激光测距方法探讨_肖彬 (1)

激光测距方法探讨_肖彬 (1)
激光测距方法探讨_肖彬 (1)

激光测距仪操作文档

激光测距仪操作说明书 一.激光测距仪硬件介绍 HUD LCD显示器 RS232数据串口 扳机 LCD显示器 二.测距仪的技术指标 a)罗盘(抗磁性传感器,Post-Fluxgate 技术)

i."0.5 o 精确度 b)磁倾仪 i."0.1 o 倾斜精度 ii."40 o 倾斜范围 c)测距 i.精度–测85米外的白目标精度为0.1米 ii.最大距离–1850米(反射目标) iii.最小距离–3米 iv.高压输电线175米 v.杆状标志400米 vi.树(无叶)400米 vii.建筑物,树(有叶)800米 三.激光测距仪的基本操作 3.1 如何校对激光测距仪 ●开启电源 ●按“MENU” 健 ●用>?键来进行功能选择 ●选择“COMP” 并按下“Enter” 键 ●选择“CAL” 并按下“Enter” 键 ●LCD显示窗显示“Initializing Please Wait!” & “Rotate Unit for Calibration” 信息

●以射击的姿势扣住扳机. LCD显示窗显示“Data Point Count” 信息 ●慢慢转动Contour枪1-2圈. 每圈用45-60秒钟完成 ●慢慢转动Contour枪1-2圈. 每圈用45-60秒钟完成 ●在转动中,慢慢地从上到下,从左到右移动(±40o的 范围) ●虽着 Contour 的移动, 你将看到数据点(Data Point Count) 在增加。当其值增加到275时,罗盘校对操作就完成 了。松开板机,系统恢复原来的设置 ●每次系统上电都必须要重复以上操做 3.2 开机自检 自检信息:仪器开机后将进行自检,自检信息将显示在LCD 显示屏上: Selft Test Controur XLRic 当自检信息结束后回到以前的测量界面时,说明自检成功,否则会出现以下错误信息: End Of Self Test *** Fall 3.3 标准测量模式下的测量 标准模式是仪器在开机后默认的模式,在这种模式下,仪器将显示所测目标的距离、方位和倾斜值。首先确认你所选的显示模式为:

激光测距的方法及原理

激光测距的方法及原理 激光测距技术与一般光学测距技术相比具有操作方便、系统简单及白天和夜晚都可以工作的优点。与雷达测距相比,激光测距具有良好的抗干扰性和很高的精度,而且激光具有良好的抵抗电磁波干扰的能力。其在探测距离较长时,激光测距的优越性更为明显。光测距技术是指利用射向目标的激光脉冲或连续波激光束测量目标距离的距离测量技术。较常用的激光测距方法有三角法、脉冲法和相位法激光测距。 1.三角法激光测距 激光位移传感器的测量方法称为激光三角反射法,激光测距仪的精度是一定的,同样的测距仪测10米与100米的精度是一样的。而激光三角反射法测量精度是跟量程相关的,量程越大,精度越低。 采用激光三角原理和回波分析原理进行非接触位置、位移测量的精密传感器。广泛应用于位置、位移、厚度、半径、形状、振动、距离等几何量的工业测量。半导体激光器1被镜片2聚焦到被测物体6。反射光被镜片3收集,投射到CCD阵列4上;信号处理器5通过三角函数计算阵列4上的光点位置得到距物体的距离。 图1. 激光三角测量原理图 激光发射器通过镜头将可见红色激光射向物体表面,经物体反射的激光通过接受器镜头,被内部的CCD线性相机接受,根据不同的距离,CCD线性相机可以在不同的角度下“看见”这个光点。根据这个角度即知的激光和相机之间的距离,数字信号处理器就能计算出传感器和被测物之间的距离。 同时,光束在接收元件的位置通过模拟和数字电路处理,并通过微处理器分析,计算出相应的输出值,并在用户设定的模拟量窗口内,按比例输出标准数据信号。如果使用开关量输出,则在设定的窗口内导通,窗口之外截止。另外,模拟量与开关量输出可设置独立检测窗口。常用在铁轨、产品厚度、平整度、尺寸等方面。

激光测距仪操作规程

激光测距仪操作规 程

1.使用方法触按电源开关,接通电源,“电源、测试指示灯”为绿色。触按档位选择开关,选择适合的档位。 2.将仪表测量端子的两个电流输出端子用两根测试线接到被测导体的两个端子,两个电压输入端子也接到被测导体的两个端子。 3. 如图所示,电压端子应位于电流端子的内侧,并尽量靠近被测试品,以减少引线电阻引入的误差。 4.接线完毕后,触按一下 TESTE 键,“电源、测试指示灯”为红色,显示屏显示的值即为测得的电阻值。 5.当被测导体开路或阻值大于选定量程时, 显示屏首位显示“1”,后三位数字熄灭。 6.注意事项 a)本仪表使用6 节1.5V(LR6,AA)电池供电。当显示屏出现欠压符号“”时,请更换电池,以保障得到正确的试值。换下的旧电池请勿乱扔,以免造成污染。B)仪器应避免受潮、雨淋、跌落、暴晒等。

1.目的: 建立超声波测厚仪标准操作规程。 2.适用范围: 试验室所有检验人员执行本规程,部门领导监督,检查本规程的执行。 一、操作规程 1、机器校准 仪器壳下方有一个厚度为4mm的试块,按“菜单”键进入菜单,经过“上下”箭头选择“声速”,在选择“声速设置”,把声速设置为5920m/s,并在试块上涂抹耦合剂,把探头放在试块中央轻轻压紧,按一下“下箭头”,能够看到仪器显示试块厚度为4.000mm,如果试块厚度测试值不为4.000mm请在进行校准,直到试块测量厚度为 4.000mm。仪器校准完成后即能够正常测量了。 2、测试块准备 准备50mm的测试医用消毒超声耦合剂样品三份,以备测试。 3、声速测试 将探头与已准备好的测试样品耦合,确保探头不晃动并耦合良好,此时能够看到显示屏上耦合标志。选择声速测试界面,输

激光自混合干涉的新型探测方法研究

激光自混合干涉的新型探测方法研究 激光自混合干涉自上世纪六十年代被发现以来,在精密测量领域的应用已经得到了广泛的研究。由于系统固有的结构简单、测量精度高、易于准直及非接触性等显著优点,因此具有广阔的应用前景。近几十年,很多高端制造业和重大尖端设备的研发对激光自混合干涉技术提出了更高的要求。而现代光子学测试技术的发展为激光自混合干涉的探测提供了新的方法。 提出了一种激光自混合干涉的双折射光载微波探测方法,研制了基于自混合双频激光多普勒效应的高分辨率测速仪,从双折射光载微波的自混合多普勒频移中准确提取了物体的速度信息。激光自混合干涉具有紧凑的光学结构,自对准和方向可辨识性的优点,而利用双折射双频氦氖激光器产生的稳定的光载微波,又能进一步简化了光源的结构。实验上,我们用低频(毫赫兹)锁相放大器提取了多普勒拍频信号,在时域精确测量了拍频,并计算速率。由于光载微波的高稳定性,与之前的双频自混合激光多普勒测速仪相比,自混合双折射双频激光测速仪的平均速度分辨率提高至0.030mm/s。 提出了一种利用硅光电二极管的双光子吸收效应对边缘滤波增强型激光自混合多普勒信号的进行二次探测方法。让激光会聚入射硅光电二极管,发生双光子吸收效应,引入对入射光的二次光电导响应。由双光子吸收引起的二次响应则能抑制光纤光栅增强型激光自混合干涉所增强的谐波,将谐波的振幅降低到噪声水平。实验结果表明,利用商用的硅光电二极管的双光子吸收效应可以实现一种超宽频带滤波器。 对于一个未知的待探测的多普勒频率,无需被动地调节滤波截至频率,即可实现滤波。这大大简化了对探测的自混合多普勒信号的处理。而利用光放大器的处理,使多普勒频率的探测信噪比也得到了提高,探测到的4kHz的多普勒信号的信噪比能达到15dB。针对精密位移测量,提出了一种对激光自混合干涉的合成波长测量方法,并构建了简单的合成波长自混合干涉仪。 由合成波信号毫米尺度的位移测量得到目标物体的亚纳米级的位移。合理选择了正交偏振双频氦氖激光器的频率差避免模式竞争,调整了自混合干涉仪的光学结构设计,将合成波长技术引入到激光自混合干涉测量中。观察了两个正交偏振模式的自混合干涉条纹信号之间的相位差,通过合成信号的相位变化来测量了

激光测距仪使用教程

美国LaserCraft高精度激光测距仪-Contour XLRic型,这款激光测距仪是高精度和远量程的结合体,是目前市场性能最好的一款手持激光测量系统。它能成功地在保持良好精度的前提下测量以下目标到前所未有的距离:175米到电力线,400米到电线杆,800米到建筑物。同时,它是一款坚固防水的仪器,遇到下雨,下雪,大雾或沙尘暴天气时,您只把工作模式选择到“坏天气”模式,您的工作就不会受到任何影响。在坏天气下使用它,就如同在好天气下使用一样方便,好用。如果装配了三脚架,它就可以用来进行更远距离的精确测量和进行精密的倾斜测量。 Contour XLR采用最新激光技术,小巧、轻便、使用方便,可准确测量目标距离。有恶劣天气工作模式保证仪器在仪器在雨、雪、雾、沙尘暴天气条件下仍可可靠工作。仪器配备HUD显示器,可边瞄准边测量。是建筑结构规划等通用距离测量的得力仪器。最大测量距离1850米,精度0.1米。 Contour XLRi具有XLR系列的全部特点,同时增加360度倾角传感器。有六种工作模式,分别是距离、角度、水平距离、垂直距离、二点高度、三点高度。有串行口,可通过计算机或数据记录器记录数据。典型应用:矿山地形测量、森林资源调查、倾斜测量、高度测量、水平杆测量、塔高测量。 Contour XLRic将XLRi和GPS以及数据采集器结合起来,可测量不易达到目标的参数。内置软件可计算树高、倾斜、面积、周长、不见线的长度、水平距离等。XLRic内部有数字罗盘和倾角传感器,是测绘的得力仪器。

ContourMAX最大测量距离达到3000米,重仅1.6公斤,首/末目标可选,门控能力、恶劣天气模式、手持/平台安装可选。典型应用:火灾控制系统、遥测、GPS偏移测、航空测量等。和Contour 系列手持激光测量系统中的Contour XLRi比较起来,Contour XLR ic在内部又集成了一个高精度磁通量数字罗盘。配合高精度磁通量数字罗盘,XLR ic在功能就比XLR和XLRi多了不少。有了Contour XLRic,您就可以把它和您的GPS系统连接起来,去测量那些无法到达或不容易到达的地方的坐标信息,省时又省钱。或者您也可以使用它内置的软件计算:树高,倾斜度,面积,周长,空间线段的长度,水平距离,高差等等数据。由于Contour XLRic配置了数字罗盘和倾斜角度测量仪,所以它完全可以被看作是一个手持式全站仪,可以协助您进行测绘和测量工作。一级人眼安全的激光测距仪精确地向您报告以下测量数据:距离,方位,倾斜角。技术特点-测量距离到: 1850米;-测量精度达到:10厘米;-倾斜角度测量;-方位角测量;-周长测量;-面积测量;-电力线高度和垂度测量;- 3D空间尺寸测量;-连接GPS工作;-高度测量功能;-“点到点”斜距测量;-水平距离测量和垂直距离测量;-独特的坏天气模式:一般的测距仪在天气不好的情况下,测量的距离往往会大大缩短,甚至无法工作。Contour系列激光测距仪的“坏天气模式”消除了这种现象。当天气情况不好的时候,比如:多云,大雾,扬尘,潮湿等,启动该模式,测量起来就和好天气时测量一样轻松快速!工作模式(详细功能)模式一标准测量模式:该模式测量仪

徕卡激光测距仪使用说明书

徕卡激光测距仪使用说明书 一、使用前的准备 (一)电池的装入/更换 打开仪器尾部的固定挡板。向前推卡钮,向下将底座取下。按住红色的卡钮推开电池盒盖。安装或更换电池。关闭电池盒盖,安装底座和卡扣。当电池的电压过低时,显示屏上将持续闪烁显示电池的标志{B,21}。此时应及时更换电池。 1、按照极性正确装入电池。 2、使用碱性电池(建议不要使用充电电池)。 3、当长时间不使用仪器时,请取出电池,以避免电池的腐蚀。 更换电池后,设置和储存的值都保持不变。 (二)多功能底底座 固定挡板可以在下面的测量情况下使用: 1、从边缘测量,将固定挡板拉出,直到听到卡入的声音。 2、从角落测量,将固定挡板拉出,直到听到卡入的声音,轻轻将固定挡板向右推, 此时固定挡板完全展开。 仪器自带的传感器将辨认出固定挡板的位置,并将自动设置测量其准点。 (三)内置的望远镜瞄准器 在仪器的右部有一个内置的望远镜瞄准器。此望远镜瞄准器为远距离测量起到辅助的作用。通过瞄准器上的十字丝可以精确地观察到测量目标。在30米以上的测量距离,激光点会显示在十字线的正中。而在30米以下的测量距离,激光点不在十字线中间。 (四)气泡 一体化的水泡使仪器更容易调平。 (五)键盘 1、开/测量键 2、第二级菜单功能 3、加+键 4、计时(延迟测量)键 5、等于[=]键 6、面积/体积键 7、储存键 8、测量基准边键 9、清除/关键 10、菜单键 11、照明键 12、间接测量(勾股定律)键 13、减-键 14、BLUETOOTH (六)显示屏 1、关于错误测量的信息 2、激光启动 3、周长 4、最大跟踪测量值 5、最小跟踪测量值 6、测量基准边 7、调出储存值

超声波测距技术综述

文献综述 题目超声波测距技术综述学生姓名 专业班级 学号 院(系)电气信息工程学院指导教师 完成时间2014 年06月01日

超声波测距技术综述 摘要 我们把频率高于20000赫兹的声波称为“超声波”。超声波具有指向性强,能量消耗缓慢,在介质中传播的距离较远等特点,同时它是一种非接触式的检测方式,不受光线、被测对象颜色等影响,因此经常被用于距离的测量。超声测距技术在工业现场、车辆导航、水声工程等领域都具有广泛的应用价值,目前已应用于物位测量、机器人自动导航以及空气中与水下的目标探测、识别、定位等场合。因此,深入研究超声波测距的理论和方法具有重要的实践意义。 关键词超声波超声波测距车辆导航物位测量

1 引言 1.1 超声波简介 一般认为,关于超声的研究最初起始于1876年F1Galton的气哨实验。当时Galton 在空气中产生的频率达300K Hz,这是人类首次有效产生的高频声。而科学技术的发展往往与一些偶然的历史事件相联系。对超声的研究起到极大推动作用的是,1912年豪华客轮Titanic号在首航中碰撞冰山后的沉没,这个当时震惊世界的悲剧促使科学家们提出用声学方法来预测冰山,在随后的第一次世界大战中,对超声的研究得以进一步的促进。 近些年来,随着超声技术研究的不断深入,我们把频率高于20000赫兹的声波称为“超声波”。再加上其具有的高精度、无损、非接触等优点,超声的应用变得越来越普及。目前已经广泛的应用在机械制造、电子冶金、航海、航空、宇航、石油化工、交通等工业领域。此外在材料科学、医学、生物科学等领域中也占据重要地位。 而我国,关于超声波的大规模研究始于1956年。迄今,在超声的各个领域都开展了研究和应用,其中有少数项目已接近或达到了国际水平。 1.2 超声波测距简介 超声测距指的是利用超声波的反射特性进行距离测量,是一种非接触式的检测方式。与其它方法相比,如电磁的或光学的方法,它不受光线、被测对象颜色等影响。对于被测物处于黑暗、有灰尘、烟雾、电磁干扰、有毒等恶劣的环境下有一定的适应能力。特别是应用于空气测距,由于空气中波速较慢,其回波信号中包含的沿传播方向上的结构信息很容易检测出来,具有很高的分辨力,因而其准确度也较其它方法为高。超声波测距仪,可以应用于汽车倒车、建筑施工工地以及一些工业现场的位置监控和移动机器人的研制上,也可在潮湿高温,多尘等恶劣环境下工作。例如:液位、厚度、管道长度等场合。 超声波测距作为一种典型的非接触测量方法,在很多场合,诸如工业自动控制,建筑工程测量,机器人视觉识别,倒车防撞雷达,海洋测量,物体识别等方面得到广泛的应用。超声波具有指向性强、能量消耗缓慢且在介质中传播的距离较远的优点。与激光测距、红外线测距相比,超声波对外界光线、色彩和电磁场不敏感,更适于黑暗、

Trupulse360激光测距仪中文操作说明.

TruPulse360简易操作说明一、外观说明 1. 1. 发射键 (开机键) 2. 上翻菜单键 3. 下翻菜单键 4. 可调目镜 5. 屈光度调节环 6. 脚架连接口 7. 吊带和镜头盖栓靠杆 8. RS232 数据输出端口 9. 电池盖 10. 激光接收镜头 11. 激光发射镜头 / 目镜 二、基本操作 2.1 开机 打开电池盖,按电池室内图示方向装入2支5号电池,盖好盖子。按下“发射键 (开 机键)”约3秒即开机。 2.2 关机 同时按“下上翻菜单键”和“下翻菜单键”约4秒即关机。待机2分钟左右自动关机(开启蓝牙功能时待机30分钟后关机)。

2.3 系统设置 2.3.1 按住下翻菜单键4 秒钟,进入上图所示系统设置菜单, 按上下键切换”Units”“bt”“InC”“H_Ang”等设置项目。 按发射键进入设置选项, 再按上下键切换选择项, 按发射键选定项目, 再按发射键回到测量工作状态。 测量单位设置 距离单位:Feet(英尺) / Meter(米)倾斜角度单位 Degree(度) 蓝牙功能设置 出现bt_on时按发射键选中拉牙功能开启,出现btoFF 时按发射键关闭蓝牙。

倾斜角度校正: 按住下翻菜单键4 秒,进入系统设置菜单, 按上下键切换到上图所示inC设置画面,按发射键进入inC的设置 菜单,按上下键切换no / yes,当画面显示yes 是按发射键进入倾角校正。 校正图示:把仪器放在平板上,按上图所示方向摆好后各按发射键一次

方位角校正

Slope Distance (SD) 斜距 Azimuth (AZ) 方位角 Inclination (INC) 倾角Horizontal Distance (HD) 水平距Vertical Distance (VD) 垂直距离Height Routine (HT) 高差Slope Distance (SD) 斜距 Azimuth (AZ) 方位角 Inclination (INC) 倾角Horizontal Distance (HD) 水平距Vertical Distance (VD) 垂直距离Height Routine (HT) 高差

激光测距仪使用方法

激光测距仪使用方法 激光测距仪的使用方法其实不复杂,只要选择好模式即可,一般都是一键操作。让我们举例说明,以TruPulse 200和欧尼卡2000B为例,方便我们理解具体操作。新发布的TruPulse 200型号测量的不仅仅是距离和角度。这款激光器配备了全新的改进型增强功能,为用户提供先进的尖端技术以及LTI激光器所熟知的易于操作和准确性。外观颜色也有变化,新款图帕斯200外观是以黑色为主,搭配黄色线条。 一、图帕斯200升级版优势在于: TruPulse图帕斯200激光测距仪,相比以前老款,精度提升到0.2米,且带有蓝牙,外观颜色也有变化,黑黄相间。 1、主要功能和增强功能: 精确度提高33% 目标收购率提高25% 无线通信 晶莹剔透的7倍光学镜片 可调节的眼睛屈光度 TruTargeting技术 2、所有TruPulse激光测距仪的主要特点: 以度或百分比度量斜率距离(SD)+倾角(INC) 计算水平距离(HD)+垂直距离(VD)+高度(HT)+ 2D缺失线(ML) 使用***近+***远+连续+过滤器模式区分所需目标与周围障碍物 安装在三脚架上,并具有优质光学元件,可增强视野 二、产品参数:

二、五种测量方式: 1、SD模式点到点直线距离 (斜距)十字光丝直接瞄准被测物体按FIRE键 2、VD模式垂直高度 (相对高度)即:单点定高目镜内部十字光丝直接瞄准被测物体的最高点适合测量悬空物体的 相对高度(如:高架线缆) 3、HD模式水平距离十字光丝瞄准被测物体仪器内置的倾斜补偿器会进行自动角度补偿计算 离被测物体的水平距离 4、HT模式绝对高度即:三点定高,目镜内部十字光丝直接瞄准被测物 测量顺序:瞄准被测中部,先测HD水平距离 瞄准被测物体的顶部,按FIRE键 瞄准被测物体的底部,按FIRE键 适合测量建筑物实体的绝对高度——如:建筑物高度,树木高度,塔台高度; 5、INC模式倾斜角度 (俯仰角度)十字光丝直接瞄准被测物体,按FIRE键。 图帕斯测距仪系列产品质量是测绘行业公认的,但其价格也同样是测绘行业顶尖的。而 拥有同样性能的欧尼卡2000B,价格要比图帕斯低约三分之一。下面我们再来看看欧尼卡2000B测距仪的产品参数,通过产品功能和参数的对比让我们来进一步了解产品是否符合我 们的需求,综合考虑产品性能和产品价格。Onick 2000B的推出,代表着测量精度达到一个 新的革命性专业水平,200米测距范围内,精准测量0.2米,带有蓝牙和RS232串口,覆盖 了图帕斯200B,在电力线路勘测应用领域中被广泛运用。坚固的外观材质,舒适的防滑胶皮,目镜屈光度调节旋转顺滑,进一步提升使用体验,内置1200毫安锂电充电系统,可测量1万次左右。Onick 2000B测距仪直观、方便、快捷的功能,助您户外开展工作更高效!

基于激光三角测距法的激光雷达原理综述

龙源期刊网 https://www.360docs.net/doc/c57457221.html, 基于激光三角测距法的激光雷达原理综述 作者:周俞辰 来源:《电子技术与软件工程》2016年第19期 摘要 本文主要介绍了激光雷达系统的特点和基本结构,着重讨论了基于激光三角测距法的激光雷达的工作原理,详细论述了二维激光扫描的测量方法,并延伸讨论了三维激光扫描的测量方法及光路结构。 【关键词】激光雷达激光三角测距法 2D/3D激光扫描 1 引言 激光雷达LiDAR(Light Detection and Ranging),是激光探测及测距系统的统称,是一种通过位置、距离、角度等测量数据直接获取对象表面点三维坐标,实现地表信息提取和三维场景重建的对地观测技术。激光雷达最基本的工作原理与普通雷达相似,均是通过发射系统发送一个信号,由接收系统收集并处理与目标作用产生的返回信号,来获得对象表面的三维信息。目前激光雷达的测量原理主要分为脉冲法,相干光法和三角法三种,本文主要讨论基于激光三角测距法的激光雷达系统的工作原理。 2 激光雷达基本理论 2.1 激光雷达系统的特点及应用前景 激光雷达相比于传统接触式测量具有快速、不接触、精度高等优点,同时该技术受成像条件影响小,反应时间短,自动化程度高,对测量对象表面的纹理信息要求低。 在激光雷达应用的主要测量原理中,脉冲法和相干光法对激光雷达的硬件要求高,但测量精度比激光三角法要高得多,故多用于军事领域。相比于此,激光三角测距法因其成本低,精度满足大部分工业及民用要求,得以受到关注。 目前移动机器人的导航方式主要包括:磁导航、惯性导航和视觉导航,其中视觉导航由于具有信号探测范围广,获取信息完整等优点,是移动机器人导航的一个主要发展方向。目前机器人的SLAM(Simultaneous localization and mapping,同步定位与地图构建)算法中最理想的设备仍旧是激光雷达,机器人通过激光扫描得到所处环境的2D或3D点云,从而可以进行诸如SLAM等定位算法,确定自身在环境当中的位置并创建出所处环境的地图。激光雷达的非 接触式测量特点,具有快速、精度高、识别准确等优点,广泛应用于移动机器人视觉系统的距离、角度、位置的测量方面,成为测量研究领域的热点。

一种新的激光探潜方法

文章编号:1009-3486(2002)06-0077-03 一种新的激光探潜方法 马治国,王江安 (海军工程大学兵器工程系,湖北武汉430033) 摘 要:提出了一种不同于现有激光探潜原理的新方法,该方法利用潜艇尾流中气泡的光散射特性来探测和跟踪潜艇.对该方法的原理进行了简单的介绍,还对所涉及到的几个关键问题进行了初步的探讨和研究. 关键词:激光;尾流;气泡;散射 中图分类号:TN249 文献标识码:A 随着潜艇航速的增加、/寂静0潜艇的出现以及消磁技术、各种声对抗技术、无磁性艇壳材料的采用,使得潜艇的隐蔽性与机动性进一步增强,潜艇在现代海战中起着越来越大的作用.因此,各国海军对反潜战极为关注,并且竭尽全力研究反潜战的战略、战术,开发各种探测设备和反潜武器.为对付潜艇的日益严重的威胁,各国海军更加重视研究新的水下目标探测手段. 传统的潜艇探测手段是采用声纳探测和磁异常探测.在探测与反探测的竞争中,各种先进的消声技术、消磁技术大量应用以减小潜艇的噪音和磁效应,声纳探潜、磁异常探测的能力已被大大削弱,因而各潜艇大国正在加速发展非声纳、非磁效应探测技术,如激光探测、红外热像仪探测、气体分析仪探测以及生物发光探测等[1].但就目前来说,这些探测技术还不能达到实战的要求,均存在着这样或那样的缺陷.因此,研究新的探潜方法,使各种探潜手段优势互补,增强战术重组能力以适应未来高科技海战的需要.本文尝试通过潜艇尾流气泡的光散射特性来探测和跟踪潜艇,并对关键技术进行了初步的探讨.1 原理及可行性 目前,用激光探测潜艇主要是根据有没有反射信号及其信号特征来推断所探测到的是否为潜艇.就激光探潜来说,目前还没有探测深度达到300m 的实验系统,已达到的探测深度是70m,与实用要求相差悬殊.而且,由于这种探测方法所探测的是潜艇的反射信号,其探测范围很有限,必须在潜艇的周围才有效,因而效率不高. 潜艇尾流是潜艇运动时螺旋桨产生的一长条含大量气泡的湍流区域,它主要由螺旋桨空化引起的.在潜望镜深度航行的潜艇尾流约在90m 左右远处上浮到水面.气泡发生在潜艇的尾流中,而且尾流中的气泡十分微小(其直径在L m 量级),上升速度较慢,故能在海水中保留很长时间,其光学效应(主要是散射效应)将维持更长时间,大约为数小时.由于气泡的存在,水的光学特性与无气泡时会有显著的区别.潜艇尾流中气泡的大小接近于蓝绿激光的波长,其米氏(Mie)散射效应十分明显.这就为我们利用尾流中气泡的光学特性作为探测潜艇的信号提供了可能.实际上,通过理论计算和对有关实验结果的分析,我们认为采用光学方法研究潜艇尾流气泡并且依此对潜艇进行跟踪是完全可行的[2]. 第14卷 第6期 2002年12月 海军工程大学学报 JOURNAL OF NAVAL UNIVERSITY OF E NGINEERING Vol.14 No.6 Dec.2002 *收稿日期:2002-04-08;修订日期:2002-06-12 作者简介:马治国(1978-),男,硕士生.

测距传感器综述

测距传感器综述 学生姓名李頔 学号 631106020129 专业名称电子信息工程 2013 年10月20日

测距传感器综述 作者姓名:李頔 摘要:对目前测量距离测试方法、测试仪器的总结 关键词:传感器、超声波、红外线、激光 一、目前测量距离的方法和原理 距传感器可分为超声波测距传感器、激光测距传感器、红外线测距传感器。 (一)、超声波测距传感器原理: 超声波对液体、固体的穿透本领很大,尤其是在阳光不透明的固体中,它可穿透几十米的深度。超声波碰到杂质或分界面会产生显著反射形成反射成回波,碰到活动物体能产生多普勒效应。因此超声波检测广泛应用在工业、国防、生物医学等方面以超声波作为检测手段,必须产生超声波和接收超声波。完成这种功能的装臵就是超声波传感器,习惯上称为超声换能器,或者超声探头。 (二)、激光测距传感器工作原理: 激光传感器工作时,先由激光二极管对准目标发射激光脉冲。经目标反射后激光向各方向散射。部分散射光返回到传感器接收器,被光学系统接收后成像到雪崩光电二极管上。雪崩光电二极管是一种内部具有放大功能的光学传感器,因此它能检测极其微弱的光信号。记录并处理从光脉冲发出到返回被接收所经历的时间,即可测定目标距离。激光传感器必须极其精确地测定传输时间,因为光速太快。 (三)、红外线测距传感器工作原理:

红外测距传感器利用红外信号遇到障碍物距离的不同反射的强 度也不同的原理,进行障碍物远近的检测。红外测距传感器具有一对红外信号发射与接收二极管,发射管发射特定频率的红外信号,接收管接收这种频率的红外信号,当红外的检测方向遇到障碍物时,红外信号反射回来被接收管接收,经过处理之后,通过数字传感器接口返回到机器人主机,机器人即可利用红外的返回信号来识别周围环境的变化 二、目前距离测量的现状 (一)超声波传感器 超声波传感器的检测范围取决于其使用的波长和频率。波长越长,频率越小,检测距离越大,如具有毫米级波长的紧凑型传感器的检测范围为300~500mm波长大于5mm的传感器检测范围可达8m。一些传感器具有较窄的6º声波发射角,因而更适合精确检测相对较小的物体。另一些声波发射角在12º至15º的传感器能够检测具有较大倾角的物体。此外,我们还有外臵探头型的超声波传感器,相应的电子线路位于常规传感器外壳内。这种结构更适合检测安装空间有限的场合。波长等因素会影响超声波传感器的精度,其中最主要的影响因素是随温度变化的声波速度,因而许多超声波传感器具有温度补偿的特性。该特性能使模拟量输出型的超声波传感器在一个宽温度范围内获得高达0.6mm的重复精度 (二)激光传感器 现代长度计量多是利用光波的干涉现象来进行的,其精度主要取

激光测距仪使用方法

激光测距仪使用方法: 首先要给激光测距仪装上电池,直接充电的,使用前先把电充满。 然后每一个激光测电仪都会有一个电源开关。 通过目镜可看到测距仪处于待机状态,再次测量前还要选择好单位。 长按模式键,直接选择想要的单位。 通过测距仪目镜中的内部液晶屏显示,瞄准被测物体。 确定瞄准之后,轻按发射键。 如果被测物体不是很清晰,通过=/-2屈光度调节器,调节被测物体远近的清晰度。 最后通过顺转或逆转调节远近。 激光测距仪: 激光测距仪(Laser rangefinder),是利用调制激光的某个参数实现对目标的距离测量的仪器。激光测距仪测量范围为3.5~5000米。 按照测距方法分为相位法测距仪和脉冲法测距仪,脉冲式激光测距仪是在工作时向目标射出一束或一序列短暂的脉冲激光束,由光电元件接收目标反射的激光束,计时器测定激光束从发射到接收的时间,计算出从观测者到目标的距离。相位法激光测距仪是利用检测发射光和反射光在空间中传播时发生的相位差来检测距离的。激光测距仪重量轻、体积小、操作简单速度快而准确,其误差仅为其它光学测距仪的五分之一到数百分之一,右图中,为典型的相位法测距仪和脉

冲法测距仪图。 激光测距仪是利用调制激光的某个参数对目标的距离进行准确测定的仪器。脉冲式激光测距仪是在工作时向目标射出一束或一序列短暂的脉冲激光束,由光电元件接收目标反射的激光束,计时器测定激光束从发射到接收的时间,计算出从测距仪到目标的距离。 当发射的激光束功率足够时,测程可达40公里左右甚至更远,激光测距仪可昼夜作业,但空间中有对激光吸收率较高的物质时,其测距的距离和精度会下降。 世界上第一台激光器,是由美国休斯飞机公司的科学家梅曼于1960年,首先研制成功的红宝石激光器。美国军方很快就在此基础上开展了对军用激光装置的研究。1961年,第一台军用激光测距仪通过了美国军方论证试验,对此后激光测距仪很快就进入了实用阶段。 由于激光测距仪价格不断下调,工业上也逐渐开始使用激光测距仪。国内外出现了一批新型的具有测距快、体积小、性能可靠等优点的微型测距仪,可以广泛应用于工业测控、矿山、港口等领域。 激光是六十年代发展起来的一项新技术。它是一种颜色很纯、能量高度集中、方向性很好的光。激光测距仪是利用激光进行测距的一种仪器。它的作用原理很简单:通过测定激光开始发射到激光从目标反射回来的时间来测定距离。例如用激光测距仪来测量月球的距离,如果激光从开始发射到从月球反射回来的时间被测定为2.56秒,激光发射到月球的单程时间就等于1.28秒,而激光的速度是光速,等

激光测距仪使用说明

面积体积测量连续测量 加法(+)键测屋键准边犍退格/关机键 开启/测虽键 间接测虽 自动水平 自动垂直 减法(一)键 储存键 照明\单位切换键自动背光屏幕四行显示

前杲准测目-1.多种测呈起点------------------ VARIETY OF ?ASURM> SYARTMG PONT 设舀垦准线,可从机器的不同位巨作 为;IIS起点,滿足不同情况下对测= 的 要求,使测员更方像。 后慕准狙呈 「2.加减计算更简单

z-r uc T j□- n~tF :tic nmxhc =CX-

贴心便携手绳 ---------------- r6. "fUHS" OOJhl 来用耐用的尼龙材质.処虽时昉 止机器税酒.便于记录与携带。

激光测距微弱信号检测方法研究

三峡大学 硕士学位论文 激光测距微弱信号检测方法研究 姓名:田桂平 申请学位级别:硕士 专业:控制理论与控制工程 指导教师:万钧力 20050401

内容摘要 在激光测距系统中,光电探测器接收激光回波信号时,信号受限于光电探测元件的噪声以及背景光干扰等原因,往往淹没在噪声之中,给实际应用带来了很多的困难,因而寻找合适的信号检测方法来提高信噪比,对许多应用场合来说,都是至关重要的。 本文以激光测距回波信号为研究对象,分析信号和噪声的特性,比较不同探测方法对改善信噪比的效果,探讨以提高信噪比为目的的激光测距微弱信号检测技术。论文共六章。第一章介绍了激光测距原理,概述了激光测距技术的发展与应用,讨论了信噪比与测程的关系。 论文第二章讨论了相关检测技术在激光测距微弱信号检测中的应用。相关检测技术是应用信号周期性和噪声随机性的特点,通过自相关或互相关运算,达到去除噪声,提取信号的目的。根据相关检测的原理,设计了一种基于相关检测的光电探测器的激光回波探测系统。仿真表明,对于淹没在噪声中的信号,互相关处理可以减少噪声,提高信噪比。该方法对脉冲式或相位式激光测距微弱信号检测均有效。论文第三章提出了一种用于相位式激光测距鉴相的新方法:向量内积法检相,理论仿真表明,该方法可消除信号幅值变化带来的测量影响,有很高的相位差检测精度。论文第四章介绍了信号积累技术的原理,设计了一种用于微弱信号检测的硬件电路方案,仿真表明该 m 方案的信噪改善比为m(是积累次数)。论文第五章介绍了小波变换用于激光脉冲回波微弱信号检测原理和方法,其中对小波多分辨率分析方法、小波阀值去噪算法几方面进行了详细的分析和研究;重点讨论了含噪脉冲信号的小波分解与重构,仿真表明,小波分解与重构方法能有效消除噪声。论文第六章对全文进行了总结。 关键词:微弱信号检测相关检测信号积累 小波变换

激光测距仪原理

激光测距仪激光测距基本原理 激光测距是光波测距中的一种测距方式,如果光以速度c在空气中传播在A、B两点间往返一次所需时间为t,则A、B两点间距离D可用下列表示。 D=ct/2 式中:D——测站点A、B两点间距离;c——光在大气中传播的速度;t——光往返A、B 一次所需的时间。 由上式可知,要测量A、B距离实际上是要测量光传播的时间t,根据测量时间方法的不同,激光测距仪通常可分为脉冲式和相位式两种测量形式。 相位式激光测距仪 相位式激光测距仪是用无线电波段的频率,对激光束进行幅度调制并测定调制光往返测线一次所产生的相位延迟,再根据调制光的波长,换算此相位延迟所代表的距离。即用间接方法测定出光经往返测线所需的时间。 相位式激光测距仪一般应用在精密测距中。由于其精度高,一般为毫米级,为了有效的反射信号,并使测定的目标限制在与仪器精度相称的某一特定点上,对这种测距仪都配置了被称为合作目标的反射镜。 若调制光角频率为ω,在待测量距离D上往返一次产生的相位延迟为φ,则对应时间t 可表示为: t=φ/ω 将此关系代入(3-6)式距离D可表示为 D=1/2 ct=1/2 c·φ/ω=c/(4πf) (Nπ+Δφ) =c/4f (N+ΔN)=U(N+) 式中:φ——信号往返测线一次产生的总的相位延迟。 ω——调制信号的角频率,ω=2πf。 U——单位长度,数值等于1/4调制波长 N——测线所包含调制半波长个数。 Δφ——信号往返测线一次产生相位延迟不足π部分。 ΔN——测线所包含调制波不足半波长的小数部分。 ΔN=φ/ω

在给定调制和标准大气条件下,频率c/(4πf)是一个常数,此时距离的测量变成了测线所包含半波长个数的测量和不足半波长的小数部分的测量即测N或φ,由于近代精密机械加工技术和无线电测相技术的发展,已使φ的测量达到很高的精度。 为了测得不足π的相角φ,可以通过不同的方法来进行测量,通常应用最多的是延迟测相和数字测相,目前短程激光测距仪均采用数字测相原理来求得φ。 由上所述一般情况下相位式激光测距仪使用连续发射带调制信号的激光束,为了获得测距高精度还需配置合作目标,而目前推出的手持式激光测距仪是脉冲式激光测距仪中又一新型测距仪,它不仅体积小、重量轻,还采用数字测相脉冲展宽细分技术,无需合作目标即可达到毫米级精度,测程已经超过100m,且能快速准确地直接显示距离。是短程精度精密工程测量、房屋建筑面积测量中最新型的长度计量标准器具。

激光测距仪说明书

LH系列激光测距/测高仪 100Lh,400LH,600LH,800LH,1000LH激光测距仪 Opti-logic LH系列激光测距/测高仪将激光测距装置和垂直角度传感器合二为一,轻巧便携,操作简单。根据目标尺寸和反射性的不同,此系列手持式激光测距仪量程可1000米(1000LH型)。利用内置的电子倾斜传感器,请斜补偿激光测距仪可以对倾斜角度进行测量(精度达0.1度),进而可以得出目标物体的高度值。此系列激光测距/测高仪可以应用在树高测量、建筑施工、地质勘测、地产评估等多种应用领域。此系列产品适合于对精度要求不高,而对仪器成本有所限制的测量应用,经多年潜心设计而成,充分体现了美国在这个领域内的技术水平。 1.0 产品外观及功能特点 探物镜:通过探物镜的窗口可以将指示用的红光斑指向目标物体。 “Range”按钮:利用“Range”按钮可以进行测距操作或者选择工作模式。 显示:XT系列激光测距仪允许使用者随意选择显示单位,米、英尺或码。 电量过低指示:用于提示使用者及时更换电池。 自动关机:为降低能耗,测距仪会在测量完成后5秒钟自动关机。 2.0 基本操作 A.保持测距仪位于眼睛前1-2英寸处,通过探物镜来瞄准物体。 B.按住“Range”按钮,在探物镜中会出现一个红色亮点。将红色亮点对准目标物体。 C.保持测距仪指向目标物体,松开“Range”键。需要注意的是,在松开按键之前,测量光束是不会射出的。 D.当指示红点消失后便可读取距离值。 2.1 距离测量过程 Opti-Logic LH型激光测距仪发出不可见、对人眼无害的脉冲红外激光束。通过目标物体对激光束反射,测量光束往返的时间来得到待测的距离值。激光测距仪发出的激光束是不可见的带状垂直光束,这使得它测量细小的垂直物体的能力大大提高。LH型激光测距仪具有一种特有的锁定目标功能以降低光束偏离与背景环境相近的待测物体的可能,只需按住“range”按钮并在探物镜中保证红色指示光点对准待测物体即可。激光束会在松开按钮之后从测距仪中发出,这就保证使用者有足够的时间来通过探物镜内的红色指示光斑来锁定目标。为提高测量精度,测距仪的每次测量实际上都是由多次测量组成的,当获得足够的测量信息后,扬声器会发出声音提醒操作者,并将测量结果显示在液晶面板上。 激光测距仪所能测量的最大量程取决于待测目标的形状、大小、反射性、所处方向以及空气条件,目标的颜色和表面的涂漆色彩同样也会对量程产生影响。对于浅色的,反射面积较大的非光滑待测物体具有最佳的测量效果。垂直物体比水平物体更容易瞄准,白色物体的量程大于黑色物体,反射表面与光束方向垂直的物体要比表面方向偏离的物体更容易测量。对于那些特别对反射性予以设计的物体,能够获得最大的测量范围,这样的物品包括交通指示牌、街道标志牌以及Opti-Logic专用目标板等。需要特别注意的是,窗户和玻璃这样的光滑物体并不像想象的那样是理想的待测目标,恰恰相反,由于它们会把激光反射到光源以外的方向,反而会极大地增大测量的难度。 2.2 更换9伏电池 A.滑开测距仪前面的锁扣(朝透镜的方向)。 B.用拇指轻撬开电池盖。 C.拉动带子,电池就会滑出来。 D.更换电池。电池的放置方向在仪器上给出了示意。锁紧电池盖即完成操作。 2.3 模式选择 LH系列激光测距/测高仪允许操作者选择三种显示单位和四种测量模式,(1)测量到目标的直线距离,(2)测量水平距离,(3)测量目标物体的高度,(4)测量到目标物体的俯仰角度。在模式1、模式2和模式3中,操作者可以选则米或英尺或码作为单位。按住按钮10-12秒,看到显示内容发生变化后松开按钮将启动模式选择操作。连续按动按钮将滚动显示如下模式:模式1 –米(反射)-米(非反射);英尺(反射)-英尺(非反射);码(反射)-码(非反射);模式2-米-英尺-码;模式3-米-英尺-码;模式4。到达所需模式后停止按动按钮,相应模式在显示5秒后将自动选定并作为缺省模式。 模式1-直线距离测量。按住操作钮激活指示红点,将其对准待测物体,松开按钮使测距仪发出测量光束,保持测距仪不动直到红色指示光点消失,在液晶显示屏上读取数据。 模式2-水平距离测量(倾斜补偿模式)。按住操作钮激活指示红点,将其对准待测物体,松开按钮直到红色指示光点消失,然后在液晶显示屏上读取数据。 模式3-高度测量。这个功能的实现需要进行三次测量。首先,在待测物体的中部附近选定一个点,对于树木这样的目标最好是位于树干上,而不是旁枝上。按住按扭,“CEN”显示在屏幕上,将红色指示光电瞄准目标点,松开按钮,直至听到“哔哔”声。

基于激光测距仪的温室机器人道路边缘检测与路径导航综述

基于激光测距仪的温室机器人道路边缘检测与路径导 航* 贾士伟1,2,3,李军民1,邱权2,3*,唐慧娟1 (1.西华大学机械工程与自动化学院,成都,610039;2.北京市农林科学院,北京,100097;3. 北京农业智 能装备技术研究中心,北京,100097) 摘要:针对温室内移动机器人的应用需求,该文提出了一种应用于温室内移动机器人自主行走的温室道路边缘检测与导航算法. 此方法利用激光测距仪获取当前视场内路面、作物及障碍物信息,根据温室路面平整度高于作物冠层外表面的特点,检测道路边缘并生成移动机器人下一采样控制周期的期望航向,然后根据机器人几何与物理模型推算左右驱动轮速度调整指令,使移动机器人保持沿道路行走而不进入作物区中。该算法的有效性在温室移动机器人Walle平台上得到了验证,机器人偏离道路中心线的平均值为-1.2707cm,均方误差为2.6772。 关键词:移动机器人,激光测距仪,温室道路,边缘提取,导航 中国分类号:S24;TP242.6 文献标识码:A 0引言 温室能够克服四季气候影响、实现作物周年生产,是现代农业的高效生产形式[1]。随着中国温室面积的快速扩大,农业劳动者对于温室内自动化生产设备的需求日益迫切。与传统农业生产不同,温室生产作业环境比较狭窄,常规设备难以施展,因此人们开始关注适用于温室内狭窄作业环境的移动机器人技术。导航是实现机器人在温室内自动化、自主化作业的基础技术。根据机器人的行走路线特点,目前用于温室内的移动机器人导航方案大致可以划分为4类:用于轨道行走的、用于垄沟行走的、用于磁条/色带引导行走的和用于无明显引导标志的普通路面的。用于轨道行走的方案对于自主导航算法的要求较低,机器人只要按照作业需求沿着固定轨道以一定速度前进或者后退即可,前进或后退的距离则由具体作业需要确定,如移动指定的距离或者移动到其他 1收稿日期:2015-3-12;修订日期:2015-6-07 基金项目:国家863计划课题“设施农业装备的数字化设计与智能控制技术”(2013AA102406);国家自然科学基金项目《柔性障碍物富集环境中的三维自主导航研究》(61305105);教育部春晖计划项目《四足机器人步态规划与稳定性控制研究》(z2012014); 作者简介:贾士伟,男(汉族),河南柘城人,主要研究方向为移动机器人。成都,西华大学机械工程与自动化学院610039。 Email: 1101164110@https://www.360docs.net/doc/c57457221.html, 通信作者:邱权,男(汉族),山东荣成人,副研究员,博士,主要研究方向为农业机器人系统、温室环境控制理论。北京,北京市农林科学院,100097。 Email:qiuq@https://www.360docs.net/doc/c57457221.html, 传感器视野内出现作业对象为止[2]。类似的,用于垄沟行走的方案对导航算法要求也较低:机器人前后车轴按垄坡形状弯曲,从而将自身的运动限定在与垄沟平行的轴上,导航算法仅需给出前进后退指令[3]。用于磁条或色带的方案则稍微复杂,机器人轮/轮轴并非固定在某一轴上,而是依靠磁力传感器或机器视觉感知磁条/色带位置,从而引导机器人对其进行跟踪[4]。用于无明显引导标志的普通路面的方案,则主要依靠各种传感器信息的融合完成导航,常用的传感器包括激光测距仪、相机、陀螺仪、编码器等[5]。 在所有4类导航方案中,用于轨道、垄沟行走的方案要求道路具有特定的构型,用于磁条/色带引导行走的方案则要求道路上设有引导带,因此以上3类方法均存在一定局限性,难以引导温室机器人进行灵活的自主移动。相比之下,用于无明显引导标志的普通路面的导航方案具有突出的环境适应性强的特点,受到了许多学者的关注。通常该类方案的核心算法分为2部分:道路边缘提取和导航调速控制指令生成。道路边缘提取是为了确定机器人的移动方向,确保机器人一直沿着道路行走,不偏离道路区域碾压作物;导航是通过对机器人左右驱动轮电机的速度调控实现的,根据方向偏差来调整左右轮的速度,从而确保机器人在发现有可能偏出道路区域时能够自动调整过来。

相关文档
最新文档