TSC TTP_224 Plus便签打印机初始化和感测器校正方法

TSC TTP_224 Plus便签打印机初始化和感测器校正方法
TSC TTP_224 Plus便签打印机初始化和感测器校正方法

TSC TTP-224 Plus便签打印机初始化、感测器校正方法

a) 两个手指同时按住PAUSE、FEED键,不要松手,同时开机。

b) 待三个灯轮流闪时,只松开FEED键。待走纸,可松开PAUSE键。正常出纸是出大概2-3张标签纸。

c) 按下FEED键,正常出纸为一张标签纸高度。并停在正常撕纸位置。

打印机首选项设置文档

安装好打印机的驱动,连接好打印机。在第一次使用打印机打印标签时,首先必须对打印机进行设置。

设置打印机的方法:

1、进入控制面板,选择“打印机和传真”。

2、将标签打印机设置为默认打印机,然后选中标签打印机,点右键,选择“打印首选项(E)…”。出现如下图界面:

3、在“页面设置”卡片中,将方向选择纵向。点“新建”按钮,出现下图卡片。录入卷名称,例如录入的名称为:65*40;将标签大小的宽度设为:65mm,高度设为40mm;露出的衬底宽度左右分别设置为1mm。

注意:单位为mm。

4、设置好后,点“确定”按钮,界面回到“页面设置”卡片。选择“图像”卡片,混色选择“无”。如下图所示:

5、选择“卷”卡片,将类型选择为“有间距的标签”,间距高度选择“2.00mm”,如下图设置:

6、选择“选项”卡片,将打印速度设置为50.80mm/秒,深度设置为:12。如下图设置:

7、设置好上述条件后,点“应用(A)”、“确定”按钮即完成了打印机的所有设置。

压力传感器标定与校准

压力传感器检定: 1. 静态检定 2. 动态检定 我们把压力传感器的特性分成两类静态特性和动态特性。压力传感器静态特性的 主要指标是灵敏度、线性度、迟滞、重复性、精度、温度漂移和零点漂移等等。一般 我们校准压力传感器都是校准其静态特性,这是因为我们将压力传感器理想化,认为 其固有频率相当大而且本身无阻尼,这时压力传感器的静态特性和动态特性是一样 的。然而在被测压力随时间变化的情况下,压力传感器的输出能否追随输入压力的快 速变化是一个很重要的问题。有的压力传感器尽管其静态特性非常好,但由于不能很 好地追随输入压力的快速变化而导致严重的误差,有时甚至出现高达百分之百的动态 误差。所以我们必须要进行压力传感器动态特性的校准,认真分析其动态响应特性。 压力传感器动态特性可以用它的上升时间、固有频率、幅频特性、相频特性等参数来 描述。 线性度eL (非线性误差):输入输出校准曲线(实际)与选定的拟合直线之间的 吻合 程度; A x )00% y^s 重复性eR :正行程或反行程曲线多次测量时曲线的一致程度; 置信系数 a=2( 95.4%)或 a=3( 99.73%) 迟滞eH 正行程与反行程之间的曲线的不重合度;

dp =± _ % 线性度、迟滞反映 系统误差;重复性反映 偶然误差 根据检定规程一 《压力传感器静态》, 在校准精密 线性压力传 感器时给出 的校准曲 线有二种最小二乘直线和端点平移线。 动态检定: 1. 瞬态激励法(阶跃信号激励) 2. 正弦激励法(正弦信号激励) 动态检定指标、参数:频率响应、谐振频率、自振频率、阻尼比、上升时间、建立时 间、过冲量、灵敏度。 正弦激励法:正弦压力信号输入法是一种间接的检定方法,即被检定的压力传感器和 一个“参考”压力传感器相比较,而“参考”压力传感器具有理想的动态性能。正弦 压力激励法在高 频、高压时,正弦信号往往严重畸变。因此一般只能用于小压力或低 频围的检定。 xlOO% 贝塞尔公式 误差(三者反应系统总误 差)

开关变压器漏感分析

开关变压器第一讲变压器基本概念与工作原理现代电子设备对电源的工作效率、体积以及安全要求等技术性能指标越来越高,在开关电源中决定这些技术性能指标的诸多因素中,基本上都与开关变压器的技术指标有关。开关电源变压器是开关电源中的关键器件,因此,在这一节中我们将非常详细地对与开关电源变压器相关的诸多技术参数进行理论分析。在分析开关变压器的工作原理的时候,必然会涉及磁场强度H和磁感应强度B以及磁通量等概念,为此,这里我们首先简单介绍它们的定义和概念。在自然界中无处不存在电场和磁场,在带电物体的周围必然会存在电场,在电场的作用下,周围的物体都会感应带电;同样在带磁物体的周围必然会存在磁场,在磁场的作用下,周围的物体也都会被感应产生磁通。现代磁学研究表明:一切磁现象都起源于电流。磁性材料或磁感应也不例外,铁磁现象的起源是由于材料内部原子核外电子运动形成的微电流,亦称分子电流,这些微电流的集合效应使得材料对外呈现各种各样的宏观磁特性。因为每一个微电流都产生磁效应,所以把一个单位微电流称为一个磁偶极子。因此,磁场强度的大小与磁偶极子的分布有关。在宏观条件下,磁场强度可以定义为空间某处磁场的大小。我们知道,电场强度的概念是用单位电荷在电场中所产生的作用力来定义的,而在磁场中就很难找到一个类似于“单位电荷”或“单位磁场”的带磁物质来定义磁场强度,为此,电场强度的定义只好借用流过单位长度导体电流的概念来定义磁场强度,但这个概念本应该是用来定义电磁感应强度的,因为电磁场是可以互相产生感应的。幸好,电磁感应强度不但与流过单位长度导体的电流大小相关,而且还与介质的属性有关。所以,电磁感应强度可以在磁场强度的基础上再乘以一个代表介质属性的系数来表示。这个代表介质属性的系数人们把它称为导磁率。在电磁场理论中,磁场强度H的定义为:在真空中垂直于磁场方向的通电直导线,受到的磁场的作用力F跟电流I和导线长度的乘积I 的

联轴器对中调整方法

联轴器对中调整 一、联轴器装配的技术要求 联轴器装配的主要技术要求是保证两轴线的同轴度。过大的同轴度误差将使联轴器、传动轴及其轴承产生附加载荷,其结果会引起机器的振动、轴承的过早磨损、机械密封的失效,甚至发生疲劳断裂事故。 二、联轴器在装配中偏差情况分析 1、两半联轴器及平行又同心 2、两半联轴器及平行,但不同心 3、两半联轴器虽然同心,但不平行 4、两半联轴器既不同心,也不平行 联轴器处于第一种情况是正确的,不需要调整。后三种情况是不正确的,均需要调整。实际装配中常遇到的是第四种情况。 三、联轴器找正的方法 常用的有以下几种: 1、直尺塞规法 利用直尺测量联轴器的同轴度误差,利用塞规测量联轴器的平行度误差。这种方法简单,但误差大。一般用于转速较低、精度要求不高的机器。 2、外圆、端面双表法 用两个千分表分别测量联轴器轮毂的外圆和端面上的数值,对测得的数值进行计算分析,确定两轴在空间的位置,最后得出调整量和调整方向。这种方法应用比较广泛。其主要缺点是对于有轴向窜动的机器,在盘车时端面测量读数会产生误

差。它一般用于采用滚动轴承、轴向窜动较小的中小型机器。

3、外圆、端面三表法 此法是在端面上用两个千分表,两个千分表与轴中心等距离对称设置,以消除轴向窜动对端面测量读数的影响,这种方法的精度很高,适用于需要精确对中的精密机器和高速机器。如:汽轮机、离心式压缩机等。 4、外圆双表法 用两个千分表测量外圆,其原理是通过相隔一定间距的两组外圆测量读数确定两轴的相对位置,以此得知调整量和调整方向,从而达到对中的目的。此方法的缺点是计算较复杂。 5、单表法 此方法只测定轮毂的外圆读数,不需要测定端面读数。此方法对中精度高,不但能用于轮毂直径小且轴端距比较大的机器轴找正,而且又适用于多轴的大型机组(如高速轴、大功率的离心式压缩机组)的轴找正。用这种方法进行轴找正还可以消除轴向窜动对找正精度的影响。 四、 联轴器装配误差的测量和求解调整量 使用不同找正方法时的测量和求解调整量大体相同,下面以外圆、端面双表法为例,说明联轴器装配误差的测量和求解调整量的过程。 一般在安装机械设备时,先安装好从动机,再安装主动机,找正时只需调整主动机。主动机调整是通过对两轴心线同轴度的测量结果分析计算而进行的。 1、装表时的注意事项:核对各位置的测量数值有无变动。可用式 4231a a a a +=+;4231S S S S +=+检查测量结果是否正确。一般误差控制在 ≤0.02mm 。

简单易行的高度表校准方法

简单易行的高度表校准方法 卡表不少款有气压-高度功能,不止登山表才有,但似乎不少人不太会用高度计。 其实气压读数是很准的,根本不用校准。但高度是根据当地气压和参考气压算出来的,不校 正不可能准确。 简单易行的高度表校准方法: 就到楼下一楼平地去校准,就把这里设定为海平面0m。 这样,其他地方的高度表读数就是相对于一楼平面的相对海拔高度。 有效期一天之内,天气没有大的变化之前。 如果你知道某个点的明确绝对海拔,你就去那个地方校准。 比如你们城市的海拔是200m,你们一楼正好代表你们城市海拔的话,在那里把你的登山表校准到200m,然后其他地方的高度表读数就是相对准确的绝对海拔高度。 有效期一天之内,天气没有大的变化之前。 再如果,你有gps,哪怕的shouji的gps也行,去开阔、gps信号良好的地方,根据gps 显示的海拔设定高度计。 那么其他地方的高度表读数也是相对准确的绝对海拔高度。 有效期同样一天之内,天气没有大的变化之前。 17楼奉献130说明书关于“测高计模式”的权威表述,并图文教你“如何设定参考高度”。 老外玩的专业啊,很多登山区域都有这种等高线地图,你需要设计好自己的线路和Checkpoint,使用指南针和高度计,一路行进。这个就是定向运动吧,至少是野外穿越。

在Checkpoint(不是我拽,我不懂怎么翻译)可以根据地图标高校准自己的高度计,使用 绝对海拔。 高度计本来就是应该这样用的。 有gps当然好 现在gps手持机都是什么5合一、n合一的,包括了罗盘、温度、gps、气压-高度等功能。 气压计或气压式高度计在户外是不能被gps取代的,我至少给出3个理由: 1、没有气压,天气趋势看不出来。气压持续降低,降雨可能性加大,宿营要选高一点。 2、如果要探洞,gps就瞎了。必须依靠气压式高度计掌握探洞向下了多少。 3、听说在山体陡峭处、树木密集高大处,gps信号会不好、甚至没有。 gps近几十年才出来的,但是人类登山几百上千年了。 给你一个建议:买个gps-shouji 找信号好的时候多测测你家一楼的绝对海拔,取多次平均值,那应该是很准了。 每天出门,都校准高度表,那就是相对准的绝对海拔。 不好意思,这个办法我怎么现在才想出来,这个法子最简单吧?关于测高计模式和如何 设定参考高度 测高计模式 本表的测高计使用气压传感器探测现在气压,然后用此气压测量值根据 ISA (国际标准大气压)预设值估算现在的高度。您还可以预先指定一个参考高度,本表将根据此参考值计算现在的相对高度。测高计功能还配备有存储器保存测量的数据。 重要 --本表是根据气压估算高度。这即是说在相同位置上所测出的高度会因气压的变化而有所不 同。 --本表采用半导体气压传感器测量高度,其会受温度变化的影响。在进行高度测量时,请注 意避免使手表受到温度变化的影响。 --为避免测量结果受温度突然变化的影响,请在测量过程中将手表戴在手腕上并直接与皮肤 接触。 --切勿在进行高度会产生急剧变化的运动时过份依赖本表的高度测量结果或执行按钮操作。这些运动包括:跳伞、悬挂式滑翔机、滑翔跳伞、驾驶旋翼飞机、驾驶滑翔机或任何其他飞

联轴器同心度校正方法

. 联轴器同心度检查及校正 粗调整:(首先确认检测或所调整的泵组是否完全切断电源)*泵组安装就位后、开机前必须检查并校正同心度. *联轴器找正时. 1. 粗找正测量工具-刀口尺.

2.将联轴器找正面清理干净后,将刀口尺以一边放平找正另一边. 泵端高则将电机垫高,反之则将泵端垫高,先找等高. 3.用刀口尺在联轴器90℃夹角上测出泵及电机左右偏差和高低偏差. 调整联轴器等高时采用厚薄不等的金属片垫入电机端或泵端地脚4. . 和底座结合面之间.在紧固螺母之前,须确认所垫的金属片已经垫实后再紧固螺母,5.

分别紧固螺母时要注意表的指针不能有移动;.. . 精调整(检查粗调整后的精度) 的百分表及磁性表座。量程为5-10mm1.

表指针摆动范围内的读数即为跳动值。盘车联轴器360 ℃,2.0.20mm 用百分表测得圆周上最大跳动值:≤ 最终检查:所有地脚紧固后,确认和复检圆周最大跳动值是否在范围之内。≤0.20mm 如果温升急*运行后在一段时间内检测轴承端的温升变化,剧上升无稳定且有超标现象并接近极限温度,此时必须停机检查。 如果与前一次记*运行后的泵组,必须注意轴承温度变化, 录有升高现象,此时就必须停机再次对联轴器同心度进行检查。

;.. . 三相异步电动机的最高允许温升 )(周围环境温度为+40;.. .

GISO同心度不符合要求产生的故障现象: 1.噪声。(叶轮环口与泵壳口环摩擦,轴承受力不均) 轴承温升快。2. 轴承温度高。.3泵组振动,抖动。4. 5.轴承位置有油渗出。;.. . 6.严重时弹性体磨损及掉屑和受挤压有熔化现象。 同心度跳动值超标的危害: 1.轴承在运转时受力不均产生高温。使润滑脂稀释流出使轴承球道内润滑不足。 2.弹性体磨损后致使联轴器结合部无缓冲,联轴器金属部分相互撞击而损坏。 3.轴承损坏,轴承座损坏(因润滑不畅,高温膨胀和轴承钢圈受力不均致使轴承外钢圈跑外圆和内钢圈抱死或跑内圆)

很实用-很准的计算变压器资料

MOSFET开关管工作的最大占空比Dmax: 式中:Vor为副边折射到原边的反射电压,当输入为AC220V时反射电压为135V;VminDC为整流后的最低直流电压;VDS为MOSFET功率管导通时D与S极间电压,一般取10V。 变压器原边绕组电流峰值IPK为: 式中:η为变压器的转换效率;Po为输出额定功率,单位为W。 变压器原边电感量LP: 式中:Ts为开关管的周期(s);LP单位为H。 变压器的气隙lg:

式中:Ae为磁芯的有效截面积(cm2);△B为磁芯工作磁感应强度变化值(T);Lp单位取H,IPK单位取A,lg单位为mm。 变压器磁芯 反激式变换器功率通常较小,一般选用铁氧体磁芯作为变压器磁芯,其功率容量AP为 式中:AQ为磁芯窗口面积,单位为cm2;Ae为磁芯的有效截面积,单位为cm2;Po 是变压器的标称输出功率,单位为W;fs为开关管的开关频率;Bm为磁芯最大磁感应强度,单位为T;δ为线圈导线的电流密度,通常取200~300A/cm2,η是变压器的转换效率;Km 为窗口填充系数,一般为0.2~0.4;KC为磁芯的填充系数,对于铁氧体为1.0。 根据求得的AP值选择余量稍大的磁芯,一般尽量选择窗口长宽之比较大的磁芯,这样磁芯的窗口有效使用系数较高,同时可以减少漏感。 变压器原边匝数NP: 式中:△B为磁芯工作磁感应强度变化值(T),Ae单位为cm2,Ts单位为s。 变压器副边匝数Ns:

式中:VD为变压器二次侧整流二极管导通的正向压降。 功率开关管的选择 开关管的最小电压应力UDS 一般选择DS间击穿电压应比式(9)计算值稍大的MOSFET功率管。 绕组电阻值R: 式中:MUT为平均每匝导线长度(cm);N为导线匝数; 为20℃时导线每cm的电阻值(μΩ)。 绕组铜耗PCU为: 原、副边绕组电阻值可通过求绕组电阻值R的公式求出,当求原边绕组铜耗时,电流用原边峰值电流IPK来计算;求副边绕组铜耗时,电流用输出电流Io来计算。 磁芯损耗 磁芯损耗取决于工作频率、工作磁感应强度、电路工作状态和所选用的磁芯材料的性能。对于双极性开关变压器,磁芯损耗PC:

联轴器同心度校正方法

联轴器同心度检查及校正 粗调整:(首先确认检测或所调整的泵组是否完全切断电源)*泵组安装就位后、开机前必须检查并校正同心度. *联轴器找正时. 1. 粗找正测量工具-刀口尺. 2.将联轴器找正面清理干净后,将刀口尺以一边放平找正另一边. 泵端高则将电机垫高,反之则将泵端垫高,先找等高. 3.用刀口尺在联轴器90℃夹角上测出泵及电机左右偏差和高低 偏差. 4.调整联轴器等高时采用厚薄不等的金属片垫入电机端或泵端地脚 和底座结合面之间. 5.在紧固螺母之前,须确认所垫的金属片已经垫实后再紧固螺母, 分别紧固螺母时要注意表的指针不能有移动.

精调整(检查粗调整后的精度) 1.量程为5-10mm的百分表及磁性表座。 2.盘车联轴器360 ℃,表指针摆动范围内的读数即为跳动值。 用百分表测得圆周上最大跳动值:≤0.20mm 最终检查: 所有地脚紧固后,确认和复检圆周最大跳动值是否在 ≤0.20mm范围之内。 *运行后在一段时间内检测轴承端的温升变化,如果温升急 剧上升无稳定且有超标现象并接近极限温度,此时必须停机检查。 *运行后的泵组,必须注意轴承温度变化,如果和前一次记 录有升高现象,此时就必须停机再次对联轴器同心度进行检查。

三相异步电动机的最高允许温升 (周围环境温度为+40℃) 绝缘 等级 测试项目 测试方法 定子绕组 定子铁心 滑动轴承 滚动轴承 A 最高允许温升℃ 95℃ 100℃ 100℃ - 80℃ - 95℃ - 最高允许温升℃ 温度计法 电阻法 55℃ 60℃ 60℃ - 40℃ - 55℃ -

GISO 同心度不符合要求产生的故障现象: 1. 噪声。(叶轮环口和泵壳口环摩擦,轴承受力不均) 2. 轴承温升快。 3. 轴承温度高。 4. 泵组振动,抖动。 5. 轴承位置有油渗出。 6. 严重时弹性体磨损及掉屑和受挤压有熔化现象。 E 最高允许温升℃ 105℃ 115℃ 115℃ - 80℃ - 95℃ - 最高允许温升℃ 温度计法 电阻法 65℃ 75℃ 75℃ - 40℃ - 55℃ - B 最高允许温升℃ 110℃ 120℃ 120℃ - 80℃ - 95℃ - 最高允许温升℃ 温度计法 电阻法 70℃ 80℃ 80℃ - 40℃ - 55℃ - F 最高允许温升℃ 125℃ 140℃ 140℃ - 80℃ - 95℃ - 最高允许温升℃ 温度计法 电阻法 85℃ 100℃ 100℃ - 40℃ - 55℃ - H 最高允许温升℃ 145℃ 165℃ 165℃ - 80℃ - 95℃ - 最高允许温升 温度计法 电阻法 105℃ 125℃ 125℃ - 40℃ - 55℃ -

联轴器的安装及校正

如何进行泵和电机联轴器的找正、对中 1、泵对中的重要性泵和电机的联轴器所连接的两根轴的旋转中心应严格的同心,联轴器在安装时必须精确地找正、对中,否则将会在联轴器上引起很大的应力,并将严重地影响轴、轴承和轴上其他零件的正常工作,甚至引起整台机器和基础的振动或损坏等。因此,泵和电机联轴器的找正是安装和检修过程中很重要的工作环节之一。 2、联轴器找正是偏移情况的分析在安装新泵时,对于联轴器端面与轴线之间的垂直度可以不作检查,但安装旧泵时,一定要仔细地检查,发现不垂直时要调整垂直后再进行找正。一般情况下,可能遇到的有以下四种情形。 1)S1=S2,a1=a2 两半靠背轮端面是处于既平行又同心的正确位置,这时两轴线必须位于一条直线上。 2)S1=S2,a1≠a2 两半靠背轮端面平行但轴线不同心,这时两轴线之间有平行的径向位移e=(a2-a1)/2。

3)S1≠S2,a1=a2 两半靠背轮端面虽然同心但不平行,两轴线之间有角向位移α。 4)S1≠S2,a1≠a2 两半靠背轮端面既不同心又不平行,两轴线之间既有径向位移e又有角向位移α。 联轴器处于第一种情况是我们在找正中致力达到的状态,而第 二、三、四种状态都不正确,需要我们进行调整,使其达到第一 种情况。在安装设备时,首先把从动机(泵)安装好,使其轴线处于水平位置,然后再安装主动机(电机),所以找正时只需要调整主动机,即在主动机(电机)的支脚下面加调整垫面的方法来调节。 3、找正时测量调节方法下面主要介绍在检修过程中常用的 两种测量调整方法,根据测量工具不同可分为: 1)利用刀形尺和塞尺测量联轴器的不同心和利用楔形间隙轨或

高度传感器标定方法

高度传感器标定方法 由于高度传感器(又称Z浮)的信号会随着自身的使用状况和板材的表面情况而发生轻微变化。因而客户在操作机床时,有时会遇到切割头随动时碰撞板材表面、随动速度缓慢等现象,遇到这些现象时就需要重新标定高度传感器,通常不需要修改西门子系统参数(CLC 电压和速度相关参数)。以Precitec公司的EG8010高度传感器为例,标定方法和步骤如下: 1、装上喷嘴,在切割头下放一块钢板,JOG方式下移动切割头(Z 轴)使喷嘴底部距离钢板表面距离为10毫米左右; 2、打开机床电柜,找到EG8010A控制盒,输入密码“7657”; 3、按一下EG8010控制盒上的旋钮后转动该旋钮 至屏幕上出现菜单; 4、按一下EG8010控制盒上的确认按钮,屏幕上将出现菜 单;再按一下EG8010控制盒上的确认按 钮,屏幕上将出现菜单; 5、按一下EG8010控制盒上的旋钮后转动该旋钮 至屏幕上出现菜单; 6、JOG方式下移动切割头(Z轴)至最高点(Z轴正软件限位), 并取下喷嘴; 7、按一下EG8010控制盒上的确认按钮,屏幕上将出现菜 单;再按一下EG8010控制盒上的确认按 钮,屏幕上将出现菜单;

8、即标定完成。装上喷嘴检查随动动作。 9、系统参数(CLC电压和速度相关参数)一般设为以下数值: N62510 $MC_CLC_SENSOR_VOLTAGE_TABLE_1[0]=-3 N62510 $MC_CLC_SENSOR_VOLTAGE_TABLE_1[1]=-2 N62510 $MC_CLC_SENSOR_VOLTAGE_TABLE_1[2]=-1 N62510 $MC_CLC_SENSOR_VOLTAGE_TABLE_1[3]=-0.7 N62510 $MC_CLC_SENSOR_VOLTAGE_TABLE_1[4]=0.7 N62510 $MC_CLC_SENSOR_VOLTAGE_TABLE_1[5]=1.5 N62510 $MC_CLC_SENSOR_VOLTAGE_TABLE_1[6]=2.5 N62510 $MC_CLC_SENSOR_VOLTAGE_TABLE_1[7]=4 N62510 $MC_CLC_SENSOR_VOLTAGE_TABLE_1[8]=6 N62510 $MC_CLC_SENSOR_VOLTAGE_TABLE_1[9]=8 N62511 $MC_CLC_SENSOR_VELO_TABLE_1[0]=4000 N62511 $MC_CLC_SENSOR_VELO_TABLE_1[1]=3500 N62511 $MC_CLC_SENSOR_VELO_TABLE_1[2]=2500 N62511 $MC_CLC_SENSOR_VELO_TABLE_1[3]=1200 N62511 $MC_CLC_SENSOR_VELO_TABLE_1[4]=0 N62511 $MC_CLC_SENSOR_VELO_TABLE_1[5]=-800 N62511 $MC_CLC_SENSOR_VELO_TABLE_1[6]=-1500 N62511 $MC_CLC_SENSOR_VELO_TABLE_1[7]=-3000 N62511 $MC_CLC_SENSOR_VELO_TABLE_1[8]=-6000 N62511 $MC_CLC_SENSOR_VELO_TABLE_1[9]=-10000 10、影响随动反应速度的系统参数还有: Z轴速度环增益(MD1407),一般设为0.1~0.2; Z轴位置环增益(MD32200),一般设为7~15; Z轴最大加速度(MD32300),一般设为10~15; 如果没有特殊处理方法,必须要求客户按照以上要点操作。如有异议,需速与公司联系解决。

传感器的标定与校准

标定与校准的概念 新研制或生产的传感器需要对其技术性能进行全面的检定,以确定其基本的静、动态特性,包括灵敏度、重复性、非线性、迟滞、精度及固有频率等。 例如,对于一个压电式压力传感器,在受力后将输出电荷信号,即压力信号经传感器转换为电荷信号。但是,究竟多大压力能使传感器产生多少电荷呢?换句话说,我们测出了一定大小的电荷信号,但它所表示的加在传感器上的压力是多大呢? 这个问题只靠传感器本身是无法确定的,必须依靠专用的标准设备来确定传感器的输入――输出转换关系,这个过程就称为标定。简单地说,利用标准器具对传感器进行标度的过程称为标定。具体到压电式压力传感器来说,我们用专用的标定设备,如活塞式压力计,产生一个大小已知的标准力,作用在传感器上,传感器将输出一个相应的电荷信号,这时,再用精度已知的标准检测设备测量这个电荷信号,得到电荷信号的大小,由此得到一组输入――输出关系,这样的一系列过程就是对压电式压力传感器的标定过程,如图1-19所示。 图1-19 压电式压力传感器输入――输出关系 校准在某种程度上说也是一种标定,它是指传感器在经过一段时间储存或使用后,需要对其进行复测,以检测传感器的基本性能是否发生变化,判断它是否可以继续使用。因此,校准是指传感器在使用中或存储后进行的性能复测。在校准过程中,传感器的某些指标发生了变化,应对其进行修正。 标定与校准在本质上是相同的,校准实际上就是再次的标定,因此,下面都以标定为例作介绍。 1.7.2 标定的基本方法 标定的基本方法是,利用标准设备产生已知的非电量(如标准力、位移、压力等),作为输入量输入到待标定的传感器,然后将得到的传感器的输出量与输入的标准量作比较,从而得到一系列的标定数据或曲线。例如,上述的压电式压力传感器,利用标准设备产生已知大小的标准压力,输入传感器后,得到相应的输出信号,这样就可以得到其标定曲线,根据标定曲线确定拟合直线,可作为测量的依据,如图1-20所示。

开关电源变压器的漏感

开关电源变压器的漏感 任何变压器都存在漏感,但开关变压器的漏感对开关电源性能指标的影响特别重要。由于开关变压器漏感的存在,当控制开关断开的瞬间会产生反电动势,容易把开关器件过压击穿;漏感还可以与电路中的分布电容以及变压器线圈的分布电容组成振荡回路,使电路产生振荡并向外辐射电磁能量,造成电磁干扰。因此,分析漏感产生的原 理和减少漏感的产生也是开关变压器设计的重要内容之一。 开关变压器线圈之间存在漏感,是因为线圈之间存在漏磁通而产生的;因此,计算出线圈之间的漏磁通量就可以计算出漏感的数值。要计算变压器线圈之间存在的漏磁通,首先是要知道两个线圈之间的磁场分布。我们知道螺旋线圈中的磁场分布与两块极板中的电场分布有些相似之处,就是螺旋线圈中磁场强度分布是基本均匀的,并且磁场能量基本集中在螺旋线圈之中。另外,在计算螺旋线圈之内或之外的磁场强度分布时,比较复杂的情况可用麦克斯韦定理或毕-沙定理,而比较简单的情况可用安培环路定律或磁路的克希霍夫定律。 图2-30是分析计算开关变压器线圈之间漏感的原理图。下面我们就用图2-30来简单分析开关变压器线圈之间产生漏感的原理,并进行一些比较简单的计算。 在图2-30中,N1、N2分别为变压器的初、次级线圈,Tc 是变压器铁芯。r 是变压器铁芯的半径,r1、r2分别是变压器初、次级线圈的半径;d1为初级线圈到铁芯的距离,d2为初、次级线圈之间的距离。为了分析计算简单,这里假设变压器初、次级线圈的匝数以及线大比特电子变压器论坛 h t t p ://b b s .b i g -b i t .c o m

径相等,流过线圈的电流全部集中在线径的中心;因此,它们之间的距离全部是两线圈之间的中心距离,如虚线所示。 设铁芯的截面积为S ,S=πr2;初级线圈的截面积为S1,S1=πr 21;次级线圈的截面积为S2,S2=πr22;初级线圈与铁芯的间隔截面积为Sd1,Sd1=S1-S ;次级线圈与初级线圈的间隙截面积为Sd2,Sd2=S2-S1;电流I1流过初级线圈产生的磁场强度为H1, 在面积S1之内产生的磁通量为φ1,在面积Sd2之内产生的磁通量 为φ1';电流I2流过次级线圈产生的的磁场强度为H2,磁通量为φ2。 图2.30 由此可以求得电流I2流过变压器次级线圈N2产生的磁通量为:大比特电子变压器论坛 h t t p ://b b s .b i g -b i t .c o m

开关电源变压器测试标准

开关电源变压器测试标准 正常的试验大气条件(除有规定条件除外,均应在正常试验条件下进行试验): 温 度: 15~35℃ 相对湿度: 45%~75% 气 压: 86~106kPa 一、直流铜阻 目的:保证每一绕组使用正确的漆包线规格。 仪器:TH2511低直流电阻测试仪。 方法:变压器各绕组在温度为20℃时的直流电阻,应符合产品规格书的标准。 若测量环境温度不等于20℃时,应按下面的公式换算 R 20=θ +5.2345 .254R θ 式中: R 20——温度为20时的直流电阻,Ω; R θ ——温度为θ 时测得的直流电阻,Ω; θ——测量时的环境温度,℃。 二、电感量 目的:确保使用正确的磁性材料及绕组圈数的正确性。 仪器:WK3255B 电桥。 方法:对变压器测试端施加额定条件的电桥,测试电感量。见图1 图1 开路

三、直流叠加 目的:检验磁芯的磁饱和特性或实际工作条件下的磁芯特性。 仪器:WK3255B 电桥;FJ1772A 直流磁化电源。 方法:对变压器测试端施加规定的直流电流,用电桥测试电感量。见图2 图2 图中I 0 —— 在测试端N1绕组施加的直流电流 四、漏感 目的:保证绕组处于骨架上正确的位置以及磁性材料的气隙大小的正确性。 仪器:WK3255B 电桥。 方法:将所测变压器次级端短路,在初级端施加额定条件的电桥测试电感量。 见图3 图3 五、绝缘电阻 目的:保证每一绕组对磁芯、静电屏蔽及各绕组间绝缘电阻性能满足所需的 技术指标。 仪器:2679绝缘电阻测试仪。 短 路

方法:用绝缘电阻测试仪对变压器的初次级绕组间或绕组和磁芯、静电屏蔽间施加直流电压500V,测试绝缘电阻值。 不作包装或简易包装的非灌封、浇注结构的元件,测量常态绝缘电阻 前,可先进行预处理。预处理方法:清除变压器表面的尘垢,再将变 压器放入温度80±5℃的烘箱内,保持表1规定的时间从箱内取出, 在正常大气条件下放置48h。 表1 六、绝缘耐压 目的:保证绕组使用了正确的材料和绕组处于正确的位置并提供所需的安全隔离等级。 仪器:2671绝缘耐压测试仪。 方法:将试验电压施加在被测绕组与磁芯、静电屏蔽间,其他绕组与磁芯及静电屏蔽相连。 试验电压在2KV以上时,应从零开始逐渐升高电压至规定值,并保持 规定时间,然后逐渐将试验电压降至零再切断电源。 七、相位 目的:保证每个绕组绕线方向的正确性,即同名端位置是否符合要求。 仪器:3250综合测试仪。 图4 左图黑点标明该变压器的同名端;即表示1、3为绕组的绕线起头端。

浮筒液位计标定标准方法

浮筒液位计标定方法 一.工作原理 1、组成 1)扭力杆:扭力杆、角度传感器、电路板、浮筒组成。 2)杠杆:杠杆、力传感器、弹簧、电路板、浮筒组成。 2、工作原理 将浮力经过扭力杆,转换为角位移、在转换为4-20ma电流信号 将浮力经过杠杆转换为力矩力,再由力传感器转换为4-20ma信号 号输出 二、适用过程中常见故障及解决措施 在液位计的运行过程中可能会遇到下列问题; 1、故障现象 现场仪表无显示,变送器输出为一固定电流值或不稳定,电压正常。 原因:变送器的显示板或放大板损坏。 解决措施:更换变送器的显示板或放大板,按照要求重新输入参数,并进行线性调整。 2、故障现象 现场仪表显示与变送器输出一致,但仪表线性不好,零点量程波动大,且输出不稳定。 原因: (1)仪表的扭力管工作性能不稳定。 (2)仪表的浮子挂钩损坏。 解决措施: (1)检查确认扭力管损坏后,更换扭力管,按照要求重新输入参数,并作线性调整。 (2)浮子挂钩严重弯曲变形,重新校正浮子。 3、故障现象 仪表不能正确指示液位,仪表输出随液位变化比较缓慢。 原因: 浮子上有附着物或浮子与舱室有摩擦现象。

解决措施: 在通风口加蒸汽管线,定时用蒸汽吹扫;在仪表外壳增加伴热。 4、故障现象 现场仪表无显示,变送器输出低或显示与输出不吻合。 原因: (1)仪表的显示板损坏。 (2)仪表打放大板损坏 (3)仪表的显示、放大板损坏。 解决措施: (1)更换显示板,进行运作确认。 (2)更换放大板,更换后,若故障消失,重新输入参数,进行线性调整。 (3)更换显示和放大板,重新输入参数进行线性调整。 三、仪表设计参数修改及线性调整 1、工器具准备 24VDC电源、万用表、秤(±1g)、水桶等。 2、计算对应于0%、10%、20%、…90%、100%液位时挂钩所受的重量 测量液位时: :对应于0%液位时的重量即浮子的重量; :对应于100%液位时的重量; 其中D为浮子的直径 h 为测量范围(浮子长度);为测量介质密度。 n =0、25、50、75、100 计算并记录:O%;25%;50%;75%;100%值 测量界面时:则液位对浮筒产生的浮力应为轻组分产生的浮力 与重组分产生的浮力之和,应挂重力为: 依次计算并记录 四、校验方法 1、挂重法 当仪表周期运行或对测量准确度有质疑时,可按下述方法对仪表进行校验(其它型号的浮筒液位计也可按此方法进行校验)。 测量液位时: 被校刻度为0%,应挂重力:

化工离心泵的联轴器同心度如何调整

化工离心泵的联轴器同心度如何调整 首先,我们来了解一下什么是联轴器,它和泵的同心度有什么关系,离心泵联轴器用来连接不同的轴(主轴和传动轴),主要是通过旋转,从而传递扭矩。在高速动力的作用下,离心泵联轴器具有缓冲、减震的功能。在使用或安装化工离心泵时,泵和电机(两者之间依靠联轴器相连)的同心度是否一致相当关键,它影响着离心泵的使用寿命,性能,生产安全等。 化工离心泵和电机的联轴器所连接的两根轴的旋转中心应严格的同心,在安装离心泵时,对于联轴器端面与轴线之间的垂直度一定要检查,发现不垂直时要调进行同心度的调整,联轴器必须精确地找正、对中,否则会产生振动、噪音、减震块损坏,并将严重地影响轴、轴承和轴上其他零件的正常工作等。 因此耐腐蚀离心泵与电机的联轴器同心度对泵的使用影响相当重要; 小编来介绍一些有关离心泵联轴器的找正方法。 1)先消除联轴器同心度的高差,电机轴应向上用垫片抬高,这是前支座和后支座应同时在座下加垫。在两支座下分别增加不同厚度的垫片,前支座加的垫应比后支座的后一些。 2) 可以用平尺或塞尺进行粗测联轴器的不同心,以离心泵的对轮为基准,测定与调整电机对联轴器,来保证电机与机泵两轴对中,这种方法适用于弹性联接的低转速、精度要求不高的设备。 3) 利用百分表及表架或专用找正工具测量两联轴器的不同心及不平行情况,把百分表架到泵端,将百分表对零,将对轮旋转一圈,每90度得到一个数值,最后百分表转回其始位时必须回零,左右读数相加应该等于上下数值相加之和。然后根据读数分析出两轴的相对空间位置状况,根据偏差值作出适当调整。首先调整联轴器的左右偏差到允许值,然后调整高低至标准之内,这种方法适用于转速较高、刚性联接和精度要求高的转动设备。

温度传感器标定系统设计

我的毕设 1 FPGA 智能传感器 (1) 智能化传感器不但能够对信息进行处理、分析和调节,能够对所测的数值及其误差进行补偿,而且还能够进行逻辑思考和结论判断,能够借助于一览表对非线性信号进行线性化处理,借助于软件滤波器滤波数字信号。此外,还能够利用软件实现非线性补偿或其它更复杂的环境补偿,以改进测量精度。 (2) 智能化传感器具有自诊断和自校准功能,可以用来检测工作环境。当工作环境临近其极限条件时,它将发出告警信号,并根据其分析器的输人信号给出相关的 诊断信息。当智能化传感器由于某些内部故障而不能正常工作时,它能够借助其内 部检测链路找出异常现象或出了故障的部件。 (3) 智能化传感器能够完成多传感器多参数混合测量,从而进一步拓宽了其探测 与应用领域,而微处理器的介人使得智能化传感器能够更加方便地对多种信号进行 实时处理。此外,其灵活的配置功能既能够使相同类型的传感器实现最佳的工作性 能,也能使它们适合于各不相同的工作环境。 (4) 智能化传感器既能够很方便地实时处理所探测到的大量数据,也可以根据需 要将它们存储起来。存储大量信息的目的主要是以备事后查询,这一类信息包括设 备的历史信息以及有关探测分析结果的索引等。 (5) 智能化传感器备有一个数字式通信接口,通过此接口可以直接与其所属计算 机进行通讯联络和交换信息。此外,智能化传感器的信息管理程序也非常简单方便, 譬如,可以对探测系统进行远距离控制或者在锁定方式下工作,也可以将所测的数 据发送给远程用户等 基于labview 和声卡 本系统主要实现温度的检测与控制,使系统的温度始终保持在要 求的范围内。系统框图如图I所示。首先将温度信号转换为电信号.然 后通过数据采集电路将电信号采集进入计算机,借助LabVIEW软件进 行数据分析、处理和显示.最后通过温度控制接口电路对温度进行实时 监控。系统中温度检测、采集和控制由硬件实现,信号的分析与处理及 后续结果的输出与显示则靠软件完成。 由于声卡采集的信号是音频信号,且幅值受到一定限制,同时我们 在实验中发现声卡对于信号频率采集的灵敏度远远大于对信号幅度的 灵敏度,所以本单元电路包括两部分:通过温度传感器将温度信号转换 为电压信号,再利用v,F(压,频)转换电路将电压信号转换为具有一定 幅值的频率信号,通过声卡采集频率,然后借助I_abVlEW的信号处理 功能对信号进行处理和显示。需要注意的是转换电路的设计既要保证 V腰转换器具有良好的线性度。又要具有合适的频率 (3)加热与降温电路 加热与降温电路的作用,就是利用前级双限电压比较器电路的输出 信号,控制继电器的通断。使其起到一个开关作用,用以控制加热元件与 降温元件的工作。限于学生实验条件,本系统分别采用加热电阻和c叫 风扇作为加热和降温元件。由于电路简单,这里不再给出电路图。。

压力传感器标定与校准

压力传感器检定: 1.静态检定 2.动态检定 我们把压力传感器的特性分成两类静态特性和动态特性。压力传感器静态特性的 主要指标是灵敏度、线性度、迟滞、重复性、精度、温度漂移和零点漂移等等。一般 我们校准压力传感器都是校准其静态特性,这是因为我们将压力传感器理想化,认为 其固有频率相当大而且本身无阻尼,这时压力传感器的静态特性和动态特性是一样的。然而在被测压力随时间变化的情况下,压力传感器的输出能否追随输入压力的快速变 化是一个很重要的问题。有的压力传感器尽管其静态特性非常好,但由于不能很好地 追随输入压力的快速变化而导致严重的误差,有时甚至出现高达百分之百的动态误差。所以我们必须要进行压力传感器动态特性的校准,认真分析其动态响应特性。压力传 感器动态特性可以用它的上升时间、固有频率、幅频特性、相频特性等参数来描述。 迟滞e H:正行程与反行程之间的曲线的不重合度; 线性度e L(非线性误差):输入输出校准曲线(实际)与选定的拟合直线之间的吻合程度; 重复性e R:正行程或反行程曲线多次测量时曲线的一致程度; 置信系数a=2(%)或a=3(%) 贝塞尔公式 线性度、迟滞反映系统误差;重复性反映偶然误差。 误差(三者反应系统总误差)e S:e S=±√e H2+e L2+e R2 或e S=e H+e L+e R 根据检定规程一《压力传感器静态》,在校准精密线性压力传感器时给出的校准曲线有二种最小二乘直线和端点平移线。 动态检定: 1.瞬态激励法(阶跃信号激励) 2.正弦激励法(正弦信号激励) 动态检定指标、参数:频率响应、谐振频率、自振频率、阻尼比、上升时间、建立时间、过冲量、灵敏度。

详解开关电源变压器的漏感

详解开关电源变压器的漏感 任何变压器都存在漏感,但开关变压器的漏感对开关电源性能指标的影响 特别重要。由于开关变压器漏感的存在,当控制开关断开的瞬间会产生反电动势,容易把开关器件过压击穿;漏感还可以与电路中的分布电容以及变压器线圈 的分布电容组成振荡回路,使电路产生振荡并向外辐射电磁能量,造成电磁干扰。因此,分析漏感产生的原理和减少漏感的产生也是开关变压器设计的重要 内容之一。 开关变压器线圈之间存在漏感,是因为线圈之间存在漏磁通而产生的;因此,计算出线圈之间的漏磁通量就可以计算出漏感的数值。要计算变压器线圈 之间存在的漏磁通,首先是要知道两个线圈之间的磁场分布。我们知道螺旋线 圈中的磁场分布与两块极板中的电场分布有些相似之处,就是螺旋线圈中磁场 强度分布是基本均匀的,并且磁场能量基本集中在螺旋线圈之中。另外,在计 算螺旋线圈之内或之外的磁场强度分布时,比较复杂的情况可用麦克斯韦定理 或毕-沙定理,而比较简单的情况可用安培环路定律或磁路的克希霍夫定律。 在设铁芯的截面积为S,S=πr2;初级线圈的截面积为S1,S1=πr21;次级 线圈的截面积为S2,S2=πr22;初级线圈与铁芯的间隔截面积为Sd1,Sd1=S1-S; 次级线圈与初级线圈的间隙截面积为Sd2,Sd2=S2-S1;电流I1流过初级线圈产生的磁场强度为H1,在面积S1之内产生的磁通量为φ1,在面积Sd2之内产生的磁通量为φ1’;电流I2流过次级线圈产生的的磁场强度为H2,磁通量为φ2。 由此可以求得电流I2流过变压器次级线圈N2产生的磁通量为: 电流I2流过变压器次级线圈N2产生的磁通量 (2-95)、(2-96)式中,μ0sd2H2=φ2就是变压器次级线圈N2对初级线圈 N1的漏磁通;因为,这一部分磁通没有穿过变压器初级线圈N1。漏磁通可以等

变压器漏感分析

首先我们要感谢小鹏同学,能促成此次活动小鹏同学辛苦了。 原创:我们不是科学家只是使用者我对此的理解为学习的资料系统化活学活用,实践整理为自己的东西能把不明白的人讲明白的东西(这里说句题外话会做的工程师是死记硬搬了别人东西那么你只能是同 等级下最低的那个工程师,会做能把不会的人说明白了,是你把别人的东西活学活用转换成了自己的东西徒弟多了人际也就打开了,我经常跟我教过的人说我教你的东西你要实践对比验证,知道是别人的,做了才是你自己的),所以不需要查字典对原创二字解释,对你自己理解有帮助就好,当然照篇翻的肯定是不行的,当然有些太深奥的东西不要去深究我们是使用者理解就好,当然透彻的研究更好,但是我们不是专业科研人员只是使用者所以我们不会有太多的时间研究我 们所用到的各种知识。我这就是犯病了非得研究漏感还整到这个点。就像上面说的我们是使用者注重的是理解,会有错误的地方,有能帮我纠正想法的十分感谢,辉哥对磁这一块我比较佩服,辉哥指点指点。大家都知道减小漏感的方法我们来研究一下为什么会减小。 设计上: 减小初级绕组的匝数NP; 增大绕组的宽度(例如选EE型磁芯,以增加骨架宽度b); 减小各绕组之间的绝缘层; 增加绕组之间的耦合程度。 工艺上: 每一组绕组都要绕紧,并且要分布平均

引出线的地方要中规中矩,尽量成直角,紧贴骨架壁 不能绕满一层的要平均疏绕满一层 1、漏感是什么,通俗的大家都理解没有耦合到副边的磁通(能量)我翻阅了基本资料,说法都不同,个人更喜欢用下图理解Np导线流过I就会产生一个磁场,这个磁场穿过相邻的导线Ns就会在Ns上感应一个电压抵消外界磁场的作用,此感应电流同样作用在Ns上,NpNs 电流方向相反,根据右手定律磁场方向也相反,Ns的磁场阻值下图d2部分的磁通二次穿过Ns。下图d2面积中的磁通能量为漏感。 磁芯截面积S=πr2 Np截面积Sp=πr12 Ns截面积 Ss=πr22

输出变压器的简易测试

输出变压器的简易测试 ----欧博M100KIT套件试用记 安玉景 自制电子管功放的最大困难莫过于绕制输出变压器和加工底盘。输出变压器的素质是决定功放音质的关键所在,而自制一个高质量的输出变压器是相当困难的。本人经过反复试验,多次失败后,绕制的输出变压器虽然也达到了相当满意的水平,但完成复杂的绕制工艺、烘干、真空浸漆等一系列程序也不是件轻而易举的事情,总是让人绕完这一对,就不想再做下一对了。因此虽早有朋友让我代为制作一台功放,但总是一拖再拖,半年一年过去了,仍迟迟不愿动手。购买成品变压器和底盘来制作功放,当然是事半功倍。因为自制底盘既费工费时,又不容易做得美观。再说,进口的输出变压器(如TAGNO,AUDIO NOTE等)国内难以购到,退一步说,即使能购得到,其价格也难以接受,足足可以用这笔钱买一台质量上好的国产整机。国内也有不少厂商销售输出变压器,其中大公司的产品质量比较有保证,是公司的设计师们多年实践经验和心血的结晶,技术含量高,但价格也相对较高。还有一些名不见经传的小厂产品,价格较低,但质量如何,却是令人心中无底。几年前,本人经不住广告词的诱惑,曾邮购了南方某厂生产的一只300B单端环形输出变压器,回来一测,阻抗为4kΩ(标称为3.5kΩ),初级电感量仅6.5H。装在机上一测频响更糟,-3dB下限频率高达56Hz,在高频端22kHz处还有一个+2dB的峰,只好将它弃之不用。幸亏当时已经有了“邮购经验”,仅邮了一只,否则损失更严重。邮购犹如“隔山买牛”,没有“后悔药”可吃,只有吃一堑长一智。今年二月,看到《电子世界》杂志上刊登有欧博M100KIT套件供应的消息,价格仅整机价格的一半多点,这对于有点动手能力的胆机爱好者来说,确实是件令人心动的事。但我仍然心有余悸,不免在想,在前置和倒相级的印刷电路已经安装焊接完毕的前提下,价格竟下跌了一千多元,是不是其中的关键器件──输出变压器的质量上有什么妥协?故不敢冒然邮购。M 100整机我们听过,音质价格比很高,这也是该产品在石家庄销路很好的原因之一,M 100 KIT套件的输出变压器与整机中所用的是否一样?带着这个疑虑,本地一个胆机发烧友亲赴北京欧博公司,咨询了公司总经理。刘总经理言道:“M 100 KIT中的变压器与整机中所用的变压器是完全一样的,我们没有必要再为套件另外制作一批质量低一档次的变压器。”有他这句话,那位朋友当即带回两套件。我听说以后,也通过欧博公司的河北经销商──天歌电器购买了一套。 买回套件后的第一件事,当然是检查输出变压器。先从底板下面卸下输出变压器圆罩的三只φ3mm固定螺母,取下黑色圆罩,即可按下述步骤进行检查测试。 输出变压器的简易测试 首先是外观检查,其铁芯外面缠绕了一层黑色不干胶带,撕去以后,即可看见其硅钢片,片厚约0.35mm,冲制工艺一般,不够整齐光滑,而且其中硅钢片的颜色深浅有所不同,不象我们几个发烧友从广东某公司邮购来的硅钢片那样整齐光滑,颜色黝黑,不用外罩也非常美观。又看到铁芯未曾浸漆,只将线包作过浸漆处理,所以给人的第一印象不怎么样,可以说工艺水平甚至比不上六七十年代上海无线电二十七厂或上无二厂的变压器。因此初步打算,等测量完其他指标以后如果满意的话,再把它拆下来作整体烘干浸漆处理。本人未曾见过M 100整机中的输出变压器是否也是这个样子?因为它藏在一个黑色的“遮羞罩”中。据曾见过其庐山真面目的发烧友说,二者是相同的,仅从这一点上看,欧博刘总的话是可信的。但总对其硅钢片有点“耿耿于怀”,于

相关文档
最新文档