Ultrasonic-assisted extraction and antioxidant activity of polysaccharides

Ultrasonic-assisted  extraction  and  antioxidant  activity  of  polysaccharides
Ultrasonic-assisted  extraction  and  antioxidant  activity  of  polysaccharides

Carbohydrate Polymers 88 (2012) 522–529

Contents lists available at SciVerse ScienceDirect

Carbohydrate

Polymers

j o u r n a l h o m e p a g e :w w w.e l s e v i e r.c o m /l o c a t e /c a r b p o

l

Ultrasonic-assisted extraction and antioxidant activity of polysaccharides recovered from white button mushroom (Agaricus bisporus )

Yuting Tian a ,b ,Hongliang Zeng a ,Zhenbo Xu c ,Baodong Zheng a ,?,Yuexu Lin d ,Chunji Gan d ,Y.Martin Lo b ,?

a

College of Food Science,Fujian Agriculture and Forestry University,Fuzhou,Fujian 350002,PR China b

Department of Nutrition and Food Science,University of Maryland,College Park,MD 20742,USA c

Department of Microbial Pathogenesis,Dental School,University of Maryland,Baltimore,MD 21201,USA d

College of Life Science,Fujian Agriculture and Forestry University,Fuzhou,Fujian 350002,PR China

a r t i c l e

i n f o

Article history:

Received 28April 2011

Received in revised form 25July 2011Accepted 22December 2011Available online 2 January 2012

Keywords:

Agaricus bisporus Polysaccharide Extraction

Antioxidant activity

a b s t r a c t

Ultrasonic-assisted extraction (UAE)of polysaccharides from white button mushroom (Agaricus bisporus )was studied.The four parameters,ultrasonic power,extraction temperature,extraction time,and the ratio of water volume to raw material weight (W /M ratio),were optimized using the central composite design (CCD)with a quadratic regression model built by using response surface methodology (RSM).The optimal extraction conditions found were:ultrasonic power 230W,extraction temperature 70?C,extraction time 62min,and W /M ratio 30ml/g,where the highest A.bisporus polysaccharides (ABPS)yield of 6.02%was achieved.From HPGPC analysis,the molecular weight of ABPS was 158kDa.Chemical and spectroscopic studies illustrated ABPS was only composed of Glc with ?-type glycosidic bond.In addition,the antioxidative activity of ABPS was investigated by measuring its scavenging ability on DPPH and hydroxyl in vitro.The results indicated that ABPS has good antioxidant activity.

? 2011 Elsevier Ltd. All rights reserved.

1.Introduction

Mushrooms have been used as food for centuries because they have rich and balanced nutrients with low lipid content,and have good ?avor and texture (Chiang,Yen,&Mau,2006;Liu,Zhou,Zeng,&Ouyang,2004).Extensive studies have focused on bioac-tive compounds derived from various mushrooms (Breene,1990;Dubost,Ou,&Beelman,2007;Guo,Savelkoul,Kwakkel,Williams,&Verstegen,2003;Hartman,1998;Kasuga,Aoyagi,&Sugahara,1995).Agaricus bisporus ,commonly known as the white button mushroom (WBM),is one of the most economically important edi-ble mushrooms.It has high contents of polyphenols,ergothioneine,selenium,and polysaccharides (Mayolo-Deloisa,Trejo-Hernandez,&Rito-Palomares,2009;Vetter &Lelley,2004).Recently,Jeong et al.(2010)demonstrated immune modulating and antitumor proper-ties of A.bisporus .Studies on the use of A.bisporus as a dietary supplement for animal feed has shown it has growth-promoting and tissue antioxidant-protective activity (Dalloul &Lillehoj,2006;Giannenas et al.,2010).

Polysaccharides extracted from wild plants,animals,and fungi are often identi?ed as biological response modi?ers due to their antioxidative,anti-viral and anti-complementary activities (Li,

?Corresponding author.Tel.:+8659183739118;fax:+8659183739118.E-mail address:zbdfst@https://www.360docs.net/doc/ce5835029.html, (B.Zheng).

Ding,&Ding,2007;Sun,Liu,&Kennedy,2010).Polysaccharides with antioxidant activity have been reported in mushrooms.The most commonly studied groups of mushroom are the Ganoder-mataceae,Ganoderma sp.such as Reishi,Ganoderma lucidum (Chen,Shen,&Chen,2009;Jia et al.,2009;Liu et al.,2010),G.atrum (Chen,Xie,Nie,Li,&Wang,2008),G.tsugae (Tseng,Yang,&Mau,2008),as well as Lentinula edodes (Wu &Hansen,2008;Yu,LiHua,Qian,&Yan,2009).Other species,such as Cordyceps militaris (Dong &Yao,2008;Yu et al.,2007),Flammulina velutipes (Bao,Ochiai,&Ohshima,2010),Russula virescens (Sun,Li,&Liu,2010)and Lenti-nus sp.(Thetsrimuang,Khammuang,&Sarnthima,2011)have also been reported to contain antioxidative https://www.360docs.net/doc/ce5835029.html,mer-cially available pharmaceutical mushroom polysaccharides come mainly from L.edodes and G.lucidum .However,little is known in respect with the extraction of polysaccharides from A.bisporus .

Hot-water extraction has been widely used to extract plant polysaccharides (Lai &Yang,2007;Zhu et al.,2009).However,the requirement for high temperatures and extended extraction times has disadvantages (Wang,Cheng,Mao,Fan,&Wu,2009).Development of an economical and ef?cient extraction technique for mushroom polysaccharides is of an urgent necessity.Various recently developed novel techniques for the extraction of bioac-tive substances from plants,include supercritical ?uid extraction (Turner,King,&Mathiasson,2001),microwave-assisted extraction (Wang et al.,2010)and ultrasonic-assisted extraction (Lai,Wen,Li,Wu,&Li,2010;Ying,Han,&Li,2011).Compared with the

0144-8617/$–see front matter ? 2011 Elsevier Ltd. All rights reserved.doi:10.1016/j.carbpol.2011.12.042

Y.Tian et al./Carbohydrate Polymers88 (2012) 522–529523?rst two methods,ultrasonic-assisted extraction has the advan-

tage of accelerating the extraction process,causing less damage to

the structural and molecular properties of plant materials(Vilkhu,

Mawson,Simons,&Bates,2008),and can be done at low tempera-

tures(Xu,Zhang,&Hu,2000).For these reasons ultrasonic methods

for assisting the extraction of polysaccharides from plant material

are widely used today(Chen et al.,2010;Hromadkova,Ebringerova,

&Valachovic,2002;Pan et al.,2010).

In this work,the extraction variables(ultrasonic power,extrac-

tion temperature,extraction time and W/M ratio)were optimized

by employing response surface methodology(RSM)for maximum

polysaccharides yield.The chemical composition and preliminary

structural characterization of the polysaccharides were studied.

The polysaccharides were further investigated for their antioxi-

dant activities by DPPH radical assay and studying their hydroxyl

radicals.

2.Materials and methods

2.1.Dried A.bisporus preparation

A.bisporus was purchased in a local commercial market in the

mushroom producing area of Fuzhou,Fujian Province,China.All

samples were processed as follows:rinse for15min under running

tap water and oven dry for ca.three days of oven-dry at70–80?C,

grind with a mill(FW-80,Taisite Co.,Tianjin,China)and seal in

air-tight plastic bags stored under dry and dark conditions until

used.

2.2.Extraction of polysaccharides

The ultrasonic-assisted extraction of polysaccharides from dried

A.bisporus was performed using an ultrasonic clearer(KQ-400KDV,

Kunshan,Zhejiang,China)with thermostatic temperature control.

Five grams of dried A.bisporus powders were extracted with dis-

tilled water in a250-ml beaker held in the ultrasonic clearer and

extracted experimentally at a variety of selected ultrasonic pow-

ers at different temperatures,and for different lengths of time.

After?ltration to remove debris fragments,the?ltrate was con-

centrated using a speed vacuum concentrator(BUCHI409,Buchi

Corp.,New Castle,DE,USA).The protein was removed as described

previously(Matthaei,Jones,Martin,&Nirenberg,1962),and the

solution was then precipitated with a threefold of volume of95%

(v/v)ethanol overnight at4?C.The resulting precipitate was col-

lected by centrifugation at4?C at4500rpm for20min(PM180R,

ALC International,Milan,Italy),washed with distilled water,cen-

trifuged,then dried by freeze-drying(MCFD5505,SIM,Newark,DE,

USA).The ABPS were weighted with a balance(AUY220,Shimadzu,

Japan).The percentage polysaccharides yield(%)is calculated as

follows:

Yield(%,w/w)=Weight of dried crude extraction

Weight of A.bisporus powder

×100(1)

2.3.Optimization of ultrasonic-assisted treatment

The optimal conditions for ultrasonic-assisted extraction were determined by response surface methodology(RSM),with the stan-dard of?ve-levels,four-factors central composite design(CCD). Table1shows the range and center point values of the four inde-pendent variables based on the results of the above experiments. The CCD in the experimental design consisted of30treatments including24factorial points,and eight axial points(?=2)and six replicates of the central point.The ultrasonic power(W,X1), extraction temperature(?C,X2),extraction time(min,X3),and W/M ratio(ml/g,X4)were chosen as the independent variables,and the extraction yield of polysaccharides(%,Y)was chosen as the response(Table2).Experimental runs were randomized to minimize the effects of unexpected variability in the observed responses.

2.4.Control experiment

The traditional hot water extraction(HWE)was carried out in a water bath(HH-6Guohua Wiring Company,Shanghai,China)at the optimal extraction condition:extraction temperature of95?C, extraction time of125min,and W/M ratio of30:1based on the pre-liminary three-factor and three-level designed orthogonal optimal experiment.

Microwave-assisted extraction(MAE)was carried out in a ME1-3L microwave extraction apparatus(Wuxi Pulaima Instrument Co., Ltd.,Jiangsu,China)with a power of360W,extraction temperature of75?C,extraction time of30min,and W/M ratio of30:1based on the preliminary optimal experiment.

2.5.Isolation and puri?cation of ABPS

DEAE-cellulose-52column(1.6cm×30cm)was applied to purify the ABPS.The column was?rst eluted with distilled water followed by0.3M and the0.6M NaCl.The only main peak was fur-ther fractionated on a Sephadex G-100column(1.6cm×30cm) eluted with0.1M NaCl to yield single fraction.The total car-bohydrate was determined by phenol–sulfuric acid colorimetric method.

2.6.Analysis of carbohydrate composition

The molecular weight of ABPS was determined by gel-permeation chromatography(GPC),in combination with a high-performance liquid chromatography(HPLC)instrument(LC-2010A,Shimadzu,Tokyo,Japan)equipped with an Ultrahydrogel linear column(10?m,7.8mm×300mm,Waters,USA)and a refractive index(RI)detector(RID-10A,Shimadzu,Tokyo, Japan).The column was eluted with0.05mol/l NaCl at a ?ow rate of0.8ml/min.The HPLC system was precalibrated with T-series Dextran standards(T-10,T-40,T-70,and T-500).

The ABPS sample(2mg)was hydrolyzed in2ml of2M tri?uo-roacetic acid(TFA)at100?C for8h.The chemical composition of ABPS was measured by a HPLC system(LC-2010A,Shimadzu,Tokyo, Japan)with a refractive index(RI)detector and ZORBAX Carbohy-drate Analysis Columns(5?m,4.6mm×250mm,Agilent,USA)at 25?C.The column was eluted with acetonitrile and water(85:15, V/V)at a?ow rate of1.0ml/min.

2.7.FT-IR and NMR spectroscopy

Infrared spectra of ABPS were measured with a FT-IR spec-trophotometer(Thermo Nicolet,AVATAR360,USA)equipped with EZ Omnic6.1a software.The sample was ground with KBr powder and then pressed into1mm pellets for FTIR measurement in the frequency range of4000–400cm?1.Thirty-two scans were run in each spectrum at a resolution of4cm?1.

1H NMR and13C NMR spectra were obtained on NMR spectrom-eter(AVANCE III400,Bruker,Germany)at25?C.Polysaccharides sample(30mg)was dissolved in D2O and lyophilized three times. The deuterium-exchanged ABPS,dissolved in D2O again,were detected on NMR spectrometer using tetra-methyl silane(TMS)as an internal standard.

524Y.Tian et al./Carbohydrate Polymers88 (2012) 522–529

Table1

The levels of variables employed in the present study for the construction of Central Composition Design(CCD).

Variables Levels

2?1012

Ultrasonic power X1,W160200240280320 Extraction temperature X2,?C6065707580 Extraction time X3,min20406080100 W/M ratio X4,ml/g2025303540

2.8.Antioxidant activity of polysaccharides

2.8.1.Assay of DPPH radical scavenging activity

The free radical scavenging activity of ABPS was determined by

using a modi?ed protocol based on(Yang,Zhao,Shi,Yang,&Jiang,

2008).Brie?y,different volumes of the ABPS solution(1mg/ml)

were added to2ml DPPH solution(800mM in dehydrated alco-

hol)and the?nal reaction volume was made up to4ml with70%

ethanol.After shaking vigorously,the mixture was incubated at

room temperature in the dark for20min.The absorbance was mea-

sured at517nm against a blank(distilled water instead of the ABPS

solution).The same procedure was repeated with the synthetic

antioxidant,butylated hydroxytoluene(BHT),as a positive control.

Lower absorbance of the reaction mixture indicates higher free-

radical scavenging activity.The capability to scavenge the DPPH

radical was calculated by the following equation:

Scavenging ability(%)=A0?A1

×100%(2)

A0and A1are the absorbance of control(without sample)and sam-ple,respectively.

2.8.2.Assay of hydroxyl radicals scavenging activity

The hydroxyl radicals scavenging activity of ABPS was mea-sured using a previous method with modi?cation(Sun,Li,et al.,2010).In brief,the reaction mixture contained1ml of brilliant green(0.435mM),1.0ml of EDTA–ferrous ion solution(9mM), 1.0ml of H2O2(8.8mM)and different volumes of the ABPS solu-tion(1mg/ml).The?nal reaction volume was made up to4ml with distilled water.After incubation at room temperature for20min, the absorbance of the mixture was measured at624nm against a blank(distilled water instead of the ABPS solution).The same pro-cedure was repeated with vitamin C(Vc),as a positive control.The hydroxyl radical-scavenging activity was expressed as following: Scavenging ability(%)=

A0?A1

A0

×100%(3)

A0and A1are the absorbance of control(without sample)and sam-ple,respectively.

2.9.Statistical analysis

Means±SD had been used in the implementation of results and statistical analysis was performed using the software Design-Expert?7.0.0(Stat-Ease Inc.,Minneapolis,MN,USA).Data were then analyzed by analysis of variance(P<0.05)and the means separated by Duncan’s multiple range tests.All analyses were per-formed in triplicate.

Table2

Experimental design and result of factors chosen for the trials of CCD.

No.x1x2x3x4Yield of polysaccharide(%)

Experimental Predicted

1?1?1?1?1 4.43 4.25

21?1?1?1 3.58 3.67

3?11?1?1 3.87 4.03

411?1?1 4.17 4.12

5?1?11?1 4.27 4.37

61?11?1 3.72 3.54

7?111?1 4.75 4.54 8111?1 4.25 4.39

9?1?1?11 4.50 4.58

101?1?11 3.79 3.83

11?11?11 3.86 3.87 1211?11 3.68 3.80

13?1?111 4.81 4.69

141?111 3.63 3.70

15?1111 4.26 4.39 161111 4.06 4.07

17?2000 4.36 4.40 182000 3.60 3.50

190?200 4.50 4.57 200200 4.85 4.72 2100?20 3.91 3.80 220020 4.13 4.18 23000?2 3.80 3.87 240002 4.00 3.87 250000 5.96 5.88 260000 5.92 5.88 270000 5.96 5.88 280000 5.75 5.88 290000 5.87 5.88 300000 5.83 5.88

Y.Tian et al./Carbohydrate Polymers88 (2012) 522–529525 3.Results and discussion

3.1.Fitting to model

Four variables,including X1(ultrasonic power),X2(extrac-

tion temperature),X3(extraction time)and X4(W/M ratio)were

selected and separately optimized using CCD design.Table2shows

the complete design matrix together with the response values

obtained.The yield of ABPS ranged from3.58to5.96%,and reached

maximum with the W/M ratio of30ml/g at240W,70?C,and a

60min treatment time.Trials No.24-30in Table2were used to

determine the experimental error.By applying multiple regression

analysis on the experimental data,the response and test variables

were found to correlate by the following second-order polynomial

equation:

Y=5.85?0.22x1?0.036x2+0.096x3?0.0021x4

+0.17x1x2?0.0062x1x3?0.0042x1x4+0.10x2x3

?0.12x2x4?0.00062x3x4?0.48x1x1?0.31x2x2

?0.47x3x3?0.50x4x4(4)

where Y is the yield of ABPS(%),and x1,x2,x3,and x4are the coded

variables for ultrasonic power,extraction temperature,extraction

time and W/M ratio,respectively.

Table3summarized the results of the analysis of variance,

goodness-of-?t and the adequacy of the mode.The R-value for Eq.

(4)was0.9910,which was relatively high(close to unity),indicat-

ing a close agreement between experimental and predicted values

of the ABPS yield.The R2

adj

is the correlation measure for testing

the goodness-of-?t of the regression equation.The higher it is the

better degree of correlation between the actual and predicted val-

ues(Zhong&Wang,2010).The value R2

adj

for Eq.(4)was0.9652,

which indicates that96.52%of the total variation in the yield was

attributed to the experimental variables studied.

The adequacy of the model was further justi?ed through analy-

sis of variance(ANOVA).Table3lists the ANOVA quadratic model

for the yield of ABPS.From the analysis,the F-value of252.08

and P-value<0.0001indicates the response surface quadratic

model was signi?cant.The signi?cance of each coef?cient was

tested using the P-value in Table4.The corresponding vari-

ables become more signi?cant as the F-value becomes larger and

the P-value becomes smaller.Also,the P-value can be used to

check the interaction strength between each independent variable

(Muralidhar,Chirumamilla,Ramachandran,Marchant,&Nigam,

2001).In this case,the independent variables(x1and x3),the inter-

action terms(x1x2,x2x3,and x2x4),and all two quadratic terms

(x2

1,x2

2

,x2

3

,and x2

4

)signi?cantly affected the yield of ABPS.

3.2.Analysis of response surface

Based on the above data(Eq.(4))using RSM,tri-dimensional response surface plots and two-dimensional contour plots were constructed to visualize the relationship between responses and the levels of the processing variables and the interactions between two variables.The tri-dimensional surface plots were obtained by plotting the response on the Z-axis against any two variables while keeping other variables at their optimal level.

Figs.1a and2a a show the effects of ultrasonic power(X1)and extraction temperature(X2)are shown in.The yield of ABPS initially increases with an increase in ultrasonic power and extraction tem-perature.With the treatment time set at62.4min and the W/M ratio set at30ml/g,the highest ABSP yield should be found with an ultra-sonic power and extraction temperature range of203.3–243.9W and65.5–72.6?C,respectively.

Figs.1b and2b shows effects of ultrasonic power(X1)and extrac-tion time(X2)on the yield of ABPS.With the extraction temperature set at70.1?C and the W/M ratio at30.0ml/g,the optimal ABPS yield should be found with an ultrasonic power range of222.2–244.8W with extraction time between52.7and74.0min.

Figs.1c and2c show the effects of ultrasonic power(X1)and W/M ratio(X4)on the yield of ABPS.With the extraction temperature and extraction time set at70.1?C and62.4min,respectively,the optimal ABPS yield should be found with an ultrasonic power of 210.9–253.8W and the W/M ratio of27.5–32.9ml/g.

Figs.1d and2d show the effects of extraction temperature(X2) and extraction time(X3)on the yield of ABPS.With the ultra-sonic power set at230.5W and the W/M ratio at30.0ml/g,the highest ABPS should be found with an extraction temperature of 66.4–71.9?C and an extraction time of55.4–64.8min.

Figs.1e and2e show the effects of extraction temperature(X2) and W/M ratio(X4)on the yield of ABPS.With an ultrasonic power at 230.5W and an extraction time of62.4min,the optimal ABPS yield should be found with the extraction temperature of67.7–74.4?C and a W/M ratio of30.0–31.3ml/g.

Figs.1f and2f show the effects of extraction time(X3)and W/M ratio(X4)on the yield of ABPS are shown in.With the ultrasonic power at230.5W and an extraction temperature of70.1?C,the highest ABPS yield should be found with an extraction time of 56.1–68.8min and a W/M ratio of27.4–32.7ml/g.

3.3.Experimental validation of the optimized condition

The optimal values of the four studied variables obtained from the model using the Design-Expert software were an ultrasonic power,an extraction temperature,an extraction time and a W/M ratio of230.5W,70.1?C,62.4min,and30.0ml/g,respectively.The model predicted a maximum ABPS yield of5.91%under the opti-mal conditions.The optimal conditions were determined using the simplex method and the maximum desirability for the extraction yield of ABPS to verify the predictive capacity of the model.A mean value of6.02±0.07%(N=5)was obtained from laboratory experi-ments.This proves the response model constructed was adequate in predicting optimal conditions achievable in laboratory settings.

https://www.360docs.net/doc/ce5835029.html,parison of UAE,HWE,and MAE

In the control experiment,the yield of ABPS obtained by HWE and MAE were2.36±0.05and4.71±0.11%,respectively.Clearly, the application of UAE positively affected the ABPS yield.Under the optimal conditions of UAE,the ABPS yield increased by155.08% by27.81%when compared to HWE and MEA,respectively.When compared with HWE,UAE gave higher yields of ABPS with a shorter extraction time and at lower temperatures.In addition,compared with MAE,UAE had a larger ABPS yield and used less power and a lower extraction https://www.360docs.net/doc/ce5835029.html,parisons of the structure and bioactivities between and among these three methods need to be studied further to promote the commercial application of UAE for use in the?eld of bioactive compounds.

3.5.Chemical composition and preliminary structural characterization of ABPS

HPGPC has often been employed to determine the molecular weight of polysaccharides.The molecular weight of ABPS was esti-mated to be158kDa.The HPGPC pro?le also demonstrated ABPS had a single and symmetrically sharp peak indicating ABPS is a homogeneous polysaccharide.HPLC analysis showed ABPS was only composed of one kind of monosaccharides:d-glucose.

IR spectra of ABPS showed absorption bands at3391,2931, 2361,1624,1406,1080,936,and881cm?1(Fig.3).A broad band

526Y.Tian et al./Carbohydrate Polymers88 (2012) 522–529

Fig.1.Tri-dimensional response surface contour plots showing the experimental factors and their mutual interactions on ABPS extraction:(a)Y=f(X1,X2,42.4,35.3);(b) Y=f(X1,70.1,X3,30.0);(c)Y=f(X1,70.1,62.4,X4);(d)Y=f(230.4,X2,X3,30.0);(e)Y=f(230.4,X2,62.4,X4);(f)Y=f(230.4,70.1,X3,X4).Y,yield for ABPS(%);X1,ultrasonic power (W);X2,extraction temperature(?C);X3,extraction time(min);X4,W/M ratio(ml/g).

Fig.2.Two-dimensional contour plots showing the experimental factors and their mutual interactions on ABPS extraction:(a)Y=f(X1,X2,42.4,35.3);(b)Y=f(X1,70.1,X3, 30.0);(c)Y=f(X1,70.1,62.4,X4);(d)Y=f(230.4,X2,X3,30.0);(e)Y=f(230.4,X2,62.4,X4);(f)Y=f(230.4,70.1,X3,X4).Y,yield for ABPS(%);X1,ultrasonic power(W);X2, extraction temperature(?C);X3,extraction time(min);X4,W/M ratio(ml/g).

Y.Tian et al./Carbohydrate Polymers 88 (2012) 522–529

527

Table 3

Analysis of variance (ANOVA)testing the ?tness of the regression equation.

Source

Sum of squares

df

Mean square

F -value

P -value

Model 18.1375614 1.2955458.47913<0.0001Residual 0.332308150.022154Lack of ?t 0.298425100.029843 4.403714

0.0577

Pure error 0.03388350.006777

Cor total

18.46987

29

R =0.9910,R 2=0.9820,R 2

adj =0.9652.

T r a n s m i t t a n c e %

Wavenumber (cm -1

)

Fig.3.FT-IR spectroscopy of ABPS.

centered at 3391cm ?1

assigned to hydrogen-bonded hydroxyl

groups (Wang,Zhang,Di,Liu,&Wu,2011).The band at around 2931cm ?1was a C H stretching vibration (Zhang,Ye,&Wang,2010).The peak at 2361cm ?1was a C H transiting angle.The absorptions at 1624cm ?1were assigned to the stretching vibra-tions of the CHO and C O bonds.The broad absorption bands with strong intensities at 1406cm ?1could be assigned to deforming vibrations of C H bond (Wang,2011).There was only one peak (1100and 1010cm ?1)of ABPS,which indicated the existence of pyranose (Ying et al.,2011).The weak absorption bands at 936and 881cm ?1were related to the C H deforming vibrations in ?-pyran ring.These results indicated that ABPS possesses typical absorption peak of polysaccharides.

NMR spectroscopy,an important non-destructive tool,was used to investigate the ?ne structure of polysaccharides,including iden-ti?cation of monosaccharide composition,elucidation of ?-or ?-anomeric con?gurations,establishment of linkage patterns and sequences of the sugar units in the polysaccharides (Li,Fan,&Ding,

2011).Fig.4shows all the NMR chemical shifts of ABPS.In the

1H

NMR spectra of ABPS,chemical shifts from 3.520to 3.752ppm were designated as the protons of carbons C-2to C-6on glycosidic ring (Wu,Sun,&Pan,2006).Based on the result of monosac-charide analysis,the signal in the 1H NMR of ABPS at ?3.643,?3.520,?3.563and ?3.427were attributable to the C-5,C-4,C-3,and C-2,individually (Ma,Qiao,&Xiang,2011)and the peak at ?63.16ppm in the 13C spectra of ABPS could be assigned to C-6of ?-d -glucose (Hromadkova et al.,2002).Of the two types of anomeric protons,signals in the 1H NMR spectra derived from ?-anomeric appear in less than 5ppm (Cui,2005).Combined with the results of IR data,the signals in the NMR spectra indicated ABPS had ?-glycopyranosidic linkages.Further research should be focused on the detailed linkage by methylation analysis.

3.6.Antioxidant activity of ABPS

3.6.1.DPPH scavenging activity of ABPS

DPPH,a stable free radical discovered by Goldschmidt and Renn (Ionita,2005),has been commonly used as a tool for determining the free-radical scavenging ability of the polysaccharides (Lai et al.,2010;Qiao et al.,2009;Xu et al.,2009).The change of concentra-tion of ABPS was monitored to evaluate the antioxidant ability of ABPS through the DPPH scavenging activity test.Fig.5presents the results.BHT was used as a positive control as previously reported by Xie et al.(2010).As shown in Fig.5,ABPS exhibited a concentration-dependent antiradical activity by inhibiting DPPH free radicals.The DPPH scavenging effect increased by increasing the concentration of ABPS up to 250?g/https://www.360docs.net/doc/ce5835029.html,pared with BHT,ABPS showed a higher degree of free radical-scavenging activity under the same conditions.At 250?g/ml concentration,ABPS was observed to pos-sess signi?cantly (P <0.01)higher (86.1%)free radical-scavenging activity when compared to BHT (83%),suggesting that ABPS has stronger DPPH radical-scavenging activity.

3.6.2.Hydroxyl radical scavenging activity of ABPS

Hydroxyl radicals are the most reactive among reactive oxy-gen species (ROS)and can be generated in biological cells through

Table 4

Testing of the signi?cance of the regression coef?cients associated with different experimental factors.

Factor Coef?cient estimate

df

Standard error

95%CI low

95%CI high

F -value

P -value Intercept 5.88166710.060764 5.75215 6.011183–

x 1?0.2245810.030382?0.28934?0.1598354.64071<0.0001x 20.0362510.030382?0.028510.101008 1.4235650.2513x 30.0962510.0303820.0314920.16100810.036050.0064x 4?0.0020810.030382?0.066840.0626750.0047020.9462x 1x 20.16937510.037210.0900630.24868720.718990.0004x 1x 3?0.0618710.03721?0.141190.017437 2.7650340.1171x 1x 4?0.0418710.03721?0.121190.037437 1.2664260.2781x 2x 30.10062510.037210.0213130.1799377.3127680.0163x 2x 4?0.1193810.03721?0.19869?0.0400610.291930.0059x 3x 4?0.0006210.03721?0.079940.0786870.0002820.9868x 1x 1?0.482410.02842?0.54297?0.42182288.1113<0.0001x 2x 2?0.3086510.02842?0.36922?0.24807117.9435<0.0001x 3x 3?0.472410.02842?0.53297?0.41182276.2901<0.0001x 4x 4

?0.5024

1

0.02842

?0.56297

?0.44182

312.4966

<0.0001

528Y.Tian et al./Carbohydrate Polymers 88 (2012) 522–

529

Fig.4.

1

H NMR (a)and 13C NMR (b)spectra of

ABPS.

Fig.5.Free radical-scavenging activity of ABPS and BTH at different concentrations.Data are shown as mean ±SD (n =

3).

Fig.6.Hydroxyl radical-scavenging activity of ABPS and Vc at different concentra-tions.Data are shown as mean ±SD (n =3).

the Fenton reaction (Yuan et al.,2010).Moreover,hydroxyl radi-cals can also induce signi?cant damage to adjacent biomolecules among the oxygen radicals (Bin,2010).So removing hydroxyl rad-icals is important for antioxidant defense in living cell systems.Fig.6shows an analysis of the hydroxyl radical-scavenging activ-ities of ABPS with Vc as positive control (Luo et al.,2010).This shows ABPS exhibited scavenging activity towards hydroxyl rad-icals in a concentration-dependent manner and the scavenging effect increased based on the concentration of ABPS.The antiox-idant activity of ABPS was detected to be higher than that of Vc at each concentration point.When the concentration was below 80?g/ml,ABPS was observed to possess obviously higher free radical-scavenging activity than that of Vc,suggesting ABPS has a noticeable effect on its hydroxyl radical scavenging activity.

4.Conclusion

Ultrasonic technology was found an effective method for ABPS extraction,as evidenced by the improved yield reached by the optimal extraction conditions identi?ed by response surface methodology (RSM).The highest ABPS was found to be 6.02%(w/w)with 230watts of ultrasonic power at 70?C for 62min with the W /M ratio at 30ml/g.The experimental values identi?ed under these conditions were closely correlated to the predicted https://www.360docs.net/doc/ce5835029.html,-pared with HTW and MAE,UAE was the best method of extracting ABPS.One fraction of polysaccharides was obtained through puri?-cation of ABPS by using DEAE-Cellulose-52column and Sepharose G-100column chromatography.The molecular weight of ABPS was estimated to be 158kDa and it consisted of only D-glucose.In addi-tion,the free-radical scavenging capacity of the ABPS extracted in the present study was analyzed and discovered.

Acknowledgements

The authors wish to thank Dr.Chunfeng Yan (Fujian Institute of Research on the Structure of Matter,Chinese Academy of Sciences)for her assistance in the structural characterization of polysac-charides.The research was ?nancial supported by the China State “11th Five-Year Plan”Scienti?c and Technological Support Scheme (2007BAD07B05),Special Major Science and Technology in Fujian Province (2008N0007)and the Natural Science Fund in Fujian Province (2006J0190,2011J05123).

Y.Tian et al./Carbohydrate Polymers88 (2012) 522–529529

References

Bao,H.N.D.,Ochiai,Y.,&Ohshima,T.(2010).Antioxidative activities of hydrophilic extracts prepared from the fruiting body and spent culture medium of Flam-mulina velutipes.Bioresource Technology,101(15),6248–6255.

Bin,C.(2010).Optimization of extraction of Tremella fuciformis polysaccharides and its antioxidant and antitumour activities in vitro.Carbohydrate Polymers,81(2), 420–424.

Breene,W.M.(1990).Nutritional and medicinal value of specialty mushrooms.

Journal of Food Protection,53,883–894.

Chen,X.P.,Wang,W.X.,Li,S.B.,Xue,J.L.,Fan,L.J.,Sheng,Z.J.,et al.(2010).

Optimization of ultrasound-assisted extraction of Lingzhi polysaccharides using response surface methodology and its inhibitory effect on cervical cancer cells.

Carbohydrate Polymers,80(3),944–948.

Chen,Y.,Xie,M.-Y.,Nie,S.-P.,Li,C.,&Wang,Y.-X.(2008).Puri?cation,composition analysis and antioxidant activity of a polysaccharide from the fruiting bodies of Ganoderma atrum.Food Chemistry,107(1),231–241.

Chen,Y.G.,Shen,Z.J.,&Chen,X.P.(2009).Modulatory effect of Ganoderma lucidum polysaccharides on serum antioxidant enzymes activities in ovarian cancer rats.

Carbohydrate Polymers,78(2),258–262.

Chiang,P.D.,Yen,C.T.,&Mau,J.L.(2006).Non-volatile taste components of canned mushrooms.Food Chemistry,97(3),431–437.

Cui,S.W.(2005).Food carbohydrates:Chemistry,physical properties,and applications.

Boca Raton:Taylor&Francis Group/CRC Press.

Dalloul,R.A.,&Lillehoj,H.S.(2006).Poultry coccidiosis:Recent advancements in control measures and vaccine development.Expert Review of Vaccines,5(1), 143–163.

Dong,C.H.,&Yao,Y.J.(2008).In vitro evaluation of antioxidant activities of aqueous extracts from natural and cultured mycelia of Cordyceps sinensis.LWT–Food Science and Technology,41(4),669–677.

Dubost,N.J.,Ou,B.,&Beelman,R.B.(2007).Quanti?cation of polyphenols and ergothioneine in cultivated mushrooms and correlation to total antioxidant capacity.Food Chemistry,105,727–735.

Giannenas,I.,Pappas,I.S.,Mavridis,S.,Kontopidis,G.,Skoufos,J.,&Kyriazakis,I.

(2010).Performance and antioxidant status of broiler chickens supplemented with dried mushrooms(Agaricus bisporus)in their diet.Poultry Science,89(2), 303–311.

Guo,F.C.,Savelkoul,H.F.J.,Kwakkel,R.P.,Williams,B.A.,&Verstegen,M.W.A.

(2003).Immunoactive,medicinal properties of mushroom and herb polysaccha-rides and their potential use in chicken diets.Worlds Poultry Science Journal,59, 427–440.

Hartman,S.(1998).Calcium and selenium enrichment during cultivation improves the postharvest quality and shelf life of mushrooms(Agaricus bisporus).MS Thesis.The Pennsylvania State University,University Park.

Hromadkova,Z.,Ebringerova,A.,&Valachovic,P.(2002).Ultrasound-assisted extrac-tion of water-soluble polysaccharides from the roots of valerian(Valeriana of?cinalis L.).Ultrasonics Sonochemistry,9(1),37–44.

Ionita,P.(2005).Is DPPH stable free radical a good scavenger for oxygen active species?Chemical Papers,59(1),11–16.

Jeong,S.C.,Jeong,Y.T.,Yang,B.K.,Islam,R.,Koyyalamudi,S.R.,Pang,G.,et al.

(2010).White button mushroom(Agaricus bisporus)lowers blood glucose and cholesterol levels in diabetic and hypercholesterolemic rats.Nutrition Research, 30(1),49–56.

Jia,J.,Zhang,X.,Hu,Y.-S.,Wu,Y.,Wang,Q.-Z.,Li,N.-N.,et al.(2009).Evaluation of in vivo antioxidant activities of Ganoderma lucidum polysaccharides in STZ-diabetic rats.Food Chemistry,115(1),32–36.

Kasuga,A.,Aoyagi,Y.,&Sugahara,T.(1995).Antioxidant activity of fungus Suihs bovinus(L:Fr.)O.Kuntze.Journal of Food Science,60(5),1113–1115.

Lai,F.R.,Wen,Q.B.A.,Li,L.,Wu,H.,&Li,X.F.(2010).Antioxidant activities of water-soluble polysaccharide extracted from mung bean(Vigna radiata L.)hull with ultrasonic assisted treatment.Carbohydrate Polymers,81(2),323–329.

Lai,L.S.,&Yang,D.H.(2007).Rheological properties of the hot-water extracted polysaccharides in Ling-Zhi(Ganoderma lucidum).Food Hydrocolloids,21(5-6), 739–746.

Li,J.,Fan,L.,&Ding,S.(2011).Isolation,puri?cation and structure of a new water-soluble polysaccharide from Zizyphus jujuba cv.Jinsixiaozao.Carbohydrate Polymers,83(2),477–482.

Li,J.W.,Ding,S.D.,&Ding,X.L.(2007).Optimization of the ultrasonically assisted extraction of polysaccharides from Zizyphus jujuba cv.jinsixiaozao.Journal of Food Engineering,80(1),176–183.

Liu,W.,Xu,J.,Jing,P.,Yao,W.,Gao,X.,&Yu,L.(2010).Preparation of a hydrox-ypropyl Ganoderma lucidum polysaccharide and its physicochemical properties.

Food Chemistry,122(4),965–971.

Liu,Z.Q.,Zhou,J.H.,Zeng,Y.L.,&Ouyang,X.I.(2004).The enhancement and encap-sulation of Agaricus bisporus?avor.Journal of Food Engineering,65(3),391–396. Luo,A.X.,He,X.J.,Zhou,S.D.,Fan,Y.J.,Luo,A.S.,&Chun,Z.(2010).Puri?ca-tion,composition analysis and antioxidant activity of the polysaccharides from Dendrobium nobile Lindl.Carbohydrate Polymers,79,1014–1019.

Ma,J.,Qiao,Z.,&Xiang,X.(2011).Optimisation of extraction procedure for black fungus polysaccharides and effect of the polysaccharides on blood lipid and myocardium antioxidant enzymes activities.Carbohydrate Polymers,84(3), 1061–1068.

Matthaei,J.H.,Jones,O.W.,Martin,R.G.,&Nirenberg,M.W.(1962).Characteristics and composition of RNA coding units.Proceedings of the National Academy of Sciences of The United States of America,48(4),666–667.Mayolo-Deloisa,K.,Trejo-Hernandez,M.D.,&Rito-Palomares,M.(2009).Recovery of laccase from the residual compost of Agaricus bisporus in aqueous two-phase systems.Process Biochemistry,44(4),435–439.

Muralidhar,R.V.,Chirumamilla,R.R.,Ramachandran,V.N.,Marchant,R.,&Nigam,P.

(2001).Racemic resolution of RS-baclofen using lipase from Candida cylindracea [Rijksuniversiteit te Gent.Fakulteit van de Landbouwkundige en Toegepaste Biologische Wetenschappen].Mededelingen,66,227–232.

Pan,Y.,Hao,Y.,Chu,T.W.,Li,C.Q.,Zhang,Z.F.,&Zhou,Y.(2010).Ultrasonic-assisted extraction,chemical characterization of polysaccharides from Yunzhi mushroom and its effect on osteoblast cells.Carbohydrate Polymers,80(3), 922–926.

Qiao,D.L.,Ke,C.L.,Hu,B.,Luo,J.G.,Ye,H.,Sun,Y.,et al.(2009).Antioxidant activ-ities of polysaccharides from Hyriopsis cumingii.Carbohydrate Polymers,78(2), 199–204.

Sun,Y.X.,Li,T.B.,&Liu,J.C.(2010).Structural characterization and hydroxyl radicals scavenging capacity of a polysaccharide from the fruiting bodies of Auricularia polytricha.Carbohydrate Polymers,80,377–380.

Sun,Y.X.,Liu,J.C.,&Kennedy,J.F.(2010).Extraction optimization of antioxi-dant polysaccharides from the fruiting bodies of Chroogomphis rutilus(Schaeff.: Fr.)https://www.360docs.net/doc/ce5835029.html,ler by Box–Behnken statistical design.Carbohydrate Polymers,82(1), 209–214.

Thetsrimuang,C.,Khammuang,S.,&Sarnthima,R.(2011).Antioxidant activity of crude polysaccharides from edible fresh and dry mushroom fruiting bodies of Lentinus sp.strain RJ-2.International Journal of Pharmacology,7(1),58–65. Tseng,Y.-H.,Yang,J.-H.,&Mau,J.-L.(2008).Antioxidant properties of polysaccha-rides from Ganoderma tsugae.Food Chemistry,107(2),732–738.

Turner,C.,King,J.W.,&Mathiasson,L.(2001).Supercritical?uid extraction and chromatography for fat-soluble vitamin analysis.Journal of Chromatography A, 936,215–237.

Vetter,J.,&Lelley,J.(2004).Selenium level of the cultivated mushroom Agaricus bisporus.Acta Alimentaria,33,297–301.

Vilkhu,K.,Mawson,R.,Simons,L.,&Bates,D.(2008).Applications and opportunities for ultrasound assisted extraction in the food industry–A review.Innovative Food Science&Emerging Technologies,9(2),161–169.

Wang,B.(2011).Chemical characterization and Ameliorating effect of polysac-charide from Chinese jujube on intestine oxidative injury by ischemia and reperfusion.International Journal of Biological Macromolecules,48(3), 386–391.

Wang,J.,Zhang,J.,Zhao,B.,Wang,X.,Wu,Y.,&Yao,J.(2010).A comparison study on microwave-assisted extraction of Potentilla anserina L.polysaccharides with conventional method:Molecule weight and antioxidant activities evaluation.

Carbohydrate Polymers,80(1),84–93.

Wang,L.C.,Zhang,K.,Di,L.Q.,Liu,R.,&Wu,H.(2011).Isolation and structural elucidation of novel homogenous polysaccharide from Mactra veneriformis.Car-bohydrate Polymers,86(2),982–987.

Wang,Y.J.,Cheng,Z.,Mao,J.W.,Fan,M.G.,&Wu,X.Q.(2009).Optimiza-tion of ultrasonic-assisted extraction process of Poria cocos polysaccharides by response surface methodology.Carbohydrate Polymers,77(4),713–717.

Wu,X.J.,&Hansen,C.(2008).Antioxidant capacity,phenolic content,and polysac-charide content of Lentinus edodes grown in whey permeate-based submerged culture.Journal of Food Science,73(1),M1–M8.

Wu,Y.,Sun,C.,&Pan,Y.(2006).Studies on isolation and structural features of

a polysaccharide from the mycelium of an Chinese edible fungus(Cordyceps

sinensis).Carbohydrate Polymers,63(2),251–256.

Xie,J.H.,Xie,M.Y.,Nie,S.P.,Shen,M.Y.,Wang,Y.X.,&Li,C.(2010).Isolation chemical composition and antioxidant activities of a water-soluble polysaccharide from Cyclocarya paliurus(Batal.)Iljinskaja.Food Chemistry,119,1626–1632.

Xu,G.,Zhang,H.,&Hu,J.(2000).Leaching method of?avone from bamboo leaves.

Chinese Journal of Analytical Chemistry,28,857–859.

Xu,W.T.,Zhang,F.F.,Luo,Y.B.,Ma,L.Y.,Kou,X.H.,&Huang,K.L.(2009).Antioxidant activity of a water-soluble polysaccharide puri?ed from Pteridium aquilinum.

Carbohydrate Research,344(2),217–222.

Yang,B.,Zhao,M.M.,Shi,J.,Yang,N.,&Jiang,Y.M.(2008).Effect of ultrasonic treat-ment on the recovery and DPPH radical scavenging activity of polysaccharides from longan fruit pericarp.Food Chemistry,106(2),685–690.

Ying,Z.,Han,X.,&Li,J.(2011).Ultrasound-assisted extraction of polysaccharides from mulberry leaves.Food Chemistry,127(3),1273–1279.

Yu,R.,Yang,W.,Song,L.,Yan,C.,Zhang,Z.,&Zhao,Y.(2007).Structural character-ization and antioxidant activity of a polysaccharide from the fruiting bodies of cultured Cordyceps militaris.Carbohydrate Polymers,70(4),430–436.

Yu,Z.,LiHua,Y.,Qian,Y.,&Yan,L.(2009).Effect of Lentinus edodes polysaccharide on oxidative stress,immunity activity and oral ulceration of rats stimulated by phenol.Carbohydrate Polymers,75(1),115–118.

Yuan,F.,Yu,R.M.,Yin,Y.,Shen,J.R.,Dong,Q.F.,Zhong,L.,et al.(2010).Structure characterization and antioxidant activity of a novel polysaccharide isolated from Ginkgo biloba.International Journal of Biological Macromolecules,46,436–439. Zhang,H.,Ye,L.,&Wang,K.(2010).Structural characterization and anti-in?ammatory activity of two water-soluble polysaccharides from Bellamya puri?cata.Carbohydrate Polymers,81(4),953–960.

Zhong,K.,&Wang,Q.(2010).Optimization of ultrasonic extraction of polysaccha-rides from dried longan pulp using response surface methodology.Carbohydrate Polymers,80,19–25.

Zhu,M.Y.,Wang,C.J.,Gu,Y.,He,C.S.,Teng,X.,Zhang,P.,et al.(2009).Extraction, characterization of polysaccharides from Morinda of?cinalis and its antioxidant activities.Carbohydrate Polymers,78(3),497–501.

固相萃取柱知识点

1、使用阳离子固相萃取柱前为什么要用甲醇和水活化 要是使用的是高聚物基质的阳离子柱,可直接上样,不用活化,要是使用的是硅胶基质的阳离子柱,活化是为了打开键合在硅胶上的碳基团链,使之充分发生作用,甲醇是为了与碳链互溶,用水过度是为了能和样品溶液相溶。 2、固相萃取技术原理及应用 一、固相萃取基本原理与操作 1、固相萃取吸附剂与目标化合物之间的作用机理 固相萃取主要通过目标物与吸附剂之间的以下作用力来保留/吸附的 1)疏水作用力:如C18、C8、Silica、苯基柱等 2)离子交换作用:SAX, SCX,COOH、NH2等 3)物理吸附:Florsil、Alumina等 2、p H值对固相萃取的影响 pH值可以改变目标物/吸附剂的离子化或质子化程度。对于强阳/阴离子交换柱来讲,因为吸附剂本身是完全离子化的状态,目标物必须完全离子化才可以保证其被吸附剂完全吸附保留。而目标物的离子化程度则与pH值有关。如对于弱碱性化合物来讲,其pH值必须小于其pKa值两个单位才可以保证目标物完全离子化,而对于弱酸性化合物,其pH值必须大于其pKa值两个单位才能保证其完全离子化。对于弱阴/阳离子交换柱来讲,必须要保证吸附剂完全离子化才保证目标物的完全吸附,而溶液的pH值必须满足一定的条件才能保证其完全离子化。

3、固相萃取操作步骤及注意事项 针对填料保留机理的不同(填料保留目标化合物或保留杂质),操作稍有不同。 1)填料保留目标化合物 固相萃取操作一般有四步(见图1): ? 活化---- 除去小柱内的杂质并创造一定的溶剂环境。(注意整个过程不要使小柱干涸) ? 上样---- 将样品用一定的溶剂溶解,转移入柱并使组分保留在柱上。(注意流速不要过快,以1ml/min为宜,最大不超过5ml/min)? 淋洗---- 最大程度除去干扰物。(建议此过程结束后把小柱完全抽干) ? 洗脱---- 用小体积的溶剂将被测物质洗脱下来并收集。(注意流速不要过快,以1ml/min为宜) 如下图1:

离心分离基本原理和离心分离分类

离心分离基本原理和离心分离分类 离心分离基本原理 当非均相体系围绕一中心轴做旋转运动时,运动物体会受到离心力的作用,旋转速率越高,运动物体所受到的离心力越大。在相同的转速下,容器中不同大小密度的物质会以不同的速率沉降。如果颗粒密度大于液体密度,则颗粒将沿离心力的方向而逐渐远离中心轴。经过一段时间的离心操作,就可以实现密度不同物质的有效分离。 根据离心方式的不同,可分为差速离心法和密度梯度离心法等。 (1)差速离心:又叫分级离心法; 是生化分离中最为常用的离心分离方法。它指采用低速和高速两种离心方式交替使用,用不同强度的离心力使具有不同密度的物质分级分离的方法。离心后把上清液与沉淀分开,然后再将上清液加高转速离心,分离出第二部分沉淀,如此往复加高转速,逐级分离出所需要的物质。 (2)密度梯度离心:也叫区带离心; 即离心是在具有连续密度梯度的介质中进行。将试样铺放在一个密度变化范围较小、梯度斜度变化比较平缓的密度梯度介质表面,在离心力场作用下试样中的颗粒按照各自的沉降速率移动到梯度介质中的不同位置,而形成一系列试样组分区带,使不同沉降速率的颗粒得以分离。 赫西HR/T16MM微量实验室高速冷冻离心机 离心分离分类 固一固分离 使固体之间相互分离的离心分离法称离心分级,设备为离心分离机。用控制离心时间的办法,使得溶液中只沉淀大颗粒,而不是所有颗粒,这样就可逐次将颗粒按大小分开。 液一液分离 不互溶的液体在离心机中因密度不同而很快分离。这种方法比重力分离时间要短得多。常用一种称为离心萃取机的装置来分离液体溶液组分。该装置由放置在圆筒转鼓中的一系列多孔同心环组成,转鼓环绕着一个筒形轴以每分钟2 0005 000转的速度旋转,液体通过筒形轴进出,以径向顺流方式在转筒中流动而达到液体溶液组分的分离。 气一气分离 同位素研究中常用的手段。在高速旋转下,气体状态的同位素混合物得以相互分离。用离心分离浓缩235U是有前景的方法之一。 固一液分离 常量分析中常用过滤法,半微量分析中则用离心分离法。常用的旋转装置有手摇离心机和电动离心机(通常转速为1}4千周/分),分离速度远比过滤为快。

稀土萃取分离技术

稀土溶剂萃取分离技术 摘要 对目前稀土元素生产中分离过程常用的分离技术进行了综述。使用较多的是溶剂萃取法和离子交换法。本文立足于理论与实际详细地分析了溶剂萃取分离法。 关键词稀土分离萃取 前言 稀土一般是以氧化物状态分离出来的,又很稀少,因而得名为稀土。“稀土”一词系17种元素的总称。它包括原子序数57—71的15种镧系元素和原子序数39的钇及21的钪。由于钪与其余16个元素在自然界共生的关系不大密切,性质差别也比较大,所以一般不把它列入稀土元素之列。 中国、俄罗斯、美国、澳大利亚是世界上四大稀土拥有国,中国名列第一位。中国是世界公认的最大稀土资源国,不仅储量大,而且元素配分全面。经过近40余年的发展,中国已建立目前世界上最庞大的稀土工业,成为世界最大稀土生产国,最大稀土消费国和最大稀土供应国。产品规格门类齐全,市场遍及全球。产品产量和供应量达到世界总量的80%一90%[1]。 稀土在钢铁工业有色金属合金工业、石油工业、玻璃及陶瓷工业、原子能工业、电子及电器工业、化学工业、农业、医学以及现代化新技术等方面有多种用途。由于稀土元素及其化合物具有不少独特的光学、磁学、电学性能,使得它们在许多领域中得到了广泛的应用。但由于稀土元素原子结构相似,使得它们经常紧密结合并共生于相同矿物中,这给单一稀土元素的提取与分离带来了相当大的困难[2]。 常用稀土分离提取技术 萃取分离技术:包含溶剂萃取法、膜萃取分离法、温度梯度萃取、超临界萃取、固—液萃取等萃取方法。 液相色谱分离技术:包含离子交换色谱、离子色谱技术、反相离子对色谱技术、萃取色谱技术、纸色谱技术、以及薄层色谱技术。 常用方法为溶剂萃取法和离子交换法[3]。 稀土溶剂萃取分离技术

实验室建设仪器设备的管理与维护

实验室建设仪器设备的管理与维护 为了解决实验室设备管理中存在的使用人员对设备疏于养护,重使用、轻保养、缺维修档案的问题,今天的内容主要对检验机构实验室仪器设备从采购到使用维护等方 面的内容进行介绍,希望能对检测实验室设备管理提供一些参考建议。 试验设备是开展质量检测的物质基础之一。本文从设备采购期间的选型论证,到设备使用期间的养护维修两方面的角度,介绍了实验室仪器设备的管理与维护。 【检测试验设备的特点】 1、科技含量高,结构复杂 随着国家对产品质量要求的不断提高,检测技术也飞速发展,先进的仪器设备不断涌现,老设备不断升级、换代;同时,现代试验技术正在向着多学科交叉渗透、多学 科智能密集型方向发展。许多大型精密仪器设备是化学、机械、电子、光学、生物、 计算机等多学科智能的集中体现,如气质联用仪、原子吸收光谱仪等。。。 2、品种多、数量大 如,各种超声振荡仪、真空干燥箱、紫外可见分光光度计、光学显微镜、天平等。。。这类仪器单价低、品种多、数量大,适合基础检测任务,频繁使用导致老化,会给维修人员带来很大的工作量,难以及时修复,从而,影响检测。专业检测设备和 大型精密仪器设备台数少,但品种多,单价高,使用者需参加仪器厂商培训及检测操 作上岗培训,发生故障,只依靠本单位内的维修力量难以修复,必须联系厂家进行处理,这样势必造成维修周期长,维修价格高,延误检测任务的完成。。。 【主要存在的问题】

1、设备疏于养护 大多数化学检测设备都属于精密仪器,不但要求试验操作人员会使用,还要了解仪器的基本原理、使用注意事项、仪器的存放环境,这样仪器的故障率才会减少[1],例如,纺织实验室常见的单纱强力机、做剥离顶破试验使用的万能材料试验机,机械部 分的丝杠需经常上油保养,但在实际使用中,往往因为使用频率不高,疏于保养,还 有大量使用的光学仪器紫外-可见分光光度计属于光学精密仪器,光学镜片定位精准,存放环境要防尘防震防潮,对环境的要求保持室温15℃~35℃,无直射光,无强烈的震动或连续不断的微震动,无强磁场,相对湿度40%~80%,无腐蚀性气体,无引起紫外吸收的有机、无机气体,少灰尘。如果光学仪器存放在一般实验室,在潮湿的环 境下,镜面受潮而霉变。在有的实验室,存在将光学分析仪器靠近离心机或振荡器等 设备,以便操作人员在离心程序后,样品即可进行光学分析,但是光学分析仪器长期 在高速运转的仪器旁,镜片可能会被震掉或震碎。在维修过程中,发现诸如此类问题 较多,仪器管理稍不重视[2],对检测试验带来较大的影响,加大了维修人员的工作量及维修经费。 2、仪器缺维修档案 试验仪器在购置、安装、验收后进行正常使用,都要将相关材料归类进档,建立仪器档案。档案主要包括合同、使用说明书等技术资料,设备到达相应的院系后即应有 相应的仪器使用记录、保养记录、维修记录,但是,有时会形成“重购置,轻维修; 重使用,轻管理”,对于使用保养和维修记录不够重视。例如,超声振荡仪器在实验 室用得较多,在维修中发现,由于保养不当,操作者在使用后,未及时擦干溅出的水 或化学药物,腐蚀仪器的电路板,从而造成整个电路板更换,既延长了维修时间,又 耽误了使用,增加了费用。很多仪器维修过,因为维修时间紧,任务又多,往往疏于 对维修进行记录,既不利于统计使用率,也不便于新入职的维修人员故障查询和零部 件的更换,影响重复性故障或相关故障的维修效率。 3、老旧设备不能满足能力验证的要求 CNAS实验室的能力认证计划几乎每年都有不同的项目,通过实验室间比对检验本 单位的实力,通常情况下,实验室大型仪器因价格昂贵,通常在维护方面是重点对象,

常用固相萃取柱

常用固相萃取柱 HLB是英文"亲水-亲脂平衡"(hydrophilic-l;pophilicbalance)的缩写,它是. 一种新型的反相吸附剂,能同时表现出对亲水性化合物和亲脂性化合物的双重保留特性。 固相萃取柱产品和应用指南(SPE column)返回 提供VARIAN公司BondElut、Agilent公司AccuBond系列固相萃取柱,另可提供经济型国产萃取小柱及填料,并可根据用户需要订做 各种规格产品 1word格式支持编辑,如有帮助欢迎下载支持。

硅胶上键合乙基 500mg 500mg 1000mg 3ml 6ml 6ml 50 30 30 合物。500mg 500mg 1000mg 3ml 6ml 6ml 50 30 30 核酸碱,核苷,表面活化剂。容量:0.2毫当 量/克。 Phenyl 硅胶上键合苯基 100mg 200mg 500mg 500mg 1000mg 1ml 3ml 3ml 6ml 6ml 100 50 50 30 30 相对C18和C8,反相萃取,适合 于非极性到中等极性的化合物 Alumnia A (acidic) 酸性 PH ~5 100mg 200mg 500mg 500mg 1000mg 1ml 3ml 3ml 6ml 6ml 100 50 50 30 30 极性化合物离子交换和吸附萃取,如维生 素. Silica 无键合硅胶 100mg 200mg 500mg 500mg 1000mg 1ml 3ml 3ml 6ml 6ml 100 50 50 30 30 极性化合物萃取,如乙醇,醛, 胺,药物,染料,锄草剂,农药, 酮,含氮类化合物,有机酸,苯 酚,类固醇 Alumnia B (basic) 碱性 PH~8.5 100mg 200mg 500mg 500mg 1000mg 1ml 3ml 3ml 6ml 6ml 100 50 50 30 30 吸附萃取和阳离子交换。 Cyano(CN) 硅胶上键合丙氰基烷 100mg 200mg 500mg 500mg 1000mg 1ml 3ml 3ml 6ml 6ml 100 50 50 30 30 反相萃取,适合于中等极性的 化合物,正相萃取,适合于极性 化合物,比如,黄曲霉毒素,抗 菌素,染料,锄草剂,农药 ,苯 酚,类固醇。弱阳离子交换萃 取,适合于碳水化合物和阳离 子化合物。 Alumnia N (neutral) 中性 PH~6.5 100mg 200mg 500mg 500mg 1000mg 1ml 3ml 3ml 6ml 6ml 100 50 50 30 30 极性化合物吸附萃取。调节pH,阳和阴离。 子交换.适合于维生素,抗菌素,芳香油,酶, 糖苷,激素 Amino(NH2) 硅胶上键合丙氨基 100mg 200mg 500mg 500mg 1000mg 1ml 3ml 3ml 6ml 6ml 100 50 50 30 30 正相萃取,适合于极性化合物。 弱阴离子交换萃取,适合于碳 水化合物,弱性阴离子和有机 酸化合物。 Florisil 填料-硅酸 镁 100mg 200mg 500mg 500mg 1000mg 1ml 3ml 3ml 6ml 6ml 100 50 50 30 30 极性化合物的吸附萃取,如乙醇,醛,胺,药 物,染料,锄草剂,农药,PCBs,酣,含氮类化 合物,有机酸,苯酚,类固醇 固相萃取柱及填料(SPE column) 2word格式支持编辑,如有帮助欢迎下载支持。

实验室仪器设备管理办法

实验室仪器设备管理办法 1.0 目的 实验室的仪器设备是保证科研工作正常进行的物质条件。为做好本公司实验室仪器设备管理,特制定本办法。 2.0 适用范围 本制度适用于公司所属各部门。 3.0 职责 3.1 实验室仪器设备,实行“统一领导,分级管理”:技术部负责实验室仪器设备的管理工作,须指定专人管理本实验室的仪器设备。 3.2 实验室仪器设备管理工作的主要任务是:在仪器设备的立项、论证、采购、安装、验收、使用、维护直至报废的全过程中,要加强计划管理、技术管理和经济管理,做好日常管理,使仪器设备在整个寿命周期中充分发挥效益,保证科研工作的需要。 4.0 具体内容 4.1 总则 实验室仪器设备的管理,必须贯彻勤俭节约的方针,实行共享,减少不必要的重复,避免浪费,挖掘现有仪器设备的潜力,重视功能开发工作,不断提高仪器设备的使用能力。 4.2 设备的划分标准 4.2.1 能独立使用且使用年限在一年以上、使用过程中基本保持原有形态、单价在500 元以上的一般仪器设备及单价在800元以上的专用仪器设备列入固定资产管理范围。

4.2.2 单价在200元以上500 元以下的一般仪器设备及单价在200元以上800 元以下的专有仪器设备列入地低值仪器设备管理范围。 4.2.3 专用设备是指各种具有专门性能和专门用于的设备,包括各种各样仪器和机械设备等。 4.2.4 调拨、捐赠的仪器设备,符合上述规定的亦列入固定资产管理。 4.2.5 自制设备属固定资产的,应按需要的材料、配件成本和加工费计价,经技术部验收合格,按固定资产管理。 4.3 仪器设备的计划审批程序 4.3.1 经费预算,技术部在年度末根据科研、生产等实际需要,提前做出下一年度所需经费预算,报采购部汇总后统一向财务部递交仪器设备经费预算,最后由公司根据财力情况确定设备经费预算后,技术部开始编制下一年度设备计划。 4.3.2 仪器设备计划,设备预算计划经技术部审核通过并签字盖章后上交采购部,经总经理审核通过后,由采购部进行采购。 4.3.3 实验室大型精密贵重仪器设备在购置前必须进行可行性论证。实验室提出的申请计划中必须包括购置理由、效益预测、选型论证、公司内相同仪器设备台套数、安装和使用条件等。 4.3.4 仪器设备进入采购环节必须同时具备下列条件: (1)经过公司采购批准立项。 (2)设备经费、安装配套经费已全部落实。 (3)设备负责人明确。 (4)大型精密贵重仪器设备,必须做出可行性论证结论,填写统一规定的文件、表格,并经领导批准。 (5)自制设备,订购非标准设备,必须具备经过讨论且领导批准的正规的设 计图纸和完整的技术文件资料。

固液萃取

第十章固液浸取 第一节萃取原理 教学目标: 理解萃取过程和萃取原理。理解萃取分配定律的含义,掌握分配常数的计算公式。 掌握单级萃取、多级逆流萃取、多级错流萃取的物料流动过程。 教学重点: 萃取过程和萃取原理。理解萃取分配定律的含义,掌握分配常数的计算公式。 单级萃取、多级逆流萃取的物料流动过程。 教学难点: 萃取分配定律的含义,分配常数计算公式的具体应用。 教学内容: 一、萃取基本原理 1.萃取过程 如图10—1所示,假设一种溶液的溶剂A与另一个溶剂B互不相容,且溶质C在B中的溶解度大于在A中的溶解度,当将溶剂B加入到溶液中经振摇静臵后, 则会发生分层现象,且大部分溶质C转移到了溶剂B中。这种溶质从一种体系转移到另一个体系的过程称为萃取过程。

在萃取过程中起转移溶质作用的溶剂称为萃取剂,由萃取剂和溶质组成的溶液叫萃取液,原来的溶液在萃取后则称为萃余液。如果萃取前的体系是液态则称为液—液萃取,如果是固态则称为固——液萃取,又称固液浸取,如用石油醚萃取青蒿中的青蒿素就是典型的固液浸取实例。 2.萃取原理 物质的溶解能力是由构成物质分子的极性和溶剂分子的极性决定的,遵守“相似相溶”原则的,即分子极性大的物质溶于极性溶剂,分子极性小的物质溶解于弱极性或非极性溶剂中。例如,还原糖、蛋白质、氨基酸、维生素B 族等物质,其分子极性大,可溶于极性溶剂水中,而不溶解于非极性溶剂石油醚中。又如大多数萜类化合物的分子极性小,易溶于石油醚和氯仿等极性小的溶剂中,但不溶于水等极性强的溶剂。因此,同一种化合物在不同的溶剂中有不同的溶解能力。当一种溶质处于极性大小不相当的溶剂中时,其溶解能力小,有转移到相当极性的溶剂中去的趋势,假设这种极性相当的溶剂与原来的溶剂互不相溶,则绝大部分溶质就会从原来的相态扩散到新的溶剂中,形成新的溶液体系,即形成萃取液。 在萃取过程时,溶质转移到萃取剂中的程度遵守分配定律。指出,在其他条件不变的情况下,萃取过程达到平衡后,萃取液中溶质浓度与萃余液中溶质浓度的比值是常数,这个规律叫分配定律,常数0k 叫分配系数。如图10—2所示,在 进行第一次萃取时,设原料液中溶质的摩尔浓度为C,萃取相中溶质的摩尔浓度为X ,萃余相中溶质的摩尔浓度为Y ,则: 假设进行多次萃取才能将目的产物提取完,则进行第n 次萃取时,原料液中0 10--1X k Y ==萃取相()萃余相

固相萃取柱常见问题及对策 SPE问题

固相萃取柱常见问题及对策SPE问题

问题可能的原因解决方法 回收率低 柱活化条件不恰当 根据固定相的不同正确活化SPE小 柱 反相填料:甲醇、乙腈等,1倍柱管 体积或3倍柱床体积 正相填料:非极性有机溶剂如正己烷 等,1倍柱管体积或3倍柱床体积 离子交换填料:1倍柱管体积的甲醇、 乙腈或异丙醇等与水互溶的极性溶 剂。 样品溶剂对目标成分 的作用力比固定相强 选择对目标组分具有更强选择性的 SPE小柱; 调整样品溶剂的PH值,增加目标组 分在固定相中的作用力; 改变样品溶剂的极性,降低目标组分 在溶剂中的作用力。 清洗溶剂选择不当; 洗脱能力太强 使用正确的清洗溶剂; 选择洗脱能力更弱的溶剂载样时流速过快 重力自然载样或控制载样流速 ≤1ml/min SPE小柱太小 用更大规格的SPE小柱; 用选择性更强的SPE小柱; 用载样量更大的SPE小柱 洗脱前SPE小柱清洗 溶剂抽干不充分 充分抽干冲洗溶剂 洗脱不充分 增加洗脱剂的体积;增加洗脱剂的强 度;用更小规格的SPE小柱 洗脱时流速过快或过 慢 控制流速1-2ml/min 目标成分不能从SPE小柱上 洗脱固定相对目标组分选 择性太强 选择对被分析物保留较弱的小柱; 选择洗脱能力更强的洗脱溶剂。对酸 碱目标成分,调节洗脱剂的PH值,

减弱固定相对目标组分的选择性 SPE小柱规格太大 增加洗脱剂的用量;用更小规格的SPE小柱 洗脱剂用量不足增加洗脱剂 洗脱时流速过快或过 慢 控制流速1-2ml/min 洗脱剂洗脱能力太弱调节洗脱剂的PH值,提高溶剂对目标成分的洗脱能力(对酸、碱目标成 分); 改变洗脱液的极性,提高溶剂对目标 成分的洗脱能力 重现性差 上样前柱床干涸重新活化SPE小柱 超出小柱的载样能力 减小载样量,或用规格更大的SPE小 柱 载样过程流速过高 降低流速,重力自然载样或控制载样 流速≤1ml/min 清洗溶剂洗脱能力太 强 降低清洗溶剂洗脱强度洗脱流速过快 先让洗脱液渗透小柱,再对小柱抽真 空或加压,控制流速1-2ml/min 洗脱剂分两次加入洗脱剂用量不足 增加洗脱剂的用量或者用更小规格的 SPE小柱 干扰物清洗不 干净固定相对干扰物的选 择性太强 选择合适的清洗液,有选择性的将干 扰物清洗掉 选择对目标组分专属性更强的SPE 小柱 固定相残留的干扰物活化前先用洗脱剂清洗SPE小柱 操作过程流速 过低样品中含有过多的颗 粒物质 载样前过滤或离心样品溶液或改用溶 解能力更强的样品溶剂

实验室仪器设备管理办法

实验室仪器设备管理办法 实验室中有很多的精密的仪器,这些设备需要统一管理,但是很多人对实验室设备管理并不是很熟悉,本文就来带大家一起来了解一些关于实验室设备管理的小常识。 一、仪器设备的购置 需要购置仪器首先提出申请,报有关领导批准。调查供应商的资质、信誉、质量保证能力,了解产品的技术性能指标和使用情况,并建立供应商档案。 二、仪器设备的验收 按订货合同核对所到货物正确无误,仪器设备的合格证、使用说明书、维修保养手册、系统软件和备件清单齐全。根据仪器性能指标说明书制定相应的方法,按标准操作规程进行单机或系统进行实验,证明该仪器设备各项技术参数能达到规定要求。并保留测试的原始记录。 三.仪器设备的建档 仪器设备档案的基本内容如下:①仪器设备登记表,包括仪器的名称、制造商的名称、仪器型号、出厂编号、存放地点、生产日期、实验室使用日期;②随机技术文件,包括合格证、说明书、装箱单;③验收记录、仪器设备检定/校准合格证书、使用记录,维护保养记录,损坏、故障及维修情况和报废单等。 四、仪器设备的状态标识 仪器设备应有明显的标识表明其“检定/校准”状态,使仪器的状态一目了然,便于管理。

状态标识一般分为以下几种:①绿色标识,表明仪器设备具有正式计量检定合格证书和校准合格报告,处于正常使用状态。②黄色标识,表明仪器设备某些功能已经丧失,但检测工作所用功能正常,且经校准合格,处于使用状态。③红色标识,表明仪器设备已经损坏或经校准不合格,处于停用状态。 五.仪器设备的量值溯源 凡是属于强制检定范围的仪器设备,都应由指定的检定/校准机构进行检定,检定/校准合格后方可使用。 对于易变动、漂移率大,环境要求较为严格或使用较为频聚的仪器设备需考虑进行期间核查,通过期间核查,一旦发现产生偏离,要及时采取维修维护等措施,以保证检测数据的准确性。 期间核查的方法,一般可利用考核盲样、标准物质验证或加标回收的方法进行。对数据进行分析和评价,达到要求便可使用。 期间核查的时间,在两个周期检定日中间和出现可疑数据情况时进行期间核查,以确定仪器设备状态是否正常,核查人员应做好详细记录。 经过期间核查证明仪器设备有问题的必须进一步分析,如确定其性能不合格,仪器出现故障,应贴上停用标识,尽快对仪器进行维修,以免延误仪器的正常使用。 六.仪器设备的日常使用 大型精密仪器设备的操作者,必须经过适当的理论操作培训,培训合格后方可上岗,不经过培训的人员不准随意使用。

固相萃取柱

SPE固相萃取各个填料等的区别 CNWBOND Carbon-GCB(碳黑) 石墨化碳黑(CNWBOND Carbon-GCB)固相萃取小柱在萃取很多极性物质,如氨基甲酸酯和硫脲等农药,有着比C8或C18更高更稳定的回收率。有数据显示,石墨化碳黑SPE同时提取食品中超过200多种农残有很好的效果,如有机氯、有机磷、含氮以及氨基甲酸酯类农药等。Carbon-GCB石墨化碳黑由于其非多孔性,对样品的吸附不要求扩散至有孔区域,所以萃取过程非常迅速。此外,虽然其比表面积小于硅胶基质,对化合物的吸附容量却比硅胶大一倍有余。由于Carbon-GCB碳表面的正六元环结构,使其对平面分子有极强的亲和力,非常适用于很多有机物的萃取和净化,尤其适于分离或去除各类基质如地表水和果蔬中的色素(如叶绿素和类胡萝卜素)、甾醇、苯酚、氯苯胺、有机氯农药、氨基甲酸盐、三嗪类除草剂等。技术参数:目数120-400目,比表面积100 m2/g。 CNWBOND Coconut Charcoal(活性炭) 椰子壳活性炭专用于美国环保署EPA 521方法(饮用水中亚硝胺的检测)以及EPA 522方法(饮用水中1,4-二噁烷的检测)。 技术参数:目数80-120目。 CNWBOND Si (硅胶) CNWBOND Silica硅胶是极性最强的小柱,填料为酸洗硅胶,它通常从非极性溶剂中通过氢键相互作用提取极性化合物,然后再通过提高溶剂的极性来洗脱物质。 技术参数:粒径40-63μm,平均孔径60Å,未封尾。 CNWBOND Florisil PR 农残级弗罗里硅土同样适合于分离有机氯农残、胺类、多氯联苯(PCBs)、酮类以及有机酸等,粒径更大,满足EPA 608方法。 技术参数:目数60-100目。 CNWBOND Florisil(弗罗里硅土) 弗罗里硅土作为氧化镁复合的极性硅胶吸附剂(硅镁吸附剂),适合于从非极性基质中吸附极性化合物,如分离有机氯农残、胺类、多氯联苯(PCBs)、酮类以及有机酸等。 技术参数:目数100-200目,比表面积289 m2/g。

小学仪器设备日常保养与维护方法

小学仪器设备日常保养与维护方法 实验仪器的保养与维护是实验室管理工作的重要组成部分,搞好仪器的保养与维护,关系到仪器的完好率、使用率和实验教学的开出率,关系到实验成功率。因此,作为实验教师应懂得教学仪器保养与维护的一般知识,掌握保养与维护的基本技能。 仪器一旦吸附灰尘、污垢,不仅影响仪器的性能,缩短使用寿命,直接影响实验效果,而且影响美观和实验者的身心健康。仪器在使用或贮藏中都会沾上灰尘和污垢,做到以防尘防污为主,经常地除尘清洗是搞好仪器保养与维护的重要环节。 (一)除尘 灰尘多为带有微量静电的微小尘粒,常飘浮于空气中,随气流而动,遇物便附着其上,几乎无孔不入。灰尘附着在模型标本上会影响其色泽,运动部件上有灰尘会增大磨损,电器上有灰尘,严重者会造成短路、漏电,贵重精密仪器上有灰尘,严重者会使仪器报废。 清除灰尘的方法很多,主要应依灰尘附着表面的状况及其灰尘附着的程度而定。在干燥的空气中,若灰尘较少或灰尘尚未受潮结成块斑,可用干布拭擦,毛巾掸刷,软毛刷刷等方法,清除一般仪器上的灰尘;对仪器内部的灰尘可用皮

唧、洗耳球式打气筒吹气除尘,也可用吸尘器吸尘;对角、缝中的灰尘可将上述几种方法结合起来除尘。不过对贵重精密仪器,如光学仪器、仪表表头等,用上述方法除尘也会损坏仪器,此时应采用特殊除尘工具除尘,如用镜头纸拭擦,沾有酒精的棉球拭擦等。 在空气潮湿,灰尘已结成垢块时,除尘应采用湿布拭擦,对角、缝中的灰垢可先用削尖的软大条剔除,再用湿布试擦,但是对掉色表面、电器不宜用湿布拭擦。若灰垢不易拭擦干净,可用沾有酒精的棉球进行拭擦,或进行清洗。 (二)清洗 仪器在使用中会沾上油腻、胶液、汗渍等污垢,在贮藏保管不慎时会产生锈蚀、霉斑,这些污垢对仪器的寿命、性能会产生极其不良的影响。清洗的目的就在于除去仪器上的污垢。通常仪器的清洗有两类方法,一是机械清洗方法,即用铲、刮、刷等方法清洗;二是化学清洗方法,即用各种化学去污溶剂清洗。具体的清洗方法要依污垢附着表面的状况以及污垢的性质决定。下面介绍几种常见仪器和不同材料部件的清洗方法。 1.玻璃器皿的清洗 附着玻璃器皿上的污垢大致有两类,一类是用水即可清洗干净的,另一类则是必须使用清洗剂或特殊洗涤剂才能清洗干净的。在实验中,无论附在玻璃器皿上的污垢属哪一类,

分离技术

型分离技术,如膜分离、泡沫分离、超临界流体萃取以及耦合技术等得到重视和发展。 1.2 化工分离技术的多样性 由于化工分离技术的应用领域十分广泛, 原料、 产品和对分离操作的要求多种多样, 这 就决定了分离技术的多样性。按机理划分,可大致分成五类,即:生成新相以进行分离(如 蒸馏、结晶) ;加入新相进行分离(如萃取、吸收) ;用隔离物进行分离(如膜分离)

体试剂进行分离 (如吸附、 离子交换) 和用外力场或梯度进行分离 (如离心萃取分离、 电泳) 等,它们的特点和设计方法有所不同。 K e l l e y [3] 于 1987 年总结了一些常用分离方法的技术成 熟度和应用成熟度的关系图 ( 图 1) 。十余年来,化工分离技术虽然有了很大的发展,但图中指出的方向仍可供参考。 例如 ,

萃取、 吸收、 结晶等仍是当前使用最多的分离技术 [4-5] 。 液膜分离虽然构思巧妙 , 但由于技术上的局限性 , 仅在药物缓释等方面得到有限的应用。 图 1 分离过程的技术和应用成熟度 [3] Fig.1 The technology and use maturity of the separating process 2

传统分离技术 精馏虽然是最早期的分离技术之一,几乎与精馏同时诞生的传统分离技术 , 如吸收、蒸 发、结晶、干燥等,经过一百多年的发展,至今仍然在化工、医药、冶金、食品等工业中广 泛应用并起着重要作用 。 2.1 精馏技术 精馏是关键共性技术, 已经被广发应用了 200

多年, 从技术和应用的成熟程度考虑, 目 前仍然是工厂的首选分离方法 [6] 。 精馏市场的经济效益至今仍是令人刮目相看的。而近年来, 随着相关学科的渗透、 精馏学科本身的发展及经济全球化的冲击, 我国精馏技术正向新一代 转变,以迎接所面临的挑战。其特征 [7] 为: ( 1 )精馏学科正由传统的依靠经验、半经验过渡

常用固相萃取柱

常用固相萃取柱

常用固相萃取柱 HLB是英文"亲水-亲脂平衡"(hydrophilic-l;pophilicbalance)的缩写,它是. 一种新型的反相吸附剂,能同时表现出对亲水性化合物和亲脂性化合物的双重保留特性。 固相萃取柱产品和应用指南(SPE column)返回 提供VARIAN公司BondElut、Agilent公司AccuBond系列固相萃取柱,另可提供经济型国产萃取小柱及填料,并可根据用户需要订做 各种规格产品 填料含量容量包装应用范围填料含量容量包装应用范围 ODS(C18) 硅胶上键合十八烷基 100mg 200mg 500mg 500mg 1000mg 1ml 3ml 3ml 6ml 6ml 100 50 50 30 30 反相萃取,适合于非极性到中等 极性的化合物,比如,抗菌素, 巴比妥酸盐,酞嗪,咖啡因,药 物,染料,芳香油,脂溶性维生 素,杀真菌剂,锄草剂,农药,碳 水化合物,对羟基甲苯酸取代酯, 苯酚, 邻苯二甲酸酯,类固醇, 表面活化剂,茶碱,水溶性维生 素。 EVIDEXII 辛烷和阳 离子交换 树脂 200mg 400mg 3ml 6ml 50 30 Amphetamina/Methamphetamine、 PCP、 Benzoylecgonine、 Codeine/Morphine、 THC- COOH(Marijuana) Cctyl(C8) 硅胶上键合辛烷 100mg 200mg 500mg 500mg 1000mg 1ml 3ml 3ml 6ml 6ml 100 50 50 30 30 反相萃取,适合于非极性到中等 极性的化合物,比如,抗菌素, 巴比妥酸盐,酞嗪,咖啡因,药 物,染料,芳香油,脂溶性维生 素,杀真菌剂,锄草剂,农药,碳 水化合物,对羟基甲基酸取代酯, 苯酚,邻苯二甲酸酯,类固醇,表 SAX 硅胶上键 合卤化季 氨盐 100mg 200mg 500mg 500mg 1000mg 1ml 3ml 3ml 6ml 6ml 100 50 50 30 30 强阴离子交换萃取,适合于阴离子,有机酸,核酸, 核苷酸, 表面活化剂。容量:0.2毫当量/克。

实验室设备维护保养规范

1. 目的.................................................................................... 2 2. 范围.................................................................................... 2 3. 定义.................................................................................... 2 4. 职责与权限 (2) 5. 内容.................................................................................... 2 可程式恒温恒湿箱维护保养表 (2) 高低温冷热冲击箱维护保养表 (3) 高温烤箱维护保养表 (3) 电线弯曲试验机维护保养表 (3) 扫频振动试验机维护保养表 (4) 静电试验仪维护保养表 (4) 雷击浪涌试验仪维护保养表 (5) 盐雾试验仪维护保养表 (5) 灼热丝试验仪维护保养表 (5) 老化车维护保养表 (5) 插拔寿命试验仪维护保养表 (6) 水平垂直燃烧试验仪维护保养表 (6) TEST SYSTEM维护保养表 (7) 射线荧光光谱仪维护保养表………………………………………………………………………………… 7 测试治具维护保养表 (7) 单冀跌落试验仪维护保养表 (8) 常用仪器维护保养表 (8) 6.备注……………………………………………………………………………………………………………… 8 7.记录表单 (8) 8.附

【精品】常用固相萃取柱

【关键字】精品 常用固相萃取柱 HLB是英文"亲水-亲脂平衡"(hydrophilic-l;pophilicbalance)的缩写,它是. 一种新型的反相吸附剂,能同时表现出对亲水性化合物和亲脂性化合物的双重保留特性。 固相萃取柱产品和应用指南(SPE column)返回 提供VARIAN公司BondElut、Agilent公司AccuBond系列固相萃取柱,另可提供经济型国产萃取小柱及填料,并可根据用户需要订做 各种规格产品

Ethyl(C2) 硅胶上键合乙基 100mg 200mg 500mg 500mg 1000mg 1ml 3ml 3ml 6ml 6ml 100 50 50 30 30 相对C18和C8,因为短链,保 持作用小的多,适合非极性化 合物。 SCX 100mg 200mg 500mg 500mg 1000mg 1ml 3ml 3ml 6ml 6ml 100 50 50 30 30 强阳离子交换萃取,适合于阳离子,抗菌素,药 物,有机碱 ,氨基酸,儿茶酚胺,锄草剂,核酸 碱,核苷,表面活化剂。容量:0.2毫当量/克。 Phenyl 硅胶上键合苯基 100mg 200mg 500mg 500mg 1000mg 1ml 3ml 3ml 6ml 6ml 100 50 50 30 30 相对C18和C8,反相萃取,适合 于非极性到中等极性的化合物 Alumnia A (acidic) 酸性 PH ~5 100mg 200mg 500mg 500mg 1000mg 1ml 3ml 3ml 6ml 6ml 100 50 50 30 30 极性化合物离子交换和吸附萃取,如维生素. Silica 无键合硅胶 100mg 200mg 500mg 500mg 1000mg 1ml 3ml 3ml 6ml 6ml 100 50 50 30 30 极性化合物萃取,如乙醇,醛, 胺,药物,染料,锄草剂,农药, 酮,含氮类化合物,有机酸,苯 酚,类固醇 Alumnia B (basic) 碱性 PH~8.5 100mg 200mg 500mg 500mg 1000mg 1ml 3ml 3ml 6ml 6ml 100 50 50 30 30 吸附萃取和阳离子交换。 Cyano(CN) 硅胶上键合丙氰基烷 100mg 200mg 500mg 500mg 1000mg 1ml 3ml 3ml 6ml 6ml 100 50 50 30 30 反相萃取,适合于中等极性的 化合物,正相萃取,适合于极性 化合物,比如,黄曲霉毒素,抗 菌素,染料,锄草剂,农药 ,苯 酚,类固醇。弱阳离子交换萃 取,适合于碳水化合物和阳离 子化合物。 Alumnia N (neutral) 中性 PH~6.5 100mg 200mg 500mg 500mg 1000mg 1ml 3ml 3ml 6ml 6ml 100 50 50 30 30 极性化合物吸附萃取。调节pH,阳和阴离。子 交换.适合于维生素,抗菌素,芳香油,酶,糖苷, 激素 Amino(NH2) 硅胶上键合丙氨基 100mg 200mg 500mg 500mg 1000mg 1ml 3ml 3ml 6ml 6ml 100 50 50 30 30 正相萃取,适合于极性化合物。 弱阴离子交换萃取,适合于碳 水化合物,弱性阴离子和有机 酸化合物。 Florisil 填料-硅酸 镁 100mg 200mg 500mg 500mg 1000mg 1ml 3ml 3ml 6ml 6ml 100 50 50 30 30 极性化合物的吸附萃取,如乙醇,醛,胺,药物, 染料,锄草剂,农药,PCBs,酣,含氮类化合物, 有机酸,苯酚,类固醇

实验室仪器的维护和保养

实验室仪器的维护和保养 实验过程控制在预定的条件之下,确保实验的优质、高效和安全,这是仪器设备防护的目的与任务。但 仪器设备也会和人一样,在缺乏抵御“细菌”侵蚀的情况下发生“疾病”。这里的“细菌”是指水分、霉菌、工业 大气、工作介质以及光和热等侵蚀性物质。检测仪器遭受侵蚀后则不能正确反映实验过程中各种参数的真实情况,甚至使实验无法进行,或缩短仪器使用寿命,或可能导致实验事故的发生。 搞好仪器防护工作,将利于实验的正常进行,有利于新实验方法的采用,有利于实验水平的提高:可以避免实验事故的发生可以扩大仪器的使用范围,可以延长仪器设备的使用寿命,这就相当于仪器生产产量的增加和质量的提高。 (二)仪器设备的侵蚀 仪器设备不外乎由金属与非金属两种材料所构成。研究仪器侵蚀过程,实际上是研究金属与非金属材料的侵蚀过程,所不同的是仪器有特殊的结构形式和使用场合,所以,又存在着仪器侵蚀的某些特殊问题。 抗折仪和天平刀口的磨损,这是受力情况下的机械损坏;塑料密封圈浸泡在溶剂中变形胀大,这是溶剂对塑料的物理溶胀;金属零部件被介质腐蚀、橡胶衬里层经长期使用变脆开裂,这是介质对材料的化学腐蚀;长了霉的绝缘材料介电性能下降,这是霉菌对绝缘材料的微生物侵袭。这些金属与非金属材料在机械、物理、化学及微生物作用下所引起的性能破坏的现象通称为材料的侵蚀。 金属的腐蚀,可分为化学腐蚀与电化学腐蚀。化学腐蚀是气体或液体介质与金属表面发生化学作用,生成化合物,从而使金属表面遭受破坏的过程。金属材料在高温下遭受氧气、水蒸汽、二氧化碳等腐蚀性介质腐蚀的过程称为高温氧化过程。而具有抵抗高温氧化气氛腐蚀作用的能力称为抗氧化性。电化学腐蚀是指在腐蚀过程中,伴随有电流产生。一般使用的金属材料,均是由多种元素组成的合金。即使纯金属材料,也会含有一定量的杂质,所以,从微观看,材料内部各个微小区域的成分和组织结构总不会完全一致,故其电极电位值也就不同,当这样的金属材料与腐蚀性介质接触时,便构成了无数微小的原电池,使金属材料遭受腐蚀。 非金属材料的组成和结构状态不同于金属材料,故非金属材料的侵蚀亦不同于金属材料的侵蚀。高分子化合物材料的侵蚀表现为受热软化或烧焦碳化;在溶剂作用下发生溶胀或溶解;在热、光、电、氧及侵蚀性介质等作用下变色、发粘、硬脆、龟裂和机械强度下降等。 陶瓷、玻璃、搪瓷等硅酸盐材料当遇到氢氟酸、热碳酸、浓碱、熔融碱等侵蚀性介质时,也会腐蚀变薄或者变为疏松多孔。例如将由Na2O 和SiO2组成的玻璃侵入盐酸等酸性介质中,Na2O 会与酸发生作用而被沥滤出来,剩下的SiO2 则呈多孔组织,使玻璃的机械强度显著降低。当玻璃与水相互作用时,水能溶解玻璃中的碱金属氧化物,使水呈碱性

萃取设备中离心萃取机的技术要求

萃取设备中离心萃取机的技术要求 前言 萃取设备是一类用于萃取操作的传质设备,能够实现料液所含组分的完善分离。 萃取设备可按结构分为混合澄清器、萃取塔和离心萃取机。下面我们主要从离心萃取 机的简介,性能要求,技术要求及外观质量方面说明离心萃取机的技术要求。 1.离心萃取机的简介 在离心力场中,利用液/液两相密度的不同,在同一机器中完成混合传质过程和分离过程,达到液/液两相萃取分离的连续萃取设备。(简称“萃取机”) 在离心力场中先进行充分混合,使溶质的转移,再进行两相液体的分离和排出。 轻相液体从靠近转鼓壁处进料,重液相则从转鼓中心进料。在转鼓内形成两相分散的 逆流接触。最终两相达到转鼓另一端时轻重液相分别浓缩在转鼓中心和内壁处排出。 利用管式、多室式和碟片式离心机结构制成离心萃取机,充分地发挥了管式离心机分 离因数高、轴向长度大,适于处理密度差较小的两相液体,室式和碟片式离心机对两 相液体分散度高,接触面积大,停留时间长等特点,有利于萃取过程先使两相流分散 接触,再使两相流分别浓缩的工艺要求。分别称为管式、室式和碟片式离心萃取机。 目前市面上最先进的离心萃取机为CWL-M型离心萃取机。 2.性能要求 2. 1 离心萃取机在额定工况下,转速应不低于额定转速的97%。 2. 2 离心萃取机在额定转速运行时,其空运转时振动速度应不大于4.5 mm/s,负荷运转时振动速度应不大于7.1 mm/s。 2. 3 离心萃取机在额定转速下,空运转时噪声(声压级)应不大于80 dB(A);负荷运转时噪声(声压级)应不大于85 dB(A)。 2. 4 离心萃取机主轴承温升:空运转时应不高于40℃;负荷运转时应不高于45℃。 2. 5 离心萃取机主轴承温度:空运转时应不高于75℃;负荷运转时应不高于80℃。 2. 6 离心萃取机最大通量应符合设计要求。 3.结构要求 3.1 离心萃取机应设置适合于整体吊装的起吊装置。 3.2 离心萃取机各密封部位应密封良好。

固相萃取-高效液相色谱法测定环境水样中的三嗪类化合物

2006年5月M ay 2006 色谱C h inese J ou rna l of C h rom a tog raphy Vo l .24N o.3 267~270 收稿日期:2005207231 第一作者:李 竺,女,博士研究生,E 2m a il:lizhu 98@https://www.360docs.net/doc/ce5835029.html,.通讯联系人:陈 玲,女,教授,博士生导师,Te l:(021)65984261,E 2m a il:chen ling @m a il .tongji https://www.360docs.net/doc/ce5835029.html,. 基金项目:国家自然科学基金项目(N o 120477030),上海市科委2005年重点研究资助项目(N o.05JC 14059,N o.05dz 22330). 固相萃取2高效液相色谱法测定环境水样中的三嗪类化合物 李 竺1 , 陈 玲1 , 郜洪文1 , 董丽娴1 , 赵建夫 1,2 (1.同济大学污染控制与资源化研究国家重点实验室,上海200092; 2.同济大学长江水环境教育部重点实验室,上海200092) 摘要:建立了固相萃取2高效液相色谱法(SPE 2H PLC )测定地表水中三嗪类化合物的方法。考察了4种不同固相萃 取柱对三嗪类化合物的吸附效果,最终选择ENV I 218固相萃取柱用于萃取地表水中的三嗪类化合物;系统研究了环境水样中三嗪类化合物的最佳固相萃取条件,选择洗脱溶剂为甲醇,洗脱溶剂用量5mL,水样在萃取前不需要添加甲醇,不调节pH 值。测定了方法的检测限,结果表明,扑草净、莠去津、西玛津、脱乙基莠去津、羟基化莠去津和脱异丙基莠去津的最低检测限依次为0114μg /L,0112μg /L,0108μg /L,0108μg /L,0110μg /L 和0118μg /L 。将该法应用于实际环境水样的分析测定,结果表明某湖水中扑草净的含量为(9133±0127)μg /L,某江水中莠去津和扑草净的含量分别为(5128±0143)μg /L 和(7112±0154)μg /L 。关键词:固相萃取;高效液相色谱;三嗪类化合物;预富集中图分类号:O 658 文献标识码:A 文章编号:100028713(2006)0320267204 栏目类别:研究论文 D e te rm in a t io n o f T r ia z in e s in S u rfa ce W a te r U s in g S o lid P h a s e E x t ra c t io n 2H igh P e rfo rm a n ce L iq u id C h rom a to g rap h y L I Zhu 1 ,CH EN L ing 1 ,GAO H ongw en 1 ,DON G L ix ian 1 ,ZHAO J ianfu 1,2 (1.S ta te Key L a bora tory of Pollu tion Con trol a n d R esou rces R eu se,Ton gji U n ivers i ty,Sha n gha i 200092,Ch in a;2.Key L abora tory of Ya ngtze Aqu a tic En vironm en t,M in is try of Edu ca tion,Tongji U n ivers ity,Sha ngha i 200092,Chin a ) A b s t ra c t:A m e thod w as deve lop ed to m on ito r triazines in su rface w a te r us ing the com b ina tion of so lid p hase ex trac tion (SPE )and h igh p e rfo r m ance liqu id ch rom a tog rap hy .Fou r d iffe ren t SPE ca rtridges w e re tes ted fo r ex trac ting s ix triazines,inc lud ing a trazine (A ),s i m azine (S ),p rom e tryn (P ),dese thy la trazine (D EA ),22hyd roxya trazine (O HA )and des isop rop yla trazine (D I A ),and fina lly ENV I 218w as se lec ted as op ti m a l . The m e thod fo r so lid p hase ex trac tion w as fu rthe r sys tem a tica lly s tud ied fo r de ta ils.O p ti m a l resu lts of o rthogona l des ign w e re de te r 2m ined as fo llow s:pH 6,5m L m e thano l as e lu ting so lven t,and no m e thano l added in to w a te r sam p le befo re ex trac tion.The de tec tion li m its of s ix triazines w e re 0114μg /L fo r P,0112μg /L fo r A,0108μg /L fo r S,0108μg /L fo r D EA,0110μg /L fo r O HA and 0118μg /L fo r D I A.Th is m e thod w as app lied fo r environm en ta l aqua tic sam p les,and the resu lts show ed tha t the con 2cen tra tion of p rom e tryn in a lake w as de tec ted as (9133±0127)μg /L,as w e ll as the concen 2tra tions of a trazine and p rom e tryn in a rive r w e re de tec ted as (5128±0143)μg /L and (7112± 0154)μg /L resp ec tive ly . Ke y w o rd s:so lid p hase ex trac tion (SP E );h igh p e rfo r m ance liqu id ch rom a tog rap hy (H PLC ); triazines;p reconcen tra tion 三嗪类除草剂作为农田杂草生长的抑制性农药在世界范围内广泛使用。这类农药由于地表径流,常造成地表水污染,并对人类、动植物和水生生物造成不利影响。因此,美国环保署(U S EPA )将莠去津、西玛津等三嗪类除草剂列入优先控制污染物名单,规定饮用水中莠去津含量不得超过3μg /L,西玛津含量不得超过4μg /L [1] 。欧盟(EU )规定饮用水中单一农药浓度不得超过011μg /L,总浓度不得 超过015μg /L [2-5] 。我国《地表水环境质量标准》(GB 383822002)则规定地表水中莠去津的标准限值为3μg /L 。 环境水体中的三嗪类除草剂浓度很低,常处于

相关文档
最新文档