三相桥式全控整流电路Simulink仿真实验

三相桥式全控整流电路Simulink仿真实验
三相桥式全控整流电路Simulink仿真实验

基于三相桥式全控整流电路Matlab仿真实验报告 13351040 施定邦

一、电路仿真原理及仿真电路图:

图1

图2

1、带电阻负载时

当a≤60°时,电压波形均连续,对于电阻负载,电流波形与电压波形形状相同,也连续。

当a>60°时,电压波形每60°中的后一部分为零,电压波形因为晶闸管不能反向导通而不出现负值。

分析可知α角的移相范围是0°--120°。

2、带阻感负载时

a≤60°时,电压波形连续,输出整流电压电压波形和晶闸管承受的电压波形与带电阻负载时十分相似,但得到的负载电流波形却有差异。电容的容值越大电流波形就越平缓,近于水平直线。

a >60°时,电压波形则出现负值,是因为环流的作用使得电压反向。

分析可知α角的移相范围是0°--90°。

二、仿真过程与结果:

设置三个交流电压源Va,Vb,Vc相位差均为120°,得到桥式全控的三相电源。6个信号发生器产生整流电路的触发脉冲,六个晶闸管的脉冲按VT1-VT2-VT3-VT4-VT5-VT6的顺序依次给出,相位差依次为60°。

设置电源频率为50Hz:

三、仿真结果

1、带电阻负载:R=100Ω,无电容(1)α=0°时各波形如下:

(2)α=30°各波形如下:

(3)α=60°各波形如下:

(4)α=90°各波形如下:

(1)α=0°各波形如下:

(2)α=30°各波形如下:

(3)α=60°各波形如下:

(4)α=90°各波形如下:

(可以看到,和理论符合得很好,说明各参数设置合理,电路的工作状态接近于

理想情况)

实验总结:

通过此次仿真实验,让自己对相关电路工作原理了解得更加详细和印象深刻,反正就是熟能生巧,然后多动手操作设置各种参数组合观察实验结果以得到比较

理想的波形。虽然是验证性的实验,但是还是收获比较多。

三相桥式全控整流电路

1主电路的原理 1.1主电路 其原理图如图1所示。 图1 三相桥式全控整理电路原理图 习惯将其中阴极连接在一起的3个晶闸管(VT1、VT3、VT5)称为共阴极组;阳极连接在一起的3个晶闸管(VT4、VT6、VT2)称为共阳极组。此外,习惯上希望晶闸管按从1至6的顺序导通,为此将晶闸管按图示的顺序编号,即共阴极组中与a、b、c三相电源相接的3个晶闸管分别为VT1、VT3、VT5,共阳极组中与a、b、c三相电源相接的3个晶闸管分别为VT4、VT6、VT2。从后面的分析可知,按此编号,晶闸管的导通顺序为VT1-VT2-VT3-VT4-VT5-VT6。 1.2主电路原理说明 整流电路的负载为带反电动势的阻感负载。假设将电路中的晶闸管换作二极管,这种情况也就相当于晶闸管触发角α=0o时的情况。此时,对于共阴极组的3个晶闸管,阳极所接交流电压值最高的一个导通。而对于共阳极组的3个晶闸管,则是阴极所接交流电压值最低(或者说负得最多)的一个导通。这样,任意时刻共阳极组和共阴极组中各有1个晶闸管处于导通状态,施加于负载上的电压为某一线电压。此时电路工作波形如图2所示。

图2 反电动势α=0o时波形 α=0o时,各晶闸管均在自然换相点处换相。由图中变压器二绕组相电压与线电压波形的对应关系看出,各自然换相点既是相电压的交点,同时也是线电压的交点。在分析ud的波形时,既可从相电压波形分析,也可以从线电压波形分析。从相电压波形看,以变压器二次侧的中点n为参考点,共阴极组晶闸管导通时,整流输出电压ud1为相电压在正半周的包络线;共阳极组导通时,整流输出电压ud2为相电压在负半周的包络线,总的整流输出电压ud = ud1-ud2是两条包络线间的差值,将其对应到线电压波形上,即为线电压在正半周的包络线。

Matlab通信系统仿真实验报告

Matlab通信原理仿真 学号: 2142402 姓名:圣斌

实验一Matlab 基本语法与信号系统分析 一、实验目的: 1、掌握MATLAB的基本绘图方法; 2、实现绘制复指数信号的时域波形。 二、实验设备与软件环境: 1、实验设备:计算机 2、软件环境:MATLAB R2009a 三、实验内容: 1、MATLAB为用户提供了结果可视化功能,只要在命令行窗口输入相应的命令,结果就会用图形直接表示出来。 MATLAB程序如下: x = -pi::pi; y1 = sin(x); y2 = cos(x); %准备绘图数据 figure(1); %打开图形窗口 subplot(2,1,1); %确定第一幅图绘图窗口 plot(x,y1); %以x,y1绘图 title('plot(x,y1)'); %为第一幅图取名为’plot(x,y1)’ grid on; %为第一幅图绘制网格线 subplot(2,1,2) %确定第二幅图绘图窗口 plot(x,y2); %以x,y2绘图 xlabel('time'),ylabel('y') %第二幅图横坐标为’time’,纵坐标为’y’运行结果如下图: 2、上例中的图形使用的是默认的颜色和线型,MATLAB中提供了多种颜色和线型,并且可以绘制出脉冲图、误差条形图等多种形式图: MATLAB程序如下: x=-pi:.1:pi; y1=sin (x); y2=cos (x); figure (1); %subplot (2,1,1); plot (x,y1); title ('plot (x,y1)'); grid on %subplot (2,1,2); plot (x,y2);

实验一,三相桥式全控整流电路实验

实验一、三相桥式全控整流电路实验 一、实验目的 1.熟悉三相桥式全控整流电路的接线、器件和保护情况。 2.明确对触发脉冲的要求。 3.掌握电力电子电路调试的方法。 4.观察在电阻负载、电阻电感负载情况下输出电压和电流的波形。 二、实验类型 本实验为验证型实验,通过对整流电路的输出波形分析,验证整流电路的工作原理和输入与输出电压之间的数量关系。 三、实验仪器 1.MCL-III教学实验台主控制屏。 2.MCL—33组件及MCL35组件。 3.二踪示波器 4.万用表 5.电阻(灯箱) 四、实验原理 实验线路图见后面。主电路为三相全控整流电路,三相桥式整流的工作原理可参见“电力电子技术”的有关教材。 五、实验内容和要求 1.三相桥式全控整流电路 2.观察整流状态下,模拟电路故障现象时的波形。 实验方法: 1.按图接好主回路。

2.接好触发脉冲的控制回路。将给定器输出Ug接至MCL-33面板的Uct端,将MCL-33 面板上的Ublf接地。 打开MCL-32的钥匙开关,检查晶闸管的脉冲是否正常。 (1)用示波器观察MCL-33的双脉冲观察孔,应有间隔均匀,相互间隔60o的幅度相同的双脉冲。 (2)检查相序,用示波器观察“1”,“2”单脉冲观察孔,“1”脉冲超前“2”脉冲600,则相序正确,否则,应调整输入电源。 3.三相桥式全控整流电路 (1)电路带电阻负载(灯箱)的情况下:调节Uct(Ug),使α在30o~90o范围内,用示波器观察记录α=30O、60O、90O时,整流电压u d=f(t),晶闸管两端电压u VT=f(t)的波形,并用万用表记录相应的Ud和交流输入电压U2数值。 i α=0Oα=30O

自动控制原理MATLAB仿真实验报告

实验一 MATLAB 及仿真实验(控制系统的时域分析) 一、实验目的 学习利用MATLAB 进行控制系统时域分析,包括典型响应、判断系统稳定性和分析系统的动态特性; 二、预习要点 1、 系统的典型响应有哪些? 2、 如何判断系统稳定性? 3、 系统的动态性能指标有哪些? 三、实验方法 (一) 四种典型响应 1、 阶跃响应: 阶跃响应常用格式: 1、)(sys step ;其中sys 可以为连续系统,也可为离散系统。 2、),(Tn sys step ;表示时间范围0---Tn 。 3、),(T sys step ;表示时间范围向量T 指定。 4、),(T sys step Y =;可详细了解某段时间的输入、输出情况。 2、 脉冲响应: 脉冲函数在数学上的精确定义:0 ,0)(1)(0 ?==?∞ t x f dx x f 其拉氏变换为:) ()()()(1)(s G s f s G s Y s f === 所以脉冲响应即为传函的反拉氏变换。 脉冲响应函数常用格式: ① )(sys impulse ; ② ); ,();,(T sys impulse Tn sys impulse ③ ),(T sys impulse Y = (二) 分析系统稳定性 有以下三种方法: 1、 利用pzmap 绘制连续系统的零极点图; 2、 利用tf2zp 求出系统零极点; 3、 利用roots 求分母多项式的根来确定系统的极点 (三) 系统的动态特性分析 Matlab 提供了求取连续系统的单位阶跃响应函数step 、单位脉冲响应函数impulse 、零输入响应函数initial 以及任意输入下的仿真函数lsim.

相桥式全控整流电路实验报告

实验三三相桥式全控整流电路实验 一.实验目的 1.熟悉MCL-18, MCL-33组件。 2.熟悉三相桥式全控整流电路的接线及工作原理。 二.实验内容 1.MCL-18的调试 2.三相桥式全控整流电路 3.观察整流状态下,模拟电路故障现象时的波形。 三.实验线路及原理 实验线路如图3-12所示。主电路由三相全控整流电路组成。触发电路为数字集成电路,可输出经高频调制后的双窄脉冲链。三相桥式整流电路的工作原理可参见“电力电子技术”的有关教材。 四.实验设备及仪器 1.MCL—Ⅱ型电机控制教学实验台主控制屏。 2.MCL-18组件 3.MCL-33组件 4.MEL-03可调电阻器(900 )

6.二踪示波器 7.万用表 五.实验方法 1.按图3-12接线,未上主电源之前,检查晶闸管的脉冲是否正常。 (1)打开MCL-18电源开关,给定电压有电压显示。 (2)用示波器观察MCL-33的双脉冲观察孔,应有间隔均匀,相互间隔60o的幅度相同的双脉冲。 (3)用示波器观察每只晶闸管的控制极、阴极,应有幅度为1V—2V的脉冲。注:将面板上的Ublf接地(当三相桥式全控整流电路使用I组桥晶闸管VT1~VT6时),将I组桥式触发脉冲的六个琴键开关均拨到“接通”,琴键开关不按下为导通。 (4)将给定输出Ug接至MCL-33面板的Uct端,在Uct=0时,调节偏移电压Ub,使?=90o。(注:把示波器探头接到三相桥式整流输出端即U d 波形, 探头地线接到晶闸管阳极。) 2.三相桥式全控整流电路 (1)电阻性负载 按图接线,将Rd调至最大450? (900?并联)。 三相调压器逆时针调到底,合上主电源,调节主控制屏输出电压U uv、U vw、U wu,从0V调至70V(指相电压)。调节Uct,使?在30o~90o范围内变化,用示波器观察记录?=30O、60O、90O时,整流电压u d=f(t),晶闸管两端电压u VT=f(t)的波形,并记录相应的Ud和交流输入电压U2 数值。 30°90° αUd (V) U2 (V) 30°143 70 60°90 70 90°23 70 3.电感性负载 按图线路,将电感线圈(700mH)串入负载,Rd调至最大(450?)。 调节Uct,使?在30o~90o范围内变化,用示波器观察记录?=30O、60O、90O时,整流电压u d=f(t),晶闸管两端电压u VT=f(t)的波形,并记录相应的Ud和交流输入电压U2 数值。 30°90° αUd (V) U2 (V)

三相桥式全控整流电路的性能研究.

三相桥式全控整流电路的性能研究 一、原理及方案 三相桥式全控整流电路系统通过变压器与电网连接,经过变压器的耦合,晶闸管主电路得到一个合适的输入电压,使晶闸管在较大的功率因数下运行。变流主电路和电网之间用变压器隔离,还可以抑制由变流器进入电网的谐波成分。保护电路采用RC过电压抑制电路进行过电压保护,利用快速熔断器进行过电流保护。采用锯齿波同步KJ004集成触发电路,利用一个同步变压器对触发电路定相,保证触发电路和主电路频率一致,触发晶闸管,使三相全控桥将交流整流成直流,带动直流电动机运转。 结构框图如图1-1所示。整个设计主要分为主电路、触发电路、保护电路三个部分。框图中没有表明保护电路。当接通电源时,三相桥式全控整流电路主电路通电,同时通过同步电路连接的集成触发电路也通电工作,形成触发脉冲,使主电路中晶闸管触发导通工作,经过整流后的直流电通给直流电动机,使之工作。 图1-1 三相桥式全控整流电路结构图

二、主电路的设计及器件选择 实验参数设定负载为220V、305A的直流电机,采用三相整流电路,交流测由三相电源供电,设计要求选用三相桥式全控整流电路供电,主电路采用三相全控桥。 1.三相全控桥的工作原理 如图2-1所示,为三相桥式全控带阻感负载,根据要求要考虑电动机的电枢电感与电枢电阻,故为阻感负载。习惯将其中阴极连接在一起的3个晶闸管称为共阴极组;阳极连接在一起的3个晶闸管称为共阳极组。共阴极组中与a、b、c 三相电源相接的3个晶闸管分别为VT1、VT3、VT5,共阳极组中与a、b、c三相电源相接的3个晶闸管分别为VT4、VT6、VT2。晶闸管的导通顺序为 VT1-VT2-VT3-VT4-VT5-VT6。变压器为Y ?-型接法。变压器二次侧接成星形得到零线,而一次侧接成三角形避免3次谐波流入电网 KP1KP3KP5 图1 三相桥式全控整流电路 图2-1 三相桥式全控整流电路带(阻感)负载原理图 2. 三相全控桥的工作特点 ⑴2个晶闸管同时通形成供电回路,其中共阴极组和共阳极组各1个,且不能为同1相器件。 ⑵对触发脉冲的要求: 按VT1-VT2-VT3-VT4-VT5-VT6的顺序,相位依次差。 共阴极组VT1、VT3、VT5的脉冲依次差。 共阳极组VT4、VT6、VT2也依次差。 同一相的上下两个桥臂,即VT1与VT4,VT3与VT6,VT5与VT2,脉冲相差180。

MATLAB Simulink系统建模与仿真 实验报告

MATLAB/Simulink 电力系统建模与仿真 实验报告 姓名:****** 专业:电气工程及其自动化 班级:******************* 学号:*******************

实验一无穷大功率电源供电系统三相短路仿真 1.1 无穷大功率电源供电系统仿真模型构建 运行MATLAB软件,点击Simulink模型构建,根据电路原理图,添加下列模块: (1)无穷大功率电源模块(Three-phase source) (2)三相并联RLC负荷模块(Three-Phase Parallel RLC Load) (3)三相串联RLC支路模块(Three-Phase Series RLC Branch) (4)三相双绕组变压器模块(Three-Phase Transformer (Two Windings)) (5)三相电压电流测量模块(Three-Phase V-I Measurement) (6)三相故障设置模块(Three-Phase Fault) (7)示波器模块(Scope) (8)电力系统图形用户界面(Powergui) 按电路原理图连接线路得到仿真图如下: 1.2 无穷大功率电源供电系统仿真参数设置 1.2.1 电源模块 设置三相电压110kV,相角0°,频率50Hz,接线方式为中性点接地的Y形接法,电源电阻0.00529Ω,电源电感0.000140H,参数设置如下图:

1.2.2 变压器模块 变压器模块参数采用标幺值设置,功率20MVA,频率50Hz,一次测采用Y型连接,一次测电压110kV,二次侧采用Y型连接,二次侧电压11kV,经过标幺值折算后的绕组电阻为0.0033,绕组漏感为0.052,励磁电阻为909.09,励磁电感为106.3,参数设置如下图: 1.2.3 输电线路模块 根据给定参数计算输电线路参数为:电阻8.5Ω,电感0.064L,参数设置如下图: 1.2.4 三相电压电流测量模块 此模块将在变压器低压侧测量得到的电压、电流信号转变成Simulink信号,相当于电压、电流互感器的作用,勾选“使用标签(Use a label)”以便于示波器观察波形,设置电压标签“Vabc”,电流标签“Iabc”,参数设置如下图:

三相桥式全控整流电路分析

一、三相桥式全控整流电路分析 三相桥式全控整流电路原理图如图所示。三相桥式全控整流电路是由三相半波可控整流电路演变而来的,它由三相半波共阴极接法(VT1,VT3,VT5)和三相半波共阳极接法(VT1,VT6,VT2)的串联组合。 其工作特点是任何时刻都有不同组别的两只晶闸管同时导通,构成电流通路,因此为保证电路启动或电流断续后能正常导通,必须对不同组别应到导通的一对晶闸管同时加触发脉冲,所以触发脉冲的宽度应大于π/3的宽脉冲。宽脉冲触发要求触发功率大,易使脉冲变压器饱和,所以可以采用脉冲列代替双窄脉冲;每隔π/3换相一次,换相过程在共阴极组和共阳极组轮流进行,但只在同一组别中换相。接线图中晶闸管的编号方法使每个周期内6个管子的组合导通顺序是VT1-VT2-VT3-VT4-VT5-VT6;共阴极组T1,T3,T5的脉冲依次相差2π/3;同一相的上下两个桥臂,即VT1和VT4,VT3和VT6,VT5和VT2的脉冲相差π,给分析带来了方便;当α=O时,输出电压Ud一周期内的波形是6个线电压的包络线。所以输出脉动直流电压频率是电源频率的6倍,比三相半波电路高l倍,脉动减小,而且每次脉动的波形都一样,故该电路又可称为6脉动整流电路。

在第(1)段期间,a相电压最高,而共阴极组的晶闸管VT1被触发导通,b相电位最低,所以供阳极组的晶闸管KP6被触发导通。这时电流由a相经VT1流向负载,再经VT6流入b 相。变压器a、b两相工作,共阴极组的a相电流为正,共阳极组的b相电流为负。加在负载上的整流电压为ud=ua-ub=uab 经过60°后进入第(2)段时期。这时a相电位仍然最高,晶闸管VTl继续导通,但是c 相电位却变成最低,当经过自然换相点时触发c相晶闸管VT2,电流即从b相换到c相,VT6承受反向电压而关断。这时电流由a相流出经VTl、负载、VT2流回电源c相。变压器a、c 两相工作。这时a相电流为正,c相电流为负。在负载上的电压为ud=ua-uc=uac 再经过60°,进入第(3)段时期。这时b相电位最高,共阴极组在经过自然换相点时,触发导通晶闸管VT3,电流即从a相换到b相,c相晶闸管VT2因电位仍然最低而继续导通。此时变压器bc两相工作,在负载上的电压为ud=ub-uc=ubc 余相依此类推。 仿真实验 “alpha_deg”是移相控制角信号输入端,通过设置输入信号给它的常数模块参数便可以得到不同的触发角α,从而产生给出间隔60度的双脉冲。 二、MATLAB仿真 (1)MATLAB simulink模型如图 (2)参数设置 电源参数设置:电压设置为380V,频率设为50Hz。注意初相角的设置,a相电压设为0,b相电压设为-120,a相电压设为-240。

(完整版)整流滤波电路实验报告

整流滤波电路实验报告 姓名:XXX 学号:5702112116 座号:11 时间:第六周星期4 一、实验目的 1、研究半波整流电路、全波桥式整流电路。 2、电容滤波电路,观察滤波器在半波和全波整流电路中的滤波效果。 3、整流滤波电路输出脉动电压的峰值。 4、初步掌握示波器显示与测量的技能。 二、实验仪器 示波器、6v交流电源、面包板、电容(10μF*1,470μF*1)、变阻箱、二极管*4、导线若干。 三、实验原理 1、利用二极管的单向导电作用,可将交流电变为直流电。常用的二极管整 流电路有单相半波整流电路和桥式整流电路等。 2、在桥式整流电路输出端与负载电阻RL并联一个较大电容C,构成电容滤 波电路。整流电路接入滤波电容后,不仅使输出电压变得平滑、纹波显著成小,同时输出电压的平均值也增大了。 四、实验步骤 1、连接好示波器,将信号输入线与6V交流电源连接,校准图形基准线。 2、如图,在面包板上连接好半波整流电路,将信号连接线与电阻并联。

3、如图,在面包板上连接好全波整流电路,将信号输入线与电阻连接。

4、在全波整流电路中将电阻换成470μF的电容,将信号接入线与电容并联。 5、如图,选择470μF的电容,连接好整流滤波电路,将信号接入线与电阻并联。 改变电阻大小(200Ω、100Ω、50Ω、25Ω)

200Ω100Ω50Ω

25Ω 6、更换10μF的电容,改变电阻(200Ω、100Ω、50Ω、25Ω)200Ω 100Ω

50Ω 25Ω 五、数据处理 1、当C 不变时,输出电压与电阻的关系。 输出电压与输入交流电压、纹波电压的关系如下: avg)r m V V V (输+= 又有i avg R C V ??=输89.2V )(r 所以当C 一定时,R 越大 就越小 )(r V avg 越大 输V

三相桥式全控整流电路

图1 三相桥式全控整流电路 实验六:三相桥式全控整流电路 (一)实验目的 1.掌握实验电路的工作原理和关键波形; 2.分析不同参数设置对仿真结果的影响 (二)实验原理 在三相桥式全控整流电路中,对共阴极组和共阳极组是同时进行控制的,控制角都是α。由于三相桥式整流电路是两组三相半波电路的串联,因此整流电压为三相半波时的两倍。很显然在输出电压相同的情况下,三相桥式晶闸管要求的最大反向电压,可比三相半波线路中的晶闸管低一半。 为了分析方便,使三相全控桥的六个晶闸管触发的顺序是1-2-3-4-5-6,晶闸管是这样编号的:晶闸管KP1和KP4接a 相,晶闸管KP3和KP6接b 相,晶管KP5和KP2接c 相。 晶闸管KP1、KP3、KP5组成共阴 极组,而晶闸管KP2、KP4、KP6组成 共阳极组。 为了搞清楚α变化时各晶闸管的导通规律,分析输出波形的变化规 则,下面研究几个特殊控制角,先分 析α=0的情况,也就是在自然换相点 触发换相时的情况。图1是电路接线 图。 为了分析方便起见,把一个周期 等分6段(见图2)。 在第(1)段期间,a 相电压最高,而共阴极组的晶闸管KP1被触发导通,b 相电位最低,所以供阳极组的晶闸管KP6

被触发导通。这时电流由a相经KP1流向负载,再经KP6流入b相。变压器a、b两相工作,共阴极组的a相电流为正,共阳极组的b相电流为负。加在负载上的整流电压为 =-= 经过60°后进入第(2)段时期。这时a相电位仍然最高,晶闸管KPl继续导通,但是c相电位却变成最低,当经过自然换相点时触发c相晶闸管KP2,电流即从b相换到c相,KP6承受反向电压而关断。这时电流由a相流出经KPl、负载、KP2流回电源c相。变压器a、c两相工作。这时a相电流为正,c相电流为负。在负载上的电压为 =-= 再经过60°,进入第(3)段时期。这时b相电位最高,共阴极组在经过自然换相点时,触发导通晶闸管KP3,电流即从a相换到b相,c相晶闸管KP2因电位仍然最低而继续导通。此时变压器bc两相工作,在负载上的电压为 =-= 余相依此类推。 由上述三相桥式全控整流电路的工作过程可以看出: 1.三相桥式全控整流电路在任何时刻都必须有两个晶闸管导通,而且这两个晶闸管一个是共阴极组,另一个是共阳极组的,只有它们能同时导通,才能形成导电回路。 2. 三相桥式全控整流电路就是两组三相半波整流电路的串联,所以与三相半波整流电路一样,对于共阴极组触发脉冲的要求是保证晶闸管KPl、KP3和KP5依次导通,因此它们的触发脉冲之间的相位差应为120°。对于共阳极组触发脉冲的要求是保证晶闸管KP2、KP4和KP6依次导通,因此它们的触发脉冲之间的相位差也是120°。 3.由于共阴极的晶闸管是在正半周触发,共阳极组是在负半周触发,因此接在同一相的两个晶闸管的触发脉冲的相位应该相差180°。 4. 三相桥式全控整流电路每隔60°有一个晶闸管要换流,由上一号晶闸管换流到下一号晶闸管触发,触发脉冲的顺序是:1→2→3→4→5→6→1,依次下去。相邻两脉冲的相位差是60°。

simulink仿真实验报告

电机与拖动控制实验及其MATLAB仿真: 《电机与拖动控制实验及其MATLAB仿真》是2014年11月18日清华大学出版社出版的图书,作者是曹永娟。 内容简介: 本书分上、下两篇。上篇为电机与拖动控制实验教程,针对MCL 系列电机实验教学系统进行介绍,包括变压器、同步电机、异步电机、直流电机以及直流调速系统、交流调速系统拖动控制实验内容。 目录: 上篇电机与拖动控制实验 第1章电机实验装置和基本要求 1.1MCLⅡ型电机教学实验台 1.2实验装置和挂件箱的使用 1.2.1MCLⅡ型电机实验装置交流及直流电源操作说明 1.2.2仪表的使用 1.2.3挂件箱的使用 1.2.4交直流电机的使用 1.2.5导轨、测速发电机及转速计的使用 第2章电机与拖动控制实验基本要求和安全操作规程 2.1实验基本要求 2.2实验前的准备 2.3实验的进行 2.4实验报告

2.5实验安全操作规程 第3章变压器实验 3.1单相变压器 3.1.1实验目的 3.1.2预习要点 3.1.3实验项目 3.1.4实验设备及仪器 3.1.5实验方法 3.1.6实验报告 3.2三相变压器 3.2.1实验目的 3.2.2预习要点 3.2.3实验项目 3.2.4实验设备及仪器 3.2.5实验方法 3.2.6实验报告 3.3三相变压器的连接组和不对称短路3.3.1实验目的 3.3.2预习要点 3.3.3实验项目 3.3.4实验设备及仪器 3.3.5实验方法

3.3.6实验报告 3.3.7附录 3.4三相变压器的并联运行3. 4.1实验目的 3.4.2预习要点 3.4.3实验项目 3.4.4实验设备及仪器 3.4.5实验方法 3.4.6实验报告 第4章同步电机实验 4.1三相同步发电机的运行特性4.1.1实验目的 4.1.2预习要点 4.1.3实验项目 4.1.4实验设备及仪器 4.1.5实验方法 4.1.6实验报告 4.1.7思考题 4.2三相同步发电机的并联运行4.2.1实验目的 4.2.2预习要点 4.2.3实验项目

半波整流,全波整流,桥式整流二极管

一、半波整流电路 图1 图1是一种最简单的整流电路。它由电源变压器B、整流二极管D和负载电阻Rfz组成。变压器把市电电压变换为所需要的交变电压e2,D 再把交流电变换为脉动直流电。 下面从图2的波形图上看看二极管是怎样整流的。 图2 变压器次级电压e2,是一个方向和大小都随时间变化的正弦波电压,它的波形如图2(a)所示。在0~π时间内,e2 为正半周即变压器上端为正下端为负。此时整流二极管承受正向电压而导通,e2 通过它加在负载电阻Rfz上,在π~2π时间内,e2 为负半周,变压器次级下端为正,上端为负。这时D承受反向电压,不导通,Rfz上无电压。在2π~3π时间内,重复0~π时间的过程,而在3π~4π时间内,又重复π~2π时间的过程…这样反复下去,交流电的负半周就被"削"掉了,只有正半周通过Rfz,在Rfz上获得了一个单一右向(上正下负)的电压,如图2(b)所示,达到了整流的目的,但是,负载电压Usc 。以及负载电流的大小还随时间而变化,因此,通常称它为脉动直流。 这种除去半周、留下半周的整流方法,叫半波整流。不难看出,半波整说是以"牺牲"一半交流为代价而换取整流效果的,电流利用率很低(计算表明,整流得出的半波电压在整个周期内的平均值,即负载上的直流电压Usc =0.45e2 )因此常用在高电压、小电流的场合,而在一般无线电装置中很少采用。 二、全波整流电路 如果把整流电路的结构作一些调整,可以得到一种能充分利用电能的全波整流电路。图3是全波整流电路的电原理图。 图3 全波整流电路,可以看作是由两个半波整流电路组合成的。变压器次级线圈中间需要引出一个抽头,把次组线圈分成两个对称的绕组,从而引出大小相等但极性相反的两个电压e2a 、e2b ,构成e2a 、D1、Rfz与e2b 、D2 、Rfz ,两个通电回路。

三相桥式全控整流电路

KP5 图1 三相桥式全控整流电路 实验六:三相桥式全控整流电路 (一)实验目的 1.掌握实验电路的工作原理和关键波形; 2.分析不同参数设置对仿真结果的影响 (二)实验原理 在三相桥式全控整流电路中,对共阴极组和共阳极组是同时进行控制的,控制角都是α。由于三相桥式整流电路是两组三相半波电路的串联,因此整流电压为三相半波时的两倍。很显然在输出电压相同的情况下,三相桥式晶闸管要求的最大反向电压,可比三相半波线路中的晶闸管低一半。 为了分析方便,使三相全控桥的六个晶闸管触发的顺序是1-2-3-4-5-6,晶闸管是这样编号的:晶闸管KP1和KP4接a相,晶闸管KP3和KP6接b相,晶管KP5和KP2接c相。 晶闸管KP1、KP3、KP5组成 共阴极组,而晶闸管KP2、KP4、KP6 组成共阳极组。

为了搞清楚α变化时各晶闸管的导通规律,分析输出波形的变化规则,下面研究几个特殊控制角,先分析α=0的情况,也就是在自然换相点触发换相时的情况。图1是电路接线图。 为了分析方便起见,把一个周期等分6段(见图2)。 在第(1)段期间,a 相电压最高,而共阴极组的晶闸管KP1被触发导通,b 相电位最低,所以供阳极组的晶闸管KP6被触发导通。这时电流由a 相经KP1流向负载,再经KP6流入b 相。变压器a 、b 两相工作,共阴极组的a 相电流为正,共阳极组的b 相电流为负。加在负载上的整流电压为 = - = 经过60°后进入第(2)段时期。这 时a 相电位仍然最高,晶闸管KPl 继 续导通,但是c 相电位却变成最低, 当经过自然换相点时触发c 相晶闸管 KP2,电流即从b 相换到c 相,KP6 承受反向电压而关断。这时电流由a 相流出经KPl 、负载、KP2流回电源c 相。变压器a 、c 两相工作。这时a 相电流为正,c 相电流为负。在负载上的电压为 = - = 再经过60°,进入第(3)段时期。这时b 相电位最高,共阴极组在经过自然换相点时,触发导通晶闸管KP3,电流即从a 相换到b 相,c 相晶闸管KP2因电位仍然最低而继续导通。此时变压器bc 两相工作,在负载上的电压为 = - =

MATLAB仿真实验报告

MATLA仿真实验报告 学院:计算机与信息学院 课程:—随机信号分析 姓名: 学号: 班级: 指导老师: 实验一

题目:编写一个产生均值为1,方差为4的高斯随机分布函数程序, 求最大值,最小值,均值和方差,并于理论值比较。 解:具体的文件如下,相应的绘图结果如下图所示 G仁random( 'Normal' ,0,4,1,1024); y=max(G1) x=mi n(G1) m=mea n(G1) d=var(G1) plot(G1);

实验二 题目:编写一个产生协方差函数为CC)=4e":的平稳高斯过程的程序,产生样本函数。估计所产生样本的时间自相关函数和功率谱密度,并求统计自相关函数和功率谱密度,最后将结果与理论值比较。 解:具体的文件如下,相应的绘图结果如下图所示。 N=10000; Ts=0.001; sigma=2; beta=2; a=exp(-beta*Ts); b=sigma*sqrt(1-a*a); w=normrnd(0,1,[1,N]); x=zeros(1,N); x(1)=sigma*w(1); for i=2:N x(i)=a*x(i-1)+b*w(i); end %polt(x); Rxx=xcorr(x0)/N; m=[-N+1:N-1]; Rxx0=(sigma A2)*exp(-beta*abs(m*Ts)); y=filter(b,a,x) plot(m*Ts,RxxO, 'b.' ,m*Ts,Rxx, 'r');

periodogram(y,[],N,1/Ts); 文件旧硯化)插入(1〕 ZMCD 克闻〔D ]窗口曲) Frequency (Hz) 50 100 150 200 250 300 350 400 450 500 NH---.HP)&UO 二 balj/ 」- □歹

实验报告五SIMULINK仿真实验

实验五SIMULINK仿真实验 一、实验目的 考察连续时间系统的采样控制中,零阶保持器的作用与采样时间间隔对Ts 对系统稳定性的影响 二、实验步骤 开机执行程序,用鼠标双击图标,进入MA TLAB命令窗口:Command Windows在Command Windows窗口中输入:simulink,进入仿真界面,并新建Model文件在Model界面中构造连续时间系统的结构图。作时域仿真并确定系统时域性能指标。 图(6-1) 带零阶保持器的采样控制系统如下图所示。作时域仿真,调整采样间隔时间Ts,观察对系统稳定性的影响。 图(6-2) 参考输入量(给定值)作用时,系统连接如图(6-1)所示: 图(6-3) 三、实验要求 (1)按照结构图程序设计好模型图,完成时域仿真的结构图 (2)认真做好时域仿真记录 (3)参考实验图,建立所示如图(6-1)、图(6-2)、图(6-3)的实验原理图; (4)将鼠标移到原理图中的PID模块进行双击,出现参数设定对话框,将PID 控制器的积分增益和微分增益改为0,使其具有比例调节功能,对系统进行纯比例控制。

1. 单击工具栏中的图标,开始仿真,观测系统的响应曲线,分析系统性 能;调整比例增益,观察响应曲线的变化,分析系统性能的变化。 2. 重复步骤2-3,将控制器的功能改为比例微分控制,观测系统的响应曲线, 分析比例微分控制的作用。 3. 重复步骤2-3,将控制器的功能改为比例积分控制,观测系统的响应曲线, 分析比例积分控制的作用。 4. 重复步骤2-3,将控制器的功能改为比例积分微分控制,观测系统的响应曲 线,分析比例积分微分控制的作用。 5. 参照实验一的步骤,绘出如图(6-2)所示的方块图; 6. 将PID控制器的积分增益和微分增益改为0,对系统进行纯比例控制。不断 修改比例增益,使系统输出的过渡过程曲线的衰减比n=4,记下此时的比例增益值。 7. 修改比例增益,使系统输出的过渡过程曲线的衰减比n=2,记下此时的比例 增益值。 8. 修改比例增益,使系统输出呈临界振荡波形,记下此时的比例增益值。 9. 将PID控制器的比例、积分增益进行修改,对系统进行比例积分控制。不断 修改比例、积分增益,使系统输出的过渡过程曲线的衰减比n=2,4,10,记下此时比例和积分增益。 10、将PID控制器的比例, 积分, 微分增益进行修改,对系统进行比例、积分、 微分控制。不断修改比例、积分、微分增益,使系统输出的过渡过程曲线的衰减比n=2、4、10记下此时的比例、积分、微分增益值。 四、实验报告要求 (1)叙述零阶保持器的作用 (2)讨论采样时间间隔Ts对系统的影响。 (3)写出完整实验报告 附:step模块在sources库中 sum模块在math operations库中 scope模块在sinks库中 transfer fcn模块在continuous库中 zero-order hold模块在discrete库中

半波整流全波整流桥式整流的详细介绍适合入门者

半波整流全波整流桥式整流的详细介绍适合入门者 The Standardization Office was revised on the afternoon of December 13, 2020

半波整流、全波整流、桥式整流 整流,就是把交流电变为直流电的过程。利用具有单向导电特性的器件,可以把方向和大小交变的电流变换为直流电。下面介绍利用晶体二极管组成的各种整流电路。 一、半波整流电路 图(1)是一种最简单的整流电路。它由 电源变压器B 、整流二极管D 和负载电阻 Rfz ,组成。变压器把市电电压(多为220 伏)变换为所需要的交变电压E2 ,D 再把 交流电变换为脉动直流电。 下面从右图(2)的波形图上看着二 极管是怎样整流的。 变压器砍级电压E2 ,是一 个方向和大小都随时间变化的正 弦波电压,它的波形如图(2)(a) 所示。在0~π时间内,E2 为正 半周即变压器上端为正下端为 负。此时二极管承受正向电压面 导通,E2 通过它加在负载电阻 Rfz上,在π~2π时间内,E2 为负半周,变压器次级下端为正,上端为负。这时D 承受反向电压,不导通,Rfz,上无电压。在2π~3π时间内,重复0~π时间的过程,而在3π~4π时间内,又重复π~2π时间的过程…这样反复下去,交流电的负半周就被"削"掉了,只有正半周通过Rfz,在Rfz上获得了一个单一右向(上正下负)的电压,如图5-2(b)所示,达到了整流的目的,但是,负载电压Usc 。以及负载电流的大小还随时间而变化,因此,通常称它为脉动直流。 这种除去半周、图下半周的整流方法,叫半波整流。不难看出,半波整说是以"牺牲"一半交流为代价而换取整流效果的,电流利用率很低(计算表明,整流得出的半波电压在整个周期内的平均值,即负载上的直流电压Usc = )因此常用在高电压、小电流的场合,而在一般无线电装置中很少采用。

三相桥式全控整流电路设计

电气工程学院课程设计报告 课程名称:电力电子技术 设计题目:三相桥式全控整流电路设计 专业班级:自动化1班 学号: 20120220 姓名: 时间: 2015年9月2日--9月30日 ——————以下由指导教师填写——————分项成绩:出勤成品答辩及考核 总成绩:总分成绩 指导教师(签名):

前言 课程设计是《电力电子技术》课程的实践性教学环节,通过课程设计,可 使学生在综合运用所学理论知识,拓展知识面,理论分析和计算,实验研究以及系统地进行工程实践训练等方面得到训练和提高,从而培养学生具有独立解决实际问题和从事科学研究的初步能力。通过设计过程,可是学生初步建立正确的设计思想,熟悉工程设计的一般顺序呢、规范和方法,提高正确使用技术 资料、标准、手册等工具书的能力。通过设计工作还可以培养学生实事求是和一丝不苟的工作作风,树立正确的生产观点、经济观点和全局观点,为后续课程的学习和毕业设计,乃至向工程技术人员的过渡打下基础。 目录 前言 1 一课程设计的内容和具体要求 2 二变压器设计 3 三晶闸管的选择 3 四晶闸管的保护设计 4 五触发电路设计 5 六触发电路供电电源设计 6 七Matlab仿真7 八实验总结8

一.课程设计的内容和具体要求 要求设计一个完整的三相桥式全控整流电路,包括主电路、触发电路、整流变压器的设计,晶闸管的选型和保护等。 (一)技术指标 1、整流器负载为10KW 直流电动机 额定电压D C 220V,额定电流55A,电枢电阻0.5?,总电阻1? 2、输入电压A C 380V(+5~10%) 3、输入电压D C 0~220V,输出最大电流λI nom (λ=1.5) 4、最小α角为15° 5、触发电路采用K J004 6、主变压器采用Y/Y12 联接。 7、主电路采用三相桥式全控整流电路。 (二)设计要求 1、变压器 设计 1)二次相电压U 2 的计算 2)二次电流I 2 和一次电流I 1 的计算 3)变压器容量的计算 2、晶闸管的选择 3、晶闸管保护设计 1)晶闸管过流保护 2)晶闸管过压保护 4、触发电路设计 1)同步变压器设计及同步电压的相位选择2)三相触发电路设计(双窄脉冲) 5、触发脉冲供电电源设计 (三)成品要求 1、课程设 计报告一份 2、电路图一份

Simulink实验报告

实验一:AM 信号的调制与解调 实验目的:1.了解模拟通信系统的仿真原理。 2.AM 信号是如何进行调制与解调的。 实验原理: 1.调制原理:AM 调制是用调制信号去控制高频正弦载波的幅度,使其按调制信号的规律变化的过程,就是按原始电信号的变化规律去改变载波某些参量的过程。 + m(t) S AM (t)A 0 cos ωc t AM 信号的时域和频域的表达式分别为: ()()[]()()()()t t m t A t t m A t S C C C AM ωωωcos cos cos 00+=+= 式(4-1) ()()()[]()()[]C C C C AM M M A S ωωωωωωδωωδπω-+++ -++=2 1 0 式(4-2) 在式中,为外加的直流分量;可以是确知信号也可以是 随机信号,但通常认为其平均值为0,即。其频谱是DSB SC-AM 信号的频谱加上离散大载波的频谱。 2.解调原理:AM 信号的解调是把接收到的已调信号还 原为调制信号。 AM 信号的解调方法有两种:相干解调和包 络检波解调。 AM 相干解调原理框图如图。相干解调(同步解调):利用

相干载波(频率和相位都与原载波相同的恢复载波)进行的解调,相干解调的关键在于必须产生一个与调制器同频同相位的载波。如果同频同相位的条件得不到满足,则会破坏原始信号的恢复。相干载波的提取:(1)导频法:在发送端加上一离散的载频分量,即导频,在接收端用窄带滤波器提取出来作为相干载波,导频的功率要求比调制信号的功率小;(2)不需导频的方法:平方环法、COSTAS环法。 LPF m0(t) S AM(t) cosωc t AM信号波形的包络与输入基带信号成正比,故可以用包络检波的方法恢复原始调制信号。包络检波器一般由半波或全波整流器和低通滤波器组成: (1)整流:只保留信号中幅度大于0的部分。(2)低通滤波器:过滤出基带信号;(3)隔直流电容:过滤掉直流分量。实验内容: 1.AM相干解调框图。

《MATLAB与控制系统。。仿真》实验报告

《MATLAB与控制系统仿真》 实验报告 班级: 学号: 姓名: 时间:2013 年 6 月

目录实验一MATLAB环境的熟悉与基本运算(一)实验二MATLAB环境的熟悉与基本运算(二)实验三MATLAB语言的程序设计 实验四MATLAB的图形绘制 实验五基于SIMULINK的系统仿真 实验六控制系统的频域与时域分析 实验七控制系统PID校正器设计法 实验八线性方程组求解及函数求极值

实验一MATLAB环境的熟悉与基本运算(一) 一、实验目的 1.熟悉MATLAB开发环境 2.掌握矩阵、变量、表达式的各种基本运算 二、实验基本原理 1.熟悉MATLAB环境: MATLAB桌面和命令窗口、命令历史窗口、帮助信息浏览器、工作空间浏览器、文件和搜索路径浏览器。 2.掌握MATLAB常用命令 表1 MATLAB常用命令 变量与运算符 3.1变量命名规则 3.2 MATLAB的各种常用运算符 表3 MATLAB关系运算符 表4 MATLAB逻辑运算符

| Or 逻辑或 ~ Not 逻辑非 Xor逻辑异或 符号功能说明示例符号功能说明示例 :1:1:4;1:2:11 . ;分隔行.. ,分隔列… ()% 注释 [] 构成向量、矩阵!调用操作系统命令 {} 构成单元数组= 用于赋值 的一维、二维数组的寻访 表6 子数组访问与赋值常用的相关指令格式 三、主要仪器设备及耗材 计算机 四.实验程序及结果 1、新建一个文件夹(自己的名字命名,在机器的最后一个盘符) 2、启动MATLAB,将该文件夹添加到MATLAB路径管理器中。 3、学习使用help命令。

桥式整流电路分析

1、桥式整流 桥式整流电路是使用最多的一种整流电路。这种电路,只要增加两只二极管口连接成"桥"式结构,便具有全波整流电路的优点,而同时在一定程度上克服了它的缺点。 桥式整流电路如图Z0705所示,其中图(a)、(b)、(c)是它的 三种不同画法。它是由电源变压器、四只整流二极管D1~4 和负载 电阻R L组成。四只整流二极管接成电桥形式,故称桥式整流。 桥式整流电路的工作原理如图Z0706所示。在u2的正半周,D1、 D3导通,D2、D4截止, 电流由T R次级上端经 D1→R L →D3回到 TR次级下端,在负载 RL上得到一半波整流 电压。 在u2的负半周,D1、 D3截止,D2、D4导通, 电流由Tr次级的下端 经D2→R L→D4回到 Tr次级上端,在负载RL 上得到另一半波整流 电压。 这样就在负载RL上得到一个与全波整流相同的电压波形,其电 流的计算与全波整流相同,即 UL = 0.9U2 GS0709 I L = 0.9U2/R L GS0710 流过每个二极管的平均电流为 I D= I L/2 = 0.45 U2/R L 每个二极管所承受的最高反向电压为 2、半波整流电路 半波整流电路,由电源变压器Tr整流二极管D和负载电阻RL组成,如下图所示。电路的工作过程是:在u2的正半周(ωt=0~π),二极管因加正向偏压而导通,有电流iL流过负载电阻RL。由于将二极管看作理想器件,故RL上的电压uL与u2的正半周电压基本相同。

市电(交流电网)变为稳定的直流电需经过变压、整流、滤波和稳压四个过程。利用二极管的单向导电性,将大小和方向都随时间变化的工频交流电变换成单方向的脉动直流电的过程称为整流。有时将变压器、整流电路和滤波电路一起统称为整流器。 (1)正半周u2瞬时极性a(+),b(-),VD正偏导通,二极管和负载上有电流流过。若向压降UF忽略不计,则uo=u2。 (2)负半周u2瞬时极性a(-),b(+),VD反偏截止,IF≈0,uD=u2。

相关文档
最新文档