Impedance Koya-2008

Impedance detected abnormal bolus transit in patients with normal esophageal manometry.Sensitive indicator of esophageal functional abnormality?

D.L.Koya,1A.Agrawal,2J.

E.Freeman,2D.O.Castell2

1Division of General Internal Medicine,2Division of Gastroenterology and Hepatology,Medical University of South Carolina,Charleston,South Caroline,USA

SUMMARY.When used in combination with manometry,multichannel intraluminal impedance better charac-terizes the established manometric abnormalities into those with and without associated transit defects.However, the signi?cance of the?nding of normal manometry and abnormal impedance is not known.The objective of this study is to evaluate the clinical relevance of abnormal impedance associated with normal manometry during esophageal function testing in patients with a variety of esophageal symptoms.All patients referred for esophageal function testing during a27-month period underwent combined multichannel intraluminal impedance and esoph-ageal manometry studies including10liquid and10viscous swallows in supine position.From576patients with normal esophageal body manometry we identi?ed158patients(27%)with abnormal impedance.The primary symptom in these158patients was compared to that in146consecutive patients with normal manometry and normal impedance selected from the original576patients.Abnormal bolus transit was found with viscous,liquid and both type swallows in60%,19%and21%of the patients respectively.Of patients with abnormal bolus transit, 23%presented with dysphagia compared to10%of normal transit patients(p=0.0035).In conclusion,abnormal impedance even in patients with normal manometry may be a sensitive indicator of esophageal functional abnor-mality as represented by the symptom of dysphagia in these patients.Abnormal transit was more frequently identi?ed with viscous than liquid swallows.Prospective studies to further clarify impedance detected transit defects in patients with normal manometry and the role of viscous swallows in diagnostic testing are warranted.

KEY WORDS:abnormal impedance with normal manometry,dysphagia,MII–EM.

INTRODUCTION

Esophageal motility abnormalities are typically evalu-ated using esophageal manometry(EM).1,2EM only provides information about intraluminal pressures, necessitating techniques like video?uoroscopy or radionuclide scintigraphy for the evaluation of bolus transit during swallowing.3,4However,these imaging techniques are associated with radiation exposure and are usually not performed simultaneously with manometry,limiting their application for assessment of bolus transport in clinical practice.Multichannel intraluminal impedance(MII)monitoring is a new non-radiation technique for assessment of bolus transit during swallowing.5–7Esophageal impedance testing has shown to have good correlation with video ?uoroscopy and manometry.6–12When used in combi-nation with manometry,impedance helps to better characterize the established manometric abnormali-ties as those associated with either abnormal or normal bolus transit.13In a group of350patients referred for esophageal function testing(EFT)with various esophageal symptoms,Tutuian and Castell found that combined multichannel intraluminal impedance and esophageal manometry(MII–EM) provided important functional details of esophageal motility abnormalities.They found normal bolus

Address correspondence to:Dr Deepika L.Koya,MD,MSCR,

Division of General Internal Medicine,Medical University of

South Carolina,135Rutledge Ave,Room280,Charleston,SC

29425,USA.Email:koyald@https://www.360docs.net/doc/c29836722.html,

Authors’contributions:D.L.Koya collected the data,conceived

of the study,designed and conducted the analysis,and led the

writing.A.Agrawal assisted in data collection and conceived of

the study.J.E.Freeman assisted in data collection and

preparation of the manuscript.D.O.Castell conceived of the

study,and supervised the study design,and preparation of the

manuscript.All authors helped to conceptualize ideas,interpret

?ndings,and revise the manuscript.

?2008Copyright the Authors

Journal compilation?2008,Wiley Periodicals,Inc.and the International Society for Diseases of the Esophagus1

transit for liquid in almost all patients with normal EM,nutcracker esophagus and poorly relaxing, hypertensive,or hypotensive lower esophageal sphincter(LES).In their evaluation of the relationship between transit abnormalities and patient’s presenting symptom,they found that the symptom of dysphagia was signi?cantly more prevalent in patients with abnormal liquid and/or viscous bolus transit.14In their study evaluating40patients with non-obstructive dysphagia using MII–EM,Conchillo et al.found that35%(6/17)of dysphagia patients with normal manometry had abnormal liquid and/or viscous transit.15Their?ndings suggest that in patients with dysphagia,addition of impedance to EFT testing identi?ed a transit defect even in those with normal manometry.

With increasing application of combined MII–EM in the evaluation of esophageal functional defects,we found that abnormal bolus transit with liquid and/or viscous swallows is found in some patients with normal manometry.The relevance of?nding abnor-mal bolus transit and normal manometry as detected by combined MII–EM in the evaluation of patients with a variety of esophageal symptoms is not well-known.

In this study,we sought to document the fre-quency of and evaluate the clinical relevance of ?nding abnormal transit in patients with normal manometry referred for esophageal function testing using MII–EM.

METHODS

Since July2002,all patients referred to our labora-tory have undergone EFT by combined MII–EM technique.Institutional Review Board of Medical University of South Carolina(Charleston,SC) approved publishing information from EFT testing. The primary symptom for which patients were referred for testing was recorded from the physician’s referral correspondence.When this information was not available,it was obtained from a questionnaire completed by the patients prior to the testing,which includes detailed questions about their chief com-plaint.In our tertiary center,patients are referred from the community typically after the initial workup for dysphagia(i.e.barium esophagram and upper gastrointestinal(GI)endoscopy)was performed. Details of many of these studies were not available. Details of the EFT testing

Each patient underwent EFT by combined MII–EM using a Koenigsberg9-channel probe(Sandhill EFT catheter;Sandhill Scienti?c,Inc.,Highlands Ranch, CO,USA).The catheter was4.5mm in diameter with two circumferential solid-state pressure sensors at5and10cm and three unidirectional solid-state pres-

sure sensors at15,20,and25cm from the tip of the

catheter.Impedance measuring segments consisting

of metal rings placed2cm apart,were centered10,

15,20,and25cm from the tip of the catheter,

straddling the four proximal pressure transducers.

The EFT catheter was inserted intranasally into the

esophagus up to a depth of60cm.The LES was

identi?ed by using a stationary pull-through tech-

nique,and the most distal sensor was placed in the

high-pressure zone of the LES.Intra-esophageal

pressure sensors and impedance measuring segments

were thus located at5,10,15,and20cm above the

LES.Patients received10swallows of5cc normal

saline(liquid swallows)and10swallows of5cc

viscous material(viscous swallows)each20–30

seconds apart in the supine position.

Manometric parameters that characterize swallows Manometric parameters used to characterize esoph-

ageal body manometry included:(i)contraction

amplitudes at5and10cm above the LES;(ii)distal

esophageal amplitude(DEA)as average of contrac-

tion amplitudes at5and10cm above the LES;and

(iii)onset velocity of esophageal contractions in the

distal part of the esophagus.Based on these mano-

metric parameters,swallows were classi?ed as either

normal,ineffective,or simultaneous.

?Normal swallows–contraction amplitudes at5

and10cm above the LES?30mmHg and onset

velocity<8cm/second

?Ineffective–if either of the contraction amplitudes

at5and10cm above the LES<30mmHg

?Simultaneous–contraction amplitudes at5and

10cm above the LES?30mmHg and distal veloc-

ity>8cm/second

Overall diagnosis of normal manometry

Using10saline swallows,the diagnosis of normal

EM was made based on the revised criteria suggested

by Tutuian and Castell.16Prior to the introduction of

MII–EM testing,the diagnoses of ineffective esoph-

ageal motility(IEM)(?30%saline swallows with

contraction amplitude<30mmHg in either one of the

two distal sites located5and10cm above the LES)

and normal EM(not more than20%ineffective and

not more than10%simultaneous swallows with DEA <180mm Hg and with normal LES resting and residual pressures)were made based on EM alone

with no direct assessment of esophageal bolus clear-

ance.17In their study evaluating the esophageal

function in70patients with IEM using the MII–EM

technique,Tutuian and Castell found that patients

with?5manometric ineffective liquid swallows were

signi?cantly more likely to have abnormal bolus

transit than patients with the current manometric

2Diseases of the Esophagus

?2008Copyright the Authors Journal compilation?2008,Wiley Periodicals,Inc.and the International Society for Diseases of the Esophagus

de?nition of IEM (?3liquid ineffective swallows).16Based on these ?ndings,the authors suggested a revi-sion of existing criteria for de?ning IEM and normal manometry.We de?ned normal EM as not more than 50%ineffective and not more than 10%simultaneous swallows with DEA <180mmHg.

All the patients in our study had normal esoph-ageal peristalsis.In their study evaluating functional aspects of various motility abnormalities using MII–EM,Tututian and Castell found that isolated LES abnormalities in those with normal esophageal body pressures do not signi?cantly affect bolus transit.14For this reason,the ?nal diagnosis of normal manometry in our study was based on esophageal body manometry alone.

MII parameters that characterize swallows

Bolus entry at each speci?c level was considered at the 50%point between the 3-second pre-swallow impedance baseline and impedance nadir during bolus presence.Bolus exit was determined as return to this 50%point on the impedance recovery curve.The bolus was considered to exit a given level in the esophagus if the impedance recovered to greater

than the 50%baseline value for at least 5seconds.The bolus was considered not to exit the segment if it did not recover to either greater than the 50%base-line value or recovered for <5seconds.Based on these MII parameters,swallows were classi?ed as follows:(i)complete bolus transit if bolus entry occurred at the most proximal site (20cm above the LES),and bolus exit points were recorded in all three distal impedance-measuring sites (i.e.15cm,10cm,and 5cm above the LES);and (ii)incomplete bolus transit if bolus exit was not identi?ed at any one of the three distal impedance measuring sites (Fig.1).Overall diagnosis of esophageal transit abnormalities Transit abnormalities were de?ned as abnormal liquid transit if 30%or more of the 10liquid swallows had incomplete transit and abnormal viscous transit if 40%or more of 10viscous swallows had incomplete bolus transit.These transit abnormalities were de?ned based on prior established criteria derived from a study in 43healthy volunteers.10It has been suggested that abnormal transit for both liquid and viscous swallows be considered severe esophageal functional abnormality whereas abnormalities

in

Fig.1Examples of studies showing normal manometry with normal transit and normal manometry with abnormal transit (a)liquid swallow showing normal manometry with abnormal transit (2nd impedance site),(b)viscous swallow showing normal manometry with abnormal transit (3rd impedance site),(c)liquid swallow showing normal manometry with normal transit.Abnormal impedance with normal manometry 3

?2008Copyright the Authors

Journal compilation ?2008,Wiley Periodicals,Inc.and the International Society for Diseases of the Esophagus

transit for either liquid or viscous swallows is a mod-erate functional defect.This categorization of sever-ity of transit defects is in accordance with those made in previous studies in patients with IEM.15,17Statistical analysis

Descriptive statistics were used to describe impedance characteristics in patients with normal manometry and abnormal transit.Differences in symptom of pre-sentation between patients with normal manometry and abnormal transit and those with normal manom-etry and normal transit were assessed by chi-square tests.We considered a 2-tailed P value of <0.05sta-tistically signi?cant for all analyses.SAS v 9.1(Cary,NC,USA)was used for all statistical analyses.

RESULTS

Between July 1,2002,and October 31,2004,we iden-ti?ed 589combined MII–EM studies with normal manometry.While all these patients received 10liquid and 10viscous swallows,13patients with normal manometry with liquid swallows could not complete the test with viscous swallows and were excluded.Of the 576patients with normal manom-etry,who completed testing with both liquid and viscous swallows,158patients (27.4%)had abnormal transit for liquid or viscous swallows,or both.EFT was performed as either a primary diagnostic proce-

dure for evaluation of esophageal symptoms or prior to ambulatory pH monitoring.Of the 158patients,95(60%)had abnormal transit for viscous only and 30(19%)for liquid swallows only.These were consid-ered to have a moderate transit defect.Severe transit defect de?ned as abnormal transit for both liquid and viscous swallows was found in 33patients (21%,Fig.2).Thus,128of these 158patients (81%)had impaired viscous transit and 63(40%)had abnormal liquid transit.

Primary symptom and impedance characteristics:Normal manometry and abnormal transit

The primary symptom for which the 158patients were referred for EFT testing was heartburn/regurgitation (25%),dysphagia (23%),abdominal pain/nausea (14%),cough (9%),hoarseness/throat clearing (8%),and globus (5%,Table 1).The propor-tion of patients presenting with the symptom of dys-phagia among those with transit defects for viscous only,liquid only,and both liquid and viscous was 23,27,and 18%,respectively (Fig.3).

Although all these patients had normal manom-etry which was de?ned only based on liquid swallows,about 19%had abnormal manometry for viscous swallows,as recently de?ned by Blonski et al .According to their study,the normal manometric values for viscous swallows were ?60%ineffective contractions (<30mmHg),?10%simultaneous contractions,and distal esophageal amplitude <204mmHg.18Of the 30/158(19%)with

abnormal

102030405060

70Abnormal V only Abnormal both V+L Abnormal L only

Type of abnormal transit

% o f p a t i e n t s

Fig.2Proportion of patients with normal manometry and abnormal transit,according to the type of transit abnormality (V =viscous;L =liquid).

Table 1Comparison of primary symptom:abnormal transit versus normal transit

Symptom

Normal manometry with abnormal transit n =158(%)Normal manometry with normal transit n =146(%)P -value Dysphagia

36(22.8)15(10.3)0.0035Heartburn/regurgitation 39(24.7)52(35.6)0.04Abdominal pain/nausea 22(13.9)13(8.9)NS Cough 14(8.9)13(8.9)NS Chest pain 27(17.1)30(20.6)NS Hoarseness 12(7.6)13(8.9)NS Globus

8(5.1)

10(6.9)

NS

NS,

non-signi?cant.

51015202530Viscous Liquid Liquid & Viscous

Type of abnormal transit

% o f p a t i e n t s w i t h D y s p h a g i a

Fig.3Percentage of patients with dysphagia,according to bolus transit abnormality among patients with abnormal transit and normal manometry.

4Diseases of the Esophagus

?2008Copyright the Authors

Journal compilation ?2008,Wiley Periodicals,Inc.and the International Society for Diseases of the Esophagus

viscous manometry,21/158(13%)had more than60% ineffective viscous swallows and9/158(6%)had more than10%simultaneous viscous swallows. Comparison of demographics and primary symptom: normal transit versus abnormal transit

In patients with normal manometry,demographic characteristics and primary symptom were compared between patients with normal transit and those with abnormal transit.Of the original576patients with normal manometry,146consecutive patients with normal esophageal body manometry,normal transit and normal LES resting and residual pressures with complete information on demographics,and symptom information were included in the normal transit group.We found no signi?cant differences in age,gender,and race between the146patients with

normal transit versus the158with abnormal transit (Table2).The frequency of dysphagia was signi?-cantly(P=0.0035)greater(36/158,23%)in patients with abnormal bolus transit compared with those with normal transit(15/146,10%).In contrast,the frequency of typical re?ux symptoms(heartburn or regurgitation39/158,25%)was signi?cantly lower (P=0.04)in patients with abnormal transit com-pared with normal transit patients(52/146,36%; Fig.4).There were no signi?cant differences between the two groups in the frequency of presentation of other symptoms(Table1).There are3/36(8%) patients with dysphagia in the abnormal transit group who had fundoplication whereas none in the normal transit group had post fundoplication dysph-agia.No signi?cant difference in the mean LES residual pressure was found between the normal transit and abnormal transit groups(P=0.1350). Similarly,the mean LES resting pressure was not signi?cantly different between the two groups (P=0.089).

DISCUSSION

Our study?ndings suggest that,even with normal esophageal contractility,the MII component of MII–EM testing was sensitive in detecting esophageal transit abnormalities that contributed to the symptom of dysphagia.Without MII,these patients with impaired clearance would have been described as normal.Among the patients with abnormal transit,differences in transit patterns for liquid and viscous swallows were found.The majority had impaired viscous bolus transit(81%).

In their study evaluating the esophageal functional details of350patients with a variety of esophageal symptoms,Tutuian and Castell found a signi?cant association between the symptom of dysphagia and abnormal bolus transit when using MII–EM.14The transit defects in these patients were associated with manometrically de?ned motility abnormalities includ-ing achalasia,scleroderma,IEM,or distal esophageal spasm(DES).Our study also found an association between frequency of dysphagia and bolus transit defect even with no detectable manometric abnormal-ity.Studies exploring the utility of MII–EM in evalu-ation of patients with esophageal symptoms suggest that adding impedance to manometry better charac-terizes the existing manometric abnormalities into those associated with transit defects and those with only pressure defects.13We found that the impedance technique not only complements manometric abnor-malities but is also sensitive in detecting transit defects independent of pressure abnormalities.Our data suggest that we should consider adding an additional motility abnormality called‘normal manometry with abnormal transit’to the classi?cation of esophageal motility abnormalities.

The clinical relevance of?nding normal manom-etry with abnormal transit in MII–EM studies has been described in patients with non-obstructive dys-phagia(NOD)and post-fundoplication dysphagia. In their study evaluating the value of adding MII to EM in40patients with NOD,Conchillo et al.found that6/17(35%)of NOD patients with normal manometry had abnormal liquid and/or viscous tran-

Table2Demographic characteristics:abnormal transit versus normal transit

Demographics Normal manometry

and abnormal

transit(n=158)

Normal manometry

and normal

transit(n=146)

Age in years(mean)5656 Gender

Female104(66%)104(71%) Male54(34%)42(29%) Race

White129(82%)121(83%) Black27(17%)23(16%) Asian/Hispanic2(1%)2

(1%)

5

10

15

20

25

30

35

40

Dysphagia Heartburn/Regurgitation

%

o

f

p

a

t

i

e

n

t

s

Fig.4Percentage of patients presenting with dysphagia and gastroesophageal re?ux disease(GERD)having normal transit with normal manometry versus abnormal transit with normal manometry.Normal transit with dysphagia n=15,abnormal transit with dysphagia n=36,P=0.0035;normal transit with GERD symptoms n=52,abnormal transit with GERD symptoms n=39,P=0.037.

Abnormal impedance with normal manometry5

?2008Copyright the Authors

Journal compilation?2008,Wiley Periodicals,Inc.and the International Society for Diseases of the Esophagus

sit.15In another study,which evaluated patients with post-fundoplication dysphagia using MII–EM,Yigit et al.found that esophageal transit was impaired in the majority of patients,even with normal fundopli-cation anatomy and normal peristalsis on manom-etry.19In both studies,some abnormalities in esophageal motility were only detected by MII and would have been interpreted as normal if only the manometry technique had been used.Consistent with these studies,we found a signi?cant association between dysphagia and impaired bolus transit in the presence of normal motility compared with patients with normal transit in patients evaluated for a variety of esophageal symptoms.However,a signi?cant association with symptoms(heartburn/regurgitation) usually considered typical symptoms of gastroesoph-ageal re?ux disease(GERD),was found in a normal transit group of patients.It is not entirely clear why typical GERD symptoms are more prevalent in the normal transit group.However,many of these patients had MII–EM testing done to establish the location of LES as a pretest for ambulatory pH moni-toring for typical GERD symptoms.It appears that a common manometric?nding in these patients with typical GERD symptoms is normal MII–EM.

In the original study by Tutuian and Castell evalu-ating transit abnormalities in350patients using MII–EM,only5%of patients with normal manometry had abnormal bolus transit for liquid swallows.14The increase in prevalence of abnormal transit with normal manometry seen in our study has two possible explanations.First,the higher prevalence of abnor-mal transit with normal manometry is,in part,due to the viscous swallows,which may be more sensitive than saline swallows to detect transit abnormalities in the presence of normal manometry.In19%of patients,these transit abnormalities are associated with abnormal viscous manometry(either an IEM or DES pattern in viscous swallows only).If viscous manometry is considered in de?ning normal manom-etry,these patients would be categorized as IEM or DES.Consistent with our?nding,Blonski et al. found that viscous solution is more sensitive in detecting various manometric abnormalities.20 Another possible explanation for the high rate of abnormal transit we found relates to the change in criteria for IEM from three ineffective swallows to ?ve ineffective swallows,which would have moved 46/158(29%)patients from the category of IEM to normal manometry with abnormal transit.We did not?nd a signi?cant association between the propor-tion of patients with dysphagia and the severity of transit defect(i.e.moderate or severe),suggesting that this proposed categorization may not be as useful as previously suggested.

There are several limitations to our study.First,as this is a cross-sectional study,we can only conclude that abnormal transit is signi?cantly associated with dysphagia and no inferences about causality of dys-phagia can be made.Second,because some of the patients included in our study were referred to us from the community after their initial workup for dysphagia(i.e.barium esophagram and upper GI endoscopy),we were unable to con?rm that their barium esophagrams and endoscopies were normal. However,their referral for EFT testing suggests the presence of non-obstructive dysphagia.

Simultaneous impedance testing is known to complement EM by clarifying functional details of bolus transit in patients with esophageal motility abnormalities.Also,it is a sensitive test in detecting transit abnormalities independent of esophageal contractility as represented by the symptom of dys-phagia.Outcome-based prospective studies are needed to clarify the role of impedance testing in patients with esophageal symptoms.Prospective studies are also warranted to de?ne further the role of viscous swallows in clarifying the functional details of motility abnormalities.

References

1Richter J E,Wu W C,Johns D N et al.Esophageal manometry in95healthy adult volunteers.Variability of pressures with age and frequency of“abnormal”contractions.Dig Dis Sci1987;

32:583–92.

2Kahrilas P J,Dodds W J,Hogan W J.Effect of peristaltic dysfunction on esophageal volume clearance.Gastroenterol-ogy1988;94(1):73–80.

3Hogan W J,Dodds W J,Stewart E https://www.360docs.net/doc/c29836722.html,parison of roent-genology and intraluminal manometry for evaluating oesoph-ageal peristalsis.Roentgenol Gastroenterol1973;5:28–32.

4Richter J E,Blackwell J N,Wu W C,Johns D N,Cowan R J, Castell D O.Relationship of radionucleide liquid bolus trans-port and esophageal manometry.J Lab Clin Med1987;1987: 217–24.

5Silny J.Intraluminal multiple electric impedance procedure For measurement of gastrointestinal motility.J Gastrointest Motil 1991;3:151–62.

6Silny J,Knigge K P,Fass J et al.Veri?cation of the intralumi-nal multiple electrical impedance measurement for recording of gastrointestinal motility.J Gastrointest Motil1993;5:107–

22.

7Nguyen H N,Silny J,Matern S.Multiple intraluminal electric impedancometry for recording of upper gastrointestinal motil-ity:current results and further implications.Am J Gastroen-terol1999;94:306–17.

8Frieling T,Hermann S,Kuhlbush R et https://www.360docs.net/doc/c29836722.html,parison between intraluminal multiple impedance measurement and manometry in the human esophagus.Neurogastroenterol Motil1996;8:45–50.

9Srinivasan R,Vela M,Katz P,Tatuian R,Castell J A,Castell

D O.Esophageal function testing using multichannel intralu-

minal impedance.Am J Physiol Gastrointest Liver Physiol 2001;280:G457–62.

10Simren M,Silny J,Holloway R,Tack J,Janssens J,Sifrim D.

Relevance of ineffective oesophageal motility during oesoph-ageal acid clearance.Gut2003;52:784–90.

11Fass J,Silny J,Braun L et al.Measuring esophageal motility with a new intraluminal impedance device:?rst clinical results in re?ux patients.Scand J Gastroenterol1994;29:693–702. 12Nguyen H N,Silny J,Albers D et al.Dynamics of esophageal bolus transport in healthy subjects studied using multiple intraluminal impedancometry.Am J Physiol Gastrointest Liver Physiol1997;273:G958–64.

13Tutuian R,Vela M F,Shay S S,Castell D O.Multichannel intraluminal impedance in esophageal function testing and

6Diseases of the Esophagus

?2008Copyright the Authors Journal compilation?2008,Wiley Periodicals,Inc.and the International Society for Diseases of the Esophagus

gastroesophageal re?ux monitoring.J Clin Gastroenterol2003;

37(3):206–15.

14Tutuian R,Castell D https://www.360docs.net/doc/c29836722.html,bined multichannel intraluminal impedance and manometry clari?es esophageal function abnormalities:study in350patients.Am J Gastroenterol2004;

99(6):1011–19.

15Conchillo J M,Nguyen N Q,Samsom M,Holloway R H, Smout A J.Multichannel intraluminal impedance monitoring in the evaluation of patients with non-obstructive Dysphagia.

Am J Gastroenterol2005;100(12):2624–32.

16Tutuian R,Castell D O.Clari?cation of the esophageal func-tion defect in patients with manometric ineffective esophageal motility:studies using combined impedance-manometry.Clin Gastroenterol Hepatol2004;2(3):230–6.17Spechler S J,Castell D O.Classi?cation of esophageal motility abnormalities.Gut2001;49:145–51.

18Blonski W,Vila M,Hila A,Castell D O.Normal values for manometry performed with swallows of viscous test material.

Scand J Gastroenterol2008;43:155–60.

19Yigit T,Quiroga E,Oelschlager B.Multichannel intraluminal impedance for the assessment of post-fundoplication dysph-agia.Dis Esophagus.2006;19(5):382–8.

20Blonski W,Hila A,Jain V,Freeman J,Vela M,Castell D O.

Impedance manometry with viscous test solution increases detection of esophageal function defects compared to liquid swallows.Scand J Gastroenterol2007;42:917–22.

Abnormal impedance with normal manometry7

?2008Copyright the Authors

Journal compilation?2008,Wiley Periodicals,Inc.and the International Society for Diseases of the Esophagus

接地电阻测试原理

接地电阻测试 1、定义 亦称接地连续性测试, 接地测试必须对所有一类产品(Class I)进行。接地电阻测试主要测量器具接地线与机壳之间的接触点的电阻,它所反映的是设备的各处外露可导电部分与设备的总接地端子之间的电阻。 2、目的 测试的目的是保证产品上的所有在单一绝缘失效的情形下会变成带电体,需要有可靠的接地保护设备使用者的安全。通过测量连接在保护接地连接端子或接地触点和零件之间的阻抗来判断是否符合标准要求, 阻抗不超出产品安全标准确定的某个值则认为是符合要求的。 3、原理 测量的方式是依照欧姆定律的原理,在接触点上流过一个电流,然后分别测量电流和接触点的电压值,再依照欧姆定律计算出电阻值。通常是流过一个较大的电流,模拟器具发生异常时所发生的异常电流状况,做为测试的标准。 4、测试方法 接地阻抗测试为测试产品的接地点对产品的外壳或金属部份,施以一个恒流(一般电流在10-40A 之间) 电源来测试两点间的阻抗大小,一般产品规定量测25A,阻抗不得大于 0.1?而 CSA要求量测 40A。 5、判定标准 1、GB4943-2001 信息技术设备的电气安全 2.6.3.3 如果被测电路的电流额定值小于或等于16A:试验电流为被测电路电流额定值的1.5倍,试验电压不应超过12V,试验时间为60S,保护连接导体电阻不应超过0.1Ω. 如果被测电路的电流额定值超过16A:试验电流为被测电路电流额定值的2倍,试验电压不应超过2.5V,试验时间为120S。 6、接地电阻测试中常见问题 阻值过大:测量阻值大于规定阻值。 出现的原因可能有: ?接地点螺丝未锁紧 ?接地线径太小 ?接地线断路 ?接地螺丝有绝缘漆

接地电阻测试方法(图解)

For personal use only in study and research; not for commercial use 接地系统接地电阻测试方法(图解) 一、接地电阻测试要求: a. 交流工作接地,接地电阻不应大于4Ω; b. 安全工作接地,接地电阻不应大于4Ω; c. 直流工作接地,接地电阻应按计算机系统具体要求确定; d. 防雷保护地的接地电阻不应大于10Ω; e. 对于屏蔽系统如果采用联合接地时,接地电阻不应大于1Ω。 二、接地电阻测试仪 ZC-8型接地电阻测试仪适用于测量各种电力系统,电气设备,避雷针等接地装置的电阻值。亦可测量低电阻导体的电阻值和土壤电阻率。 三、本仪表工作由手摇发电机、电流互感器、滑线电阻及检流计等组成,全部机构装在塑料壳内,外有皮壳便于携带。附件有辅助探棒导线等,装于附件袋内。其工作原理采用基准电压比较式。 四、使用前检查测试仪是否完整,测试仪包括如下器件。 1、ZC-8型接地电阻测试仪一台 2、辅助接地棒二根 3、导线5m、20m、40m各一根 五、使用与操作 1、测量接地电阻值时接线方式的规定 仪表上的E端钮接5m导线,P端钮接20m线,C端钮接40m线,导线的另一端分别接被测物接地极Eˊ,电位探棒Pˊ和电流探棒Cˊ,且Eˊ、Pˊ、Cˊ应保持直线,其间距为20m 1.1测量大于等于1Ω接地电阻时接线图见图1 将仪表上2个E端钮连结在一起。 测量小于1Ω接地电阻时接线图 1.2测量小于1Ω接地电阻时接线图见图2 将仪表上2个E端钮导线分别连接到被测接地体上,以消除测量时连接导线电阻对测量结果引入的附加误差。 2、操作步骤

接地电阻测试方法与设置要求(图解)

一、接地电阻测试仪 ZC-8型接地电阻测试仪适用于测量各种电力系统,电气设备,避雷针等接地装置的电阻值。亦可测量低电阻导体的电阻值和土壤电阻率。本仪表工作由手摇发电机、电流互感器、滑线电阻及检流计等组成,全部机构装在塑料壳内,外有皮壳便于携带。附件有辅助探棒导线等,装于附件袋内。其工作原理采用基准电压比较式。 使用前检查测试仪是否完整,测试仪包括如下器件。 1、ZC-8型接地电阻测试仪一台 2、辅助接地棒二根 3、导线5m、20m、40m各一根 二、接地电阻设置要求: a. 交流工作接地,接地电阻不应大 于4Ω; b. 安全工作接地,接地电阻不应大于4Ω; c. 直流工作接地,接地电阻应按计算机系统具体要求确定; d. 防雷保护地的接地电阻不应大于10Ω; e. 对于屏蔽系统如果采用联合接地时,接地电阻不应大于1Ω。 三、接地电阻测试方法 1、测量接地电阻值时接线方式的规定仪表上的E端钮接5m导线,P端钮接20m线,C 端钮接40m线,导线的另一端分别接被测物接地极Eˊ,电位探棒Pˊ和电流探棒Cˊ,且Eˊ、Pˊ、Cˊ应保持直线,其间距为20m

1.1测量大于等于1Ω接地电阻时接线图见图1 将仪表上2个E端钮连结在一起。 1.2测量小于1Ω接地电阻时接线图见图2 将仪表上2个E端钮导线分别连接到被测接地体上,以消除测量时连接导线电阻对测量结果引入的附加误差。 2、操作步骤:

2.1、仪表端所有接线应正确无误。 2.2、仪表连线与接地极Eˊ、电位探棒Pˊ和电流探棒Cˊ应牢固接触。 2.3、仪表放置水平后,调整检流计的机械零位,归零。 2.4、将“倍率开关”置于最大倍率,逐渐加快摇柄转速,使其达到150r/min。当检流计指针向某一方向偏转时,旋动刻度盘,使检流计指针恢复到“0”点。此时刻度盘上读数乘上倍率档即为被测电阻值。 2.5、如果刻度盘读数小于1时,检流计指针仍未取得平衡,可将倍率开关置于小一档的倍率,直至调节到完全平衡为止。 2.6、如果发现仪表检流计指针有抖动现象,可变化摇柄转速,以消除抖动现象。 四、注意事项: 1、禁止在有雷电或被测物带电时进行测量。 2、仪表携带、使用时须小心轻放,避免剧烈震动。

接地电阻测试方法和及其详细测试步骤

接地系统接地电阻测试方法和步骤(图解) 一、接地电阻测试要求: a. 交流工作接地,接地电阻不应大于4Ω; b. 安全工作接地,接地电阻不应大于4Ω; c. 直流工作接地,接地电阻应按计算机系统具体要求确定; d. 防雷保护地的接地电阻不应大于10Ω; e. 对于屏蔽系统如果采用联合接地时,接地电阻不应大于1Ω。 二、接地电阻测试仪 ZC-8型接地电阻测试仪适用于测量各种电力系统,电气设备,避雷针等接地装置的电阻值。亦可测量低电阻导体的电阻值和土壤电阻率。 三、本仪表工作由手摇发电机、电流互感器、滑线电阻及检流计等组成,全部机构装在塑料壳内,外有皮壳便于携带。附件有辅助探棒导线等,装于附件袋内。其工作原理采用基准电压比较式。 四、使用前检查测试仪是否完整,测试仪包括如下器件。 1、ZC-8型接地电阻测试仪一台 2、辅助接地棒二根 3、导线5m、20m、40m各一根 五、使用与操作 1、测量接地电阻值时接线方式的规定 仪表上的E端钮接5m导线,P端钮接20m线,C端钮接40m线,导线的另一端分别接被测物接地极Eˊ,电位探棒Pˊ和电流探棒Cˊ,且Eˊ、Pˊ、Cˊ应保持直线,其间距为20m 1.1测量大于等于1Ω接地电阻时接线图见图1 将仪表上2个E端钮连结在一起。 测量小于1Ω接地电阻时接线图 1.2测量小于1Ω接地电阻时接线图见图2 将仪表上2个E端钮导线分别连接到被测接地体上,以消除测量时连接导线电阻对测量结果引入的附加误差。 2、操作步骤 2.1、仪表端所有接线应正确无误。 2.2、仪表连线与接地极Eˊ、电位探棒Pˊ和电流探棒Cˊ应牢固接触。 2.3、仪表放置水平后,调整检流计的机械零位,归零。 2.4、将“ 倍率开关”置于最大倍率,逐渐加快摇柄转速,使其达到150r/min。当检流计指针向某一方向偏转时,旋动刻度盘,使检流计指针恢复到“0”点。此时刻度盘上读数乘上倍率档即为被测电阻值。 2.5、如果刻度盘读数小于1时,检流计指针仍未取得平衡,可将倍率开关置于小一档的倍率,直至调节到完全平衡为

接地电阻测试说明

一、什么是接地电阻? 接地电阻就是电流由接地装置流入大地再经大地流向另一接地体或向远处扩散所遇到的电阻,它包括接地线和接地体本身的电阻、接地体与大地的电阻之间的接触电阻以及两接地体之间大地的电阻或接地体到无限远处的大地电阻。接地电阻大小直接体现了电气装置与“地”接触的良好程度,也反映了接地网的规模。在单点接地系统、干扰性强等条件下,可以采用打辅助地极的测量方式进行测量。接地电阻主要分以下三种。 1.保护接地:电气设备的金属外壳,混凝土、电杆等,由于绝缘损坏有可能带电,为了防止这种情况危及人身安全而设的接地。1Ω以下 2.防静电接地:防止静电危险影响而将易燃油、天然气贮藏罐和管道、电子设备等的接地。 3.防雷接地:为了将雷电引入地下,将防雷设备(避雷针等)的接地端与大地相连,以消除雷电过电压对电气设备、人身财产的危害的接地,也称过电压保护接地。 二、接地电阻的主要功能 接地电阻的功能主要体现在以下几个方面: ●精确测量大型接地网接地阻抗、接地电阻、接地电抗 ●精确测量大型接地网场区地表电位梯度 ●精确测量大型接地网接触电位差、接触电压、跨步电位差、跨步电压 ●精确测量大型接地网转移电位 ●测量接地引下线导通电阻 ●测量土壤电阻率 三、接地电阻的测试方法 1.接地电阻测试要求: a. 交流工作接地,接地电阻不应大于4Ω; b. 安全工作接地,接地电阻不应大于4Ω; c. 直流工作接地,接地电阻应按计算机系统具体要求确定; d. 防雷保护地的接地电阻不应大于10Ω; e. 对于屏蔽系统如果采用联合接地时,接地电阻不应大于1Ω。 2.接地电阻测试仪 ZC-8型接地电阻测试仪适用于测量各种电力系统,电气设备,避雷针等接地装置的电阻值。亦可测量低电阻导体的电阻值和土壤电阻率。

变压器知识培训

变压器知识培训 变压器概述 变压器是利电磁感应原理传输电能和电信号的器件,它具有变压,变流,变阻抗的作用。变压器种类很多,应用也十分广泛,例如在电力系统中用电力变压器把发电机发出的电压升高后进行远离输电,到达目的地后再用变压器把电压降低以便用户使用,以此减少运输过程中电能的损耗。 变压器的工作原理 变压器由铁芯(或磁芯)和线圈组成,线圈有两个或两个以上的绕组,其中接电源的一侧叫一次侧,一次侧的绕组叫一次绕组,把变压器接负载的一侧叫二次侧,二次侧的绕组叫二次绕组。 变压器是变换交流电压、电流和阻抗的器件,一次线圈中通有交流电流时,铁芯(或磁芯)中便产生交流磁通,使二次级线圈中感应出电压(或电流)。 变压器利用电磁感应原理,从一个电路向另一个电路传递电能或传输信号的一种电器设备。 型号说明:

一、变压器的制作原理: 在发电机中,不管是线圈运动通过磁场或磁场运动通过固定线圈,均能在线圈中感应电势,此两种情况,磁通的值均不变,但与线圈相交链的磁通数量却有变动,这是互感应的原理。变压器就是一种利用电磁互感应,变换电压,电流和阻抗的器件。 二、分类 按容量分类:中小型变压器(35KV及以下,容量在5-6300KVA)、大型变压器(110KV及以下容量为8000-63000KVA)、特大型变压器(220KV以上)。 按用途分类:电力变压器(升压变、降压变、配电变、联络变、厂用或电所用等)、仪用变压器(电流互感器、电压互感器等用于测量和保护用)、电炉变压器、试验变压器、整流变压器、调压变压器、矿用变压器、其它变压器。 按冷却价质分类:干式(自冷)变压器、油浸(自冷)变压器、气体(SF6)变压器。 按冷却方式分类:油浸自冷式、油浸风冷式、强迫油循环风冷式、强迫油循环水冷式、蒸发冷却式。

实验五接地电阻测试

实验五接地电阻测试 一、实验目的: 1、了解接地电阻的测试理论。 2、熟练掌握接地电阻测试的方法,并且能应用于实践中。 3、熟练操作接地电阻测试仪。 二、实验原理与说明: 大楼的接地电阻包括:防雷接地、保护接地、用电设备接地。其中,防雷接地是防止雷雨天气,雷电通过导线流入室内的设备,损坏设备和人身安全。保护接地大部分是指的设备的外壳等的接地,是为了防止设备的绝缘层损坏,威胁人身安全和设备安全。用电设备接地是指室内的开关的接地,设备需要公共的接地端,所以有用电接地。 在用电正常时,接地线是没有电流的,只有当设备的绝缘损坏或有雷击时才会有电流流过。 所以,接地电阻的指标是衡量各种电器设备安全性能的重要指标之一。它是在大电流(25A或10A)的情况下对接地回路的电阻进行测量,同时也是对接地回路承受大电流的指标的测试,以避免在绝缘性能下降(或损坏)时对人身的伤害。 接地电阻测量方法通常有以下几种:两线法、三线法、四线法、单钳法和双钳法。各有各的特点,实际测量时,尽量选择正确的方式,才能使测量结果准确无误。 我们在测量时使用的是三线法,使用条件是,必须有两个接地棒:一个辅助地和一个探测电极。各个接地电极间的距离不小于20米。原理是在辅助地和被测地之间加上电流,输测量被测地和探测电极间的电压降,测量结果包括测量电缆本身的电阻。适用于地基接地,建筑工地接地和防雷接地。四线法基本上同三线法,在低接地电阻测量和消除测量电缆电阻对测量结果的影响时替代三线法。该方法是所有接地电阻测量方法中准确度最高的。 测量原理图如图(1): 图(1) 接地电阻的测量原理是基于电阻定律,用四根电极E1、P1、P2、E2,插入地表下一定深度,相距约20m的距离测量,如图(1),交流信号作用于电极E1和E2,通过电极P1和P2,在地表上测量流过大地的电流,如果电流是常数,则测量得到的电压和大地电阻成比例。显示值取决于机内的扩展电阻,所以要根据不同的电阻测量值来选择相应的量程以获得最佳读数。交流信号是由内置变换器产生的。

接地电阻测试方法(带图)

接地电阻测试方法(带图) 一、接地电阻测试要求: a. 交流工作接地,接地电阻不应大于4Ω; b. 安全工作接地,接地电阻不应大于4Ω; c. 直流工作接地,接地电阻应按计算机系统具体要求确定; d. 防雷保护地的接地电阻不应大于10Ω; e. 对于屏蔽系统如果采用联合接地时,接地电阻不应大于1Ω。 二、接地电阻测试仪 ZC-8型接地电阻测试仪适用于测量各种电力系统,电气设备,避雷针等接地装置的电阻值。亦可测量低电阻导体的电阻值和土壤电阻率。 ZC-8型接地电阻测试仪 三、本仪表工作由手摇发电机、电流互感器、滑线电阻及检流计等组成,全部机构装在塑料壳内,外有皮壳便于携带。附件有辅助探棒导线等,装于附件袋内。其工作原理采用基准电压比较式。 四、使用前检查测试仪是否完整,测试仪包括如下器件。 1、ZC-8型接地电阻测试仪一台

2、辅助接地棒二根 3、导线5m、20m、40m各一根 常用工器具 五、仪表好坏检查: 1、外观检查。 先检查仪表是否有试验合格标志,接着检查外观是否完好;然后看指针是否居中;最后轻摇摇把,看是否能轻松转动。 2、开路检查。 三个端钮的接地摇表:将仪表电流端钮(C)和电位端钮(P)短接,然后轻摇摇表,摇表的指针直接偏向读数最大方向; 四端钮的接地摇表:将仪表上的电流端纽(C1)和电位端纽(P1)短接,再将接地两端钮(C2、P2)短接[我们常说的两两相接],然后轻摇摇表,摇表的指针直接偏向读数最大方向。钮(C2、P2)短接[我们常说的两两相接],然后轻摇摇表,摇表的指针直接偏向读数最大方向。

3、短路检查。不管是三端钮的仪表还是四端钮的仪表,均将所有端钮连接起来,然后轻摇摇表,摇表的指针偏往“0”的方向。 通过上述三个步骤的检查后,基本上可以确定仪表是完好的。 六、使用与操作 1、测量接地电阻值时接线方式的规定 仪表上的E端钮接5m导线,P端钮接20m线,C端钮接40m线,导线的另一端分别接被测物接地极Eˊ,电位探棒Pˊ和电流探棒Cˊ,且Eˊ、

2019建筑物接地电阻的测试方法及要求

建筑物接地电阻的测试方法及要求 建筑物接地系统对于整个建筑的防雷保护和电气系统的正常运行有着重要和深远的意义。建筑物接地系统的接地电阻也是电气工程验收的一项重要内容,其测量记录是工程竣工归档资料之一。当防雷接地体地下部分工程完工后要及时对接地体的接地电阻值进行测量,单位工程竣工时还要进行复测,建筑物接地电阻的测试,一般是先由施工单位自行组织专业人员使用专用的测试仪器进行测量,由监理人员旁站,测试的数据填入专用的测试记录表格。 防雷接地系统的接地电阻测试必须使用专用的接地摇表(又称接地电阻摇表、接地电阻表、接地电阻测试仪,切不可用普通的兆欧表代替),目前有指针式和数字式两种。常见型号有ZC29B型指针式接地摇表(见图示1),DER2571数字接地电阻表(见图示2),民用建筑多采用ZC29B型指针式接地摇表。 见图示1 见图示2 为方便施工单位正确地使用接地摇表,现将接地电阻的测试方法及ZC29B型指针式接地摇表的使用和要求做一简单介绍。一、结构 ZC29型接地电阻测试仪由手摇发电机、电流互感器、滑线电阻及检流计等组成,附件有辅助探棒导线等。

二、使用说明 1、接地电阻测量时的接线方式(图示3): 图示3 (1) 在测量接地电阻时,E-E两个接线柱用镀铬铜板短接,并接在随仪表配来的5m长纯铜导线上,导线的另一端接在待测的接地体测试点上。 (2) P柱接随仪表配来的20m纯铜导线,导线的另一端接插针Pˊ。 (3) C柱接随仪表配来的40m纯铜导线,导线的另一端接插针Cˊ。 2、接地电阻测试仪设置要求 (1) 接地电阻测试仪应水平放置在离测试点1~3m处,检查检流计的指针是否在中心线上,否则应用零位调整器将其调整于中心线上。 (2) 每个接线头的接线柱都必须接触良好,连接牢固。 (3) 两个接地极插针应设置在离待测接地体左右分别为20m和40m的位置,其间距为20m 。且Eˊ、Pˊ、Cˊ应保持在一条直线上。

接地网接地电阻测试的原理方法和意义

接地网接地电阻测试的原理方法和意义 一、概述近些年来,国内多处变电站因雷击形成扩大事故,多数与地网接地电阻不合格有关,接地网起着工作接地和保护接地的作用,当接地电阻过大则:发生接地故障时,使中性点电压偏移增大,可能使健全相和中性点电压过高,超过绝缘要求的水平而造成设备损坏。在雷击或雷电波袭击时,由于电流很大,会产生很高的残压,使附近的设备遭受到反击的威胁,并降低接地网本身保护设备(架空输电线路及变电站电气设备)带电导体的耐 雷水平,达不到设计的要求而损坏设备。同时接地系统的接地电阻是否合格直接关系到变电站运行人员、变电检修人员人身安全;但由于土壤对接地装置具有腐蚀作用,随着运行时间的加长,接地装置已有腐蚀,影响变电站的安全运行;因此,必须大力加强对地网接地电阻的定期监测;运行中变电站地网接地电阻的测量,由于受系统流入地网电流的干扰以及试验引线线间的干扰,使测试结果产生较大的误差。特别是大型接地网接地电阻很小(一般在0.5Ω以下),即使细微的干扰也会对测试结果产生很大的影响;如果对地网接地电阻测试不准确,不仅损坏设备,而且会造成诸如地网误改造等不必要的损失,结合我对接地网接地阻抗测试方法的研究,现总结如下: 二、接地电阻测试原理及方法:测试接地装置的接地阻抗时电流极要布置的尽量远,通常电流极与被试接地装置边缘的距离dcG应为被试接地装置最大对角线长度D的4~5倍(平行布线法),在土壤电阻率均匀的地区可取2倍及以上(三角形布线法),电压引线长度为电流引线长度0.618倍(平线布线法)或等于电流线(三角形布线法)。1、电位降法电位降法测试接地装置的接地阻抗是按图1布置测试回路,且符合测试回路的布置的要求。 G—被试接地装置;C—电流极;P—电位极;D—被试接地装置最大对角线长度;dCG—电流极与被试接地装置边缘的距离;x—电位极与被试接地装置边缘的距离;d—测试距离间隔;流过被试接地装置G和电流极C的电流I使地面电位变化,电位极P从G的边缘开始沿与电流回路呈30°~45°的方向向外移动,每间隔d(50m或100m或200m)测试一次P与G之间的电位差U,绘出U与x的变化曲线。曲线平坦处即为电位零点,与曲线点间的电位即为在试验电流下被试接地装置的电位升高U,接地装置的接地阻抗为: Z=Um/I 如果电位测试线与电流线呈角度放设确实困难,可与之同路径放设,但要保持尽

接地电阻测试方法(图解)

接地电阻国家标准 建筑物接地电阻的要求 依据GB50057-94(2000版)《建筑物防雷设计规范》第三章、建筑物的防雷措施;第二节、第一类防雷建筑物的防雷措施要求,第条:防雷电感应的接地装置应和电气设备接地装置共用,其工频接地电阻不应大于10Ω。第三节、第二类防雷建筑物的防雷措施要求,第条:每根引下线的接地电阻不小于10Ω,防直击雷接地装置宜和防雷电感应、电气设备、信息系统等共用接地装置。第条:避雷器、电缆金属外皮、钢管和绝缘子铁脚、金具等应连在一起接地,其冲击接地电阻不应大于10Ω。架空和直接埋地的金属管道在进出建筑物处应就近与防雷的接地装置相连;当不相连时,架空管道应接地,其冲击接地电阻不应大于10Ω。本规范第.条四、五、六款所规定的建筑物,引人、引出该建筑物的金属管道在进出处应与防雷的接地装置相连;对架空金属管道尚应在距建筑物约25m处接地一次,其冲击接地电阻不应大于10Ω。第四节、第三类防雷建筑物的防雷措施要求,第条:每根引下线的冲击接地电阻不宜大于30Ω。第条:避雷器、电缆金属外皮和绝缘子铁脚、金具等应连在一起接地,其冲击接地电阻不宜大于30Ω。 电源系统接地电阻的要求 依据JGJ/T16-92《民用建筑电气设计规范》第14章接地与安全:第条要求,当机房接地与防雷接地系统共用时,接地电阻要求小于1Ω。因此对于监控机房和通讯机房接地均应与建筑物防雷地等共用同一接地装置,接地电阻要求小于1Ω。 依据GB50089-98《民用爆破器材工厂设计安全规范》第12章:电气;第条:在电缆与架空线连接处,应装设避雷器。避雷器、电缆金属外皮、钢管和绝缘子铁脚、金具等应连在一起接地,其冲击接地电阻不宜大于10Ω。第条:输送危险物质的各种室外架空管,应每隔20~25米接地一次,每处冲击接地电阻不应大于10Ω。第条:危险区域应采取相应的防静电措施。凡生产、加工或储存危险品的过程中,有可能积聚静电电荷的金属设备、金属管道和导电物体,均应直接接地,接地电阻不应大于100Ω。第条:低压配电线路的接地应采用TN-S或TN-C-S系统,引入建筑物的电源线路,中性点应重复接地,接地电阻不应大于10Ω。 石化接地电阻的要求 依据GB50074-2002《石油库设计规范》第14章:电气装置;第条:钢油罐接地点沿油罐周长的间距,不宜大于30m,接地电阻不宜大于10Ω。第条:覆土油罐的罐体及罐宝的金属构件以及呼吸阀、量油孔等金属附件,应做电气连接并接地,接地电阻不宜大于10Ω。第条:进出洞内的金属管道接地电阻不宜大于20Ω。电力和信息线路应采用铠装电缆埋地引入洞内。接地电阻不宜大于20Ω。电缆与架空线路的连接处,应装设过电压保护器。过电压保护器、电缆外皮和瓷瓶铁脚,应做电气连接并接地,接地电阻不宜大于10Ω。第条:进入油品装卸区的输油(油气)管道在进入点应接地,接地电阻不应大于20Ω。第条:避雷针(网、带)的接地电阻,不宜大于10Ω。第条:每组绝缘轨缝的电气化铁路侧,应设一组向电气化铁路所在方向延伸的接地装置,接地电阻不应大于10Ω。第条:铁路油品装卸设施的钢轨、输油管道、鹤管、钢栈桥等应做等电位跨接并接地,两组跨接间距不应大于20m,每组接地电阻不应大于10Ω。条:防静电装置的接地电阻应小于100Ω。第条:石油库内防雷接地、防静电接地、电气设备的工作接地、保护接地及信息系统的接地等,宜共用接地装置,其接地电阻不应大于4Ω。 依据GB50156-2002《汽车加油加气站设计与施工规范》第10章:电气装置;第条:加油加气站的防雷接地、防静电接地、电气设备的工作接地、保护接地及信息系统的接地等,宜共用接地装置,其接地电阻不应大于4Ω。第条:液化受有气罐采用牺牲阳极法进行阴极防腐时,牺牲阳极的接地电阻不应大于10Ω。第条:地上或管沟敷设的油品、液化石油气和天然气管道的始、末端和分支处

接地电阻测试要求

一、接地电阻测试要求: a. 交流工作接地,接地电阻不应大于4Ω; b. 安全工作接地,接地电阻 不应大于4Ω;c. 直流工作接地,接地电阻应按计算机系统具体要求确定;d. 防雷保护地 的接地电阻不应大于10Ω; e. 对于屏蔽系统如果采用联合接地时,接地电阻不应大于1Ω。 二、接地电阻测试仪ZC-8型接地电阻测试仪适用于测量各种电力系统,电气设备,避雷针 等接地装置的电阻值。亦可测量低电阻导体的电阻值和土壤电阻率。三、本仪表工作由手摇 发电机、电流互感器、滑线电阻及检流计等组成,全部机构装在塑料壳内,外有皮壳便于携 带。附件有辅助探棒导线等,装于附件袋内。其工作原理采用基准电压比较式。四、使用前 检查测试仪是否完整,测试仪包括如下器件。1、ZC-8型接地电阻测试仪一台2、辅助接地 棒二根3、导线5m、20m、40m各一根 二、五、使用与操作1、测量接地电阻值时接线方式的规定仪表上的E端钮接5m导线,P端钮接2 0m线,C端钮接40m线,导线的另一端分别接被测物接地极Eˊ,电位探棒Pˊ和电流探 棒Cˊ,且Eˊ、Pˊ、Cˊ应保持直线,其间距为20m 1.1测量大于等于1Ω接地电阻时接 线图见图1 将仪表上2个E端钮连结在一起。 .2测量小于1Ω接地电阻时接线图见图2 将仪表上2个E端钮导线分别连接到被测接地体上,以消除测量时连接导线电阻对测量结果引入的附加误差。 此主题相关图片如下:

、操作步骤 2. 1、仪表端所有接线应正确无误。2. 2、仪表连线与接地极Eˊ、电位探棒Pˊ和电流探棒Cˊ应牢固接触。 2. 3、仪表放置水平后,调整检流计的机械零位,归零。 2. 4、将“ 倍率开关”置于最大倍率,逐渐加快摇柄转速,使其达到150r/min。当检流计指针向某一方向偏转时,旋动刻度盘,使检流计指针恢复到“0”点。此时刻度盘上读数乘上倍率档即为被测电阻值。2. 5、如果刻度盘读数小于1时,检流计指针仍未取得平衡,可将倍率开关置于小一档的倍率,直至调节到完全平衡为止。2. 6、如果发现仪表检流计指针有抖动现象,可变化摇柄转速,以消除抖动现象。六、注意事项1、禁止在有雷电或被测物带电时进行测量。 2、仪表携带、使用时须小心轻放,避免剧烈震动。 关于接地概念 一、种类 1、防雷接地: 为把雷电迅速引入大地,以防止雷害为目的的接地。 防雷装置如与电报设备的工作接地合用一个总的接地网时,接地电阻应符合其最小值要求。 2、交流工作接地 将电力系统中的某一点,直接或经特殊设备与大地作金属连接。 工作接地主要指的是变压器中性点或中性线(N线)接地。N线必须用铜芯绝缘线。在配电中存在辅助等电位接线端子,等电位接线端子一般均在箱柜内。必须注意,该接线端子不能外露;不能与其它接地系统,如直流接地、屏蔽接地、防静电接地等混接;也不能与PE线连接。 3、安全保护接地 安全保护接地就是将电气设备不带电的金属部分与接地体之间作良好的金属连接。即将大楼内的用电设备以及设备附近的一些金属构件,有PE线连接起来,但严禁将PE线与N线连接。

接地电阻测试仪常用知识解

接地电阻测试仪常用知识解 1.定义 地电流:在大地或在接地极中流过的电流。 接地导体:指构成地的导体,该导体将设备、电气器件、布线系统、或其他导体(通常指中性线)与接地极连接。 接地极:构成地的一种导体。 接地连接:用来构成地的连接,系由接地导体、接地极和围绕接地极的大地(土壤)或代替大地的导电体组成。 接地网:由埋在地中的互相连接的裸导体构成的一组接地极,用以为电气设备和金属结构提供共同地。 接地系统:在规定区域内由所有互相连接的多个接地连接组成的系统。 接地极地电阻:接地极与电位为零的远方接地极之间的欧姆律电阻。(注:所谓远方是指一段距离,在此距离下,两个接地极互阻基本为零。) 接地极互阻:指以欧姆为单位表示的,一个接地极1A直流电流变量在另一接地极产生的电压变量。 电位:指某点与被认为具有零电位的某等电位面(通常是远方地表面)间的电位差。 接触电压:接地的金属结构和地面上相隔一定距离处一点间的电位差。此距离通常等于最大的水平伸臂距离,约为1m。

跨步电压:地面一步距离的两点间的电位差,此距离取最大电位梯度方向上1m的长度。(注:当工作人员站立在大地或某物之上,而有电流流过该大地或该物时,此电位差可能是危险的,在故障状态时尤其如此) (架空线防雷保护用)接地极:指一个导体或一组导体,装设在输电线路下方,位于地面或地面上方,但绝大多数在地下,并与铁塔或电杆基础相连。 土壤电阻率:是指一个单位立方体的对立面之间的电阻,通常以Ω?m或Ω?cm为单位。2.在测接地电阻时,有哪些因素造成接地电阻不准确,如何避免? A)接地系统(地网)周边土壤构成不一致,地质不一,紧密、干湿程度不一样,具有分散性,地表面杂散电流、特别是架空地线、地下水管、电缆外皮等等,对测试影响特别大。解决的方法是,取不同的点进行测量,取平均值。 B)测试线方向不对,距离不够长,解决的方法是,找准测试方向和距离。 C)辅助接地极电阻过大。解决的方法是,在地桩处泼水或使用降阻剂降低电流极的接地电阻。 D)测试夹与接地测量点接触电阻过大。解决的方法是,将接触点用锉刀或砂纸磨光,用测试线夹子充分夹好磨光触点。 E)干扰影响。解决的方法,调整放线方向,尽量避开干扰大的方向,使仪表读数减少跳动。F)仪表使用问题。电池电量不足,解决的方法是,更换电池。仪表精确度下降,解决的方法是,重新校准为零。 3.在测高层建筑物接地时,阻值为什么会比地面阻值大。且显示数据跳动严重,是什么原因造成的,如何避免?

IC知识培训

IC知识简介 1947年第一颗电晶体发明成功,结束了真空管的时代,而1958年TI成功开发出全球第一颗IC,又宣告电晶体的时代结束,IC的时代由此正式开始。从此开始各式IC不断被开发出来,集成度也不断提升,面积也越来越小,而功能则越来越多,性能和可靠性越来越好,这为当今社会的快速发展,起了很大的作用。IC具有集成度高、体积小、可靠性高、成本低等特点,是继电子管、晶体管之后的第二代电子器件。 根据内部电路的规模,集成电路可分为以下几类: 1、小规模集成电路:内部只有100个元件以下或10个逻辑门以下的集成电路称为小 规模集成电路; 2、MSI(中规模集成电路):内部元件数在100个以上、1000个以下,或逻辑门在10 个以上、100个以下的称为中规模集成电路; 3、LSI(大规模集成电路):内部有1000─10000个元件,或逻辑门在100-1000个 的集成电路称大规模集成电路(LSI); 4、VLSI(超大规模集成电路):内部元件数在10000-100000以上的集成电路成为超 大规模集成电路。 IC的温度范围主要有以下几种: C=0℃至+70℃(商业级) I=-20℃至+85℃(工业级) E=-40℃至+85℃(扩展工业级) A=-40℃至+85℃(航空级) M=-55℃至+125℃(军品级) IC封装 前言 对于CPU,大家已经很熟悉了,相信你可以如数家珍似地说出各款的型号特点。但谈到CPU和其他大规模集成电路的封装,真正熟悉的人便寥寥无几。所谓封装是指安装半导体集成电路芯片用的外壳,它不仅起着安放、固定、密封、保护芯片和增强电器性能的作用,而且还是沟通芯片内部世界与外部电路的桥梁。芯片通过导线连接到封装外壳的引脚,这些引脚又通过印制板上的导线与其他器件建立连接。因此,封装对于集成电路来说起着重要的作用。

接地电阻测试方法(图解)

接地电阻测试方法(图解) 一、接地电阻测试要求: a. 交流工作接地,接地电阻不应大于4Ω; b. 安全工作接地,接地电阻不应大于4Ω; c. 直流工作接地,接地电阻应按计算机系统具体要求确定; d. 防雷保护地的接地电阻不应大于10Ω; e. 对于屏蔽系统如果采用联合接地时,接地电阻不应大于1Ω。 二、接地电阻测试仪 ZC-8型接地电阻测试仪适用于测量各种电力系统,电气设备,避雷针等接地装置的电阻值。 亦可测量低电阻导体的电阻值和土壤电阻率。 三、本仪表工作由手摇发电机、电流互感器、滑线电阻及检流计等组成,全部机构装在塑料壳内,外有皮壳便于携带。附件有辅助探棒导线等,装于附件袋内。其工作原理采用基准电 压比较式。 四、使用前检查测试仪是否完整,测试仪包括如下器件。 1、ZC-8型接地电阻测试仪一台 2、辅助接地棒二根 3、导线5m、20m、40m各一根 五、使用与操作 1、测量接地电阻值时接线方式的规定 仪表上的E端钮接5m导线,P端钮接20m线,C端钮接40m线,导线的另一端分别接被测物接地极Eˊ,电位探棒Pˊ和电流探棒Cˊ,且Eˊ、Pˊ、Cˊ应保持直线,其间距为20m 1.1测量大于等于1Ω接地电阻时接线图见图1 将仪表上2个E端钮连结在一起。 此主题相关图片如下:

测量小于1Ω接地电阻时接线图 1.2测量小于1Ω接地电阻时接线图见图2 将仪表上2个E端钮导线分别连接到被测接地体上,以消除测量时连接导线电阻对测量结果引入的附加误差。 2、操作步骤 2.1、仪表端所有接线应正确无误。 2.2、仪表连线与接地极Eˊ、电位探棒Pˊ和电流探棒Cˊ应牢固接触。 2.3、仪表放置水平后,调整检流计的机械零位,归零。 2.4、将“ 倍率开关”置于最大倍率,逐渐加快摇柄转速,使其达到150r/min。当检流计指针向某一方向偏转时,旋动刻度盘,使检流计指针恢复到“0”点。此时刻度盘上读数乘上倍率档即为被测电阻值。 2.5、如果刻度盘读数小于1时,检流计指针仍未取得平衡,可将倍率开关置于小一档的倍率,直至调节到完全平衡为止。 2.6、如果发现仪表检流计指针有抖动现象,可变化摇柄转速,以消除抖动现象。 六、注意事项 1、禁止在有雷电或被测物带电时进行测量。 2、仪表携带、使用时须小心轻放,避免剧烈震动。 此主题相关图片如下:

保护接地阻抗测试操作规范

XASM/JS 1104保护接地阻抗测试操作规范 编写:练伟平 审核:杨锡联 批准:王明莉 西安外科医学科技有限公司 2011.11

1.适用范围 保护接地电阻是国家标准GB9706.1中规定的安全要求之一。本规范规定了对我公司生产的低温等离子体多功能手术系统产品进行保护接地电阻测试的方法、要求、步骤及仪器使用的规定。 2.使用仪器 CS5800Y接地电阻测试仪 本仪器可满足国家标准GB9706.1的测试要求。 3.技术指标 测试电流范围及精度:2~30A±2% 测试范围及精度:0.1~600mΩ(±2%+2个字) 工作条件温度:0℃~40℃ 湿度:≤80%RH 工作电源:220V±10%; 电源频率:50Hz 4.接地电阻测试方法 4.1测试依据 GB9706.1.18 a)中I类设备中可触及部件与带电部件间用基本绝缘隔离时,必须以足够低的阻抗与保护接地端子连接。 4.2要求: 电源输入插座与已保护接地所有可触及金属部件之间的阻抗不得超过0.1Ω. 4.3测试部位 电源插头座地脚与所有暴漏的金属部分格。 4.4测试步骤 测试前必须确定本测试仪器是在检定的有效期内,并对其进行运行检查,确保测量的有效性。 a)测试仪器接保护地线. b)分别将红、黑两色测试电缆的大、小挂片接于仪器的端子上;分别将红、黑两 色测试电流输出电缆端2个大夹子接于测试部位,电压采样的2个小夹子接于相同测试部位。 c)开启电源开关,显示点亮。

d)将电流调节旋钮逆时针旋至零。 e)测试时间设置为5sec. f)电阻值设置为为100 mΩ. g)按下[START]键,同时将电流调节旋钮顺时针旋至25A,即可进行测试。 测试仪计时到设定时间值时自动停止测试。合格标志位(GOOD)灯亮。同时发出“嘟”的提示音。 4.5判定: 测试过程中仪器未发出报警音,说明电源插头座地脚与所有暴漏的金属部分的阻抗不得大于0.1Ω,为合格。 5. 注意事项:本仪器的电源输入插座应带有保护接地线。 本仪器的电源输入插座应保持相线和中线(L、N)的正确接法。 使用后填写仪器使用记录。

电阻基础知识培训讲义

电阻基础知识(培训用) 、电阻定义 1物质对电流的阻碍作用就叫该物质的电阻。 2、在电路中对电流有阻碍作用并且造成能量消耗的导体叫电阻 3、电荷在导体内做定向运动时会遇到阻力,这种阻力称为电阻。 电阻是导体的一种基本性质,与导体的尺寸、材料、温度有关。 二、电阻的特点 1普通电阻是线性元件2、耗能元件 三、电阻的作用 1、降压:用电阻与“用电器”串联,“用电器”的电流全部经过电阻。利用电 流经过电阻时在电阻上产生压降,从而使“用电器”两端的电压下降。原理依据是U总=U1+U2用欧姆定律可轻松算出降压电阻的阻值。电阻降压,适用于电流稳定的“用电器”,如果电流时大时小,“用电器”得的电压将时小时大。= 2、限流:电路结构完全与降压”相同,只是目的不同。降压是不让用电器”的端电压太高,限流是不让用电器”的电流太大。 3、分压:两只电阻串联,利用其中一只电阻上的压降(作为电源)为用电器”供电 ---------------------- 用 电器”与这只电阻并联。 4、分流:给用电器”并联电阻,让本该流过用电器”的电流,可以有一部分从电阻过,从而减小用电器”的电流。 分流与分压,只是目的不同,电路结构其实是相同的,不过, 重要性同等, 分压电路中的两只电阻的 而分流电路不着重研究另一只电阻。 5、阻抗匹配:是指信号在传输过程中负载阻抗和信号源内阻抗之间的特定配合关系。也即 一件器材的输出阻抗和所连接的负载阻抗之间所应满足的某种关系,,以免接上负载后对器 材本身的工作状态产生明显的影响。 6、偏置:电阻在放大电路中的偏置作用就是使三极管有一个基本的静态工作电流,使三极管工作在线性放大区,以避免信号失真。 7、负载:电阻做负载,主要用于吸收产品在使用过程中产生的不需要的电量,或起到缓冲、制动的作用,比如修理当中将一些电阻做假负载 8、滤波:往往和电容或电感一起构成滤波电路 9、退藕或去藕:在电路中有些耦合是必要的,而有些耦合是有害的,会产生不良影响,如功放电路驱动喇叭,要很大的电流,此时,电源内阻压降较大,使电源电压降低,产生一个 不良的波动信号,这个信号如果传到前级去再进行放大,会干扰原来的放大信号,使放大器

接地电阻测试方法图解

接地电阻测试方法图解文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

接地电阻测试方法(图解) 一、接地电阻测试要求: a. 交流工作接地,接地电阻不应大于4Ω; b. 安全工作接地,接地电阻不应大于4Ω; c. 直流工作接地,接地电阻应按计算机系统具体要求确定; d. 防雷保护地的接地电阻不应大于10Ω; e. 对于屏蔽系统如果采用联合接地时,接地电阻不应大于1Ω。 二、接地电阻测试仪 ZC-8型接地电阻测试仪适用于测量各种电力系统,电气设备,避雷针等接地装置的电阻值。亦可测量低电阻导体的电阻值和土壤电阻率。 三、本仪表工作由手摇发电机、电流互感器、滑线电阻及检流计等组成,全部机构装在塑料壳内,外有皮壳便于携带。附件有辅助探棒导线等,装于附件袋内。其工作原理采用基准电压比较式。 四、使用前检查测试仪是否完整,测试仪包括如下器件。 1、ZC-8型接地电阻测试仪一台?????????????? 2、辅助接地棒二根 3、导线5m、20m、40m各一根

五、使用与操作 1、测量接地电阻值时接线方式的规定 仪表上的E端钮接5m导线,P端钮接20m线,C端钮接40m线,导线的另一端分别接被测物接地极Eˊ,电位探棒Pˊ和电流探棒Cˊ,且Eˊ、Pˊ、Cˊ应保持直线,其间距为20m 1.1测量大于等于1Ω接地电阻时接线图见图1 将仪表上2个E端钮连结在一起。 测量小于1Ω接地电阻时接线图见图2 1.2测量小于1Ω接地电阻时接线图 将仪表上2个E端钮导线分别连接到被测接地体上,以消除测量时连接导线电阻对测量结果引入的附加误差。 2、操作步骤

接地电阻测试方法

?接地电阻测试方法(图解) 一、接地电阻测试要求: a.?交流工作接地,接地电阻不应大于4Ω; b.?安全工作接地,接地电阻不应大于4Ω; c.?直流工作接地,接地电阻应按计算机系统具体要求确定; d.?防雷保护地的接地电阻不应大于10Ω; e.?对于屏蔽系统如果采用联合接地时,接地电阻不应大于1Ω。 二、接地电阻测试仪 ZC-8型接地电阻测试仪适用于测量各种电力系统,电气设备,避雷针等接地装置的电阻值。亦可测量低电阻导体的电阻值和土壤电阻率。 三、本仪表工作由手摇发电机、电流互感器、滑线电阻及检流计等组成,全部机构装在塑料壳内,外有皮壳便于携带。附件有辅助探棒导线等,装于附件袋内。其工作原理采用基准电压比较式。 四、使用前检查测试仪是否完整,测试仪包括如下器件。 1、ZC-8型接地电阻测试仪一台?????????????? 2、辅助接地棒二根 3、导线5m、20m、40m各一根 五、使用与操作 1、测量接地电阻值时接线方式的规定 仪表上的E端钮接5m导线,P端钮接20m线,C端钮接40m线,导线的另一端分别接被测物接地极Eˊ,电位探棒Pˊ和电流探棒Cˊ,且Eˊ、Pˊ、Cˊ应保持直线,其间距为20m 1.1测量大于等于1Ω接地电阻时接线图见图1 将仪表上2个E端钮连结在一起。

1.2测量小于1Ω接地电阻时接线图见图2 将仪表上2个E端钮导线分别连接到被测接地体上,以消除测量时连接导线电阻对测量结果引入的附加误差。 2、操作步骤 2.1、?仪表端所有接线应正确无误。 2.2、?仪表连线与接地极Eˊ、电位探棒Pˊ和电流探棒Cˊ应牢固接触。 2.3、?仪表放置水平后,调整检流计的机械零位,归零。 2.4、?将“倍率开关”置于最大倍率,逐渐加快摇柄转速,使其达到150r/min。当检流计指针向某一方向偏转时,旋动刻度盘,使检流计指针恢复到“0”点。此时刻度盘上读数乘上倍率档即为被测电阻值。 2.5、?如果刻度盘读数小于1时,检流计指针仍未取得平衡,可将倍率开关置于小一档的倍率,直至调节到完全平衡为止。 2.6、?如果发现仪表检流计指针有抖动现象,可变化摇柄转速,以消除抖动现象。 六、注意事项 1、禁止在有雷电或被测物带电时进行测量。 2、仪表携带、使用时须小心轻放,避免剧烈震动。 计算机机房接地定义:即把电路中的某一点或某一金属壳体用导线与大地连在一起,形成电气通路。目的是让电流易于流到大地,因此电阻是越小越好。 为什么采用接地系统:1、保护设备和人身的安全。 2、保证计算机系统稳定的运行。 3、为了保证计算机系统安全、可靠、稳定的运行,保证设备人身的安全,针对不同的计算机系统要求,应设计适当形式的接地系统。 计算机站接地分类:1、计算机系统直流地 2、交流工作地

地网接地阻抗测试的方法及注意事项

地网接地阻抗测试的方法及注意事项 摘要:文章结合本人近年对电力系统中变电站地网接地阻抗测试的实际经历,阐述测试变电站地网接地阻抗的各种方法及注意事项。 关键词:地网;接地阻抗测量;方法;注意事项 随着电网的发展,特别是发电厂变电所内微机保护、综合自动化装置的大量应用,各类电气元件对接地网的要求越来越高,当发生工频接地故障和雷电侵入时起到快速泄放短路电流的作用,是维护变电站安全可靠运行,保障人员和电气设备安全运行的根本保证和重要措施。当接地电阻过大,当发生接地故障时,使中性点电压偏移增大,可能使健全相和中性点电压过高,超过绝缘要求的水平而造成设备损坏。如果对地网接地电阻测试不准确,不仅损坏设备,而且会对值班人员造成伤害。现结合本人近年对接地网接地阻抗的测试,总结如下: 1接地电阻测试原理及方法 接地网接地阻抗测试目前常用的方法有两种:一是类工频法;二是工频大电流法。测试接地装置的接地阻抗时采用的布线方式有直线法(0.618法)、30˚夹角法、远离法等。直线法和30˚夹角法是基于土壤电阻率均匀的基础上推导出来的,如果土壤电阻率不均匀,测试结果误差会比较大。 1.1 电位降法 电位降法测试接地装置的接地阻抗是按图1布置测试回路,且符合测试回路的布置的要求。G为被试接地装置;C为电流极;P为电位极;D为被试接地装置最大对角线长度;dc~为电流极与被试接 地装置边缘的距离;x为电位极与被试接地装置边缘的距离;d为测试距离间隔;流过被试接地装置c和电流极C的电流I使地面电位变化,电位极P从G 的边缘开始沿与电流回路呈30。~45。的方向向外移动,每间隔d(50m或100m 或200m)测试一次P与G之间的电位差u,绘出u与X的变化曲线。曲线平坦处即为电位零点,与曲线点间的电位即为在试验电流下被试接地装置的电位升高u,接地装置的接地阻抗为:Z=Um/I。 如果电位测试线与电流线呈角度放设确实困难,可与之同路径放设,但要保持尽量远的距离。如果电位降曲线的平坦点难以确定,则可能是受被试接地装置或电流极c的影响,考虑延长电流回 路;或者是地隋况复杂,考虑以其他方法来测试和校验。

相关文档
最新文档