射线能谱的测量

射线能谱的测量
射线能谱的测量

γ射线能谱的测量、γ射线的吸收与物质吸收系数μ的测定

班级:物理061 姓名:徐涛学号:06180136

一、摘要:γ射线是原子核在衰变过程中产生的一种射线,本实验采用闪烁射线探测器对γ射线能谱的进行测量,通过使用γ射线的吸收装置,验证γ射线的吸收规律,并对物质吸收系数μ进行测定。

二、关键词:γ射线能谱吸收物质吸收系数

三、引言:从核技术产生发展至今,已有了很多的进展,常见的核物理实验技术有能谱测量技术、符合测量技术、时间谱测量技术、散射实验与无反冲共振吸收技术等,γ射线是原子核在衰变过程中产生的一种射线,在医疗,工业探伤、杀虫、消除静电、安检等很多方面都有应用。

四、正文:

实验原理

γ辐射是处于激发态原子核损失能量的最显著方式,γ跃迁可定义为一个核由激发态到较低的激发态、而原子序数Z和质量数A均保持不变的退激发过程。带电粒子(α或β粒子等)在一连串的多次电离和激发事件中不断地损失其能量,而γ射线与物质的相互作用却在单次事件中便能导致完全的吸收或散射。简单地说,光子(γ射线)会与下列带电体发生相互作用:1)被束缚在原子中的电子;2)自由电子(单个电子);3)库仑场(核或电子的);4)核子(单个核子或整个核)。

这些类型的相互作用可以导致下列三种效应中的一种:1)光子的完全吸收;2)弹性散射;3)非弹性散射。因此从理论上讲,γ射线可能的吸收和散射有12种过程,但在从约10KeV 到约10MeV范围内,大部分相互作用产生下列过程中的一种:

?低能时以光电效应为主。一个光子把它所有的能量给予一个束缚电子;核电子用其能量的一部分来克服原子对它的束缚,其余的能量则作为动能;

?光子可以被原子或单个电子散射到另一方向,其能量可损失也可不损失。当光子的能量大大超过电子的结合能时,光子与核外电子发生非弹性碰撞,光子的一部分能量转移给电子,使它反冲出来,而散射光子的能量和运动方向都发生了变化,即所谓的康普顿效应,光子能量在1MeV左右时,这是主要的相互作用方式;

?若入射光子的能量超过1.02MeV,则电子对的生成成为可能。在带电粒子的库仑场中,产生的电子对总动能等于光子能量减去这两个电子的静止质量能(2mc2=1.022MeV)。

光电效应康普顿效应电子对效应从上面的讨论可以清楚地看到,当γ光子穿过吸收物质时,通过与物质原子发生光电效应、康普顿效应和电子对效应损失能量;γ射线一旦与吸收物质原子发生这三种相互作用,原来能量为hυ的光子就消失,或散射后能量改变、并偏离原来的入射方向;总之,一旦发生相互作用,就从原来的入射γ束中移去。γ射线与物质原子间的相互作用只要发生一次碰撞

就是一次大的能量转移;它不同于带电粒子穿过物质时,经过许多次小能量转移的碰撞来损失它的能量。带电粒子在物质中是逐渐损失能量,最后停止下来,有射程概念;γ射线穿过物质时,强度逐渐减弱,按指数规律衰减,不与物质发生相互作用的光子穿过吸收层,其能量保持不变,因而没有射程概念可言,但可用“半吸收厚度”来表示γ射线对物质的穿透情况。

本实验研究的主要是窄束γ射线在物质中的吸收规律。所谓窄束γ射线是指不包括散射成份的射线束,通过吸收片后的γ光子,仅由未经相互作用或称为未经碰撞的光子所组成。“窄束”一词是实验上通过准直器得到细小的束而取名。这里所说的“窄束”并不是指几何学上的细小,而是指物理意义上的“窄束”。即使射线束有一定宽度,只要其中没有散射光子,就可称之为“窄束”。

窄束γ射线在穿过物质时,由于上述三种效应,其强度就会减弱,这种现象称为γ射线的吸收。γ射线强度随物质厚度的衰减服从指数规律,即

x

N x e I e I I r μσ--==00 (3—1)

其中,I 0、I 分别是穿过物质前、后的γ射线强度,x 是γ射线穿过的物质的厚度(单位cm ),σr 是光电、康普顿、电子对三种效应截面之和,N 是吸收物质单位体积中的原子数,μ是物质的线性吸收系数(μ=σr N ,单位为cm )。显然μ的大小反映了物质吸收γ射线能力的大小。

需要说明的是,吸收系数μ是物质的原子序数Z 和γ射线能量的函数,且:

p c ph μμμμ++=

式中

ph μ、c μ、p μ分别为光电、康普顿、电子对效应的线性吸收系数;其中:5Z ph ∝μ、Z c ∝μ、2Z p ∝μ(Z 为物质的原子序数)。γ射线与物质相互作用的三种效应的截面

都是随入射γ射线的能量E γ和吸收物质的原子序数Z 而改变。

γ射线的线性吸收系数μ是三种效应的线性吸收系数之和。

右图给出了铅对γ射线的线性吸收系数与γ射线能量的线性

关系。

实际工作中常用质量厚度R m (g/cm 2)来表示吸收体厚度,以消除密度的影响。因此(3—1)式可表达为 ρ

μ/0)(R m e I R I -= (3—2)

由于在相同的实验条件下,某一时刻的计数率N 总与该时刻的γ射线强度I 成正比,又对(3—2)式取对数得:

0ln ln N R N m +-

=ρμ (3—3)

由此可见,如果将吸收曲线在半对数坐标纸

上作图,将得出一条直线,如右图所示。

ρ

μ/m 可以从这条直线的斜率求出,即

1212ln ln R R N N m --=-ρμ (3—4)

物质对γ射线的吸收能力也经常用 半吸收厚度 表示。所谓 半吸收厚度 就是使入射的γ射线强度减弱到一半时的吸收物质的厚度,记作:

μμ693

.02ln 21==d (3—5)

实验仪器装置

实验器材:①γ放射源137Cs 和60Co(强度≈1.5微居里);②200μmAl 窗NaI(Tl)闪烁探头;③高压电源、放大器、多道脉冲幅度分析器;④Pb 、Cu 、Al 吸收片若干。

做γ射线吸收实验的一般做法是如上图(a )所示,在源和探测器之间用中间有小圆孔的铅砖作准直器。吸收片放在准直器中间,前部分铅砖对源进行准直;后部分铅砖则滤去γ射线穿过吸收片时因发生康普顿散射而偏转一定角度的那一部分射线。这样的装置体积比较大,且由于吸收片前后两个长准直器使放射源与探测器的距离较远,因此放射源的源强需在毫居里量级。但它的窄束性、单能性较好,因此只需闪烁计数器记录。

本实验中,在γ源的源强约2微居里的情况下,由于专门设计了源准直孔(φ3?12mm ),基本达到使γ射线垂直出射;而由于探测器前有留有一狭缝的挡板,更主要由于用多道脉冲分析器测γ能谱,就可起到去除γ射线与吸收片产生康普顿散射影响的作用。因此,实验装置就可如上图(b )所示,这样的实验装置在轻巧性、直观性及放射防护方面有前者无法比拟的优点,但它需要用多道分析器,在一般的情况下,显得有点大材小用,但在本实验中这样安排,可以说是充分利用现有的实验条件。

实验步骤

1. 调整实验装置,使放射源、准直孔、闪烁探测器的中心位于一条直线上。

2. 在闪烁探测器和放射源之间加上0、1、2 片已知质量厚度的吸收片(所加吸收片最

后的总厚度要能吸收γ射线70%以上),进行定时测量(建议t=1200秒),并存下实验谱图。

3. 计算所要研究的光电峰净面积A i =A g -A b ,这样求出的A i 就对应公式中的I i 、N i 。

4. 分别用作图法和最小二乘法计算吸收片材料的质量吸收系数。

5. 依照上述步骤测量Pb 、Al 对137Cs 的γ射线(取0.661MeV 光电峰)的质量吸收系数。

6. 测量Pb 、Al 对60Co 的γ射线(取1.17、1.33MeV 光电峰或1.25MeV 综合峰)的质量吸收系

数(选做)。

7.利用Al对137Cs的γ射线(取0.661MeV光电峰)的质量吸收系数测Al片厚度。

实验结果和数据分析:

前面已经提到,要求出材料对γ射线的质量吸收系

数,必须先计算光电峰净面积A i=A g—A b。这里A g为光电峰

的毛面积,是峰谷之间(含峰谷)每道计数之和;A b为本底

面积,是全能峰两边峰谷连线组成的直角梯形面积。如右图

所示。

下面简单介绍介绍计算光电峰净面积的方法。

确定峰面积有很多方法,原则上可分两类,第一类叫计数相加法,即把峰内测到的各道计数按一定公式相加,方法简单,但只适于确定单峰面积;第二类叫函数拟合法,即将所测到的数据拟合与一个函数,然后积分这个函数得到峰面积,此方法比较准确,也适于重迭峰,但计算工作量较大。因为我们用以测吸收系数和测厚的是137Cs、60Co源的全能峰,峰形比较

简单,为了计算方便,可采用计数相加法。

按照本底扣除和边界道选取方法的不同,计

数相加法主要可分为以下几种方法,如下图所

示。

1.全峰面积法(TPA法)

取两边峰谷l、r,把l道至r道的所以脉冲计数

相加,本底以直线扣除。

这种方法的误差受本底扣除的方式及面积

的影响较大;但该方法利用了峰内全部的脉冲数,受峰的漂移和分辨率变化的影响最小,同时也比较简单。

2Covell法

该方法是在峰的前后沿上对称地选取边界道,并以直线连接峰曲线上相应于边界的两点,把此直线以下的面积作为本底扣除。

此方法提高了峰面积与本底面积的比值,结果受本底不确定的影响较小。但n的选择对结果的精度有较大的影响,n选太大,失去采用道数较少的优点;若n选得太小每则有容易受峰漂和分辨率变化的影响,同时n太小则基线较高,从而降低了峰面积与本底面积的相对比值。

3.Wasson法

该法边界道的取法与Covell法一样,但本底基线选择较低,与TPA法一样。

这一方法进一步提高了峰面积与本底面积的比值,本底基线的不准和计数统计误差对峰面积准确计算的影响较小;而受分辨率变化的影响与Covell法相同,没有TPA法好。

此外,60Co有1.17MeV、1.33MeV的双峰,本实验中可以分别进行实验,也可取它们的平均值1.25MeV,并在本底的扣除中采用下图方式。

60Co1.17MeV、1.33MeV两个光电峰相交处是两个峰的叠加,而每个峰都有其自己的康普坪,致使本底情况比较复杂。实际运算中分别确定两个峰的峰谷,连线成两个梯形作为本底比较近似。

在具体的实验数据处理中,我们推荐用TPA方法处理就可以了。其他两种方法了解一下就

可以了

γ射线的能谱测量和吸收测定_实验报告

γ射线能谱的测量 【摘要】某些物质的原子核能够发生衰变,放出我们肉眼看不见也感觉不到的射线,γ射线产生的原因正是由于原子核的能级跃迁。我们通过测量γ射线的能量分布,可确定原子核激发态的能级,这对于放射性分析,同位素应用及鉴定核素等都有重要意义。因此本实验通过使用γ闪烁谱仪测定不同的放射源的γ射线能谱。同时学习和掌握γ射线与物质相互作用的特性,并且测定窄束γ射线在不同物质中的吸收系数μ。 【关键词】γ射线能谱γ闪烁谱仪 【引言】从1896年的法国科学家贝可勒尔发现放射性现象开始,经过居里夫人等一系列科学家对一些新放射性元素的发现及其性质进行研究的杰出工作后,人类便进入了对原子核能研究、利用的时代。 而原子核衰变能放出α、β、γ三种射线,这些射线可以通过仪器精确测量。本次实验主要研究γ射线,通过对γ射线谱的研究可了解核的能级结构。γ射线有很强的穿透力,工业中可用来探伤或流水线的自动控制。人体受到γ射线照射时,γ射线可以进入到人体的内部,并与体内细胞发生电离作用,电离产生的离子能侵蚀复杂的有机分子,如蛋白质、核酸和酶,它们都是构成活细胞组织的主要成份,一旦它们遭到破坏,就会导致人体内的正常化学过程受到干扰,严重的可以使细胞死亡。 因此本次实验研究了不同材料对于γ射线的吸收情况这是非常具有实际意义的,比如在居民区制造防空洞的时候可以使用一定厚度的抗辐射材料确保安全,而且在核电站、军事防护地以及放射源存放处等地方我们都有必要使用防辐射材料。 γ射线与物质的相互作用主要是光电效应、康普顿散射和正、负电子对产生这三种过程,如下图所示。 本实验主要研究的是窄束γ射线在物质中的吸收规律。所谓窄束γ射线是指不包括散射成份的射线束,仅由未经相互作用或称为未经碰撞的光子所组成。窄束γ射线再穿过物质时,由于上述三种效应,其强度就会减弱,这种现象称为γ射线的吸收。γ射线强度随物质厚度的衰减服从指数规律。 本次实验仪器如下:

γ射线能谱的测量

(一) γ射线能谱的测量 摘要: 本实验将了解闪烁探测器谱仪的工作原理及其使用;学习分析实验测量的137Cs 和60Co γ谱之谱形和γ射线能谱的刻度测定谱仪的能量分辨率,本实验的目的是了解NaI(Tl)闪烁谱仪的原理、特性与结构,掌握NaI(Tl)闪烁谱仪的使用方法和γ射线能谱的刻度。 关键词:γ 射线 Na(Tl)闪烁探测器 能谱图 单道脉冲幅度分析器 引言: 闪烁探测器是利用某些物质在射线作用下会发光的特性来探测射线的仪器。它的主要优点是:既能探测各种带电粒子,又能探测中性粒子;既能测量粒子强度,又能测量粒子能量;且探测效率高,分辨时间短。它在核物理研究和放射性同位素测量中得到广泛的应用。核物理的发展,不断地为核能装置的设计提供日益精确的数据,新的核技术,如核磁共振、穆斯堡尔谱学、晶体的沟道效应和阻塞效应,以及扰动角关联技术等都迅速得到应用。核技术的广泛应用已成为现代化科学技术的标志之 正 文: 实验原理 1.闪烁谱仪结构与工作原理 NaI(Tl)闪烁谱仪结构如图。整个仪器由探头(包括闪烁体、光电倍增管、射极跟随器),高压电源,线性放大器、多道脉冲幅度分析器几部分组成。射线通过闪烁体时,闪烁体的发光强度与射线在闪烁体内损失的能量成正比。带电粒子(如α、β粒子)通过闪烁体时,将引起大量的分子或原子的激发和电离,这些受激的分子或原子由激发态回到基态时就放出光子;不带电的γ射线先在闪烁体内产生光电子、康普顿电子及正、负电子对(当Eγ>1.02MeV时),然后这些电子使闪烁体内的分子或原子激发和电离而发光。闪烁体发出的光子被闪烁体外的光反射层反射,会聚到光电倍增管的光电阴极上,打出光电子。光阴极上打出的光电子在光电倍增管中倍增出大量电子,最后为阳极吸收形成电压脉冲。每产生一个电压脉冲就表示有一个粒子进入探测器。由于电压脉冲幅度与粒子在闪烁体内消耗的能量(产生的光强)成正比,所以根据脉冲幅度的大小可以确定入射粒子的能量。利用脉冲幅度分析器可以测定入射射线的能谱。 由原子物理学中可知γ射线与物质的相互作用主要是光电效应、康普顿效应和正、负电子对产生这三种过程分别如下: (1)光电效应。入射γ粒子把能量全部转移给原子中的束缚电子,而把束缚电子打出来形成光电子。由于束缚电子的电离能E1一般远小于入射γ射线能量Eγ,所以光电子的动能近似等于入射γ射线的能量E光电=Eγ-E1≈Eγ (2)康普顿效应。核外电子与入射γ射线发生康普顿散射,设入射γ光子能量为h,散射

α射线能谱测量

**************************************************************************** 西南科技大学 《α射线能谱测量》报告 设计名称α射线能谱测量 学院 班级 学生姓名 学号 设计日期 2014年12月 2014年10月制 目录 1实验目的 (1) 2实验内容 (1)

3实验原理 (1) α能谱 (1) α放射源 (2) α放谱仪 (3) 探测器测量α射线能谱相关原理 (4) α谱仪的能量刻度和能量分辨率 (4) 4实验仪器、器材 (5) 5实验步骤 (5) 6实验数据记录、处理 (6) 7实验结论 (8) 1实验目的 α衰变中发射的α粒子能量及辐射几率的测量,对于核结构研究具有重要意义。这些核数据的测量通常是用α磁谱仪或半导体α谱仪。而本实验主要从以下几个方面进行: 1、了解α谱仪工作原理与特性 2、掌握α能谱测量原理及测量方法

3、测量获取表中各种放射源在不同探源距下α能谱的数据与图像记录并进行刻度 2实验内容 测定α谱仪在不同源距下α能谱的数据,并通过计算获得相关能量分辨率。同时,进行能量刻度。 3实验原理 α能谱 α粒子通过物质时,主要是与物质的原子的壳层电子相互作用发生电离损失,使物质产生正负离子对,对于一定物质,α在其内部产生一对离子所需的平均能量是一定的(即平均电能w),所以在物质中产生的正负离子对数与α粒子损失的能量成正比,即:E N= W 公式中N为α粒子在物质中产生的正负离子对数目,E是在物质中损失的α粒子能量。如果α粒子将其全部能量损失在物质内,E就是α粒子的能量。 由于α粒子在空气中的射程很短(在T=15℃,P=1大气压时,天然放射性核素衰变产生的α粒子,射程最大为Thc’(212Po) 为,能量最小232Th为),所以测量室应采用真空室,如上图1所示,采用真空泵将测量室抽成真空,这样与探测器接触的α粒子的能量才近似等于放射性核素经过α粒子放出的α粒子的初始能量(近似是因为不可能将测量室抽成绝对真空)。 α粒子在探测器中因电离、激发(由于α粒子的质量很大,所以与物质的散射作用很不明显。α粒子在空气中的径迹是一条直线,这种直线很容易在威尔逊云室中看到。)等效应而产生电流脉冲,其幅度与α粒子能量成正比。电流信号经前置放大器、主放大器放大,出来的电信号通过多道分析器进行数据采集,最后通过计算机采集并显示其仪器谱(实验用α谱仪硬件连接及内部结构框图如图1所示)。仪器谱以α粒子的能量(即脉冲幅度)为横坐标,某个能量段内α粒子数(或计数率)为纵坐标,即可计算样品中各单个核素发射的α粒子的能量与活度。理论上,单能α粒子谱是线状谱,应是位于相应能量点处垂直于横坐标轴的单一直线,但由于α粒子入射方向、空气吸收、样品源自吸收的差异和低能粒子的叠加等原因,实际测得的是具有一定宽度的单个峰,其峰顶位置相应于α粒子的能量,谱线以下的

γ射线能谱测量

γ射线能谱测量 ——物理0805 乔英杰u200810200 王振宇u200810256 实验背景:19世纪下半叶,物理学家对X射线和阴极射线进行了大量的研究,导致了放射性、电子以及α、β、γ射线的发现,这些射线的发现同时也为原子科学的发展奠定了基础。 自20世纪进入原子能时代,科学家对射线进行了更进一步的研究,射线在科学技术中开始渗透,根据γ射线具有波长短、能量高、穿透能力强和对细胞有很强的杀伤力的特性,γ射线的应用也成了一门新兴产业,现在它已经应用到了国民经济和社会生活的各个领域,特别是在工农业、医疗卫生和生物学方面取得了巨大的成果和效益,为科学技术和人类历史的进程起了巨大而深刻的影响。 目前γ射线的应用正在蓬勃快速的发展,应用领域仍在不断拓宽,它以低能耗、无污染、无残留、安全卫生等优点,深受众多行业的青睐,可是,其危害性也不容忽视。我们需要对γ射线深入了解,才能在降低其危害性的同时让其更好的为我们服务。本实验采用闪烁探测器和多道脉冲幅度分析器对γ射线的能量分布谱进行测量,以便我们了解用闪烁探测器测量γ射线的方法,学会分析能谱的特征及其影响因素。 实验原理: 1、闪烁探测器工作原理:闪烁探测器探测γ射线时,γ光子与物质作用不直接产生电离,而是发生光电效应、康普顿效应、电子对效应,闪烁体的原子、分子、电离或激发的作用来自三种效应所产生的次级电子。这样,我们就得到了对应于γ射线能量强度的电信号。之后,光电倍增管将所得电信号放大(倍增管阴极与阳极之间有十余个打那级,每个打那级均发生电子的倍增现象),其阳极最后收集电子的电极,与射级跟随器电路相连,使收集到的电子流以电压脉冲的方式输出。 2、γ闪烁能谱仪的工作原理:如下图(1)所示,整个仪器的信号传递大致是:由γ射线放射源放出的γ射线被闪烁探测器接受并转换为电压脉冲,前置放大器和脉冲放大器对探测器输出的电压脉冲进行放大,最后这些脉冲被多道分析器采集、处理。 多道分析器的到是指在分析器中存在的记录不同高度脉冲的位置。我们在试验中采用的是1024道分析器,即将脉冲电压范围分成1024份,然后计算机记录探测器输出的脉冲落在每份范围上的数目。

NaI(Tl) 闪烁晶体γ能谱测量

NaI(Tl) 闪烁晶体γ能谱测量 实验人:吴家燕学号:15346036 一、实验目的 1、加深对γ射线和物质相互作用的理解; 2、掌握NaI(Tl) γ谱仪的原理及使用方法; 3、学会测量分析γ能谱; 4、学会测定γ谱仪的能量分辨率、线性、探测效率曲线; 5、测定未知放射源的能量和活度。 二、实验原理 1、γ谱仪的组成 NaI(Tl)闪烁谱仪由NaI(Tl)闪烁探头(包括闪烁体、光电倍增管、前置放大器)、高压电源以及谱仪放大器、多道分析器、计算机等设备组成。图1 为NaI(Tl)闪烁谱仪装置的示意图。 2、射线与闪烁体的相互作用 当γ射线入射至闪烁体时,发生三种基本相互作用过程:(1)光电效应;(2)

康普顿散射;(3)电子对效应。 图2 为示波器上观察到的单能γ射线的脉冲波形,谱仪测得的能谱图。图3 是137Cs、22Na 和60Co 放射源的γ能谱。图中标出的谱峰称为全能峰。在γ射 线能区,光电效应主要发生在K 壳层。在击出K 层电子的同时,外层电子填补K 层 空穴而发射X 光子。在闪烁体中,X 光子很快地再次光电吸收,将其能量转移给光 电子。上述两个过程是几乎同时产生的,因此它们相应的光输出必然是叠加在一起的,即由光电效应形成的脉冲幅度直接代表了γ射线的能量(而非减去该层电 子结合能)。 3、137Cs 能谱分析 4、闪烁谱仪的性能 能量分辨率

探测器输出脉冲幅度的形成过程中存在着统计涨落。即使是确定能量的粒子的脉冲幅度,也仍具有一定的分布,其分布示意图如图4 所示。通常把分布曲线极大值一半处的全宽度称半宽度即 FWHM,有时也用表示。半宽度反映了谱仪对相邻脉冲幅度或能量的分辨本领。因为有些涨落因素与能量有关,使用相对分辨本领即能量分辨率η更为确切。一般谱仪在线性条件下工作,故η也等于脉冲幅度分辨率,即 对于一台谱仪来说,近似地有 对于单晶谱仪来说,能量分辨率是以137Cs 的0.662MeV 单能γ射线的光电峰为标准的,它的值一般在8-15%,最好可达6-7%。 能量线性刻度曲线 为检查谱仪的能量线性情况,必须利用一组已知能量的γ放射源,测出它们的γ射线在谱中相应的全能峰位置(或道址),然后,作出γ能量对脉冲幅度(或道址)的能量刻度曲线。这个线性关系可用线性方程表示,即 式中x p 为峰位,即道址;E0 为截距,即零道对应的能量;G 为斜率,即每道对应的能量间隔,又称增益。实验中用的γ核素能量列于表2 中。典型的能量刻度曲线如图5 所示。

γ射线的能谱测量和吸收测定 实验报告

g射线能谱的测量 【摘要】某些物质的原子核能够发生衰变,放出我们肉眼看不见也感觉不到的射线,g 射线产生的原因正是由于原子核的能级跃迁。我们通过测量g射线的能量分布,可确定原子核激发态的能级,这对于放射性分析,同位素应用及鉴定核素等都有重要意义。因此本实验通过使用g闪烁谱仪测定不同的放射源的g射线能谱。同时学习和掌握g射线与物质相互作用的特性,并且测定窄束g射线在不同物质中的吸收系数m。 【关键词】g射线/能谱/g闪烁谱仪 【引言】从1896年的法国科学家贝可勒尔发现放射性现象开始,经过居里夫人等一系列科学家对一些新放射性元素的发现及其性质进行研究的杰出工作后,人类便进入了对原子核能研究、利用的时代。 而原子核衰变能放出α、β、γ三种射线,这些射线可以通过仪器精确测量。本次实验主要研究γ射线,通过对γ射线谱的研究可了解核的能级结构。γ射线有很强的穿透力,工业中可用来探伤或流水线的自动控制。人体受到γ射线照射时,γ射线可以进入到人体的内部,并与体内细胞发生电离作用,电离产生的离子能侵蚀复杂的有机分子,如蛋白质、核酸和酶,它们都是构成活细胞组织的主要成份,一旦它们遭到破坏,就会导致人体内的正常化学过程受到干扰,严重的可以使细胞死亡。 因此本次实验研究了不同材料对于γ射线的吸收情况这是非常具有实际意义的,比如在居民区制造防空洞的时候可以使用一定厚度的抗辐射材料确保安全,而且在核电站、军事防护地以及放射源存放处等地方我们都有必要使用防辐射材料。 g射线与物质的相互作用主要是光电效应、康普顿散射和正、负电子对产生这三种过程,如下图所示。 本实验主要研究的是窄束γ射线在物质中的吸收规律。所谓窄束γ射线是指不包括散射成份的射线束,仅由未经相互作用或称为未经碰撞的光子所组成。窄束γ射线再穿过物质时,由于上述三种效应,其强度就会减弱,这种现象称为γ射线的吸收。γ射线强度随物质厚度的衰减服从指数规律。 本次实验仪器如下:

如何使用XRD分析软件Jade5.0解谱

如何使用XRD分析软件Jade5.0解谱? Jade5.0的使用初步说明1、数据输入 由于不同的X射线衍射仪输出的数据类型不同,但都可以将数据转换成txt文档或Ascii格式的文档(文件名为*.txt或*.asc),为提高软件的通用性jade5.0提供了以txt文档或Ascii格式输入数据。运行jade5.exe首先进入以下界面中间的窗口用于选择需打开文件,左侧选择文件路径与资源管理器的操作相同,右侧选择打开文件的类型,一般选择XRD Pattern files(*.*),这时在右下方的窗口中将显示左侧被选择文件夹中所有能被该软件识别的文件,然后选择需要分析的数据文件,点击菜单栏Read进入主窗口,此选择窗口可以通过主窗口中file/patterns进入。 2、背景及Ka2线扣除 在主菜单栏中选择analyze/fit background进入如下窗口: 此工具栏提供了放大、标定峰位等操作,当鼠标移动到按钮上时软件将自动提示。在该软件中的所有按钮对鼠标左右键操作都有不同效果,一般左键为确定或正向操作,右键为取消或反向操作。 3、确定峰位 在主菜单栏中选择analysie/find peaks,进入确定峰位所需的参数设置窗口,如下图,一般选择默认值,选择apply回到主窗口,选择Edit bar左第三个按钮可手动编辑。

在手动编辑过峰个数或峰位后,同样可以选择analyze/find peaks,选择Report,进入如下界面: 在此窗口中显示了以上操作中所确定的峰位置、强度、半峰宽(FWHM)等参数,其中FWHM将时计算晶粒度的主要参数。 选择analyze/find peaks,在此窗口中选择Labeling标签,可以选择峰的标示方式,如下图:

X射线光电子能谱模板

第二十三章 X射线光电子能谱 1954年以瑞典Siegbahn教授为首的研究小组观测光峰现象,不久又发现了原子内层电子能级的化学位移效应,于是提出了ESCA(化学分析电子光谱学)这一概念。由于这种方法使用了铝、镁靶材发射的软X射线,故也称为X-光电子能谱(X-ray Photoelectron Spectroscopy)。X光电子能谱分析技术已成为表面分析中的常规分析技术,目前在催化化学、新材料研制、微电子、陶瓷材料等方面得到了广泛的应用。 23.1 基本原理 固体表面分析,特别是对固体材料的分析和元素化学价态分析,已发展为一种常用的仪器分析方法。目前常用的表面成分分析方法有:X射线光电子能谱(XPS), 俄歇电子能谱(AES),静态二次离子质谱(SIMS)和离子散射谱(ISS)。AES分析主要应用于物理方面的固体材料(导电材料)的研究,而XPS的应用面则广泛得多,更适合于化学领域的研究。SIMS 和ISS由于定量效果较差,在常规表面分析中的应用相对较少。但近年随着飞行时间二次离子质谱(TOF-SIMS)的发展,使得质谱在表面分析上的应用也逐渐增加。 X射线光电子能谱最初是由瑞典科学家K.Siegbahn等经过约20年的努力而建立起来的,因在化学领域的广泛应用,被称为化学分析用电子能谱(ESCA)。由于最初的光源采用了铝、镁等的特性软X射线,该技术又称为X射线光电子能谱(XPS)。1962年,英国科学家D.W.Turner等建造出以真空紫外光作为光源的光电子能谱仪,在分析分子内价电子的状态方面获得了巨大成功,同时又用于固体价带的研究,与X射线光电子能谱相对照,该方法称为紫外光电子能谱(UPS) XPS的原理是基于光的电离作用。当一束光子辐射到样品表面时,样品中某一元素的原子轨道上的电子吸收了光子的能量,使得该电子脱离原子的束缚,以一定的动能从原子内部发射出来,成为自由电子,而原子本身则变成处于激发态的离子,如图23-1所示。在光电离过程中,固体物质的结合能可用下面的方程式表示: E b=hγ- E k -φs(23-1) 式中: E k为射出的光子的动能;hγ为X射线源的能量;E b为特定原子轨道上电子的电离能或结合能(电子的结合能是指原子中某个轨道上的电子跃迁到表面Fermi能级(费米能级)所需要的能量);φs为谱仪的功函数。 由于φs是由谱仪的材料和状态决定,对同一台谱仪来说是一个常数,与样品无关,其平均值为3 eV ~4eV。因此,(1)式可简化为: E b =hγ- E k’ (23-2) 由于E k’可以用能谱仪的能量分析器检出,根据式(23-2)就可以知道E b。在XPS分析中,由于X射线源的能量较高,不仅能激发出原子轨道中的价电子,还可以激发出内层轨道电子,所射出光子的能量仅与入射光子的能量及原子轨道有关。因此,对于特定的单色激发光源及特定的原子轨道,其光电子的能量是特征性的。当固定激发光源能量时,其光子的能量仅与元素的种类和所电离激发的原子轨道有关,对于同一种元素的原子,不同轨道上的电子的结合能不同。所以可用光电子的结合能来确定元素种类。图23-1表示固体材料表面受X射线激发后的光电离过程[1]。

伽马γ能谱测量分析近代物理实验报告

γ能谱的测量 中山大学 2013级材料物理 供参(吓)考(你),此报告真心累

数据处理 注:本实验所有数据来自文件“蝙蝠侠” 一、改变高压,保持其他条件不变(通道数1024)观察137Cs能谱变化 图1 改变高压,137Cs能谱变化曲线图 分析: 1.137Cs的γ能谱应该呈现三个峰和一个平台的连续分布,从通道低到高依次为X射 线峰、反散射峰、康普顿效应贡献的平台以及反映γ能量的全能峰。高压越大,统计越明显。 2.随着高压增大,全能峰向右移动,并且高度下降、宽度增大。因为闪烁谱仪能量 分辨率不变,高压增大,道址增大,?V V又不变,则?V大,故宽度变大,高道址的粒子数减少,高度下降。 二、改变通道数,保持其他条件不变(高压500V)观察137Cs能谱变化 分析:(见图2) 1.由于通道数1500后粒子数很少,能谱曲线趋于横轴,故横坐标只取到1500, 方便观察。 2.道数越小,全能峰对应的道址越小,全能峰也越高、越瘦。因为道数越小,则 每个道址包含的能量间隔越大,统计的粒子个数就越多,从而使全能峰越高。

三、60Co的γ能谱曲线图(500V,通道数2014) 图3 60Co的γ能谱曲线图

分析: 1.因为全能峰可以表示γ射线的能量,60Co两个峰对应的射线能量在图中标出,分别为 1173keV、1333keV。 2.为探究能谱仪的效率曲线,需要知道每个核素测量所得能谱图的全能峰面积。 计算方法如下: 全能峰面积即图中峰与底部线段所围成的面积,可用能谱曲线下的面积减去线段两端与横轴所围成的梯形面积,而能谱曲线下的面积可用线段之间所有道址对应的粒子数的加和来表示。加和结果通过matlab进行求和而得。虽然计算方式较为粗糙,但基本符合。 对于左侧全能峰:S(E)1=7287-(27+60)*(626-551)/2=3981 对于右侧全能峰:S(E)2=5824-(27+13)*(726-626)/2=3824 四、137Cs的γ能谱曲线图(500V,通道数2014) 图4 137Cs的γ能谱曲线图 分析: 1.全能峰面积为:S(E)=9916-(13+2)*90/2=9241 2.137Cs的γ能谱呈现三个峰和一个平台的连续分布,A为全能峰,这一幅度的脉冲是

X射线能谱分析

X射线能谱分析简介 导言: 早在二十世纪年代中期就开始了X射线能谱分析课题的研究。例如,Parrish和Kohler(1956)曾指出用分解正比计数器脉冲高度谱的方法进行X射线能量分析的可能性。后来Dolby(1959、1960)发展了这种方法并且获得了Be、C、O等超轻元素的扫描X射线图像。同年,Duncumb提出一种用纯元素的标准谱拟合实际谱进行分析的方法。而Birks等人用正比计数器和一台400道多道分析器配合,在电子探针中首次进行了能谱分析。到了1968年,Fitzgerald、Keil和Heinrich等人开始把锂漂移硅探测器用到了电子探针中。 由于锂漂移硅探测器有一些独到的优点,得到了有关专家的广泛重视。在1963年和1970年,美国材料试验学会先后两次就能谱分析技术进行了专门的讨论,促进了能谱技术的发展。例如,在1966年,锂漂移硅探测器的能量分辨率还只能达到约800eV,但是到了1970年,就迅速提高到约150eV。探测器分辨率的提高,反过来促进了能谱分析方法及其相关技术的迅速发展。 目前,能谱分析系统已成为电子探针和扫描电镜/透射电镜微区分析的一项标准设备,同时与其相关的波谱分析、电子被散射衍射等有机结合,愈来愈成为微区分析中不可或缺的分析手段。 锂漂移硅探测器简述: 能谱分析系统的心脏是一只硅晶体二极管,它是由一块p型硅晶片经锂(向硅中)扩散和飘移后制成的,因此称为锂漂移硅探测器

(Lithium Drifted Silicon Detector),通常缩写为Si(Li)探测器。 我们知道硅是一种典型的半导体材料。硅晶体的结晶结构与金刚石结构相同,即为面心立方体结构,每个晶胞含有两个硅原子,每个硅原子有四个价电子(两个3s电子,两个3p电子)。在晶体中,每个原子与相邻四个原子构成四条共价键。根据能带理论,四个价电子形成四个能带,由于每个格点上有8个价电子,因此,如果格点数为N,则四个能带上将填满8N个电子,这种能带称为满带。满带的上方有一个能隙,称为禁带,禁带中不可能有任何电子,或者说,不可能存在其能量相当于禁带能量的电子。在禁带上面有很多可能的能带-----导带。在纯净而完整的晶体中,导带中没有电子,因此呈绝缘体特性。但是,即使纯度非常高的硅单晶,仍有极少量的杂质存在,而且难免有些晶格缺陷,加上硅的禁带宽度较小(~1.1eV),在热骚动下可能有极少量的电子进入导带,因此硅晶体有一定程度的导电性。温度愈高,由于热骚动而进入导带的电子愈多,晶体的导电性就愈强,因而使硅晶体成为一种典型的半导体。 半导体的导电率取决于杂质的类型和含量。杂质的作用是这样的:假如有一种五价杂质(P,As等)参入硅中,它将取代硅原子的位置,用四个价电子与相邻的四个硅原子结合而维持原来的四条共价键,并把多余的一个电子释放出去,被释放的电子很可能进入导带,使晶体呈电子性导电,这种晶体就称为n型半导体。如果掺入的杂质是三价原子,那么这些杂质将会俘获满带中的电子而使满带中出现空穴,从而使晶体成为p型半导体。在硅中常见的一种杂质是硼(B),它的

r射线能谱实验报告

实验报告 系 级 姓名 日期 No. 评分: 实验题目:γ能谱及γ射线的吸收 实验目的: 学习闪烁γ谱仪的工作原理和实验方法,研究吸收片对γ射线的吸收规律 实验原理: 1.γ能谱的形状 闪烁γ能谱仪可测得γ能谱的形状,下图所示是典型 Cs 137 的γ射线能谱图。图的纵轴代表单位时间内的脉 冲数目即射线强度,横轴代表脉冲幅度即反映粒子的能量值。 从能谱图上看,有几个较为明显的峰,光电峰e E ,又称全能峰,其能量就对应γ射线的能量γE 。这是由于γ射线进入闪烁体后,由于光电效应产生光电子,能量关系见式(1),如果闪烁体大小合适,光电子停留在其中,可使光电子的全部能量被闪烁体吸收。光电子逸出原子会留下空位,必然有外壳层上的电子跃入填充,同时放出能量i z B E =的X 射线,一般来说,闪烁体对低能X射线有很强的吸收作用,这样闪烁体就吸收了z e E E +的全 部能量,所以光电峰的能量就代表γ射线的能量,对 Cs 137 ,此能量为0.661Me V。 C E 即为康普顿边界,对应反冲电子的最大能量。 背散射峰b E 是由射线与闪烁体屏蔽层等物质发生反向散射后进入闪烁体内,形成的光电峰,一般峰很小。 2.谱仪的能量刻度和分辨率 (1)谱仪的能量刻度 闪烁谱仪测得的γ射线能谱的形状及其各峰对应的能量值由核素的蜕变纲图所决定,是各核素的特征反映。但测得的光电峰所对应的脉冲幅度(即峰值在横轴上所处的位置)是与工作条件有关系的。如光电倍增管高压改

变、线性放大器放大倍数不同等,都会改变各峰位在横轴上的位置,也即改变了能量轴的刻度。因此,应用γ谱仪测定未知射线能谱时,必须先用已知能量的核素能谱来标定谱仪的能量刻度,即给出每道所对应的能量增值E。例如选择 Cs 137 的光电峰γE =0.661Me V和Co 60的光电峰MeV E 17.11=γ、MeV E 33.12=γ等能量值,先 分别测量两核素的γ能谱,得到光电峰所对应的多道分析器上的道址(若不用多道分析器,可给出各峰位所为应的单道分析器上的阈值)。可以认为能量与峰值脉冲的幅度是线性的,因此根据已知能量值,就可以计算出多道分析器的能量刻度值E。如果对应MeV E 661.01=的光电峰位于A道,对应MeV E 17.12=的光电峰位于B 道,则有能量刻度 MeV A B e --= 661 .017.1 (1) 测得未知光电峰对应的道址再乘以e 值即为其能量值。 (2)谱仪分辨率 γ能谱仪的一个重要指标是能量分辨率。由于闪烁谱仪测量粒子能量过程中,伴随着一系列统计涨落因素,如γ光子进入闪烁体内损失能量、产生荧光光子、荧光光子进入光电倍增管后,在阴极上打出光电子、光电子在倍增极上逐级打出光电子而使数目倍增,最后在阳极上形成电流脉冲等,脉冲的高度是服从统计规律而有一定分布的。光电峰的宽窄反映着谱仪对能量分辨的能力。如图2.2.1-7中所示的光电峰的描绘,定义谱仪能量分辨率η为 %100??=?= V V E E 光电峰脉冲幅度半高度η (2) η表示闪烁谱仪在测量能量时能够分辨两条靠近的谱线的本领。目前一般的闪烁谱仪分辨率在10%左右。对η的影响因素很多,如闪烁体、光电倍增管等等。 (3)物质对γ射线的吸收 当γ射线穿过物质时,一旦与物质中的原子发生三种相互作用,原来的光子就消失或通过散射改变入射方向。通常把通过物质且未经相互作用的光子所组成的射线称为窄束γ射线(或良好几何条件下的射线束)。实验表明,单能窄束γ射线的衰减遵循指数规律: (8)

γ射线能谱测量

γ射线能谱测量 γ 射线能谱测量中的物质变化过程是: γ 射线(光子)→ 次级电子(三种相互作用)→ 荧光(光子,探头的闪烁体发出)→ 光电子(在打拿极上产生并倍增)→ 光电流 打拿极上光电子激发更多次级电子,打拿极上所加电压对电子加速,使形成更多的电子,从而形成足够大的较稳定的可以被探测到的光电流。电流与极间电压应该成正比关系,计数不能反映初始的电子产生数目,但能反映其统计规律,计数应该是由光电流的大小与单个电子的电量的比值所得到的。示波器的幅度可以反映射线粒子的能量大小。 数据处理与结果 ○ 1 0(6.98,127.6) B (7.67,127.5) C (7.42 ,255.21)7.42 V U 0.69 V 0.69 W= 100%8.97%7.67 O A U U U =?=??== ○2 0截距=-0.04473 G=斜率=0.1962 线性方程 E(x )0.19620.04473 p O p p E E Gx x ==+=- 实验分析 ○1 示波器上的波形有一波幅最大的曲线,下面的弥漫区域还有小的波形。这是因为在闪烁体中发生了光电效应,康普顿效应,电子对效应,这三种效应中,光电效应最强,产生的次级电子最多,对应着波幅最大的波形,下面的小波形则是由康普顿效应造成的,其强度要弱于光电效应。 ○ 2 γ射线是单能射线,其对应的能谱应该是单一的分立的,但是我们测得的能谱却是连续的。这是因为三种效应激发出的电子的能量是不一样的,加上闪烁体分辨能力低,还有其它电子学的干扰存在,因此闪烁体谱仪测量单能射线不可能就一单能峰值。 ○ 3实验中用示波器观察波形的时候,为什么要将光电峰置于8 伏左右?我猜想是:示

(完整word版)X射线能谱仪工作原理及谱图解析1X射线能谱仪分析原理X射线能谱

X射线能谱仪工作原理及谱图解析 1、X射线能谱仪分析原理 X射线能谱仪作为扫描电镜的一个重要附件,可被看成是扫描电镜X射线 信号检测器。其主要对扫描电镜的微区成分进行定性、定量分析,可以分析元素周期表中从B-U的所有元素信息。其原理为:扫描电镜电子枪发出的高能电子进入样品后,受到样品原子的非弹性散射,将能量传递给该原子。该原子内壳层的电子被电离并脱离,内壳层上出现一个空位,原子处于不稳定的高能激发态。在激发后的10-12s内原子便恢复到最低能量的基态。在这个过程中,一系列外层 电子向内壳层的空位跃迁,同时产生X射线,释放出多余的能量。对任一原子而言,各个能级之间的能量差都是确定的,因此各种原子受激发而产生的X射线的能量也都是确定的(图1)。 X射线能谱仪收集X射线,并根据其能量对其记数、分类,从而对元素进 行定性、定量分析。 图1. 粒子间相互作用产生特征X射线 本所能谱仪型号为:BRUKER X-Flash 5010,有四种检测模式:点扫描,区域扫描,线扫描,面扫描。 2、能谱仪检测模式介绍及参数解读 2.1 点扫描及区域扫描模式

图2 X射线能谱仪点扫描(A)、选区扫描(B)报告 点扫描与选区扫描主要用于对元素进行定性和定量分析,确定选定的点或区域范围内存在的所有元素种类,并对各种元素的相对含量进行计算。能谱检测对倍数要求不高,不同倍数条件下检测结果差异不大,关键在于选取检测的部位。一般选择较大的块体在5000倍以下检测,因为X射线出射深度较深,除金属或陶瓷等非常致密的材料外,一般的块体在20kV加速电压下,X射线出射深度2μm左右,且点扫描的范围也在直径2μm左右。因此块体太小或倍数过大,都会造成背景严重,测量准确度下降。 此外,最好选择比较平整的区域检测,因为电子打在坑坑洼洼的样品表面,X射线出射深度差别较大,定量信息不够准确。特别低洼的区域,几乎检测不到信号,或信号很弱,得到的结果也便不准确。 第三,电子束与轻元素相会作用区域较大,干扰更强,因此轻元素的定量比重元素更加不准确。如C、N等元素,定量结果可能偏差较大。 点扫描与区域扫描测试报告相似,均由三部分组成,一张样品表面形貌照片,

γ射线的能谱测量和吸收测定报告

NaI(TI)单晶γ闪烁谱仪与γ射线能谱的测量 γ射线的吸收与物质吸收系数μ的测定 【摘要】 我们知道原子核的能级跃迁可以产生伽马射线,而通过测量γ射线的能量分布,可确定原子核激发态的能级,这对于放射性分析,同位素应用及鉴定核素等都有重要意义。同时通过学习了解伽马射线与物质相互作用的特性,测定窄束γ射线在不同物质中的吸收系数μ。因此本实验通过使用伽马闪烁谱仪测定不同的放射源的γ射线能谱;根据当γ光子穿过吸收物质时,通过与物质原子发生光电效应、康普顿效应和电子对效应损失能量。闪烁体分子电离和激发,退激时发出大量光子,闪烁光子入射到光阴极上,光电效应产生光电子,电子会在阳极负载上建立起电信号等原理,对γ射线进行研究。 【关键词】 伽马射线吸收系数μ60Co、137Cs放射源能谱γ闪烁谱仪 【引言】 提出问题 某些物质的原子核能发生衰变,会放出射线,核辐射主要有α、β、γ三种射线。我们可以通过不同的实验仪器能够探测到这些肉眼无法看见的射线。同时由于射线与物质相互作用,导致射线通过一定厚度物质后,能量或强度有一定的减弱,称为物质对射线的吸收。而这在防护核辐射、核技术应用和材料科学等许多领域都有重要意义。核辐射主要是α、β、γ三种射线,人工辐射源包括放射性诊断和放射性治疗辐射源、放射性药物、放射性废物、核武器爆炸的落下灰尘以及核反应堆和加速器产生的照射等,辐射时处于激发态原子核损失能量的最显著方式。γ跃迁可定义为一个核由激发态到较低的激发态、而原子序数Z和质数A均保持不变的退激发过程。我们使用何种仪器来探测伽马射线,又如何测量物质对射线的吸收规律,不同物质的吸收性能等。这是都是本次实验需要去解决的问题。 解决问题 本实验使用的是γ闪烁谱仪。γ闪烁谱仪内部含有闪烁体,可以把射线的能量转变成光能。实验中采用含TI(铊)的NaI晶体作γ射线的探测器。利用此来研究窄束γ射线在物质中的吸收规律。 【正文】 通过查阅相关资料,我了解了伽马闪烁谱仪的基本工作原理以及整个的工作过程。NaI(TI)闪烁探测器的结构如下图所示。整个谱仪由探头(包括闪烁体,

闪烁伽马能谱测量实验报告

近代物理实验 原子核物理 实验报告 实验题目:《闪烁γ能谱测量》 一、 实验目的 1加深对γ射线和物质相互作用的理解。 2.掌握NaI(Tl)γ谱仪的原理及使用方法。 3.学会测量分析γ能谱。 4.学会测定γ谱仪的刻度曲线.。 二、实验仪器 Cs 放射源 Co 放射源 FH1901型NaI 闪烁谱仪 SR-28双踪示波器 三、 实验原理 1. γ射线与物质相互作用 γ射线与物质相互作用主要有光电效应、康普顿散射及电子对效应。 1) 光电效应:在光电效应中,原子吸收光子的全部能量,其中一部分消耗于光电子脱离原 子束缚所需的电离能,另一部分就作为光电子的动能。所以,释放出来的光电子能量和 该束缚电子所处的电子壳层的结合能B γ之差。因此, =i E E B E γγ -≈光电子 (需要原子核参加) 2) 康普顿散射:康普顿散射是γ光子与原子外层电子相互作用的结果。反冲电子的动能为: 220(1cos )(1cos ) e E E m c E γγθθ-= +- 即使入射γ光子的能量是单一的,反冲电子的能量却是随散射角连续变化的。 3) 电子对效应:电子对效应是γ光子从原子核旁经过时,在原子核的库伦场作用下,γ光 子转化为一个正电子和一个负电子的过程。根据能量守恒定律,只有当入射光子的能量 h ν大于2 02m c ,即 h ν〉1.02MeV 时,才能发生电子对效应。(与光电效应相似,需要 原子核参加) 2. NaI (Tl )γ能谱仪介绍 1)闪烁谱仪装置示意图

2)闪烁谱仪的工作原理 Γ射线 次级电子 荧光 Γ放射源 与闪烁体发 闪烁体受 光阴极吸收 生三种作用 激辐射 光电子 电脉冲 定标器记录 分析器分析 放大器放大 各打拿极逐级放大 3)能谱分析(以137Cs 为例) 全能峰是γ光子与闪烁体发生光电效应产生的,直接反映了γ射线的能量;康普顿坪是由康普顿效应贡献的;逸出的γ射线与闪烁体周围的物质发生康普顿散射,反散射光子进入闪烁体发生光电效应形成反散射峰。 4) 谱仪的能量分辨率和能量刻度曲线 闪烁单晶γ谱仪最主要的指标是能量分辨率和线性。 a.能量分辨率 100%U W U ?= ? 闪烁谱仪的能量分辨率取决于闪烁体、光电倍增管、电子学线路的选择与配合。由于现在电子学线路技术的提高,分辨率主要取决于闪烁体的分辨本领。 b.能量线性 0()E p p E x Gx =+ 能量线性是指谱仪的输出脉冲幅度与带电粒子能量之间是否有线性关系。由于NaI(Tl)单晶对于能量在100keV 到1300keV 是近似线性的,谱仪的能量线性主要取决于谱仪的工作情况。利用两种能量确定的放射源就可以做出能量刻度曲线。 四、 实验内容 1. 连接仪器,检查线路确认无误后开低压电源预热,将 137 Cs 放射源放在托盘上,加高压 用脉冲示波器观察探头工作状态。得到负脉冲表明探头以开始工作 2. 调节放大器的放大倍数和时间常数,用示波器观察放大器输出波形,使放大器输出脉冲 幅度为8V 左右,且使输出波形尽量与探头输出波形相似。

GammaVision-γ射线谱分析软件

2 GammaVision γ射线谱分析软件 2.1软件安装 运行GammaVision 安装程序中Disk1的setup.exe 文件,根据向导提示即可完成软件安装。 其中要注意选择正确的谱仪连接方式,如下图所示。 其中 1“Attach Detector toPC interface card”适用于DSP EC/DSPEC-PLUS 系列、TRUMP 卡等; 2“Attach Detector to printer port”适用于NOMAD、DART等; 3“serial port”已很少使用,第四项microBASE为NaI 选用; 4“USB”包括DSPEC-jr 用USB 连接的系列谱仪。 软件成功安装后会提示重启系统。 2.2操作程序描述 2.2.1 开关机顺序 打开仪器的顺序是:打开数字化谱仪电源→数字化谱仪自检→计算机主机→显示器→进入GammaVision 软件→进入MCB→加高压→测量。 关机的顺序是:关闭高压→退出MCB→关闭GammaVision→计算机主机→显示器→关闭数字化谱仪电源 打印机在打印数据时打开,不打印时请关闭。 注:在长时间的测量过程中,计算机可以关闭,但数字化谱仪切勿关闭。 在GammaVision 应用程序操作过程中以下所说的“单击”、“双击”是指用鼠标左键“单

击”或“双击”某个要选准的菜单或按钮。 2.2.2确认MCB 连接 鼠标指向[开始]菜单中所有程序的 GammaVision 32菜单,单击MCB Configuration就启动了连接程序。在屏幕出现 “Configure Instruments Version…”,如右图。如果MCB连接成功,则会显示“1input found on 1 systems”,同时弹出下图对话框。 确认无误,单击Renumber All ,单击Close 推出。至此MCB连接已完成。如果上图对话框中没有显示任何内容,说明MCB没有连接上,则需要查找原因或联系ORTEC服务站点。 2.2.3仪器参数设置 鼠标指向[开始]菜单中所有程序的GammaVision 32菜单,单击GammaVision 进入测量程序。

伽玛射线能谱测量实验报告

伽玛能谱的测量及透射率的测定实验报告 吴伟岑 摘要: 本实验将伽玛射线的次级电子按不同的能量分别进行强度测量,从而得到伽玛辐射强度按能量的分布。由于伽玛射线的能量与原子核激发态的能级特性相联系,不仅对于原子核的结构和性质至关重要,而且对各种放射性同位素的应用也是或不可缺的。 关键词: 伽玛射线、能谱、NaI(Tl)、伽玛闪烁谱 引言 测量伽玛射线的强度和能量是核辐射探测的一个重要方面,在核物理研究中,测量原子核的激发能级、研究核衰变纲图、测定短的核寿命及进行核反应实验等,都需要测量伽玛射线,在放射性同位素的工业、农业、医疗和科学研究的各种应用中也经常使用伽玛射线和要求进行伽玛射线的各种测量。在伽玛射线测量工作中广泛使用Nal(Tl)单晶能谱仪和Ge(Li)半导体能谱仪,由于后一谱仪具有高的能量分辨率,同时使用计算机技术,使伽玛射线的能谱测量工作在广度和精度方面都有很大的进展。Ge(Li)半导体谱仪虽然具有高的分辨率和良好的线性,但是它要求在低温下保存和使用,且要定期加液氮,这显然是不方便的,而且它对仪器设备有较高的要求,价格也较贵,而Nal(Tl)单晶伽玛谱仪则有较高的探测效率,保单晶闪烁探测器伽玛能谱仪。Nal(Tl)管和使用都较为方便,所以在一般情况下尽可能使用 正文 一.实验内容 1.学会NaI(Tl)单晶伽玛闪烁体整体装置的操作、调整和使用,调试一台谱仪至正常工作状态。 2.测量Cs、Co的伽玛能谱,求出能量分辨率、峰康比、线性等各项指标,并分析60137谱形。 3.了解多道脉冲幅度分析器在NaI(Tl)单晶伽玛谱测量中的数据采集及其基本功能。 4.数据处理(包括对谱形进行光滑、寻峰、曲线拟合等)。 二.实验装置 1.伽玛放射源Cs和Co (强度~1.5微居里); 2.200微米Al窗NaI(Tl)闪烁头; 3.高压60137电源、放大器、多道脉冲幅度分析仪。 三.实验步骤 1.阅读仪器使用说明,掌握仪器及多道分析软件的使用方法。调整实验装置,使放射源、准直孔、闪烁探测器的中心位于一条直线上。. 2.仪器开机并调整好工作电压(700-750V)和放大倍数后,预热30分钟左右。

X射线衍射数据处理软件

Jade的一些使用经验 摘要:本文简单介绍了作者在使用X射线衍射数据处理软件Jade进行物相检索、物相定量分析、晶胞参数修正以及晶粒尺寸与微应变计算等方面的一些经 验和技巧。 Jade是一个32位Windows程序,用于处理X射线衍射数据。除基本的如显示图谱、打印图谱、数据平滑等功能外,主要功能有物相检索、结构精修、晶 粒大小和微观应变计算等许多功能。 1 Jade的物相检索方法和技巧 Jade的物相检索功能是非常强大的,通过软件基本上能检索出样品中全部 物相。物相检索的步骤包括: (1) 给出检索条件:包括检索子库(有机还是无机、矿物还是金属等等)、 样品中可能存在的元素等; (2) 计算机按照给定的检索条件进行检索,将最可能存在的前100种物相列 出一个表; (3) 从列表中检定出一定存在的物相(人工完成)。 一般来说,判断一个物相的存在与否有三个条件: (1) 标准卡片中的峰位与测量峰的峰位是否匹配; (2) 标准卡片的峰强比与样品峰的峰强比要大致相同; (3) 检索出来的物相包含的元素在样品中必须存在。 Jade物相检索的常用方法有:无限制检索法和限定条件检索法。其中可限定的条件包括:PDF卡片库、元素组合、设置检索焦点、单峰检索。另外,也 可以对物相进行反查。 1.1 无限制检索 无限制检索就是对图谱不作任何处理、不规定检索卡片库、也不作元素限定、检索对象选择为主相(S/M Focus on Major Phases)。 这种方法一般可检测出样品中的主要的物相。在对样品无任何已知信息的情况下可试着检索出样品中的主要物相,进而通过检索出来的主要物相了解样品中元素的组成。另外,在考虑样品受到污染、反应不完全的情况可试探样品中是否存在未知的元素。但是,这种方法不可能检索出全部物相,并且检索结果可能与实际存在的物相偏差较大,需要其它实验作进一步证实。

相关文档
最新文档