巧用综合除法求n次多项式函数的泰勒展开式

巧用综合除法求n次多项式函数的泰勒展开式
巧用综合除法求n次多项式函数的泰勒展开式

核函数理论

核函数理论 §1 多项式空间和多项式核函数 定义 1.1 (核或正定核) 设X 是n R 中的一个子集,称定义在X X ?上的函数),(z x K 是核函数,如果存在一个从X 到Hilbert 空间H 的映射Φ H x x ∈ΦΦ)(:α (1.1) 使得对任意的X z x ∈,, ))()((),(z x z x Φ?Φ=K (1.2) 都成立。其中)(?表示Hilbert 空间H 中的内积。 定义1.2 (d 阶多项式)设n T n R x x x x ∈=)][,,][,]([21Λ,则称乘积d j j j x x x ][][][21K 为x 的一个d 阶多项式,其中},,2,1{,,,21n j j j d K K ∈。 1. 有序齐次多项式空间 考虑2维空间中(n R x ∈)的模式T x x x )][,]([21=,其所有的2阶单项式为 21][x ,22][x ,21][][x x ,12][][x x (1.3) 注意,在表达式(1.3)中,我们把21][][x x 和12][][x x 看成两个不同的单项式,所以称式(1.3)中的单项式为有序单项式。这4个有序单项式张成的是一个4维特征空间,称为2阶有序齐次多项式空间,记为H 。相应地可建立从原空间2 R 到多项式空间H 的非线性映射 H x x x x x x x C x x x C T T ∈==)][][,][][,][,]([)()][,]([:122122212212α (1.4) 同理,从n R 到d 阶有序齐次多项式空间H 的映射可表示为 H n j j j x x x x C x x x x C T d j j j d T n d d ∈∈==}),,2,1{,,,|][][]([)()][,,][,]([:212121K K K αK (1.5) 这样的有序单项式d j j j x x x ][][][21K 的个数为d n ,即多项式空间H 的维数d H n n =。如果在H 中进行内积运算)()(z C x C d d ?,当n 和d 都不太小时,多项式空间H 的维数d H n n =会相当大。如当200=n ,5=d 时,维数可达到上亿维。显然,在多项式空间H 中直接进行内积运算将会引起“维数灾难”问题,那么,如何处理这个问题呢? 我们先来考查2==d n 的情况,计算多项式空间H 中两个向量的内积 212122121222 2212122)(][][][][][][][][][][][][))()((z x z z x x z z x x z x z x z C x C ?=+++=? (1.6)

svm核函数matlab

clear all; clc; N=35; %样本个数 NN1=4; %预测样本数 %********************随机选择初始训练样本及确定预测样本******************************* x=[]; y=[]; index=randperm(N); %随机排序N个序列 index=sort(index); gama=23.411; %正则化参数 deita=0.0698; %核参数值 %thita=; %核参数值 %*********构造感知机核函数************************************* %for i=1:N % x1=x(:,index(i)); % for j=1:N % x2=x(:,index(j)); % K(i,j)=tanh(deita*(x1'*x2)+thita); % end %end %*********构造径向基核函数************************************** for i=1:N x1=x(:,index(i)); for j=1:N x2=x(:,index(j)); x12=x1-x2; K(i,j)=exp(-(x12'*x12)/2/(deita*deita)); End End %*********构造多项式核函数**************************************** %for i=1:N % x1=x(:,index(i)); % for j=1:N % x2=x(:,index(j)); % K(i,j)=(1+x1'*x2)^(deita); % end %end %*********构造核矩阵************************************ for i=1:N-NN1 for j=1:N-NN1 omeiga1(i,j)=K(i,j); end end

常用泰勒公式

简介 在数学上, 一个定义在开区间(a-r, a+r)上的无穷可微的实变函数或复变函数f的泰勒级数是如下的幂级数 这里,n!表示n的阶乘而f(n)(a) 表示函数f在点a处的n阶导数。如果泰勒级数对于区间(a-r, a+r)中的所有x都收敛并且级数的和等于f(x),那么我们就称函数f(x)为解析的。当且仅当一个函数可以表示成为幂级数的形式时,它才是解析的。为了检查级数是否收敛于f(x),我们通常采用泰勒定理估计级数的余项。上面给出的幂级数展开式中的系数正好是泰勒级数中的系数。 如果a = 0, 那么这个级数也可以被称为麦克劳伦级数。 泰勒级数的重要性体现在以下三个方面:首先,幂级数的求导和积分可以逐项进行,因此求和函数相对比较容易。第二,一个解析函数可被延伸为一个定义在复平面上的一个开片上的解析函数,并使得复分析这种手法可行。第三,泰勒级数可以用来近似计算函数的值。 对于一些无穷可微函数f(x) 虽然它们的展开式收敛,但是并不等于f(x)。例如,分段函数f(x) = exp(?1/x2) 当x≠ 0 且f(0) = 0 ,则当x = 0所有的导数都为零,所以这个f(x)的泰勒级数为零,且其收敛半径为无穷大,虽然这个函数f仅在x = 0 处为零。而这个问题在复变函数内并不成立,因为当z沿虚轴趋于零时 exp(?1/z2) 并不趋于零。 一些函数无法被展开为泰勒级数因为那里存在一些奇点。但是如果变量x是负指数幂的话,我们仍然可以将其展开为一个级数。例如,f(x) = exp(?1/x2) 就可以被展开为一个洛朗级数。 Parker-Sockacki theorem是最近发现的一种用泰勒级数来求解微分方程的定理。这个定理是对Picard iterati on一个推广。 [编辑]

些常用函数及其泰勒展开式的图像

图 1 )exp(x y =及其 Taylor 展开式 其中, 。 ! 4!3!21)(; ! 3!21)(; ! 21)(; 1)(;)exp(4 32443 23322211x x x x x P y x x x x P y x x x P y x x P y e x y x ++++==+++==++==+==== -3 -2-1 0123 -50 5 10 15 20 25 Figure 1 y=exp(x) and its Taylor expansion equation X Y

图 2 )sin(x y =及其 Taylor 展开式 其中, 。 ! 7!5!3)(; !5!3)(; ! 3)(; )();sin(7 53775 35533311x x x x x P y x x x x P y x x x P y x x P y x y -+-==+-==-===== -4 -3-2-1 01234 -8-6-4-202468Figure 2 y=sin(x) and its Taylor expansion equation X Y

图 3 )cos(x y =及其 Taylor 展开式 其中, 。 ! 8!6!4!21)(; !6!4!21)(; ! 4!21)(; !21)(); cos(8 642886 42664 2442 22x x x x x P y x x x x P y x x x P y x x P y x y +-+-==-+-==+-==-=== -4 -3-2-1 01234 -8-6 -4 -2 2 4 Figure 3 y=cos(x) and its Taylor expansion equation X Y

一些常用函数及其泰勒(Taylor)展开式的图像

其中, 。 ! 4!3!21)(; ! 3!21)(; ! 21)(; 1)(;)exp(4 32443 23322211x x x x x P y x x x x P y x x x P y x x P y e x y x ++++==+++==++==+==== -3 -2-1 0123 -50 5 10 15 20 25 Figure 1 y=exp(x) and its Taylor expansion equation X Y

其中, 。 ! 7!5!3)(; !5!3)(; ! 3)(; )();sin(7 53775 35533311x x x x x P y x x x x P y x x x P y x x P y x y -+-==+-==-===== -4 -3-2-1 01234 -8-6-4-202468Figure 2 y=sin(x) and its Taylor expansion equation X Y

其中, 。 ! 8!6!4!21)(; !6!4!21)(; ! 4!21)(; !21)(); cos(8 642886 42664 2442 22x x x x x P y x x x x P y x x x P y x x P y x y +-+-==-+-==+-==-=== -4 -3-2-1 01234 -8-6 -4 -2 2 4 Figure 3 y=cos(x) and its Taylor expansion equation X Y

其中, 。 4 32)(; 3 2)(; 2 )(; )();1ln(4 32443 23322211x x x x x P y x x x x P y x x x P y x x P y x y -+-==+-==-====+= -1 -0.50 0.51 1.52 -3-2 -1 1 2 3 Figure 4 y=ln(x) and its Taylor expansion equation X Y

核函数选择方法研究

龙源期刊网 https://www.360docs.net/doc/ce10826543.html, 核函数选择方法研究 作者:王振武何关瑶 来源:《湖南大学学报·自然科学版》2018年第10期 摘要:核函数的选择对支持向量机的分类结果有着重要的影响,为了提高核函数选择的客观性,提出了一种以错分实例到支持向量所在界面的距离来表示错分程度,并基于此进行秩和检验的核函数选择方法.通过与K折交叉验证、配对t测试等参数检验的统计方法进行对比 分析,对9种常用核函数的分类能力在15个数据集进行了定量研究.与参数检验方法不同,秩和检验并未假定数据的分布情况(很多情况下数据并不满足假定的分布),而且数据实验证明,秩和检验不但能够对核函数的分类能力进行客观评估,而且在某些数据集上还能产生更好的核函数选择效果. 关键词:核函数;支持向量机;秩和检验; K折交叉验证;配对t测试 中图分类号:TP301.6 文献标志码:A Abstract:The selection of kernel functions has an important influence on the classification results of support vector machines. This paper proposed a kernel functions selection method based on rank sum test in order to enhance the selection objectivity, where the error degree adopted in the rank sum test was represented by the distance between the error instance and the interface of support vectors. By comparing with other statistical methods, such as Kfolding cross validation and paired t test, the classification abilities of nine common kernel functions were quantitatively studied based on 15 datasets. Different from parameter test methods, the rank sum test does not assume the data distribution(in some cases data cannot satisfy the assumed distribution), the experimental data proves that the rank sum test not only can objectively evaluate the classification abilities of kernel functions, but also can produce better selection results on some data sets. Key words:kernel function; support vector machines; rank sum test; K folding cross validation; paired t test 支持向量機(Support Vector Machine,SVM)[1]的使用与核函数的正确选择是密不可分的,核函数技术巧妙地解决了在高维特征空间中计算的“维数灾难”等问题,直接决定了SVM 的非线性处理能力[2].当前对核函数选择方法的研究主要集中在构造新的核函数[3-7]、核函数参数选择[8-13]以及核函数的评估[1,14-16]上.由于在使用SVM进行分类的过程中只定义了核函数(并不显式地定义映射函数),所以在同一分类问题上选择不同的核函数对分类效果影响较大,另外映射函数的类型是多变的,在没有先验知识的情况下人们更多地是凭借主观经验进行核函数的选择,具有较大的随意性.

核函数

SVM 小结 理论基础: 机器学习有三类基本的问题,即模式识别、函数逼近和概率密度估计. SVM 有着严格的理论基础,建立了一套较好的有限训练样本下机器学习的理论框架和通用方法。他与机器学习是密切相关的,很多理论甚至解决了机器学习领域的其他的问题,所以学习SVM 和机器学习是相辅相成的,两者可以互相促进,有助于机器学习理论本质的理解。 VC 维理论:对一个指示函数集,如果存在h 个样本能够被函数集中的函数按所有可能的2h 种形式分开,则称函数集能够把h 个样本打散;函数集的VC 维就是它能打散的最大样本数目。VC 维反映了函数集的学习能力,VC 维越太则学习机器越复杂(容量越太)。 期望风险:其公式为[](,,(,))(,)y R f c y f y dP y χχχχ?=?,其中(,,(,))c y f y χχ为损失函数,(,)P y χ为概率分布,期望风险的大小可以直观的理解为,当我们用()f χ进行预测时,“平均”的损失程度,或“平均”犯错误的程度。 经验风险最小化(ERM 准则)归纳原则:但是,只有样本却无法计算期望风险,因此,传统的学习方法用样本定义经验风险[]emp R f 作为对期望风险的估计,并设计学习算法使之最小化。即所谓的经验风险最小化(ERM 准则)归纳原则。经验风险是用损失函数来计算的。对于模式识别问题的损失函数来说,经验风险就是训练样本错误率;对于函数逼近问题的损失函数来说,就是平方训练误差;而对于概率密度估计问题的损失函数来说,ERM 准则就等价于最大似然法。但是,经验风险最小不一定意味着期望风险最小。其实,只有样本数目趋近于无穷大时,经验风险才有可能趋近于期望风险。但是很多问题中样本数目离无穷大很远,那么在有限样本下ERM 准则就不一定能使真实风险较小。ERM 准则不成功的一个例子就是神经网络和决策树的过学习问题(某些情况下,训练误差过小反而导致推广能力下降,或者说是训练误差过小导致了预测错误率的增加,即真实风险的增加)。 结构风险最小化理论(SRM):所以,在有限样本情况下,仅仅用ERM 来近似期望风险是行不通的。统计学习理论给出了期望风险[]R f 与经验风险[]emp R f 之间关系: [][]()emp h R f R f l φ≤+

核函数方法简介(亮亮修正版)

核函数方法简介 (1)核函数发展历史 早在1964年Aizermann等在势函数方法的研究中就将该技术引入到机器学习领域,但是直到1992年Vapnik等利用该技术成功地将线性SVMs推广到非线性SVMs时其潜力才得以充分挖掘。而核函数的理论则更为古老,Mercer定理可以追溯到1909年,再生核希尔伯特空间(Reproducing Kernel Hilbert Space, RKHS)研究是在20世纪40年代开始的。 (2)核函数方法原理 核函数方法原理 根据模式识别理论,低维空间线性不可分的模式通过非线性映射到高维特征空间则可能实现线性可分,但是如果直接采用这种技术在高维空间进行分类或回归,则存在确定非线性映射函数的形式和参数、特征空间维数等问题,而最大的障碍则是在高维特征空间运算时存在的“维数灾难”。采用核函数技术可以有效地解决这样问题。 设x,z∈X,X属于R(n)空间,非线性函数Φ实现输入空间X到特征空间F的映射,其中F 属于R(m),n< (1) 其中:<, >为内积,K(x,z)为核函数。从式(1)可以看出,核函数将m维高维空间的内积运算转化为n维低维输入空间的核函数计算,从而巧妙地解决了在高维特征空间中计算的“维数灾难”等问题,从而为在高维特征空间解决复杂的分类或回归问题奠定了理论基础。(3)核函数特点 核函数方法的广泛应用,与其特点是分不开的: 1)核函数的引入避免了“维数灾难”,大大减小了计算量。而输入空间的维数n对核函数矩阵无影响,因此,核函数方法可以有效处理高维输入。 2)无需知道非线性变换函数Φ的形式和参数. 3)核函数的形式和参数的变化会隐式地改变从输入空间到特征空间的映射,进而对特征空间的性质产生影响,最终改变各种核函数方法的性能。 4)核函数方法可以和不同的算法相结合,形成多种不同的基于核函数技术的方法,且这两部分的设计可以单独进行,并可以为不同的应用选择不同的核函数和算法。 (4)常见核函数 核函数的确定并不困难,满足Mercer定理的函数都可以作为核函数。常用的核函数可分为两类,即内积核函数和平移不变核函数,如: 1)高斯核函数K(x,xi) =exp(-||x-xi||2/2σ2; 2)多项式核函数K(x,xi)=(x·xi+1)^d, d=1,2,…,N; 3)感知器核函数K(x,xi) =tanh(βxi+b); 4)样条核函数K(x,xi) = B2n+1(x-xi)。 (5)核函数方法实施步骤 核函数方法是一种模块化(Modularity)方法,它可分为核函数设计和算法设计两个部分,具体为: 1)收集和整理样本,并进行标准化; 2)选择或构造核函数;

常见泰勒公式展开式

泰勒公式 泰勒公式是一个用函数在某点的信息描述其附近取值的公式。如果函数满足一定的条件,泰勒公式可以用函数在某一点的各阶导数值做系数构建一个多项式来近似表达这个函数。 泰勒公式得名于英国数学家布鲁克·泰勒,他在1712年的一封信里首次叙述了这个公式。泰勒公式是为了研究复杂函数性质时经常使用的近似方法之一,也是函数微分学的一项重要应用内容历史发展 泰勒公式是高等数学中的一个非常重要的内容,它将一些复杂的函数逼近近似地表示为简单的多项式函数,泰勒公式这种化繁为简的功能,使得它成为分析和研究许多数学问题的有力工具。 18世纪早期英国牛顿学派最优秀的代表人物之一的数学家泰勒( Brook T aylor),其主要著作是1715年出版的《正的和反的增量方法》,书中陈述了他于1712年7月给他老师梅钦信中提出的著名定理——泰勒定理。1717年,泰勒用泰勒定理求解了数值方程。泰勒公式是从格雷戈里——牛顿差值公式发展而来,它是一个用函数在某点的信息描述其附近取值的公式。如果函数足够光滑,在已知函数某一点各阶导数的前提下,泰勒公式可以利用这些导数值作为系数构建一个多项式来近似该函数在这一点的邻域中的值。1772年,拉格朗日强调了泰勒公式的重要性,称其为微分学基本定理,但是泰勒定理的证明中并没有考虑级数的收敛性,这个工作直到19世纪20年代,才由柯西完成。泰勒定理开创了有限差分理论,使任何单变量函数都

可以展开成幂级数,因此,人们称泰勒为有限差分理论的奠基者。 泰勒公式是数学分析中重要的内容,也是研究函数极限和估计误差等方面不可或缺的数学工具,泰勒公式集中体现了微积分“逼近法”的精髓,在近似计算上有独特的优势。利用泰勒公式可以将非线性问题化为线性问题,且具有很高的精确度,因此其在微积分的各个方面都有重要的应用。泰勒公式可以应用于求极限、判断函数极值、求高阶导数在某点的数值、判断广义积分收敛性、近似计算、不等式证明等方面。

机器学习_核函数基本概念

机器学习-核函数基本概念 §1 多项式空间和多项式核函数 定义 1.1 (核或正定核) 设X 是n R 中的一个子集,称定义在X X ?上的函数 ),(z x K 是核函数,如果存在一个从X 到Hilbert 空间H 的映射Φ H x x ∈ΦΦ)(:α (1.1) 使得对任意的X z x ∈,, ))()((),(z x z x Φ?Φ=K (1.2) 都成立。其中)(?表示Hilbert 空间H 中的内积。 定义1.2 (d 阶多项式)设n T n R x x x x ∈=)][,,][,]([21Λ,则称乘积d j j j x x x ][][][21K 为x 的一个d 阶多项式,其中},,2,1{,,,21n j j j d K K ∈。 1. 有序齐次多项式空间 考虑2维空间中(n R x ∈)的模式T x x x )][,]([21=,其所有的2阶单项式为 21][x ,2 2][x ,21][][x x ,12][][x x (1.3) 注意,在表达式(1.3)中,我们把21][][x x 和12][][x x 看成两个不同的单项式,所以称式(1.3)中的单项式为有序单项式。这4个有序单项式张成的是一个4维特征空间,称为2阶有序齐次多项式空间,记为H 。相应地可建立从原空间2 R 到多项式空间H 的非线性映射 H x x x x x x x C x x x C T T ∈==)][][,][][,][,]([)()][,]([:12212 22 12212α (1.4) 同理,从n R 到d 阶有序齐次多项式空间H 的映射可表示为 H n j j j x x x x C x x x x C T d j j j d T n d d ∈∈==}),,2,1{,,,|][][]([)()][,,][,]([:212121K K K αK (1. 5) 这样的有序单项式d j j j x x x ][][][21K 的个数为d n ,即多项式空间H 的维数d H n n =。如果 在H 中进行内积运算)()(z C x C d d ?,当n 和d 都不太小时,多项式空间H 的维数d H n n =会相当大。如当200=n ,5=d 时,维数可达到上亿维。显然,在多项式空间H 中直接进行内积运算将会引起“维数灾难”问题,那么,如何处理这个问题呢? 我们先来考查2==d n 的情况,计算多项式空间H 中两个向量的内积

常用十个泰勒展开公式

常用bai泰勒展开公式如下: 1、due^x = 1+x+x^2/2!+x^3/3!+……zhi+x^n/n!+…… 2、daoln(1+x)=x-x^2/2+x^3/3-……+(-1)^(k-1)*(x^k)/k(|x|<1) 3、sin x = x-x^3/3!+x^5/5!-……+(-1)^(k-1)*(x^(2k-1))/(2k-1)!+……。(-∞

9、cosh x = 1+x^2/2!+x^4/4!+……+(-1)k*(x^2k)/(2k)!+……(-∞

机器学习核函数讲义

第一章 核函数 §1 多项式空间和多项式核函数 定义 1.1 (核或正定核) 设X 是n R 中的一个子集,称定义在X X ?上的函数 ),(z x K 是核函数,如果存在一个从X 到Hilbert 空间H 的映射Φ H x x ∈ΦΦ)(: (1.1) 使得对任意的X z x ∈,, ))()((),(z x z x Φ?Φ=K (1.2) 都成立。其中)(?表示Hilbert 空间H 中的内积。 定义1.2 (d 阶多项式)设n T n R x x x x ∈=)][,,][,]([21 ,则称乘积d j j j x x x ][][][21 为x 的一个d 阶多项式,其中},,2,1{,,,21n j j j d ∈。 1. 有序齐次多项式空间 考虑2维空间中(n R x ∈)的模式T x x x )][,]([21=,其所有的2阶单项式为 21][x ,2 2][x ,21][][x x ,12][][x x (1.3) 注意,在表达式(1.3)中,我们把21][][x x 和12][][x x 看成两个不同的单项式,所以称式(1.3)中的单项式为有序单项式。这4个有序单项式张成的是一个4维特征空间,称为2阶有序齐次多项式空间,记为H 。相应地可建立从原空间2 R 到多项式空间H 的非线性映射 H x x x x x x x C x x x C T T ∈==)][][,][][,][,]([)()][,]([:12212 22 12212 (1.4) 同理,从n R 到d 阶有序齐次多项式空间H 的映射可表示为 H n j j j x x x x C x x x x C T d j j j d T n d d ∈∈==}),,2,1{,,,|][][]([)()][,,][,]([:212121 (1.5) 这样的有序单项式d j j j x x x ][][][21 的个数为d n ,即多项式空间H 的维数d H n n =。如果 在H 中进行内积运算)()(z C x C d d ?,当n 和d 都不太小时,多项式空间H 的维数d H n n =会相当大。如当200=n ,5=d 时,维数可达到上亿维。显然,在多项式空间H 中直接进行内积运算将会引起“维数灾难”问题,那么,如何处理这个问题呢? 我们先来考查2==d n 的情况,计算多项式空间H 中两个向量的内积 2 121221212222212122)(][][][][][][][][][][][][))()((z x z z x x z z x x z x z x z C x C ?=+++=? (1.6)

径向基核函数 (Radial Basis Function)–RBF

径向基核函数 (Radial Basis Function)–RBF 发表于297 天前?技术, 科研?评论数 8?被围观 3526 views+ 论文中又提到了RBF,虽然是个简单的核函数,但是也再总结一下。关于SVM中的核函数的选择,比较简单和应用比较广的是RBF。 所谓径向基函数 (Radial Basis Function 简称 RBF), 就是某种沿径向对称的标量函数。通常定义为空间中任一点x到某一中心xc之间欧氏距离的单调函数 , 可记作 k(||x-xc||), 其作用往往是局部的 , 即当x远离xc时函数取值很小。 最常用的径向基函数是高斯核函数 ,形式为 k(||x-xc||)=exp{- ||x-xc||^2/(2*σ)^2) } 其中xc为核函数中心,σ为函数的宽度参数 , 控制 了函数的径向作用范围。 建议首选RBF核函数,因为: 1.能够实现非线性映射;(线性核函数可以证明是他的一个特例;SIGMOID 核函数在某些参数上近似RBF的功能。) 2.参数的数量影响模型的复杂程度,多项式核函数参数较多。 3.the RBF kernel has less numerical difficulties. ———–那么,还记得为何要选用核函数么?———– 对于这个问题,在Jasper’s Java Jacal博客《SVM入门(七)为何需要核函数》中做了很详细的阐述,另外博主对于SVM德入门学习也是做了很详细的阐述,有兴趣的可以去学习,丕子觉得这个文章写得相当好,特意转载了过来,留念一下。 如果提供的样本线性不可分,结果很简单,线性分类器的求解程序会无限循环,永远也解不出来。这必然使得它的适用范围大大缩小,而它的很多优点我们实在不原意放弃,怎么办呢?是否有某种方法,让线性不可分的数据变得线性可分呢? 例子是下面这张图:

常用十个泰勒展开公式

常用十个泰勒展开公式 常用泰勒展开公式如下:1、e^x=1+x+x^2/2!+x^3/3!+……+x^n/n!+……2、ln(1+x)=x-x^2/2+x^3/3-……+(-1)^(k-1)*(x^k)/k(|x|<1)3、sinx=x-x^3/3!+x^5/5!-……+(-1)^(k-1)*(x^(2k-1))/(2k-1)!+…….(- ∞

阶导数)泰勒定理开创了有限差分理论,使任何单变量函数都可展成幂级数。 在数学中,泰勒公式是一个用函数在某点的信息描述其附近取值的公式。如果函数足够光滑的话,在已知函数在某一点的各阶导数值的情况之下,泰勒公式可以用这些导数值做系数构建一个多项式来近似函数在这一点的邻域中的值。 泰勒公式还对于此处,这里o(x^5)和o(x^6)都是可以的∵sinx继续往后展开的次数为x^7∴可以写o(x^5),也可以写o(x^6)但是写o(x^6)对这个无穷小的阶更准确通常的展开是分别按x,x,x,..展开的∴如果展开到x^n,那么后面一般就写o(x^n)就可以了

麦克劳林公式展开式

麦克劳林公式展开式 麦克劳林公式是泰勒公式的一种特殊形式。 麦克劳林简介 麦克劳林,Maclaurin(1698-1746), 是18世纪英国最具有影响的数学家之一。 1719年Maclaurin在访问伦敦时见到了Newton,从此便成为了Newton的门生。 1742年撰写名著《流数论》,是最早为Newton流数方法做出了系统逻辑阐述的著作。他以熟练的几何方法和穷竭法论证了流数学说,还把级数作为求积分的方法,并独立于Cauchy以几何形式给出了无穷级数收敛的积分判别法。他得到数学分析中著名的Maclaurin级数展开式,并用待定系数法给予证明。 他在代数学中的主要贡献是在《代数论》(1748,遗著)中,创立了用行列式的方法求解多个未知数联立线性方程组。但书中记叙法不太好,后来由另一位数学家Cramer又重新发现了这个法则,所以被称为Cramer法则。 Maclaurin的其他论述涉及到天文学,地图测绘学以及保险统计等学科,都取得了很多创造性的成果。 Maclaurin终生不忘牛顿Newton对他的栽培,死后在他的墓碑上刻有“曾蒙Newton的推荐”以表达他对Newton的感激之情。 麦克劳林bai级数”是“泰勒级数”的du特殊形式,是展开zhi 位置为0的泰勒dao级数)。

一阶导数,系数=1/(x+1)=1/(1+x0)。二阶导数,系数=-1/(1+x)^2=-1/(1+x0)^2 数学中,泰勒公式是一个用函数在某点的信息描述其附近取值的公式。如果函数足够平滑的话,在已知函数在某一点的各阶导数值的情况之下,泰勒公式可以用这些导数值做系数构建一个多项式来近似函数在这一点的邻域中的值。泰勒公式还给出了这个多项式和实际的函数值之间的偏差。

一些常用函数及其泰勒Taylor展开式的图像

一些常用函数及其泰勒 T a y l o r展开式的图像 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

其中, 。 ! 4!3!21)(; ! 3!21)(; ! 21)(; 1)(;)exp(4 32443 23322211x x x x x P y x x x x P y x x x P y x x P y e x y x ++++==+++==++==+==== -3 -2-1 0123 -50 5 10 15 20 25 Figure 1 y=exp(x) and its Taylor expansion equation X Y

其中, 。 ! 7!5!3)(; !5!3)(; ! 3)(; )();sin(7 53775 35533311x x x x x P y x x x x P y x x x P y x x P y x y -+-==+-==-===== -4 -3-2-1 01234 -8-6-4-202468Figure 2 y=sin(x) and its Taylor expansion equation X Y

其中, 。 ! 8!6!4!21)(; !6!4!21)(; ! 4!21)(; !21)(); cos(8 642886 42664 2442 22x x x x x P y x x x x P y x x x P y x x P y x y +-+-==-+-==+-==-=== -4 -3-2-1 01234 -8-6 -4 -2 2 4 Figure 3 y=cos(x) and its Taylor expansion equation X Y

常用十个泰勒展开公式

常用十个泰勒展开公式 泰勒公式,泰勒公式[1]真的非常有名,我相信上过高数课的一定都记得它的大名。即使你翘掉了所有的课,也一定会在考前重点里见过。 我对它的第一映像就是比较难,而且感觉没有太多意思,就是一个近似的函数而已。最近重温了一下有了一些新的心得,希望尽我所能讲解清楚。 泰勒公式的用途 在看具体的公式和证明之前,我们先来了解一下它的用途,然后带着对用途的理解再去思考它出现的背景以及原理会容易许多。这也是我自学这么久总结出来的规律。 泰勒公式本质解决的是近似的问题,比如说我们有一个看起来很复杂的方程,我们直接计算方程本身的值可能非常麻烦。所以我们希望能够找到一个近似的方法来获得一个足够近似的值。 从这里,我们得到了两个重点,一个是近似的方法,另一个是近似的精度。我们既需要找到合适的方法来近似,同时也需要保证近似的精度是可控的。否则一切都没有意义,结合实际其实很好理解,比如我们用机床造一个零件。我们都知道世界上不存在完美的圆,实际上我们也并不需要完美,但是我们需要保证偏差是可控的,并且在一定的范围内。泰勒公式也是一样,它既可以帮助我们完成近似,也可以保证得到的结果是足够精确的。

泰勒公式的定义 我们下面来看看泰勒公式的定义,我们已经知道了它的用途是求一个函数的近似值。但是我们怎么来求呢,其实一个比较朴素的思路是通过斜率逼近。 举个例子: 这是一张经典的导数图,从上图我们可以看到,随着Δx的减小,点P0 和P 也会越来越接近,这就带来了Δy 越来越接近Δx f'(x0)。 当然,当Δx 比较大的时候显然误差就会比较大,为了缩小误差,我们可以引入二阶导数、三阶导数以及高阶导数。由于我们并不知道函数究竟可以有多少阶导数,我们不妨假设f(x)在区间内一直有(n+1)阶导数,我们试着写出一个多项式来逼近原函数: 我们希望这个式子与原值的误差越小越好,究竟要多小才算足够好呢?数学家们给出了定义,希望它是

相关文档
最新文档