延米/3 座,框架涵239.1横延米/18 座;车站2 座(热当车站、 冲康车站)。 朗镇1、2、3、4 号雅鲁藏布江特大桥受地形、河道及既有道路控制设计,桥位 地区地震动峰值0.15g,区内不良地质为地震、沙土液化、滑坡、冻害,无特殊岩土, 桥区内水质对混凝土结构无侵蚀性。根据桥位布置及现场实际地形,朗镇1、2、3、4 号桥共存在8 个桥墩水中基坑开挖,水中墩基础采用筑岛围堰施工,基坑开挖上层1m 范围采用1:1 放坡开挖,下层16.5m范围采用钢筋砼围护桩与高压旋喷桩止水帷幕支 护方案。钢筋混凝土围护桩直径为 1.25m,桩间距为 1.5m;高压旋喷桩直径为0.8m, 咬合20cm;围护桩上部设置钢筋混凝土冠梁,冠梁尺寸为宽 1.4m×高1.0m。基坑上 层放坡坡顶临江侧平台宽6m,可作为小型机械临时施工作业平台。 1.1 朗镇3 号桥概况 朗镇3 号雅鲁藏布江特大桥:本桥受地形、河道及既有道路控制设计,桥位地区 地震动峰值0.15g ,区内不良地质为地震、沙土液化、滑坡、冻害,无特殊岩土,桥 区内水质对混凝土结构无侵蚀性。桥址处江面宽约150米,水流较急,卵石、漂石河床,测时最大水深约7 米。桥下小里程端D2K257+371处,跨越新S306省道。桥址处 地形平缓,阶地发育。桥区附近有公路相通,交通便利。 本桥位于直线、缓和曲线上,采用(44+80+44)m的连续梁跨越雅鲁藏布江主河道,两端辅以24m、32m简支梁, 曲线上的简支梁按平分中矢布置。全桥孔跨布置为: 2×32+1×24+1×32+(44+80+44)m连续梁+7×32m,中心里程D2K257+493,桥梁全

环境监测平台系统产品解决方案

环境监测云平台系统 产 品 解 决 方 案 成都远控科技有限公司技术部二〇一五年一月二十八日

目录 一、引言 (3) 二、产品系统概述 (3) 三、方案特点 (4) 1. 数据精准、监控图像清晰度 (4) 2.网络适应性强、带宽要求低,支持多种有线或无线网络接入方式 (4) 3.可集成性 (4) 4.高传输可靠性 (4) 5.系统建设成本低 (4) 四、系统组成及架构 (5) 五、平台服务端操作及功能介绍 (7) 六、相关硬件产品介绍 (15)

一、引言 防治扬尘污染,保护和改善城市生活环境空气质量,保障人民群众身体健康,一直是国家各级环境保护部门的重要工作内容之一。在所有的扬尘污染中,工程施工扬尘,如房屋建设施工、道路与管线施工、房屋拆除等为主要污染源。为此,在国家各级城市出台的扬尘污染防治管理办法中,都对建设工程施工提出了明确的防尘要求和相应的处罚条款。 目前,我国正处于城市建设的快速发展期,工程施工每天都在众多的、分散的地点同时进行着。而环保部门人员数量有限,不可能每天都到各个施工地点去巡查,因此,对众多分散的工程施工现场进行远程监控,及时发现违反防尘要求、出现扬尘污染的施工地点并及时处理,无疑是监管工程施工扬尘污染的有效途径。然而,传统的视频监控一方面呈现的图像分辨率极为有限,不利于对现场情况的准确辨别;另一方面,远程视频监控需要较高的通信网络带宽做支持,往往需要铺设专门的光纤或电缆、租用昂贵的通信信道;可是工程施工地点数量众多、地理分布复杂,且对于扬尘监控只是阶段性的需求,为此部署大量的视频监控点无疑会给环保部门带来庞大的资金压力,为国家带来不必要的资金消耗。有没有成本更低、部署更方便的监控手段,来实现对工程施工扬尘污染进行远程监控的目的呢? 二、产品系统概述 成都远控科技有限公司开发的“环境监控云平台系统”即是以安装在远程的终端设备通过3G/4G网络实时向云平台服务端上传相关环境监测数据以及监控画面的一种新的监控应用方式。工作人员亦可通过有线或无线网络登陆“环境监控云平台系统”,对远端现场环境作时实监控,提取相关环境污染数据;当环境污染达到上峰值时,安装在施工现场的环境探测感应器或摄像头,将自动记录下相关环境数据并抓拍下现场的高清晰数字图片,并通过有线或无线通信网络自动传输回来,即时呈现在环保机关的各种显示终端上(PC、PDA),让环保工作人员通过高清晰的数字图片,即时了解施工现场的防尘措施实施情况和工地现状,达到对众多分散的工程施工地点进行远程联网监控的目的。 此软硬件系统借助先进的数字通信手段,融合了数字图像处理技术、无线网络通信技术、嵌入式系统技术等多种计算机和通信技术,基于低带宽的IP网络,实现了高清晰图片远程抓拍、即时传输和应用的一体化过程,是一种低成本、易部署、易操作的基于图片的远程监控解决方案。

铁路信号集中监测系统问题分析与解决方案

铁路信号集中监测系统问题分析与解决方案 发表时间:2019-06-05T15:23:46.270Z 来源:《中国西部科技》2019年第6期作者:陈星润朱洪婷 [导读] 经济的发展和交通行业的发达,基于对现有铁路信号集中监测系统中模拟量采集设备的现状与问题分析,提出在分线盘的室内外分界处,对经过的所有信号设备模拟量集中采集。鉴于分线盘已经集成了防雷接地功能而形成防雷分线柜,现需进一步集成模拟量采集功能,设计开发集防雷、采集功能于一体的信号监测防雷分线柜。 成都地铁运营有限公司 引言 信号集中监测系统是监测信号设备运用状态的必要设备,应充分利用信号集中监测系统实时监测、超限报警、存储再现、过程监督、远程监视等功能,及时发现信号设备隐患,预防设备故障,充分发挥信号集中监测系统在信号设备日常维修及故障处理中的重要作用,提高维修工作的针对性、有效性,提高系统维护管理质量,指导维修工作,保证设备正常运用。近年来,随着高速铁路建设的快速发展,大量信号设备投入运用,联锁、列控中心、TDCS/CTC、RBC、区间综合监控、电源屏、ZPW-2000A、道岔缺口监测等信号设备和子系统通过信息接口方式接入信号集中监测系统,各系统的报警信息均送到信号集中监测系统,报警信息量多、准确性不高,信息处理难度大,种种弊端逐渐显现,信号集中监测系统的优势无法体现。因此,迫切需要对信号集中监测系统报警信息进行全面梳理、整治、优化、完善。 1信号集中监测系统在铁路信号设备维护中的重要作用 铁路信号包括很多种运行参数,例如列车的实时车速,距前车的距离和天气因素等等,铁路信号设备便是对这些信号进行采集然后转化为数据。传统的方法对信号设备进行精确性的检验比较困难,因而一些设备出现故障时,人为检测的精准度低,并不能及时发现设备的隐性故障,这将导致故障的设备仍然被当作完好的设备使用,极易导致事故的发生。信号集中监测系统简单来说就是将各种信号汇总在一起,形成一个数据整体,便于对数据进行分析,类似于飞机上"黑匣子"。它可以全天候地监测列车运行状况,对设备进行不定时的参数测试、数据查询、数据存储和数据回放等操作,进而保证了信号设备运行的透明化,也体现了铁路运行信号的数字化和智能化的特征。例如当信号集中监测系统发现铁路信号设备的数据偏离了正常的设定值,便会立即报警,有关人员可以及时检修;或者是当操作人员出现误操作,信号集中监测系统也可以及时发现并提醒,这样便能有效避免误操作带来的事故。所以说应用信号集中监测系统可以让信号设备的运行更加安全可靠,通过对信号数据的分析处理可以及时发现设备的故障,保障铁路信号设备的无故障运行,进而促进铁路的健康发展。 2铁路信号集中监测系统问题分析 2.1室内外故障难以迅速定位 现有微机监测系统的信号设备模拟量采集点,就近分散安装在组合架各层的信号设备后面。一旦发生信号故障,电务维护人员需先在分线盘处,去掉内线侧软线或外线侧硬线,再连接模拟测试设备进行相应的测试,以迅速确定故障点是在室内还是在室外。①如果确定是室内问题,则处理相对简单,因为信号机械室属于电务维护人员管理,可在电务专业范围内快速解决,故障处理时间一般较短。②如果确定是室外故障,就需要进行复杂的多部门间配合协调,例如供电、工务、通信等多个专业联合整治,故障处理时间长、影响面大。③如果微机监测系统得到的数据,和从分线盘处断开室内外线缆后人工测量的数据之间,存在一些差异,那么就无法进行故障的迅速定位,大大增加电务故障处理时间、延误行车。 2.2信息量不足不便于智能诊断分析 微机监测系统的模拟量采集,主要需做电压和电流这2个参量的实时采集与处理,但现有技术条件的模拟量采集方案,一般要求只对电压、电流进行二选一的实时采集。仅靠一个参量,虽可以完成故障报警、事故调查、回放取证,但却很难实现智能诊断分析,这也就是迟迟无法从故障修、计划修全面转向状态修的一个重要原因。只有提供出实时完整的大数据,结合专家诊断库,上下结合研发全新一代电务智能诊断分析系统,才能达到铁路信号设备集中监测与智能诊断分析的初衷与目标。 2.3采集传感器影响施工与维护 传感器安放位置分散,且采集线、数据线、供电线的位置与长度不固定,直接造成采集配线现场施工繁杂、零乱、接触不良、安全间距隐患等问题,不便于施工配线、联调联试、运维抢修。 3铁路信号集中监测系统问题的解决方案 3.1新型信号监测防雷分线柜 信号监测防雷分线柜三合一底座,需按高可靠性、高可用性和高维护性进行设计。为了尽可能实现免维护,需将微电子器件等容易损坏的电子元器件,全部置于可热拔插的三合一底座防雷模块、采集模块内,大大提高保障系统的可靠性、可用性和可维修性。机柜背面为防雷分线工作面,每个三合一底座位于两侧的分(配)线端子,左边IN侧可供室外进户电缆硬线接入,右边OUT侧可供室内组合架电缆软线接入,实现室内、外分界处的分线功能。每个三合一底座可拔插安装3只防雷模块,对每2条线进行雷电浪涌过电流的横向、纵向或纵横向防护;不同防护模式下仅为防雷模块内部防雷组件配置不同,外部配线完全依照室外分线盘配线图;三合一底座安装固定时,即可靠连接到横向接地汇流条,可实现就近防雷接地;每只防雷模块的拔出缺位与脱扣翻红告警信息,均可被检测并送到上位机直观显示。增加经过六端子底座上的所有传输线缆所需模拟量的监测采集;增加对六端子底座所插的最大3个防雷模块的缺位与故障状态开关量的监测采集;增加对车站雷击浪涌电流幅值、极性、雷击时间与次数的监测采集,使之成为新一代电务智能诊断分析系统的基础设备。 3.2全面梳理系统报警信息 每月梳理管辖范围内高速铁路各站信号集中监测系统报警信息,并对报警信息按电源屏、道岔、轨道电路、信号机、外电网、自采集、联锁、列控、TDCS/CTC、ZPW-2000A、灯丝断丝报警等设备进行归类、分析,针对存在问题的报警信息进行分析研究,按照"先易后难,先多后少,先一二级后三级"的原则,逐步解决。 3.3功能完善 ①中继站断丝报警(DSJ)未设计采集,未能实现区间信号机断丝总的报警,增加采集项,实现区间信号机断丝总的报警功能。②未开通设备报警,完善软件实现未开通设备停止报警。③外电网断电报警后,电源屏其他各种电源超下限报警,完善软件实现只报警外电网断电报警,屏蔽其他各种电源超下限三级报警。④信号机灯位转换灯丝电流超上下限报警。完善软件处理逻辑(灯位转换软件做延时6s处理),实

监控系统实施方案

监控系统实施方案 Implementation scheme of monitoring system 汇报人:JinTai College

监控系统实施方案 前言:本文档根据题材书写内容要求展开,具有实践指导意义,适用于组织或个人。便于学习和使用,本文档下载后内容可按需编辑修改及打印。 监控系统随处可见,大家都知道随着现代社会经济的不 断发展,人们生活水平不断提高,旅游风景区逐渐受到人们的关注,给人们提供了休闲、娱乐的好场所。 但旅游区的安全隐患也给人们带来了一丝忧虑。 特别是假期时间由于旅游人员流量大、车流量多,所以 为旅游区内安全防范带来很大难度。 当前的安全管理工作全部由旅游区管理人员完成,人员 配备及工作量无法在短时间解决。 为给每一位旅游者提供一个美好的休闲娱乐环境,采用 稳定可靠的无线视频监控系统可以实现对各个景点安全、科学、有效的管理,对旅游区现场实施全天候、全方位 24 小时监控及人员流动的记录,达到加强现场监督和安全管理,提高服务质量的目的,使工作管理更加规范化、科学化、准确化、智能化、信息化,为旅游区安全工作做好有力保。 一、设计原则

景区监控系统设置应当遵守“人防、物防、技防相结合”;“防内盗、防外盗、防内外勾结盗、防智能化作案”的 指导思想,从确保游客安全利益出发,以游客游览线路为重点,兼顾景区安全防范工作等内容,保障游客在景区内游览活动的人身和财产安全,遵守实用性、可靠性、安全性、先进性、开放性、易管理性和易维护性的原则。 二、方案设计 1、整体方案说明 根据风景区的实际特点,系统采用分层结构设计。 第一层监控前端设计;第二层分控中心设计;第三层总控 中心设计。 监控前端主要完成视频采集、设备控制。 分控中心的主要任务是完成对本区所辖各点的监控。 同时在授权允许下可以浏览其他分控中心的监控画面, 实现各个分控中心互动。 总控中心将完成所有监控点的监控,包括设备管理、用 户管理、权限分配、录像文件备份等等。 物理拓朴图如下:

相关文档
最新文档