2020年重庆中考数学复习几何最值专题复习八(含答案解析)

2020年重庆中考数学复习几何最值专题复习八(含答案解析)
2020年重庆中考数学复习几何最值专题复习八(含答案解析)

2020重庆中考数学复习几何最值专题复习八

例1、如图,矩形ABCD中,AB=4,AD=6,点E,F分别是AB,BC边上的两动点,且EF=2,点G为EF的中点,点H为AD边上一动点,连接CH,GH,则GH+CH的最小值为()

A.4B.9C.D.

例2、如图,△ABC中,AB=AC=4,∠ABC=30°,点P,Q分别在边AB,AC上,将△APQ沿PQ翻折,点A落在点A′处,则线段BA′长度的最小值为()

A.4B.4﹣4C.D.2﹣

例3、如图,在平行四边形ABCD中,∠A=45°,AB=4,AD=2,M是AD边的中点,N是AB边上一动点,将线段MN绕点M逆时针旋转90至MN′,连接N′B,N′C,则N′B+N′C的最小值是.

例4、如图,在矩形ABCD中,AB=6,AD=3,M是AD边的中点,N是AB边上的一动点,将△AMN沿MN所在直线翻折得到△A'MN,连接A'C.在MN上存在一动点P.连接A'P、CP,则△A'PC周长的最小值是.

例5、(2018?无锡)如图,矩形ABCD中,AB=4,AD=2,E为边AD上一个动点,连结BE,取BE的中点G,点G绕点E逆时针旋转90°得到点F,连结CF,则△CEF面积的最小值是()

A.4B.C.3D.

练习:

1、(2019秋?罗湖区期末)如图,矩形ABCD中,AB=20,AD=30,点E,F分别是AB,BC边上的两个

动点,且EF=10,点G为EF的中点,点H为AD边上一动点,连接CH、GH,则GH+CH的最小值为45.

2、如图,在△ABC,AB=AC=2,△ABC=30°,点P、Q分别在边AB、AC上,将△APQ沿PQ翻折,

点A落到点A′处,则线段BA′长度的最小值是.

3、如图,在△ABC中,∠BAC=120°,AB=AC=4,点M,N分别在边AB,AC上,将△AMN沿MN 翻折,点A的对应点为A′,连接BA′,则BA′长度的最小值为.

4如图,点E为正方形ABCD中AD边上的动点,AB=2,以BE为边画正方形BEFG,连结CF和CE,则△CEF面积的最小值为.

2020重庆中考数学复习几何最值专题复习八参考答案

例1、如图,矩形ABCD中,AB=4,AD=6,点E,F分别是AB,BC边上的两动点,且EF=2,点G为EF的中点,点H为AD边上一动点,连接CH,GH,则GH+CH的最小值为()

A.4B.9C.D.

解:由已知,点G在以B圆心,1为半径的圆在与长方形重合的弧上运动.

作C关于AD的对称点C′,连接C′B,交AD于H,交以D为圆心,以1为半径的圆于G

由两点之间线段最短,此时C′B的值最小为,

则GH+CH的最小值C′G=10﹣1=9,故选:B.

例2、(2018春?碑林区校级期末)如图,△ABC中,AB=AC=4,∠ABC=30°,点P,Q分别在边AB,AC上,将△APQ沿PQ翻折,点A落在点A′处,则线段BA′长度的最小值为()

A.4B.4﹣4C.D.2﹣

解:如图,当点Q与点C重合,A′点落在BC上时,BA′的长度最小.(圆外一点到圆上的点的最短的线段就是BA′,QA最长时,BA′最短),

∵AB=AC=4,∠ABC=30°,∴∠B=∠ACB=30°,∠BAC=180°﹣∠A﹣∠ACB=120°,

∵△PCA′是由△PCA翻折得到,∴∠BAC=∠PA′C=120°,

∴∠PA′B=180°﹣∠PA′C=60°,∴∠BPA′=90°,

过A作AD⊥BC于D,则BD=CD,∵AB=4,∠B=30°,∴AD=AB=2,BD==2,∴BC=2AD=4,AC=A′C=4,∴BA′=4﹣4,∴BA′的最小值为4﹣4,故选:B.

第八章平面解析几何质量检测

第八章 平面解析几何 (时间120分钟,满分150分) 、选择题(本大题共12小题,每小题5分,共60分?在每小题给出的四个选项中,只有 项是符合题目要求的) 1 .抛物线y 2= ax (a 丰0)的焦点到其准线的距离是 C ? |a| 解析:由已知焦点到准线的距离为 p =鸟 答案:B 2.过点A(4, a)与B(5 , b)的直线与直线 y = x + m 平行,则|AB| = B. .2 b — a 解析:由题知 ----- =1, ?- b — a = 1. 5— 4 ???|AB|= (5-4)2+ (b — a)2= 2. 答案:B 答案: ax + 2by — 2 = 0(a >0, b >0)始终平分圆 x 2 + y 2 — 4x — 2y — 8 = 0 的周长,则* + f 的 最小值为 ( ) A . 1 B . 5 C . 4 2 D . 3+ 22 解析:由(x — 2)2+ (y — 1)2= 13,得圆心(2,1), ???直线平分圆的周长,即直线过圆心. ?? a + b = 1. 12 ,12 b 「2a ?-a + b = (a + b )(a + b )= 3 + a + T 》3 + 22 , 当且仅当b =弓,即a = 2 — 1, b = 2 — 2时取等号, a b D .不确定 3.已知双曲线 2 2 X —y^= 1的离心率为e , 抛物线x = 2pf 的焦点为(e,0),则p 的值为( B . 1 1 Cd 解析: 依题意得e = 2,抛物线方程为 y2= 2p x ,故 8p = 2,得 p = 和 4.若直线

年重庆中考数学几何证明题--(专题练习+答案详解)

2015年重庆中考数学24题专题练习 1、如图,等腰梯形ABCD中,AD∥BC,AB=DC,E为AD中点,连接BE,CE (1)求证:BE=CE; (2)若∠BEC=90°,过点B作BF⊥CD,垂足为点F,交CE于点G,连接DG,求证:BG=DG+CD. 2、如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,E为AB延长线上一点,连接ED,与BC交于点H.过E作CD的垂线,垂足为CD上的一点F,并与BC交于点G.已知G为CH的中点. (1)若HE=HG,求证:△EBH≌△GFC; (2)若CD=4,BH=1,求AD的长.

3、如图,梯形ABCD中,AB∥CD,AD=DC=BC,∠DAB=60°,E是对角线AC延长线上一点,F是AD延长线上的一点,且EB⊥AB,EF⊥AF. (1)当CE=1时,求△BCE的面积; (2)求证:BD=EF+CE. 4、如图.在平行四边形ABCD中,O为对角线的交点,点E为线段BC延长线上的一点,且.过点E EF∥ CA,交CD于点F,连接OF. (1)求证:OF∥BC; (2)如果梯形OBEF是等腰梯形,判断四边形ABCD的形状,并给出证明.

5、如图,梯形ABCD中,AD∥BC,∠ABC=90°,BF⊥CD于F,延长BF交AD的延长线于E,延长CD交BA的延长线于G,且DG=DE,AB=,CF=6. (1)求线段CD的长; (2)H在边BF上,且∠HDF=∠E,连接CH,求证:∠BCH=45°﹣∠EBC. 6、如图,直角梯形ABCD中,AD∥BC,∠B=90°,∠D=45°. (1)若AB=6cm,,求梯形ABCD的面积; (2)若E、F、G、H分别是梯形ABCD的边AB、BC、CD、DA上一点,且满足EF=GH,∠EFH=∠FHG,求证:HD=BE+BF.

高中数学解析几何测试题答案版(供参考)

解析几何练习题 一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中, 只有一项是符合题目要求的.) 1.过点(1,0)且与直线x-2y-2=0平行的直线方程是( ) A.x-2y-1=0 B.x-2y+1=0 C.2x+y-2=0 D.x+2y-1=0 2.若直线210ay -=与直线(31)10a x y -+-=平行,则实数a 等于( ) A 、12 B 、12 - C 、13 D 、13 - 3.若直线,直线与关于直线对称,则直线的斜率为 ( ) A . B . C . D . 4.在等腰三角形AOB 中,AO =AB ,点O(0,0),A(1,3),点B 在x 轴的正半轴上,则直线AB 的方程为( ) A .y -1=3(x -3) B .y -1=-3(x -3) C .y -3=3(x -1) D .y -3=-3(x -1) 5.直线对称的直线方程是 ( ) A . B . C . D . 6.若直线与直线关于点对称,则直线恒过定点( ) 32:1+=x y l 2l 1l x y -=2l 2 1 2 1-22-02032=+-=+-y x y x 关于直线032=+-y x 032=--y x 210x y ++=210x y +-=()1:4l y k x =-2l )1,2(2l

A . B . C . D . 7.已知直线mx+ny+1=0平行于直线4x+3y+5=0,且在y 轴上的截距为3 1,则m ,n 的值分别为 A.4和3 B.-4和3 C.- 4和-3 D.4和-3 8.直线x-y+1=0与圆(x+1)2+y 2=1的位置关系是( ) A 相切 B 直线过圆心 C .直线不过圆心但与圆相交 D .相离 9.圆x 2+y 2-2y -1=0关于直线x -2y -3=0对称的圆方程是( ) A.(x -2)2 +(y+3)2 =1 2 B.(x -2)2+(y+3)2=2 C.(x +2)2 +(y -3)2 =1 2 D.(x +2)2+(y -3)2=2 10.已知点在直线上移动,当取得最小值时,过点引圆的切线,则此切线段的长度为( ) A . B . C . D . 11.经过点(2,3)P -作圆22(1)25x y ++=的弦AB ,使点P 为弦AB 的中点,则 弦AB 所在直线方程为( ) A .50x y --= B .50x y -+= C .50x y ++= D .50x y +-= 0,40,22,44,2(,)P x y 23x y +=24x y +(,)P x y 22111()()242 x y -++ =2 321 22

中考数学几何中的最值问题综合测试卷(含答案)

中考数学几何中的最值问题综合测试卷 一、单选题(共7道,每道10分) 1.如图,圆柱形玻璃杯,高为12cm,底面周长为18cm,在杯内离杯底5cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿5cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离 为()cm A. B.15 C. D.12 答案:B 试题难度:三颗星知识点:勾股定理、圆柱展开图、轴对称的性质 2.如图,在矩形ABCD中,AB=2,AD=4,E为CD边的中点,P为BC边上的任一点,那么,AP+EP的最 小值为() A.3 B.4 C.5 D.6 答案:C 试题难度:三颗星知识点:轴对称的性质、矩形的性质 3.如图,在锐角△ABC中,AB=6,∠BAC=60°,∠BAC的平分线交BC于点D,点M,N分别是AD和

AB上的动点,则BM+MN的最小值为( ) A. B. C.6 D.3 答案:A 试题难度:三颗星知识点:轴对称的性质 4.如图,当四边形PABN的周长最小时,a=(). A. B. C. D. 答案:C 试题难度:三颗星知识点:轴对称的性质 5.如图所示,已知A(,y1),B(2,y2)为反比例函数y=图象上的两点,动点P(x,0)在x轴正半轴上

运动,当线段AP与线段BP之差达到最大时,点P的坐标是( ) A. B.(1,0) C. D. 答案:D 试题难度:三颗星知识点:轴对称——线段之差(绝对值)最大 6.如图,△ABC是以AB为斜边的直角三角形,AC=4,BC=3,P为边AB上一动点,且PE⊥AC于点 E,PF⊥BC于点F,则线段EF长度的最小值是() A. B. C. D. 答案:C 试题难度:三颗星知识点:垂线段最短 7.如图,正方形ABCD边长为2,当点A在x轴上运动时,点D随之在y轴上运动,在运动过程中,

第八章 空间解析几何答案

第八章 空间解析几何与向量代数 §8.1向量及其线性运算 1.填空题 (1)点)1,1,1(关于xoy 面对称的点为()1,1,1(-),关于yoz 面对称的点为()1,1,1(-),关于xoz 面对称的点为()1,1,1(-). (2)点)2,1,2(-关于x 轴对称的点为()2,1,2(-),关于y 轴对称的点为()2,1,2(---),关于z 轴对称的点为()2,1,2(-),关于坐标原点对称的点为()2,1,2(--). 2. 已知两点)1,1,1(1M 和)1,2,2(2M ,计算向量21M M 的模、方向余弦和方向角. 解:因为)0,1,1(21=M M ,故2||21= M M ,方向余弦为2 2 cos = α,22cos =β,0cos =γ,方向角为4πα=,4π β=, 2 πγ=. 3. 在yoz 平面上,求与)1,1,1(A 、)2,1,2(B 、)3,3,3(C 等距离的点. 解:设该点为),,0(z y ,则 222222)3()3(9)2()1(4)1()1(1-+-+=-+-+=-+-+z y z y z y , 即?????-+-+=-+-+-+=-+2 2222 2) 3()3(9)2()1(4)2(4)1(1z y z y z z ,解得???==33y z ,则该点 为)3,3,0(. 4. 求平行于向量k j i a 432-+=的单位向量的分解式. 解:所求的向量有两个,一个与a 同向,一个与a 反向. 因为 29)4(32||222=-++=a ,所以)432(29 1k j i e a -+± =. 5. 已知点)6,2,1(-B 且向量在x 轴、y 轴和z 轴上的投影分别为1,4,4-, 求点A 的坐标. 解:设点A 的坐标为),,(z y x ,由题意可知)1,4,4()6,2,1(-=----z y x ,则5,6,5=-==z y x ,即点A 的坐标为)5,6,5(-. §8.2 数量积 向量积 1.若3 ),(,4||,3||π = ==Λ b a b a ,求b a c 23-=的模. 解:b b b a a b a a b a b a c 22233233)23()23(||2 ?+?-?-?=-?-=

中考数学几何专题复习

专题三 几何专题 【题型一】考察概念基础知识点型 例1如图1,等腰△ABC 的周长为21,底边BC = 5,AB 的垂直平分线是DE ,则△BEC 的周长为 。 例 2 如图2,菱形ABCD 中,60A ∠=°,E 、F 是AB 、AD 的中点,若2EF =,菱 形边长是______. D E B C A 图1 图2 图3 例 3 (切线)已知AB 是⊙O 的直径,PB 是⊙O 的切线,AB =3cm ,PB =4cm ,则BC = . 【题型二】折叠题型:折叠题要从中找到对就相等的关系,然后利用勾股定理即可求解。 例4(09绍兴)D E ,分别为AC ,BC 边的中点,沿DE 折叠,若48CDE ∠=°,则 APD ∠等于 。 例5如图4.矩形纸片ABCD 的边长AB =4,AD =2.将矩形纸片沿 EF 折叠, 使点A 与点C 重合,折叠后在其一面着色(图),则着色部分的面积为( ) A . 8 B . 112 C . 4 D .52 E D B C A P 图4 图5 图 6 【题型三】涉及计算题型:常见的有应用勾股定理求线段长度,求弧长,扇形面积及圆锥体积,侧面积,三角函数计算等。 例6如图3,P 为⊙O 外一点,PA 切⊙O 于A ,AB 是⊙O 的直径,PB 交⊙O 于C , PA =2cm ,PC =1cm,则图中阴影部分的面积S 是 ( ) A B C D E G F F

D C B A E F G A. 2235cm π- B 2435cm π- C 24235cm π- D 22 32cm π - 图3 【题型四】证明题型: 第二轮复习之几何(一)——三角形全等 【判定方法1:SAS 】 例1 (2011广州)如图,AC 是菱形ABCD 的对角线,点E 、F 分别在边AB 、AD 上,且 AE=AF 。 求证:△ACE ≌△ACF 例2 (2010长沙)在正方形ABCD 中,AC 为对角线,E 为AC 上一点,连接EB 、ED . (1)求证:△BEC ≌△DEC ; (2)延长BE 交AD 于F ,当∠BED =120°时,求∠EFD 的度数. 【判定方法2:AAS (ASA )】 例3 如图,ABCD 是正方形,点G 是BC 上的任意一点,DE AG ⊥于 E ,BF DE ∥,交 AG 于F ,求证:AF BF EF =+. 例4 (2011浙江台州)如图,在□ABCD 中,分别延长BA ,DC 到点E ,使得AE=AB , CH=CD 连接EH ,分别交AD ,BC 于点F,G 。求证:△AEF ≌△CHG. E B D A C F A F D E B C A D F E B C

高中数学解析几何中的基本公式

解析几何中的基本公式 1、 两点间距离:若)y ,x (B ),y ,x (A 2211,则212212)()(y y x x AB -+-= 特别地:x //AB 轴, 则=AB 。 y //AB 轴, 则=AB 。 2、 平行线间距离:若0C By Ax :l ,0C By Ax :l 2211=++=++ 则:2 221B A C C d +-= 注意点:x ,y 对应项系数应相等。 3、 点到直线的距离:0C By Ax :l ),y ,x (P =++ 则P 到l 的距离为:2 2 B A C By Ax d +++= 4、 直线与圆锥曲线相交的弦长公式:?? ?=+=0 )y ,x (F b kx y 消y :02 =++c bx ax ,务必注意.0>? 若l 与曲线交于A ),(),,(2211y x B y x 则:2122))(1(x x k AB -+= 5、 若A ),(),,(2211y x B y x ,P (x ,y )。P 在直线AB 上,且P 分有向线段AB 所成的比 为λ, 则??? ????λ+λ+=λ+λ+=112121y y y x x x ,特别地:λ=1时,P 为AB 中点且??????? +=+=222 121y y y x x x 变形后:y y y y x x x x --= λ--= λ21 21或 6、 若直线l 1的斜率为k 1,直线l 2的斜率为k 2,则l 1到l 2的角为),0(,π∈αα 适用范围:k 1,k 2都存在且k 1k 2≠-1 , 2 11 21tan k k k k +-= α 若l 1与l 2的夹角为θ,则= θtan 21211k k k k +-,]2 ,0(π ∈θ 注意:(1)l 1到l 2的角,指从l 1按逆时针方向旋转到l 2所成的角,范围),0(π l 1到l 2的夹角:指 l 1、l 2相交所成的锐角或直角。 (2)l 1⊥l 2时,夹角、到角= 2 π 。 (3)当l 1与l 2中有一条不存在斜率时,画图,求到角或夹角。

中考复习数学几何最值问题

几何最值问题 一、垂线段最短 1、已知抛物线y=x2+1具有如下性质:该抛物线上任意一点到定点F(0,2)的距离与到x轴的距 离始终相等,如图,点M的坐标为(,3),P是抛物线y=x2+1上一个动点,则△PMF周长的最小值是() 2、如图,在RT三角形ABC中,∠ABC=90°,∠C=30°,点D是BC上的动点,将线段AD绕点A 顺时针旋转60°至AD,连接BD,若AB=2cm,则BD’的最小值为__________ 3、如图,在锐角△ABC中,AB=4,BC=5,∠ACB=45°,将△ABC绕点B按逆时针方向旋转,得到△A1B1C1.点E为线段AB中点,点P是线段AC上的动点,在△ABC绕点B按逆时针方向旋转过程中,点P的对应点是点P1,线段EP1长度的最小值与最大值分别是. 4\如图,线段AB的长为2,C为AB上一个动点,分别以AC、BC为斜边在AB的同侧作两个等腰直角三角形△ACD和△BCE,那么DE长的最小值是▲.

5、如图,点C 是线段AB 上的一点,且AB= ,分别以AC,BC 为底作等腰ΔAEC 和等腰ΔBCF, 且∠AEC=∠BFC=120°,点P 为EF 的中点,求线段PC 长度的最小值。 6、已知菱形ABCD 的对角线AC 和BD 交于点O ,?=∠120BAD ,4=AB ,E 为OB 上的一个动点,将AE 绕点A 逆时针旋转60°,得AF ,则点F 到O 的最短距离为 . 7、如图,已知∠MON=30°,B 为OM 上一点,BA ⊥ON ,四边形ABCD 为正方形,P 为射线BM 上一动点,连结CP ,将CP 绕点C 顺时针方向旋转90°得CE ,连结BE ,若AB=4,则BE 的最小值为__________ 8、 如图,在△ABC 中,∠A=75°,∠C=45°,BC=4,点M 是AC 边上的动点,点M 关于直线AB 、BC 的对称点分别为P 、Q ,则线段PQ 长的取值范围是______.

同济大学(高等数学)_第八章_向量代数与解析几何

同济大学(高等数学)_第八章_向量代数与解 析几何 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第五篇 向量代数与空间解析几何 第八章 向量代数与空间解析几何 解析几何的基本思想是用代数的方法来研究几何的问题,为了把代数运算引入几何中来,最根本的做法就是设法把空间的几何结构有系统的代数化,数量化. 平面解析几何使一元函数微积分有了直观的几何意义,所以为了更好的学习多元函数微积分,空间解析几何的知识就有着非常重要的地位. 本章首先给出空间直角坐标系,然后介绍向量的基础知识,以向量为工具讨论空间的平面和直线,最后介绍空间曲面和空间曲线的部分内容. 第1节 空间直角坐标系 1.1 空间直角坐标系 用代数的方法来研究几何的问题,我们需要建立空间的点与有序数组之间的联系,为此我们通过引进空间直角坐标系来实现. 1.1.1 空间直角坐标系 过定点O ,作三条互相垂直的数轴,这三条数轴分别叫做x 轴(横轴)、y 轴(纵轴)、z 轴(竖轴),它们都以O 为原点且具有相同的长度单位. 通常把x 轴和y 轴配置在水平面上,而z 轴则是铅垂线;它们的正方向要符合右手规则:右手握住z 轴,当右手的四指从x 轴的正向转过2 角度指向y 轴正向时,大拇指的指向就是z 轴的正向,这样就建立了一个空间直角坐标系(图8-1),称为Oxyz 直角坐标系,点O 叫做坐标原点. 图8-1 在Oxyz 直角坐标系下,数轴Ox ,Oy ,Oz 统称为坐标轴,三条坐标轴中每两条可以确定一个平面,称为坐标面,分别为xOy ,yOz ,zOx ,三个坐标平面 y x z O

重庆中考数学第18题专题1几何部分

重庆中考数学第18题专题1(几何部分) 1. 如图,在正方形ABCD和正方形DEFG中,点G在AD上,连接AC,BF交于点H,连接DH,若BC=4,DG=1,那么DH的长是. 2.如图,在正方形ABCD中, E为AD中点,AH⊥BE于点H,连接CH并延长交AD于点F, CP ⊥CF交AD的延长线于点P,若EF=1,则DP的长为_________. 3、如图,以RtABC△的斜边AB为一边在△ABC同侧作正方形ABEF.点O为AE与BF的 交点,连接CO,若CA = 2,CO=22,那么CB的长为______________. 4.如图,正方形ABCD的边长为3,延长CB至点M,使BM=1,连接AM,过点B 作BN⊥AM,垂足为N,O是对角线AC、BD的交点,连接ON,则ON的长为.

5.如图,正方形ABCD的对角线AC、BD相交于点O,∠BAC的平分线交BD于点E,交BC于点F,点G是AD的中点,连接CG 交BD于点H,连接FO并延长FO交CG于点P,则PG:PC的值为_____________. 6、如图,正方形ABCD中,点E、F、G分别为AB、BC、CD边上的点,EB=3cm,GC=4cm,连接EF、FG、GE恰好构成一个等边三角形,则正方形的边长为cm。 7.如图所示,在梯形ABCD中,AB∥CD,E是BC的中点,EF⊥AD于点F,AD=4,EF=5,则梯形ABCD的面积是. 8、如图,正方形纸片ABCD的边长为3,点E、F分别在边BC、CD 上,将AB、AD分别和AE、AF折叠,点B、D恰好都将在点G处, 已知BE=1,则EF的长为. 9、如图,Rt△ABC中,C= 90o,以斜边AB为边向外作正 方形ABDE,且正方形对角线交于点O,连接OC,已知 AC=5,OC=62,则另一直角边BC的长为.

高中数学解析几何常考题型整理归纳

高中数学解析几何常考题型整理归纳 题型一 :圆锥曲线的标准方程与几何性质 圆锥曲线的标准方程是高考的必考题型,圆锥曲线的几何性质是高考考查的重点,求离心率、准线、 双曲线的渐近线是常考题型 . 22 【例 1】(1)已知双曲线 a x 2- y b 2=1(a >0,b >0)的一个焦点为 F (2, 0),且双曲线的渐近线与圆 (x - 2)2 +y 2=3 相切,则双曲线的方程为 ( 22 A.x2-y2=1 A. 9 -13= 2 C.x 3-y 2=1 22 (2)若点 M (2,1),点 C 是椭圆 1x 6+y 7 22 (3)已知椭圆 x 2+y 2=1(a >b >0)与抛物线 y 2=2px (p >0)有相同的焦点 F ,P ,Q 是椭圆与抛物线的交点, ab 22 若直线 PQ 经过焦点 F ,则椭圆 a x 2+ y b 2=1(a >b >0)的离心率为 ___ . 答案 (1)D (2)8- 26 (3) 2- 1 22 解析 (1)双曲线 x a 2-y b 2=1 的一个焦点为 F (2,0), 则 a 2+ b 2= 4,① 双曲线的渐近线方程为 y =±b a x , a 由题意得 22b 2= 3,② a 2+b 2 联立①② 解得 b = 3,a =1, 2 所求双曲线的方程为 x 2-y 3 =1,选 D. (2)设点 B 为椭圆的左焦点,点 M (2,1)在椭圆内,那么 |BM|+|AM|+|AC|≥|AB|+|AC|=2a ,所以 |AM| +|AC|≥2a -|BM|,而 a =4,|BM|= (2+3)2+1= 26,所以 (|AM|+ |AC|)最小=8- 26. ) 22 B.x - y =1 B.13- 9 =1 2 D.x 2 -y 3=1 1 的右焦点,点 A 是椭圆的动点,则 |AM|+ |AC|的最小值为

初中数学《几何最值问题》典型例题

初中数学《最值问题》典型例题 一、解决几何最值问题的通常思路 两点之间线段最短; 直线外一点与直线上所有点的连线段中,垂线段最短; 三角形两边之和大于第三边或三角形两边之差小于第三边(重合时取到最值) 是解决几何最值问题的理论依据,根据不同特征转化是解决最值问题的关键.通过转化减少变量,向三个定理靠拢进而解决问题;直接调用基本模型也是解决几何最值问题的高效手段. 轴 对 称 最 值 图形 l P B A N M l B A A P B l 原理两点之间线段最短两点之间线段最短三角形三边关系 特征 A,B为定点,l为定直 线,P为直线l上的一 个动点,求AP+BP的 最小值 A,B为定点,l为定直线, MN为直线l上的一条动线 段,求AM+BN的最小值 A,B为定点,l为定直线, P为直线l上的一个动 点,求|AP-BP|的最大值转化 作其中一个定点关于定 直线l的对称点 先平移AM或BN使M,N 重合,然后作其中一个定 点关于定直线l的对称点 作其中一个定点关于定 直线l的对称点 折 叠 最 值 图形 B' N M C A B 原理两点之间线段最短 特征 在△ABC中,M,N两点分别是边AB,BC上的动点,将△BMN沿MN翻折, B点的对应点为B',连接AB',求AB'的最小值. 转化转化成求AB'+B'N+NC的最小值 1.如图:点P是∠AOB内一定点,点M、N分别在边OA、OB上运动,若∠AOB=45°,OP=32,则△PMN 的周长的最小值为. 【分析】作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN 的周长最短,最短的值是CD的长.根据对称的性质可以证得:△COD是等腰直角三角形,据此即可求解.【解答】解:作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN的周长最短,最短的值是CD的长. ∵PC关于OA对称, ∴∠COP=2∠AOP,OC=OP 同理,∠DOP=2∠BOP,OP=OD

最全初中数学几何动点问题专题分类归纳汇总训练

最全初中数学几何动点问题专题分类归纳汇总 近几年有关“线段最值”的中考试题层出不穷,形式多样,往往综合了几何变换、函数等方面的知识,具有一定的难度,具有很强的探索性,通过研究发现,这些问题尽管形式多样、背景复杂、变化不断,但都可以通过几何变换转化为常见的基本问题. 最值题目类型多:作图、计算;有求差最大,求和最小;求周长最小、求时间最短;求最值、已知最值求待定系数等;对称载体多:几乎涉及到初中全部的轴对称图形(角、线段、等腰三角形、等腰梯形、菱形、正方形、抛物线、圆、坐标轴). 我们知道“对称、平移、旋转” 是三种保形变换。通过这三种几何变换可以实现图形在保持形状、大小不变的前提下而使其位置发生变化,具有更紧凑的位置关系或组合成新的有利论证的基本图形.通过几何变换移动线段的位置是解决最值问题的有效手段,题目是千变万化的,但是运用几何变换把最值问题转化为基本问题却是不变的。 数学问题是千变万化的,几何变换的应用也不是单一的,有些问题需要多种变换的组合才能解决,看看以下策略对解决问题能否奏效。 (1)去伪存真。刨去不变的线段,看清楚究竟是几段和的最小值问题,必须仔细研究题目的背景,搞清楚哪些是动点、哪些是定点、哪些是定长。 (2)科学选择。捕捉题目的信号,探索变换的基础,选择变换的手段.平移把不“连”的线段“接”起来,旋转把“碰头”的线段“展”开来重“接”,对称把在同侧的线段翻折过去重组,因此“不连——平移、碰头——旋转、同侧——对称”是一般的思路;对称变换的基础是轴对称图形,平移变换的基础是平行线,旋转变换的基础是等线段,所以选择哪种几何变换还要看题目中具备何种变换的基础信息。 (3)怎么变换?对称变换一般以动点所在直线为对称轴,构建定点(直线)的对称点(直线),如有多个动点就必须作多次变换;平移一般是移动没有公共端点的两条线段中的某一条,与另一条对“接”;旋转变换一般以定点为旋转中心旋转60°或90°。 (4)怎么求值?几何变换成了“两折线”或“三折线”后,根据“两点之间线段最

重庆中考数学最新几何证明题专题

G F E D C B A H A B C D G F E 中考复习专练 1.如图所示,在正方形ABCD 的边CB 的延长线上取点F ,连结AF ,在AF 上取点G ,使得AG=AD ,连结DG ,过点 A 作AE ⊥AF ,交DG 于点E .(1)若正方形ABCD 的边长为4,且2 1 t a n =∠FAB ,求FG 的长;(2)求证:AE+BF=AF . 2. 如图,□ABCD 中,E 是BC 边的中点,连接AE ,F 为CD 边上一点,且满足∠DF A =2∠BAE .(1)若∠D =105°,∠DAF =35°.求∠F AE 的度数;(2)求证:AF =CD +CF . 3.如图,在正方形ABCD 中,点P 是AB 的中点,连接DP ,过点B 作BE DP ⊥交DP 的延长线于点E ,连接AE ,过点A 作AF AE ⊥交DP 于点F ,连接BF 。(1)若2AE =,求EF 的长;(2)求证:PF EP EB =+ 4. 如图,正方形ABCD 中,E 为AB 边上一点,过点D 作DF DE ⊥,与BC 延长线交于点F .连接EF ,与CD 边 交于点G ,与对角线BD 交于点H .(1)若2BF BD ==,求BE 的长;(2)若2ADE BFE ∠=∠,求证: FH HE HD =+. B D 24题图 E A F C

G F P E D C B A C D E A G F B p E F G O D C B A 5. 如图,正方形ABCD 中,对角线AC 与BD 相交于O ,∠ADE=15°,过D 作D G ⊥ED 于 D,且AG=AD,过G 作GF//AC 交ED 的延长线于F.(1)若ED=64,求AG . (2)求证:2DF+ED=BD 6. 如图,P 为正方形ABCD 边BC 上一点,F 在AP 上,且AF=AD ,FE ⊥AP 交CD 于点E , G 为CB 延长线上一点,BG=DE ,(1)求证:DAP BAP PAG ∠+∠=∠2 1 (2)若DE =2, AB =4,求AP 的长 7. 在□ABCD 中,对角线BD BC ⊥,G 为BD 延长线上一点且AEG ?为等边三角形,BAD ∠、CBD ∠的平分线 相交于点E ,连接AE 交BD 于F ,连接GE .(1)若□ABCD 的面积为93,求AG 的长;(2)求证:AE BE GE =+. 8. 如图,已知正方形ABCD ,点P 为射线BA 上的一点(不和点A ,B 重合),过P 作PE ⊥CP ,且CP =PE .过E 作 EF ∥CD 交射线BD 于F .(1)若CB =6,PB =2,则EF = ;DF = ;(2)请探究BF ,DG 和CD 这三条线段之间的数量关系,写出你的结论并证明;

中考数学专题复习几何最值问题

【典例1】如图,在矩形ABCD中,AB=4,AD=6,E是AB边的中点,F是线段BC 边上的动点,将△EBF沿EF所在直线折叠得到△EB′F,连结B′D,则B′D的最小值是(). B.6 C. D.4 A. 【解析】∵AE=BE,BE=B′E,由圆的定义可知,A、B、B′在以点E为圆心, AB长为直径的圆上,如图所示. B′D的长最小值= DE =. 22故选A. 【启示】此题属于动点(B′)到一定点(E)的距离为定值(“定点定长”),联想到以E为圆心,EB′为半径的定圆,当点D到圆上的最小距离为点D到圆心的距离-圆的半径.当然此题也可借助三角形三边关系解决,如B D DE B E '' ≤-,当且仅当点E、B′、D三点共线时,等号成立. 【典例2】如图,E、F是正方形ABCD的边AD上两个动点,满足AE=DF,连接CF交BD于点G,连结BE交AG于点H,若正方形的边长是2,则线段DH长度的最小值是 . 【思路探究】根据正方形的轴对称性易得∠AHB=90°,故点H在以AB为直径的圆上.取AB中点O,当D、H、O三点共线时,DH的值最小,此时DH=OD-OH,问

题得解. 【解析】由△ABE≌△DCF,得∠ABE=∠DCF,根据正方形的轴对称性,可得∠DCF=∠DAG,∠ABE=∠DAG,所以∠AHB=90°,故点H在以AB为直径的圆弧上.取AB中点O,OD交⊙O于点H,此时DH最小,∵OH=1 AB=,OD=,∴DH的最 1 2 小值为OD-OH 1. 【启示】此题属于动点是斜边为定值的直角三角形的直角顶点,联想到直径所对圆周角为直角(定弦定角),故点H在以AB为直径的圆上,点D在圆外,DH的最小值为DO-OH.当然此题也可利用DH OD OH ≤-的基本模型解决. 【针对训练】 1. 如图,在△ABC中,∠ACB=90°,AC=2,BC=1,点A,C分别在x轴,y轴上,当点A在x轴正半轴上运动时,点C随之在y轴上运动,在运动过程中,点B到原点O的最大距离为(). B.1.3 A 2.如图,在矩形ABCD中,AB=4,BC=6,E是矩形内部的一个动点,且AE⊥BE,则线段CE的最小值为(). B. C. D.4 A.3 3. 如图,在△ABC中,AB=10,AC=8,BC=6,以边AB的中点O为圆心,作半圆与AC相切,点P、Q分别是边BC和半圆上的运点,连接PQ,则PQ长的最大值与最小值的和是().

2020中考数学专题汇编 几何最值 含解析

几何最值 一、选择题 1.(2020·泰安)如图,点A ,B 的坐标分别为A (2,0),B (0,2),点C 为坐标平面内一点,BC ﹦1,点M 为线段AC 的中点,连接OM ,则OM 的最大值为( ) A . 2 +1 B . 2 +1 2 C .2 2 +1 D .2 2 —1 2 {答案} B {解析}本题考查了圆的概念、勾股定理、三角形中位线的性质以及动点运动最值问题,因为点C 为坐标平面内一点,BC ﹦1,所以点C 在以点B 为圆心、1长为半径的圆上,在x 轴上取OA ′=OA=2,当A ′、B 、C 三点共线时,A ′C 最大,则A ′C=2 2 +1,所以OM 的最大值为 2 +1 2 ,因此本题选B . 2.(2020·无锡)如图,等边△ABC 的边长为3,点D 在边AC 上,AD =12,线段PQ 在边BA 上运动,PQ =1 2, 有下列结论: ①CP 与QD 可能相等; ②△AQD 与△BCP 可能相似; ③四边形PCDQ 面积的最大值为31316; ④四边形PCDQ 周长的最小值为3+37 2. 其中,正确结论的序号为( ) A .①④ B .②④ C .①③ D .②③ {答案} D {解析}设AQ =x ,则BP =5 2 —x ①如图1,当点P 与B 重合时,此时QD 为最大,过点Q 作QE ⊥AC ,∵AQ =52,∴AE =54,QE =53 4,∴DE = 34,∴此时QD =212,即0≤QD ≤212;而33 2≤CP ≤3,两个范围没有交集,即不可能相等;①错误 ②若△AQD ∽△BCP ,则AD BP =AQ BC ,代入得2x 2—5x +3=0,解得x 1=1,x 2=3 2,∴都存在,∴②正确; ③如图2,过点D 作DE ⊥AB ,过点P 作PF ⊥BC ,S 四边形PCDQ =S △ABC —S △AQD —S △BPC = 34×32-12?x ?34-1 2 ×3 × D Q P C B A

2019重庆中考数学题位复习系统之反比例函数与几何综合

2019重庆中考数学题位复习系统之 反比例函数与几何综合 典例剖析 例1(2018?重庆)如图,菱形ABCD的边AD⊥y轴,垂足为点E,顶点A在第二象限,顶点B在y轴的正半轴上,反比例函数y=(k≠0,x>0)的图象同时经过顶点C,D.若点C的横坐标为5,BE=3DE,则k的值为() A.B.3 C. D.5 【分析】由已知,可得菱形边长为5,设出点D坐标,即可用勾股定理构造方程,进而求出k值. 【解答】 解: 过点D做DF⊥BC于F 由已知,BC=5 ∵四边形ABCD是菱形 ∴DC=5 ∵BE=3DE ∴设DE=x,则BE=3x ∴DF=3x,BF=x,FC=5﹣x 在Rt△DFC中, DF2+FC2=DC2 ∴(3x)2+(5﹣x)2=52 ∴解得x=1 ∴DE=3,FD=3

设OB=a 则点D坐标为(1,a+3),点C坐标为(5,a) ∵点D、C在双曲线上 ∴1×(a+3)=5a ∴a= ∴点C坐标为(5,) ∴k= 故选:C. 【点评】本题是代数几何综合题,考查了数形结合思想和反比例函数k值性质.解题关键是通过勾股定理构造方程. 例2(2018?重庆)如图,在平面直角坐标系中,菱形ABCD的顶点A,B在反比例函数y=(k>0,x>0)的图象上,横坐标分别为1,4,对角线BD∥x轴.若菱形ABCD的面积为,则k的值为() A.B. C.4 D.5 【分析】根据题意,利用面积法求出AE,设出点B坐标,表示点A的坐标.应用反比例函数上点的横纵坐标乘积为k构造方程求k. 【解答】解:设AC与BD、x轴分别交于点E、F. 由已知,A、B横坐标分别为1,4 ∴BE=3 ∵四边形ABCD为菱形,AC、BD为对角线

高中解析几何知识点

解析几何知识点 一、基本内容 (一)直线的方程 1、直线的方程 确定直线方程需要有两个互相独立的条件,而其中一个必不可少的条件是直线必须经过一已知点.确定直线方程的形式很多,但必须注意各种形式的直线方程的适用范围. 2、两条直线的位置关系 两条直线的夹角,当两直线的斜率k1,k2都存在且k1·k2≠ 外注意到角公式与夹角公式的区别. (2)判断两直线是否平行,或垂直时,若两直线的斜率都存在,可用斜率的关系来判断.但若直线斜率不存在,则必须用一般式的平行垂直条件来判断. 3、在学习中注意应用数形结合的数学思想,即将对几何图形的研究,转化为对代数式的研究,同时又要理解代数问题的几何意义. (二)圆的方程 (1)圆的方程 1、掌握圆的标准方程及一般方程,并能熟练地相互转化,一般地说,具有三个条件(独立的)才能确定一个圆方程.在求圆方程时,若条件与圆心有关,则一般用标准型较易,若

已知圆上三点,则用一般式方便,注意运用圆的几何性质,去简化运算,有时利用圆系方程也可使解题过程简化. 2、 圆的标准方程为(x -a )2+(y -b )2=r 2;一般方程x 2+y 2+Dx+Ey +F =0,圆心坐标 (,)22D E -- 3、 在圆(x -a )2+(y -b )2=r 2,若满足a 2+b 2 = r 2条件时,能使圆过原点;满足a=0,r >0条件时,能使圆心在y 轴上;满足b r =时,能使圆与x 轴相切;r =条件时, 能使圆与x -y =0相切;满足|a |=|b |=r 条件时,圆与两坐标轴相切. 4、 若圆以A (x 1,y 1)B (x 2,y 2)为直径,则利用圆周上任一点P (x ,y ), 1PA PB k k =-求出圆方程(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0 (2) 直线与圆的位置关系 ①在解决的问题时,一定要联系圆的几何性质,利用有关图形的几何特征,尽可能简化运算,讨论直线与圆的位置关系时,一般不用△>0,△=0,△<0,而用圆心到直线距离d <r ,d=r ,d >r ,分别确定相关交相切,相离的位置关系.涉及到圆的切线时,要考虑过切点与切线垂直的半径,计算交弦长时,要用半径、弦心距、半弦构成直角三角形,当然,不失一般性弦长式 ③已知⊙O 1:x 2+y 2 = r 2,⊙O 2:(x -a )2+(y -b )2=r 2;⊙O 3:x 2+y 2+Dx+Ey +F =0则以M (x 0,y 0)为切点的⊙O 1切线方程为xx 0+yy 0=r 2;⊙O 2切线方程 条切线,切线弦方程:xx 0+yy 0=r 2. (三)曲线与方程 (1)在平面内建立直角坐标系以后,坐标平面内的动点都可以用有序实数对x 、y 表示,这就是动点的坐标(x ,y ).当点按某种规律运动而形成曲线时,动点坐标(x ,y )中的变量x ,y 存在着某种制约关系.这种制约关系反映到代数中,就是含有变量x ,y 方程F (x ,y )=0. 曲线C 和方程F (x ,y )=0的这种对应关系,还必须满足两个条件: (1)曲线上的点的坐标都是这个方程的解; (2)以这个方程的解为坐标的点都在曲线上,这时,我们才能把这个方程叫做曲线的方程,

精彩初中几何最值问题全总结

一、基本图形 余不赘述,下面仅举一例证明: [定点到定圆]:点圆之间,点心线截距最短(长)。 已知⊙O半径为r,AO=d,P是⊙O上一点,求AP的最大值和最小值。

证明:由“两点之间,线段最短”得AP≤AO+PO, AO≤AP+PO,得d-r≤AP≤d+r,AP最小时点P在B处,最大时点P在C处。即过圆心和定点的直线截得的线段AB、AC分别最小、最大值。(可用“三角形两边之和大于第三边”,其实质也是由“两点之间,线段最短”推得)。 上面几种是解决相关问题的基本图形,所有的几何最值问题都是转化成上述基本图形解决的。 二、考试中出现的问题都是在基本图形的基础上进行变式,如圆与线这些图形不是直接给出,而是以符合一定条件的动点的形式确定的;再如过定点的直线与动点所在路径不相交而需要进行变换的。 类型分三种情况:(1)直接包含基本图形;(2)动点路径待确定;(3)动线(定点)位置需变换。 (一)直接包含基本图形。 例1.在⊙O中,圆的半径为6,∠B=30°,AC是⊙O的切线,则CD的最小值是。

简析:由∠B=30°知弧AD一定,所以D是定点,C是直线AC上的动点,即为求定点D到定线AC的最短路径,求得当CD⊥AC时最短为3。 (二)动点路径待确定。 例2.,如图,在△ABC中,∠ACB=90°,AB=5,BC=3,P是AB 边上的动点(不与点B重合),将△BCP沿CP所在的直线翻折,得到△B′CP,连接B′A,则B′A长度的最小值是。 简析:A是定点,B'是动点,但题中未明确告知B'点的运动路径,所以需先确定B'点运动路径是什么图形,一般有直线与圆两类。此题中B'的路径是以C为圆心,BC为半径的圆弧,从而转化为定点到定圆的最短路径为AC-B'C=1。

(完整)高中数学解析几何解题方法

高考专题:解析几何常规题型及方法 A:常规题型方面 (1)中点弦问题 具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为(,)x y 11,(,)x y 22,代入方程,然后两方程相减,再应用中点关系及斜率公式,消去四个参数。 典型例题 给定双曲线x y 2 2 2 1-=。过A (2,1)的直线与双曲线交于两点P 1 及P 2,求线段P 1P 2的中点P 的轨迹方程。 分析:设P x y 111(,),P x y 222(,)代入方程得x y 1 2 1221-=,x y 22 22 2 1-=。 两式相减得 ()()()()x x x x y y y y 121212121 2 0+-- +-=。 又设中点P (x,y ),将x x x 122+=,y y y 122+=代入,当x x 12≠时得 22201212x y y y x x - --=·。 又k y y x x y x = --=--12121 2 , 代入得2402 2 x y x y --+=。 当弦P P 12斜率不存在时,其中点P (2,0)的坐标也满足上述方程。 因此所求轨迹方程是2402 2 x y x y --+= 说明:本题要注意思维的严密性,必须单独考虑斜率不存在时的情况。 (2)焦点三角形问题 椭圆或双曲线上一点P ,与两个焦点F 1、F 2构成的三角形问题,常用正、余弦定理搭桥。 典型例题 设P(x,y)为椭圆x a y b 222 21+=上任一点,F c 10(,)-,F c 20(,)为焦点,∠=PF F 12α,∠=PF F 21β。 (1)求证离心率β αβαsin sin ) sin(++= e ; (2)求|||PF PF 13 23 +的最值。

相关文档
最新文档