THz波在非均匀等离子体层中传播的FDTD分析

THz波在非均匀等离子体层中传播的FDTD分析
THz波在非均匀等离子体层中传播的FDTD分析

调频连续波雷达简要分析

连续波调频雷达 雷达主要分为脉冲雷达和连续波雷达两大类。当前常用的雷达大多数是脉冲雷达,常规脉冲雷达是周期性地发射高频脉冲。而连续波雷达即是发射连续波信号的雷达,它的信号可以是单频、多频或者调频(多种调制规律如三角形、锯齿波、正弦波、噪声和双重调频或者是编码调制)的。单频连续波雷达可用于测速,多频(至少三个频点)和调频连续波雷达可用于测速和测距。它的优点是不存在距离盲点、精度高、带宽大、功率低、简单小巧,缺点是测距量程受限、存在多普勒距离耦合和收发很难完全隔离。 f 锯齿波调频 频率-时间特性曲线 调频连续波雷达参数与性能分析: 1、频率: 13.6GHz (±15MHz) (Ku 波段) 2、扫频带宽F ?: 30MHz 距离分辨率:m F C R 51030210326 8 =???==?? 3、调制周期T : ms 06.1=T 理论最大量程:Km C T R 1591031053.02 max 83=???=?=- 0 调制周期T 带宽 F t

4、实际回波最大迟延: s d m 16.0t max = 实际最大量程: Km C R d 241031008.02 t max 83max =???=?= -‘ 实际最大差拍频率: M T t F d b 53.4f max max =?=? 5、相干处理时间间隔:ms s d 9.0m 16.0ms 06.1t -T T max Coherent =-== f 锯齿波调频 频率-时间特性曲线 可采点数: 36000m 9.040T Fs N Coherent =?=?=s MHz 实际频率分辨率: Hz MHz N Fs 111136000 400f === 对应的实际距离分辨率:m F C T R 89.5103021111 1031006.120f 6 83=??????=??= ??‘ (量程越小,差拍频率越小,可获得的越大的相干处理时间,能该晒距离分辨率) 6、速度多普勒耦合: 速度较小不考虑,采用锯齿波调频信号时,一般直接将其影响加到系统误差中去。若采用三角波调频倒可以再信号处理时对其进行补偿。 0 调制周期T 带宽 F t

激光诱导等离子体光谱分析

激光诱导等离子体光谱分析

激光光谱分析与联用技术 读书报告 日期:2011年5月25日 激光诱导等离子体光谱法

摘要:本文概述了激光诱导等离子光谱法的发展概况、基本原理、基本特性、仪器装置、应用方向和研究进展,并对该光谱法进行了展望。关键词:激光诱导等离子体光谱研究进展 前言: 激光诱导等离子体(LIP)近年来尤为受到关注,已经成为研究激光与物质相互作用的重要工具,在光谱分析,激光薄膜沉积和惯性约束核聚变等方面也有着广泛的应用。随着激光和阵列探测器的发展,激光诱导等离子体光谱技术(laser-induced plasma spectroscopy或者 laser-induced breakdown spectroscopy)在近30年内取得长足发展,成为原子光谱分析阵营中的一颗明星,犹如早些年的火焰原子吸收光谱法、光电直读光谱法和电感耦合等离子体发射光谱法,在很多领域得到广泛的应用。 1.发展概况 LIPS自1962年被报道以来,已被广泛地应用到多个领域,如钢铁成分在线分析、宇宙探索、

环境和废物的监测、文化遗产鉴定、工业过程控制、医药检测、地球化学分析,以及美国NASA 的火星探测计划CHEMCAM等,并且开发出了许多基于LIPS技术的小型化在线检测系统。 LIPS发展可以分为三个阶段:第一个阶段是至自1962年提出到70年代中期,主要是在于研发利用光电火花源产生等离子体的仪器。第二个阶段是从1980年开始,这种技术重新被人们重视,但实际应用仍然受到笨重的仪器阻碍。第三个阶段是1983年迄今,激光诱导等离子体光谱开始以缩写形式LIPS,开始被商业公司开发应用。这种趋势导致分析工作更加集中于发展坚固的、移动的仪器。此时光纤也被应用于LIPS系统中,主要用于将等离子体发射信息和激光脉冲耦合进光谱仪。 近20多年来,LIPS测量技术在各个行业都有不同程度的应用。通过改进实验LIPS装置来提高测量精度。到上个世纪90年代中期开始,一些商业公司便开发出便携式半定量的成品仪器,

等离子体发射光谱

等离子体光谱是指等离子体从红外到VUV发射的电磁辐射光谱。 资源 它包含了大量关于等离子体复杂原子过程的信息。利用光谱原理、实验技术和等离子体理论模型对等离子体光谱进行测量和分析具有重要意义。 包括 等离子体光谱主要是线性的和连续的。当等离子体中的中性原子和离子从高能能级的激发态转移到低能能级时,会产生线性谱;②在电子从高能能级跃迁到低能能级逃逸出等离子体之前光子的再吸收量被重新吸收。然而,谱线的总强度与电子和离子的密度和温度有关,每一条谱线都有其强度分布规律。因此,结合光谱模型中的理论模型和原子数据,通过测量谱线的强度,可以得到电子和离子的密度和温度。根据多普勒效应,等离子体的宏观速度可以由谱线波长的偏移来确定。当电子在其他粒子的势场中加速或减速时,就会产生连续的谱。连续谱强度测量也可获得电子密度和温度的数据。 改变

随着等离子体温度的升高,当达到10℃以上时,原子的外部电子逐渐剥离形成各种离子态的离子,如C IV、CV、O VI、n V、Fe Xi x、Ti Xi x(I为中性原子,II,III,IV损失1,2,3)的一个电子外层。这些高电离离子的线性谱主要在远紫外波段。在连续谱情况下,当温度升高时,最大发射强度向短波方向移动;对于聚变高温等离子体,其工作物质为氢,同位素为氘和三种,但不可避免地会含有一些杂质,如C、O、Fe,Ti、Mo、W等元素的温度已达到10度以上。这些杂质离子的光谱大多在真空紫外和X射线波段。分析时间非常重要。比较了高阶重杂质电离线的位置和位置。他们的强度。研究等离子体参数的测量、传输过程和在如此高的温度下的辐射损耗是非常重要的。特别是分析氢离子和氦离子的线强度更为有用,因为这些离子的原子数据相对完整。 形状 等离子体光谱的另一个重要方面是光谱线的形状或轮廓。谱线不是“线”,而是具有一定宽度的等高线。在等离子体光谱中,线展宽的机理非常复杂。多普勒效应和斯塔克效应是影响多普勒效应的两个重要因素。等离子体中的各种粒子都处于随机热运动状

调频连续波(FMCW)雷达微波物位计的工作原理

调频连续波(FMCW)雷达/微波物位计的工作原理 FMCW是取英文Frequency Modulated Continuous Wave的词头的缩写。FMCW 技术是在雷达物位测量设备中最早使用的技术。 FMCW微波物位计采用线性的调制的高频信号,一般都是采用10GHz或24GHz微波信号。它是一种基于复杂数学公式的间接测量方法,由频谱计算出物位距离。天线发射出被线性调制的连续高频微波信号并进行扫描,同时接收返回信号。发射微波信号和返回的微波信号之间的频率差与到介质表面的距离成一定比例关系。 如果我们认为被线性调制的发射微波信号的斜率为K,发射信号和反射信号的频率为rf,滞后时间差为rt,发射天线到介质表面的距离为R,C为光速。 那么我们可以得到:rt = 2R/C 由于采用的是调频的微波信号,因此我们可得:rf = K×rt; 两式合并后,我们得到公式: R = C× rf/2K (公式2) 根据公式2,我们可以看到,天线到介质表面的距离R与发射 频率和反射频率差rf成正比关系。 信号处理部分将发射信号和回波信号进行混合处理,得到混合信号频谱,并通过独立的快速傅立叶(FFT)变化来区分不同的频率信号,最后得到准确地数字回波信号,计算出天线到介质表面的距离。 实际上,FMCW信号是在两个不同的频率之间循环。目前市场上的FMCW微波物位计主要以两种频率为主:9到10GHz和24.5到25.5GHz。 采用FMCW原理的微波物位计都具有连续自校准的处理功能。被处理的信号与一个表示已知固定距离的内部参照信号进行比较。任何差值会自动得到补偿,这样消除了由温度波动或变送器内部电子部件老化引起的可能的测量漂移。 2.2、脉冲 脉冲雷达物位计,与超声波技术相似,使用时差原理计算到介质表面的距离。设备传输固定频率的脉冲,然后接收并建立回波图形。信号的传播时间直接与到介质的距离成一定比例。但是与超声波使用声波不同,雷达使用的是电磁波。它利用好几万个脉冲来“扫描”容器并得到完整的回波图。 通常,采用脉冲方式的微波物位计的精度和可靠性都不如FMCW微波位计,但是脉冲物位计因为价格较FMCW低很多,因此是目前市场应用得最多的微波物位计。当然,很多生产厂商通过增强回波处理功能等方式大大提高了脉冲雷达的可靠性。

Varian 715-ES等离子体发射光谱仪图文操作手册

Varian 715-ES等离子体发射光谱仪的 图文操作手册 一、V arian 715-ES等离子体发射光谱仪: V arian 715-ES等离子体发射光谱仪 二、功能和用途: 1、功能:本仪器可以全波段同时测量,所以可选择不同的波长轻易避免光谱 干扰,意味着具有更好的精度、更好的背景矫正和更高的效率;采用百万像素CCD检测器搭配Echelle二维分光器,可以使系统在一次观测就可完成高低浓度样品的检测,并具有更低的检出限和更宽的动态线性范围; CCI冷锥切割尾焰技术使水平观测检测限更低,并能分析较高TDS含量的样品;测定过程中没有任何移动部件的光学系统提高了仪器稳定性;直观、强大、易学易用的ICP Expert II全中文操作软件大大提高了工作效率。 2、用途:本仪器可以同时测定元素周期表中73中元素,每个元素的波长可 以任意选择,最大限度地减少了元素之间的相互干扰,液体进样适用于金属材料、食品、医药、环保等领域中低含量及中等含量的化学元素的快速定量或半定量分析。 三、操作步骤: 1、开机 a、冷开机(从仪器关闭状态开机) (1)、依次打开计算机主机、显示器和打印机,进入操作系统;

(2)、打开氩气气源阀,检查并调节减压阀在5.5MPa左右,气体纯度≥99.996%; (3)、打开循环水电源开关,检查压力指示在0.5~3.1MPa,温度设定在20℃±1℃; (4)、打开仪器后部高压电源开关(向上); (5)、打开仪器前部系统电源开关(绿色指示灯处于亮的状态); (6)、打开实验室排风系统; (7)、如有其它附件,依次打开。 b、热开机 (1)、依次打开计算机主机、显示器和打印机开关; (2)、打开循环水开关;

调频连续波

信号采集与处理单元关键技术研究 1.1 太赫兹频段线形调频连续波雷达系统及工作原理 1.1.1 LFMCW雷达的基本特点 调频连续波(FMCW)雷达一种通过对连续波进行频率调制来获得距离与速度信息的雷达体制。雷达调频可以采用多种方式,线性和正弦调制在过去都已经得到广泛的运用。其中线性调频是最多样化的,在采用FFT处理时它也是最适合于在大的范围内得到距离信息的。鉴于此原因,有关调频连续波的焦点问题基本上都集中在LFMCW雷达上。 线性调频连续波(LFMCW)雷达是具有高距离分辨率、低发射功率、高接收灵敏度、结构简单等优点,不存在距离盲区,具有比脉冲雷达更好的反隐身、抗背景杂波及抗干扰能力的特点,且特别适用于近距离应用,近年来在军事和民用方面都得到了较快的发展。主要优点可归结为以下三方面: LFMCW最大的优点是其调制很容易通过固态发射机实现; 要从LFMCW系统中提取出距离信息,必须对频率信息进行处理,而现在这一步可以通过基于FFT的处理器来完成; LFMCW的信号很难用传统的截获雷达检测到。 除了上述优点外,LFMCW雷达也存在一些缺点。主要表现在两个方面: 作用距离有限:LFMCW雷达发射机和接收机是同时工作的,作用距离增大时,

发射机泄漏到接收机的功率也增加; 距离-速度耦合问题:LFMCW雷达采用的是超大时带积的线性调频信号,根据雷达信号模糊函数理论,它必然存在距离与速度的耦合问题,这不仅导致系统的实际分辨能力下降,而且会引起运动目标测距误差。 1.1.2 太赫兹频段LFMCW雷达系统 根据目前国内的元器件水平和技术条件,在能够满足太赫兹波探测系统技术指标的前提下,本系统工作频率为220GHz,采用宽带线性调频探测体制方案,依靠天线测量目标的散射特性获取目标信息和距离信息。线性调频连续波雷达具有低截获特性,在距离速度模糊方面与普通的脉冲雷达相比具有较大优势。对于调频体制,利用在时间上改变发射信号的频率并与接收信号频率进行混频处理不仅能测定目标距离,而且能够精确测量目标径向速度,所以线性调频探测系统实现了太赫兹频段雷达的主动探测功能。 现代的连续波雷达普遍采用零拍接收机,也可称为零中频超外差接收机,本地振荡器就用发射机泄漏过来的信号代替,与回波信号直接混频,产生窄带差拍信号,经特性滤波和放大后,由A/D采样进行数字化处理。因此,LFMCW雷达结构较 为简单,易于实现。 频率合成器在基准信号源作用下产生线性调频信号,并通过正交解调和倍频,生成所需频段的线性调频信号,一路经过多级放大后由发射天线发射出去,另一路耦合到混频器作为本振信号,高频电磁波遇目标后反射回接收天线,经放大后

等离子体发射光谱

等离子体发射光谱 等离子体(Plasma)在近代物理学中是一个很普通的概念,是一种在一定程度上被电离(电离度大于0.1%)的气体,其中电子和阳离子的浓度处于平衡状态,宏观上呈电中性的物质。 1仪器介绍 电感耦合等离子体发射光谱仪原理 矩管外高频线圈产生高频电磁场,高纯氩气在高频电磁场中失去电子,该电子轰击待测样品,样品的各元素产生跃迁,发射出具有一定的特征谱线的光。通过检测器探测这种特征谱线并检测其强度,可以定性分析元素和定量计算该元素的浓度。 2性能特点 ICP-AES分析性能特点 电感耦合等离子体(ICP)是由高频电流经感应线圈产生高频电磁场,使工作气体形成等离子体,并呈现火焰状放电(等离子体焰炬),达到10000K的高温,是一个具有良好的蒸发-原子化-激发-电离性能的光谱光源。而且由于这种等离子体焰炬呈环状结构,有利于从等离子体中心通道进样并维持火焰的稳定;较低的载气流速(低于1L/min)便可穿透ICP,使样品在中心通道停留时间达2~3ms,可完全蒸发、原子化;ICP环状结构的中心通道的高温,高于任何火焰

或电弧火花的温度,是原子、离子的最佳激发温度,分析物在中心通道内被间接加热,对ICP放电性质影响小;ICP光源又是一种光薄的光源,自吸现象小,且系无电极放电,无电极沾污。这些特点使ICP 光源具有优异的分析性能,符合于一个理想分析方法的要求。 一个理想的分析方法,应该是:可以多组分同时测定;测定范围要宽(低含量与高含量成分能同测定);具有高的灵敏度和好的精确度;可以适用于不同状态的样品的分析;操作要简便与易于掌握。ICP-AES分析方法便具有这些优异的分析特性: ICP-AES法首先是一种发射光谱分析方法,可以多元素同时测定。

ICP等离子体发射光谱仪

ICP等离子体发射光谱仪 仪器组成及工作原理 ICP等离子体单道扫描光谱仪,是多元素顺序测量的分析测试仪器。该仪器由扫描分光器、射频发生器、试样引入系统、光电转换、控制系统、数据处理系统、分析操作软件组成。等离子体是在三重同心石英炬管中产生。炬管内分别以切向通入氩气,炬管上部绕有紫铜负载线圈〈内通冷却水〉当高频发生器产生的高频电流(工作频率40MHz功率1KW左右)通过线圈时,其周围产生交变磁场,使少量氩气电离产生电子和离子,在磁场作用下加速运动与其它中性原子碰撞,产生更多的电子和离子,在炬管内形成涡流,在电火花作用下形成等离子炬(即等离子体),这种等离子体温度可达10000K以上。待测水溶液经喷雾器形成气溶胶进入石英炬管中心通道。原子在受到外界能量的作用下电离,但处于激发态的原子十分不稳定,从较高能级跃迁到基态时,将释放出巨大能量,这种能量是以一定波长的电磁波的形式辐射出去。不同元素产生不同的特征光谱。这些特征光谱通过透镜射到分光器中的光栅上,计算通过控制步进电机转动光栅,传动机构将分光后的待测元素特征谱线光强准确定位于出口狭缝处,光电倍增管将该谱线光强转变为电流,再经电路处理和V/F转换后,由计算机进行数据处理,最后由打印机打出分析结果。 仪器型号:HKYT-2000型 技术指标 整机技术指标 (1) 分析速度快 (2) 扫描范围:范围180~500nm、方式为正弦杆,由计算机控制的脉冲马达 驱动,最小扫描步距0.0005nm (3) 波长示值误差和重复性:波长示值误差:± 0.03nm 重复性≤0.005nm (4)相关系数≥0.9998% (5) 精密度高相对标准偏差RSD≤1.5%(HKYT-2000型RSD≤2.0%) (6) 稳定性:相对标准偏差RSD≤2.0%(HKYT-2000型RSD≤3.0%) (7) 测量范围:超微量到常量 (8) 检出限低 ppb(ug/L)级(部分元素检出限见附录一)_ (9) 分析元素多可对72种金属元素和部分非金属元素(如B、P、Si、Se、 Te)进行定量或定性分析 (10) 测量方式单、多元素顺序测量 (11) 功率 800W—1200W 可调 (12) 操作便捷全新WindowsXP下运行的第三代多窗口升级中文或英文 分析软件速度更快,功能更全,多窗口多任务同时执行(国 内独此一家) 射频发生器(RF) (1)电路类型:电感反馈自激式振荡电路、同轴电缆输出、匹配调谐、取功率

调频连续波激光调制方法研究

收稿日期:2014-10-11;修订日期:2014-11-18 基金项目:机电动态控制重点实验室资助项目(9140C360202130C36129) 作者简介:陈慧敏(1973-),男,副教授,博士,主要从事激光探测与目标识别方面的研究工作。Email:laserchm@https://www.360docs.net/doc/c410819259.html, 调频连续波激光调制方法研究 陈慧敏,高志林,朱雄伟 (北京理工大学机电动态控制重点实验室,北京100081) 摘要:调频连续波(FMCW)激光调制电路是FMCW 激光探测系统的重要组成部分。对FMCW 激光调制方法进行研究,设计并实现由线性调频信号产生电路和半导体激光器驱动电路组成的激光调制电路,并给出相应的实验结果。其中线性调频信号产生电路采用基于直接数字频率合成技术的集成芯片AD9958进行设计,产生10~110MHz 的锯齿波线性调频信号;半导体激光器驱动电路采用直接电流调制方式,利用线性调频信号对激光载波的强度进行调制,激励激光器出光。测试结果表明:调频连续波激光调制电路能够满足调制频偏100MHz 、调频周期100μs 的设计要求。 关键词:调频连续波; 光强调制;直接数字频率合成中图分类号:TN249文献标志码:A 文章编号:1007-2276(2015)06-1762-04Method of frequency modulated continuous wave laser modulation Chen Huimin,Gao Zhilin,Zhu Xiongwei (Science and Technology on Electromechanical Dynamic Control Laboratory,Beijing Institute of Technology,Beijing 100081,China)Abstract:Frequency modulated continuous wave (FMCW)laser modulation circuit is an important part of the FMCW laser detection system.In this paper,the method of FMCW laser modulation was studied and a laser modulation circuit composed of a linear frequency modulation signal producing circuit and a semiconductor laser driver circuit was designed and implemented.Experimental result is given.The linear frequency modulation signal producing circuit was designed using the direct digital synthesis chip AD9958and produced a 10-110MHz sawtooth linear frequency modulation signal.The semiconductor laser driver circuit modulates the laser intensity with the linear frequency modulation signal through direct current modulation.Test results show that the laser modulation circuit can meet the design requirements :frequency deviation of 100MHz,frequency modulation period of 100μs. Key words:frequency modulated continuous wave;laser intensity modulation;direct digital synthesis 第44卷第6期 红外与激光工程2015年6月 Infrared and Laser Engineering

调频连续波

三、信号采集与处理单元关键技术研究 Equation Section 3 3.1 太赫兹频段线形调频连续波雷达系统及工作原理 3.1.1 LFMCW雷达的基本特点 调频连续波(FMCW)雷达一种通过对连续波进行频率调制来获得距离与速度信息的雷达体制。雷达调频可以采用多种方式,线性和正弦调制在过去都已经得到广泛的运用。其中线性调频是最多样化的,在采用FFT处理时它也是最适合于在大的范围内得到距离信息的。鉴于此原因,有关调频连续波的焦点问题基本上都集中在LFMCW雷达上。 线性调频连续波(LFMCW)雷达是具有高距离分辨率、低发射功率、高接收灵敏度、结构简单等优点,不存在距离盲区,具有比脉冲雷达更好的反隐身、抗背景杂波及抗干扰能力的特点,且特别适用于近距离应用,近年来在军事和民用方面都得到了较快的发展。主要优点可归结为以下三方面: LFMCW最大的优点是其调制很容易通过固态发射机实现; 要从LFMCW系统中提取出距离信息,必须对频率信息进行处理,而现在这一步可以通过基于FFT的处理器来完成; LFMCW的信号很难用传统的截获雷达检测到。 除了上述优点外,LFMCW雷达也存在一些缺点。主要表现在两个方面: 作用距离有限:LFMCW雷达发射机和接收机是同时工作的,作用距离增大时,发射机泄漏到接收机的功率也增加; 距离-速度耦合问题:LFMCW雷达采用的是超大时带积的线性调频信号,根据雷达信号模糊函数理论,它必然存在距离与速度的耦合问题,这不仅导致系统

的实际分辨能力下降,而且会引起运动目标测距误差。 3.1.2 太赫兹频段LFMCW雷达系统 根据目前国内的元器件水平和技术条件,在能够满足太赫兹波探测系统技术指标的前提下,本系统工作频率为220GHz,采用宽带线性调频探测体制方案,依靠天线测量目标的散射特性获取目标信息和距离信息。线性调频连续波雷达具有低截获特性,在距离速度模糊方面与普通的脉冲雷达相比具有较大优势。对于调频体制,利用在时间上改变发射信号的频率并与接收信号频率进行混频处理不仅能测定目标距离,而且能够精确测量目标径向速度,所以线性调频探测系统实现了太赫兹频段雷达的主动探测功能。 现代的连续波雷达普遍采用零拍接收机,也可称为零中频超外差接收机,本地振荡器就用发射机泄漏过来的信号代替,与回波信号直接混频,产生窄带差拍信号,经特性滤波和放大后,由A/D采样进行数字化处理。因此,LFMCW雷达结构较为简单,易于实现。基本框图如图19所示: 图1调频连续波雷达基本组成框图 频率合成器在基准信号源作用下产生线性调频信号,并通过正交解调和倍频,生成所需频段的线性调频信号,一路经过多级放大后由发射天线发射出去,另一路耦合到混频器作为本振信号,高频电磁波遇目标后反射回接收天线,经放大后

(完整word版)ICP等离子发射光谱仪中等离子体焰的形成过程及原理.

ICP 等离子发射光谱仪中等离子体焰的形成过程及原理 ICP 英文翻译过来是电感耦合等离子体,顾名思义,在炬管的切向方向引入高速氩气,氩气在炬管的外层形成高速旋流,通过类似真空检漏仪的装置产生的高频电火花使氩气电离出少量电子,形成一个沿炬管切线方向的电流。因为炬管放置在高频线圈内,通过高频发生器产生的高频振荡通过炬管线圈耦合到已被电离出少量电子的氩气上,使氩气中的这部分电子加速运动,撞击其他电子产生电离 , 形成雪崩效应,最终靠高频发生器连续提供能量,即可形成一个稳定的等离子体火焰。 电感耦合高频等离子(ICP光源 等离子体是一种由自由电子、离子、中性原子与分子所组成的在总体上呈中性的气体,利用电感耦合高频等离子体(ICP 作为原子发射光谱的激发光源始于本世纪60年代。 ICP 装置由高频发生器和感应圈、炬管和供气系统、试样引入系统三部分组成。高频发生器的作用是产生高频磁场以供给等离子体能量。应用最广泛的是利用石英晶体压电效应产生高频振荡的他激式高频发生器,其频率和功率输出稳定性高。频率多为 27-50 MHz,最大输出功率通常是 2-4kW 。 感应线圈一般以圆铜管或方铜管绕成的 2-5匝水冷线圈。 等离子炬管由三层同心石英管组成。外管通冷却气 Ar 的目的是使等离子体离开外层石英管内壁,以避免它烧毁石英管。采用切向进气,其目的是利用离心作用在炬管中心产生低气压通道,以利于进样。中层石英管出口做成喇叭形,通入 Ar 气维持等离子体的作用,有时也可以不通 Ar 气。内层石英管内径约为 1-2mm ,载气载带试样气溶胶由内管注入等离子体内。试样气溶胶由气动雾化器或超声雾化器产生。用 Ar 做工作气的优点是, Ar 为单原子惰性气体,不与试样组分形成难解离的稳定化合物,也不会象分子那样因解离而消耗能量,有良好的激发性能,本身的光谱简单。 当有高频电流通过线圈时,产生轴向磁场,这时若用高频点火装置产生火花,形成的载流子(离子与电子在电磁场作用下,与原子碰撞并使之电离,形成更多的载流子,

电感耦合等离子体发射光谱仪原理要点

电感耦合等离子体发射光谱仪原理 1、ICP-AES分析性能特点 等离子体(Plasma)在近代物理学中是一个很普通的概念,是一种在一定程度上被电离(电离度大于0.1%)的气体,其中电子和阳离子的浓度处于平衡状态,宏观上呈电中性的物质。 电感耦合等离子体(ICP)是由高频电流经感应线圈产生高频电磁场,使工作气体形成等离子体,并呈现火焰状放电(等离子体焰炬),达到10000K的高温,是一个具有良好的蒸发-原子化-激发-电离性能的光谱光源。而且由于这种等离子体焰炬呈环状结构,有利于从等离子体中心通道进样并维持火焰的稳定;较低的载气流速(低于1L/min)便可穿透ICP,使样品在中心通道停留时间达2~3ms,可完全蒸发、原子化;ICP环状结构的中心通道的高温,高于任何火焰或电弧火花的温度,是原子、离子的最佳激发温度,分析物在中心通道内被间接加热,对ICP放电性质影响小;ICP 光源又是一种光薄的光源,自吸现象小,且系无电极放电,无电极沾污。这些特点使ICP光源具有优异的分析性能,符合于一个理想分析方法的要求。 一个理想的分析方法,应该是:可以多组分同时测定;测定范要围宽(低含量与高含量成分能同测定);具有高的灵敏度和好的精确度;可以适用于不同状态的样品的分析;操作要简便与易于掌握。ICP-AES分析方法便具有这些优异的分析特性: ⑴ ICP-AES法首先是一种发射光谱分析方法,可以多元素同时测定。

发射光谱分析方法只要将待测原子处于激发状态,便可同时发射出各自特征谱线同时进行测定。ICP-AES仪器,不论是多道直读还是单道扫描仪器,均可以在同一试样溶液中同时测定大量元素(30~50个,甚至更多)。已有文献报导的分析元素可达78个[4],即除He、Ne、Ar、Kr、Xe惰性气体外,自然界存在的所有元素,都已有用ICP-AES法测定的报告。当然实际应用上,并非所有元素都能方便地使用ICP-AES法进行测定,仍有些元素用ICP-AES法测定,不如采用其它分析方法更为有效。尽管如此,ICP-AES法仍是元素分析最为有效的方法。 ⑵ ICP光源是一种光薄的光源,自吸现象小,所以ICP-AES法校正曲线的线性范围可达5~6个数量级,有的仪器甚至可以达到7~8个数量级,即可以同时测定0.00n%~n0%的含量。在大多数情况下,元素浓度与测量信号呈简单的线性。既可测低浓度成分(低于mg/L),又可同时测高浓度成分(几百或数千mg/L)。是充分发挥ICP-AES多元素同时测定能力的一个非常有价值的分析特性。 ⑶ ICP-AES法具有较高的蒸发、原子化和激发能力,且系无电极放电,无电极沾污。由于等离子体光源的异常高温(炎炬高达1万度,样品区也在6000℃以上),可以避免一般分析方法的化学干扰、基体干扰,与其它光谱分析方法相比,干扰水平比较低。等离子体焰炬比一般化学火焰具有更高的温度,能使一般化学火焰难以激发的元素原子化、激发,所以有利于难激发元素的测定。并且在Ar气氛中不易生成难熔的金属氧化物,从而使基体效应和共存元素的影响变得不明显。很多可直接测定,使分析操作变得简单,实用。

基于MATLAB的均匀平面波仿真

课程设计说明书常用软件课程设计 题目: 基于MATLAB的均匀平面波仿真 院(部):力学与光电物理学院 专业班级:应用物理 学号: 学生姓名: 指导教师: 2017年7月2 日

安徽理工大学课程设计(论文)任务书 力学与光电物理学院基础与应用物理教研室

安徽理工大学课程设计(论文)成绩评定表 目录

摘要 (5) 1 绪论 (1) 1.1问题背景 (1) 1.2课题研究意义 (1) 2 均匀平面电磁波 (3) 2.1定义与性质 (3) 2.2理想介质中的均匀平面波方程 (3) 2.3平面电磁波的瞬时值形式 (6) 3 MATLAB软件及其基本指令 (8) 3.1MATLAB发展历史 (8) 3.2MATLAB的功能与语言特点 (8) 3.3MATLAB指令 (9) 4 程序设计与运行 (11) 4.1设计思路与框图 (11) 4.2运行结果 (12) 5 项目总结 (16) 6 参考文献 (17)

摘要 平面波是指场矢量的等相位面与波传播方向相垂直的无限大平面的一种电磁波·12。如果平面波在均匀一致且各向同性的理想介质中将形成均匀平面波。均匀平面波是研究电磁波的基础,研究均匀平面波传输特性有十分重要的实际意义。然而直接观察均匀平面波是很难实现的,所以随着计算机的发展,仿真实验正在不断的发展,仿真软件通过图形化界面联系理论条件与实验过程,同时运用一定的编程达到模拟现实的效果。于是本文用MATLAB对均匀平面电磁波在理想介质中的传播进行仿真模拟,从而可以更加形象的学习与理解电磁波的知识。 关键词:电磁波; 均匀平面电磁波; 理想介质; MATLAB; 仿真

基于MATLAB的均匀平面波仿真

课程设计说明书 常用软件课程设计 题目: 基于MATLAB得均匀平面波仿真 院(部):力学与光电物理学院 专业班级: 应用物理 学号: 学生姓名: 指导教师: 2017年7月2 日 安徽理工大学课程设计(论文)任务书 力学与光电物理学院基础与应用物理教研室 学号学生姓名专业(班级)应物 题目基于MATLAB得均匀平面波仿真 设计技术参数1、平面波知识得复习 2、MATLAB程序得编写 3、课程设计说明书得书写

2017年6月30日安徽理工大学课程设计(论文)成绩评定表

目录 摘要?错误!未定义书签。 1 绪论?错误!未定义书签。

1、1问题背景?错误!未定义书签。 1、2课题研究意义 ........................................... 错误!未定义书签。2均匀平面电磁波?错误!未定义书签。 2、1定义与性质?错误!未定义书签。 2、2理想介质中得均匀平面波方程?错误!未定义书签。 2、3平面电磁波得瞬时值形式 .................................. 错误!未定义书签。3 MATLAB软件及其基本指令.. (7) 3、1MATLAB发展历史?错误!未定义书签。 3、2MATLAB得功能与语言特点?7 3、3MATLAB指令.............................................. 错误!未定义书签。 4 程序设计与运行?错误!未定义书签。 4、1设计思路与框图 (10) 4、2运行结果?错误!未定义书签。 5 项目总结?错误!未定义书签。 6 参考文献 ..................................................... 错误!未定义书签。

PE Optima8000电感耦合等离子体发射光谱仪技术指标

Optima8000电感耦合等离子体发射光谱仪技术规格 1.设备用途及总体要求: 用于对各类样品中主量、微量及痕量元素的定性、半定量和定量分析。仪器以固体检测器为基础,由进样系统、高频发生器、等离子体炬、光路系统、检测器、分析软件和计算机系统组成,全自动控制,仪器监控仪表全部由计算机控制,任何仪器参数都不需要手动调节的全谱直读型台式等离子体发射光谱仪。 2.设备总体性能: 2.1动态范围:≥ 106,具有同时准确分析出中量(1%以上)、常量(0.01%)和微量(1ppm以下)元素的实际样品用户应用实例。具有同时准确分析主量(50%以上)和常量(0.01%)元素的实际样品用户应用实例。 2.2分析速度:≥ 15 个元素/分钟,且实施背景校正。 2.3精密度:1ppm 混合多元素溶液。CV<0.5%。 2.4 稳定性:1小时RSD<1%, 4小时RSD<2%。 2.5分辨率:在200nm处,像素分辨率:≤0.003nm。 2.6 检出限,以1ppm混标测量建立仪器的灵敏度,以6次空白溶液测量的3σ强度所对应的浓度计算检出限,所有下列检出限必须在同一个仪器参数下同时做出。

2.7灵敏度 旋流雾室和同心雾化器(单位:cps/ppm) Mn 257.610nm > 8.5×106,Al 396.153nm > 1×106,Ni 231.604nm > 3×105 As 193.696nm > 1.5×104,Pb 220.353nm > 5×104,P 213.617nm > 3×104 2.8 具有高纯气体中痕量杂质分析的能力和用户应用实例。可以分析高纯氮气、氢气、氦气中0.1微克/升以下含量的杂质。 2.9 具有99.99%高纯材料(例如高纯石英砂)中痕量杂质分析的能力和用户应用实例。 2.10 具有镀铝锌板、锆铁合金、钛合金、铝铁锰青铜、铸造铝合金、耐磨铸铁、变形铝合金、铅黄铜、黄金合金、催化剂、电镀液等冶金材料中痕量杂质分析的能力和用户应用实例。 2.11 具有土壤、沉积物、植物、沉积岩、硅灰石、水、动物组织、纺织品、松香、植物油、化妆品、食品、中药、西药等样品类型中痕量杂质分析的能力和用户应用实例。 3.进样系统 3.1 雾化器:标配耐HF酸耐高盐分的雾化器,耐:50% (v/v) HCl、HNO3、H2SO4、H3PO4,20% (v/v) HF,30% (w/v)NaOH以及30%的高盐样品。 3.2 雾化器喷嘴为红宝石和蓝宝石材料制成。 3.3 雾室:标配耐HF酸耐高盐分样品。 3.4 雾室为不亲水的高强度高纯氟塑料材料制成。 3.5 分析含HF、HCl、HNO3酸等各种样品,雾化器和雾室的使用寿命不少于5年,并有超过5年的用户使用实例。 3.6炬管为可拆卸式结构,炬管中心管标配为刚玉材料,其使用寿命不少于5年,并有超过5年的用户使用实例。

均匀平面波沿空间各点的极化方向

任意传播方向的均匀平面波极化方向的识别 【摘要】:本文讨论了均匀平面波在空间的极化方向。从电场分量的相位和振幅的情况对电磁波的极化形式进行了分类。对所学知识进行了小结 【关键词】:电磁波的极化 线极化 圆极化 椭圆极化 【正文】 电磁波的极化:电磁波在传播的过程中,在垂直于传播方向上电场可能会有两个或以上的分量。由于每个分量的振幅和相位不一定相同。因此,在空间任意给 定点上,合成波电场矢量E 的大小和方向都可能随时间变化,这种现象成为电磁 波的极化。 电磁波的极化是电磁理论中的一个重要概念,它表征在空间给定点上电场强度矢量的取向随时间变化的特性,并用电场强度矢量的端点随时间变化的轨迹来描述。 电磁波的极化形式取决于y E 和x E 分量的振幅之间和相位之间的关系。 下面分别从相位和振幅来讨论电磁波的极化形式。(为了简化问题以下取z=0点来讨论) 1πφφ±=-或0x y 则矢端参数方程转化为 合成波电场与x 轴的夹角为 为常数 当时取负号时取正号,πφφφφ±=-=-x x y y 0 合成电场的端点在一条直线上运动,如图所示 m m arctan()y x E E α=±2222m m (0,)(0,) cos() x y x y y E E t E t E E t ωφ=+=++

结论:任何两个同频率、同传播方向且极化方向互相垂直的线极化波,当它们的相位相同或相差为±π时,其合成波为线极化波。 2x 和y 分量的振幅相等且2 πφφ±=-x y )()E E (arctan x E E )sin()2 cos(E )cos(E 2 2 22y y x x y m y x x m x m y x m x x x t const E E t E t E t E φωαφωπφωφωπφφπ φφ+-====+=+-=++=+=+==-轴的夹角为 合成波电场与大小为 故合成波的电场强度的时,即当 由此可见,合成波电场的大小不随时间变化,但方向却随时变化,其端点轨迹在一个圆上并以角速度ω旋转,故为圆极化波。 当时间t 的值逐渐增加时,电场E 的端点沿顺时针方向旋转。若以左手大拇指 朝向波的传播方向,则其余四指的转向与电场E 的端点运动方向一致,故将其成 为左旋圆极化波。 左旋圆极化波 o x E y x E y E a 0φ= πφ=±

任意方向传播的均匀平面波的极化方式识别

学习报告四 令狐采学 ——任意方向传播的均匀平面波的极化方式识别 作者:英才实验学院09级4班 甘骏2900104007 【摘要】 本文是电磁场与波课程关于均匀平面波极化方式识别的延伸。将着重讨论沿任一方向传播的均匀平面波的极化方式。重点将运用到矢量的分析方法。 【关键词】 均匀平面波 极化 矢量分析 【引言】 《电磁场与电磁波》(谢处方,饶克谨)教材中,关于均匀平面波的极化的讨论,仅限于沿Z轴方向传播,有很大的局限性——实际生活中,电磁波是可以沿任意方向传播的。但是书中关于Z轴方向传播的均匀平面波讨论很详细,值得借鉴。因为,任意方向传播的均匀平面波可以抽象为重新建立坐标系,

将传播方向固定为Z轴,则可以用相同的讨论方法确定波的极化方式。 【正文】 1.极化的概念。 以沿Z方向传播的均匀平面波为例,假设 。在任何时刻,此波的电池强度矢量的方向始终保持在x方向。一般情况下,沿z方向传播的均匀平面波的分量都存在,可表示为: (1) (2) 合成波电场。由于分量的振幅和相位不一定相同,因此,在空间任意给定点上,合成波电场强度矢量的大小和方向都可能会随时间变化,这种现象称为电磁波的极化。 它表征,空间固定点处,电场强度的矢端随时间变化的轨迹。矢端的时间变化规律,决定于各分量幅度和初相的大小。 2.关于Z轴方向传播的均匀平面波的极化方式。 首先我们引入矢端参数方程。在直角坐标系下,矢端参数方程为: 在极坐标系下: 极化的状态: 波都沿z方向传播,则有:

:线极化 :左旋极化 :右旋极化 3.线极化波。 条件: 则矢端参数方程简化为: 合成波电场与x轴的夹角为: 任何两个同频率、同传播方向且极化方向互相垂直的线极化波,当它们的相位相同或相差为±π时,其合成波为线极化波。 4.圆极化波。 条件: 矢端方程: 为左旋极化波 为右旋极化波 任何两个同频率、同传播方向且极化方向互相垂直的线极化波,当它们的振幅相同、相位差为±π/ 2 时,其合成波为圆极化波。 5.椭圆极化波。 即在x,y方向上,电场振幅和相位都不等的情况。 6.推广到任意方向。 任意方向传播的均匀平面波,可表示为: 设其中为复振幅矢量,分别为其实部和

电感耦合等离子体发射光谱仪OES Avio200操作流程

电感耦合等离子体发射光谱仪 (ICP-OES)Avio200操作流程 1. 开机 1.1. 打开通风系统; 1.2. 空气压缩机(0.5-0.8Mpa); 1.3. 打开氩气(Ar 80~120psi,氩气纯度应在99.996以上); 1.4. 循环水(温度20℃,0.3-0.5Mpa); 1.5. 打开计算机和OES主机(①检查Ar气体压力、②检查排风、③开蠕动泵、 ④等离子控制:冲洗flush(观察管路通畅情况)、⑤等离子控制:点火(点燃等离子体,待等离子炬焰稳定,通常需要20min~30min) )。 双击进入工作界面,并开始自检。右边各项联机正常后仪器才可以操作。 安装好样品管sample tubing 和废液管drain tubing. 点击Instrumen后再点击Plasma control 图标,进入plasma control 对话框,点击Plasma On. 点燃等离子体。 点炬15分钟以后仪器会自动进入光学初始化,以便校正菱镜随温度的变化。也可以通过点击spectrometer 中的Initialize Optics 图标进行强制光学初始化。 此过程只需要吸入超纯水。 通过Utilities中的Diagnostics可以观察光学初始化的过程。 光学初始化结束后,会得出一个校正步数,该数值在正负50步为最佳。 注意:光学初始化的步数大小与仪器的好坏无关,只与本次开的温度和上一次开机,温度的差值相关,温度差异越大,该数值越大。所以控制实验室温度恒定是必要的。 2. Method方法编辑 点击ANALYSIS,Method窗口中的NEW 出现下图窗口,按需要选择有机还是无机。点击OK。 2.1. 在方法编辑Method Editor对话框:光谱仪定义元素页中 Spectrometer Define Elements,直接输入待测元素符号或点击元素 周期表Periodic Table,选择待分析元素,在波长下拉菜单中,选中所 需要的波长(或在波长λ表中,选中所需要的波长), 2.2. 在光谱仪设置页中Spectrometer Settings,读取参数时间Real Parameters Time(sec秒),最小值min为 5,最大值max为20,延迟时间Delay Time(sec秒) 为60,重复次数Replicate 3次.一般设置读书AUTO,延时30秒重复1次。 2.2.1 吹扫气流Purge Gas Flow:在190 nm以下,正常吹扫 1L/min,高High吹扫 5L/min. 2.3 光谱窗口Spectral Windows:可以设置观察窗口和自动积分窗口。 观察窗口是指要收集的等离子体发射数据所在的波长范围。自动积分窗 口是指根据最高强度信号计算积分时间时所用的波长范围. 不建议手动修改。2.4. 取样器Sampler 等离子体Plasma 页中:可以设置等离子体气流、

相关文档
最新文档