有限元考试试题——第一组

有限元考试试题——第一组
有限元考试试题——第一组

有限元考试试题

一、简答题(5道,共计25分)。

1.有限单元位移法求解弹性力学问题的基本步骤有哪些?(5分)

2.在划分网格数相同的情况下,为什么八节点四边形等参数单元精度大于四边形矩形单元?(5分)

3.轴对称单元与平面单元有哪些区别?(5分)

4.有限元空间问题有哪些特征?(5分)

5.简述四节点四边形等参数单元的平面问题分析过程。(5)分)

二、论述题(3道,共计30分)。

1. 简述四节点四边形等参数单元的平面问题分析过程。(10分)

2.轴对称问题的简单三角形单元是否是常应力,常应变?为什么?(10分)

3.在薄板弯曲理论中做了哪些假设?薄板单元和厚板单元的基本假设有什么不同?(10分)

三、计算题(3道,共计45分)。

ν=;

1.如图所示等腰直角三角形单元,其厚度为t,弹性模量为E,泊松比0

单元的边长及结点编号见图中所示。求

(1)形函数矩阵N

(2)应变矩阵B和应力矩阵S

(3)单元刚度矩阵e K(12分)

2.如图所示的四结点矩形单元,求出节点3的位移。设厚度t=1m,μ=0,E 为常量。(13分)

注:对于四节点矩形单元有:

()()()()()()()()()?

???

????

??

?+-=++=-+=--=

ηξηξηξηξ1141

114

1

1141

114

1

.

14321N N N N →)

4,3,2,1()

1)(1(41=++=i N i i i ηηξξ

()[][][][]e

T A

e

k k k k k k k k k k k k k k k k y x t B D B k ?????

?

??????==??4443

42

41

34333231

24232221

14131211

d d .2

[][][][][][][]()

()()()())

4,3,2,1,( 3111311a 212123111311218d d d d 21

11

1

=?????

???

?????

?? ??+-+??? ??+-+-+??? ??+-+??? ??+-=

==????--j i b a b b a a b Et B D B abt y x t B D B k j i j i j i j i j i j i j i j i j i j i j i j i j

T

i

j

T

A

i

ij

ηηξξμξξηηηξμξμηηξμξμηξξηημηηξξμη

ξ

3.有一如图3(a)所示的剪力墙,墙顶作用竖向荷载P 。将该剪力墙划分为两个三结点三角形常应力单元,单元和结点编号如图3(b)所示,并将荷载P 分成两个P/2作用在3、4结点。已知单元厚度为t ,弹性模量为E ,泊松比μ=1/3。求结点3和结点4的位移,以及单元①的应变和应力。(20分)

图3

(a)

(b)

4m

有限元基础(期末考试题)

《有限元基础》期末测试 一、结构线性静力分析 如图所示的托架,其顶面承受2 lbf in的均匀分布载荷。托架通过有孔的表面 50/ ν=,托架尺固定在墙上,托架是钢制的,弹性模量6 =?,泊松比0.3 E psi 2910 寸如图,单位为英寸。试通过ANSYS求其变形图及von Mises应力分布图。 对题目分析。进行建模,网格划分 托架网格图

施加约束后,就可以对实体进行加载求解, 托架变形图 托架变形图输出的是原型托架和施加载荷后托架变形图的对比,

虚线部分即为托架的原型,托架变形图可看出,由于载荷的作用,托架上面板明显变形了,变形最严重的就是红色部分,这是因为其离托板就远,没有任何物体与其分担载荷,故其较容易变形甚至折断。这是我们在应用托架的时候应当注意的。 节点位移图

托架von Mises 应力分布图

上面两个图为托架的应力分布图,由图可看出主要在两孔处出现应力集中,也就是说这些地方所受的应力的最大的,比较容易出现裂痕。我们在应用托架的时候,应当注意采取一些设施,以便减缓其应力集中。特别是在施加载荷时,绝对不能够超过托架所能承受的极限,否则必将导致事故的发生。 二、动力分析 如图1有一梁板结构,板的四角由四根梁固定支撑,板质量集中于中央。梁板材料相关参数为弹性模量112210/E N m =?,泊松比0.3ν=,密度 337.810/kg m ρ=?。板的厚度0.02t =,板长2000L mm =,宽1000B mm =,板的质量100M kg =。梁长1000h mm =,截面面积为42210A m -=?,惯性矩为 84210J m -=?,现在板的表面施加均匀压力载荷如图2。试研究该梁板结构的瞬 态动力响应。 图 1 图2

传动轴有限元分析

汽车结构有限元分析 研究报告 姓名: 班级: 学号: 盐城工学院汽车工程学院

传动轴有限元分析研究报告 盐城工学院汽车工程学院车辆工程专业江苏,盐城226000 摘要: ANSYS软件是美国ANSYS公司研制的大型通用有限元分析(FEA)软件,是世界范围内增长最快的计算机辅助工程(CAE)软件,能与多数计算机辅助设计(CAD,computer Aided design)软件接口,实现数据的共享和交换,如,Alogor, I-DEAS,CAD等。ANSYS 有限元软件包是一个多用途的有限元法计算机设计程序,可以用来求解结构、流体、电力、电磁场及碰撞等问题。因此它可应用于以下工业领域:航空航天、汽车工业、生物医学、桥梁、建筑、电子产品、重型机械、微机电系统、运动器械等。传动轴是最常件的零件,该零件结构较为简单,操作方便,加工精度高,价格低廉,因此得到了广泛的使用。目前很多传动轴都做了适当的改进,使其适用性得到了更大的提高。 本设计是基于 ANSYS软件来汽车曲柄连杆机构行分析。与传统的计算相比,借助于计算机有限元分析方法能更加快捷和精确的得到结果。设置正确的模型、划分合适的网格,并合理设置求解过程,能够准确的获得分析模型各个部位的应力、变形等结果。对零件的设计和优化有很大的参考作用。 关键词:三维建模,曲柄连杆机构,有限元,ANSYS,动静态分析 引言 随着发动机强化指标的不断提高,曲柄连杆机构的工作条件更加复杂。在多种周期性变化载荷的作用下,如何在设计过程中保证曲柄连杆机构中的主要部件曲轴具有足够的疲劳强度和刚度及良好的动静态力学特性成为机构设计中的关键性问题[3]。由于在实际工况中曲轴承受活塞、连杆传递的爆发压力的交变载荷作用,受力情况极其复杂。采用传统的单纯有限元分析方法,很难完成对曲轴运行过程中动态变化边界条件的描述[4-5]。为了真实全面地了解曲轴在实际运行工况下的力学特性,本课题通过运用CAD软件建立曲柄连杆机构各组成零件的几何模型,确定机构的质量特性参数,通过有限元分析软件Hyperworks和MSC.Nastran的联合仿真,对曲轴和连杆进行自由模态分析,输出振型和频率,将生成的模态中性文件导入ADAMS/View中建立曲柄连杆机构的多柔体动力学模型,应用durability 模块仿真分析曲轴和连杆在爆发压力和惯性力作用下的疲劳应力,由此可以清楚地了解曲轴和连杆在工作过程中各部分的应力,应变,迅速找到危险部位,为机构的优化设计奠定基础。

有限元分析大作业报告

有限元分析大作业报告 试题1: 一、问题描述及数学建模 图示无限长刚性地基上的三角形大坝,受齐顶的水压力作用,试用三节点常应变单元和六节点三角形单元对坝体进行有限元分析,并对以下几种计算方案进行比较: (1)分别采用相同单元数目的三节点常应变单元和六节点三角形单元计算; (2)分别采用不同数量的三节点常应变单元计算; (3)当选常应变三角单元时,分别采用不同划分方案计算。 该问题属于平面应变问题,大坝所受的载荷为面载荷,分布情况及方向如图所示。 二、采用相同单元数目的三节点常应变单元和六节点三角形单元计算 1、有限元建模 (1)设置计算类型:两者因几何条件和载荷条件均满足平面应变问题,故均取Preferences 为Structural (2)选择单元类型:三节点常应变单元选择的类型是Solid Quad 4 node182;六节点三角形单元选择的类型是Solid Quad 8 node183。因研究的问题为平面应变问题,故对Element behavior(K3)设置为plane strain。 (3)定义材料参数:弹性模量E=2.1e11,泊松比σ=0.3 (4)建几何模型:生成特征点;生成坝体截面 (5)网格化分:划分网格时,拾取lineAB和lineBC,设定input NDIV 为15;拾取lineAC,设定input NDIV 为20,选择网格划分方式为Tri+Mapped,最后得到600个单元。

(6)模型施加约束:约束采用的是对底面BC 全约束。大坝所受载荷形式为Pressure ,作用在AB 面上,分析时施加在L AB 上,方向水平向右,载荷大小沿L AB 由小到大均匀分布。以B 为坐标原点,BA 方向为纵轴y ,则沿着y 方向的受力大小可表示为: }{*980098000)10(Y y g gh P -=-==ρρ 2、 计算结果及结果分析 (1) 三节点常应变单元 三节点常应变单元的位移分布图 三节点常应变单元的应力分布图

非线性有限元分析

轨道结构的非线性有限元分析 姜建华 练松良 摘 要 实际轨道结构受载时的力学行为,属于典型的非线性力学问题。钢轨垫层刚度、钢轨抗扭刚度和扣件扣压力的大小是影响轨距扩大的主要因素。根据非线性有限元接触理论,建立了能准确反映扣件、钢轨与垫层的拧紧接触,以及受载车轮与钢轨侧向滑动接触的力学计算模型;并研究计算了不同扣件压力下,由于受载车轮与钢轨侧向滑动接触引起的轨距扩大问题。 关键词 轮轨关系,扣件压力,非线性弹性力学,有限元分析 1 引言 实际工程中常见的非线性问题一般可以归纳为三类:材料非线性、几何非线性以及边界条件非线性。材料非线性问题是由于材料的非线性本构关系所引起的,例如材料的弹塑性变形,材料的屈服和硬化等;几何非线性问题是由于结构的位移或变形相当大,以至必须按照变形后的几何位置来建立平衡方程;边界条件非线性问题是指边界条件随位移变化所引起的非线性问题。通常情况下,我们所遇到的非线性问题多数是上述三类非线性问题的组合[1,2]。 实际轨道结构受载时的力学行为,属于典型的非线性力学问题。比如基于轮轨接触的材料非线性、几何非线性及边界条件非线性问题,以及扣件、钢轨、垫层三者间相互作用时所表现的边界条件非线性行为等。所以,机车车辆在轨道结构上行驶时引起的力学现象是相当复杂的。以往在研究轨道各部分应力应变分布规律时,通常采用连续弹性基础梁理论或连续点支承,偶尔简单考虑扣件的作用和弹性垫层的使用。不管用哪一种支承方式建立模型,都由于这样那样的假设而带有一定程度的近似性。所以,如何利用现代力学理论的最新成果以及日益发展的计算机技术,根据轨道结构的具体情况,建立更为完整更为准确的轨道结构计算模型,为轨道设计部门提供更加可靠的设计依据或研究思路,已十分必要。 本文提出了用非线性有限元理论研究轮轨系统和轨道结构的思路。作为算例之一,本文将根据非线性有限元理论,建立能准确反映扣件、钢轨与垫层的拧紧接触,以及受载车轮与钢轨侧向滑动接触的力学计算模型。 2 轨道结构的有限元接触模型 对于非线性问题,不管是材料非线性、几何非线性,还是边界条件非线性,总是最终归结为求解一组非线性平衡方程及其控制方程。例如用位移作为未知数进行有限元分析时,最后可得到一组平衡方程及其控制方程为 : 图1 轮轨系统的对称性模型简图 [K(u)]{u}={R}(1) (u)= (u)(2)其中:{u}为节点位移列阵;{R}为节点载荷列阵; [K(u)]为总体刚度矩阵; (u)为边界条件。它们 36 姜建华:同济大学工程力学系,副教授、博士,上海200092

北京科技大学有限元考试试题

一.是非题(认为该题正确,在括号中打√;该题错误,在括号中打×。)(每小题2分) (1)用加权余量法求解微分方程,其权函数V和场函数u的选择没有任何限制。()(2)四结点四边形等参单元的位移插值函数是坐标x、y的一次函数。()(3)在三角形单元中,其面积坐标的值与三结点三角形单元的结点形函数值相等。()(4)二维弹性力学问题的有限元法求解,其收敛准则要求试探位移函数C1连续。()(5)有限元位移法求得的应力结果通常比应变结果精度低。()(6)等参单元中Jacobi行列式的值不能等于零。()(7)在位移型有限元中,单元交界面上的应力是严格满足平衡条件的。()(8)四边形单元的Jacobi行列式是常数。()(9)利用高斯点的应力进行应力精度的改善时,可以采用与位移插值函数不同结点的形函数进行应力插值。()(10)一维变带宽存储通常比二维等带宽存储更节省存储量。() 二.单项选择题(共20分,每小题2分) 1 在加权余量法中,若简单地利用近似解的试探函数序列作为权函数,这类方法称为 ________________。 (A)配点法(B)子域法(C)伽辽金法 2 等参变换是指单元坐标变换和函数插值采用______的结点和______的插值函数。 (A)不相同,不相同(B)相同,相同(C)相同,不相同(D)不相同,相同 3 有限元位移模式中,广义坐标的个数应与___________相等。 (A)单元结点个数(B)单元结点自由度数(C)场变量个数 4 采用位移元计算得到应力近似解与精确解相比较,一般___________。 (A)近似解总小于精确解(B)近似解总大于精确解(C)近似解在精确解上下震荡(D)没有规律 5 如果出现在泛函中场函数的最高阶导数是m阶,单元的完备性是指试探函数必须至少 是______完全多项式。 (A)m-1次(B)m次(C)2m-1次 6 与高斯消去法相比,高斯约当消去法将系数矩阵化成了_________形式,因此,不用进 行回代计算。 (A)上三角矩阵(B)下三角矩阵(C)对角矩阵 7 对称荷载在对称面上引起的________________分量为零。 (A)对称应力(B)反对称应力(C)对称位移(D)反对称位移 8 对分析物体划分好单元后,__________会对刚度矩阵的半带宽产生影响。 (A)单元编号(B)单元组集次序(C)结点编号 9 n个积分点的高斯积分的精度可达到______阶。 (A)n-1 (B)n(C)2n-1 (D)2n 10 引入位移边界条件是为了消除有限元整体刚度矩阵K的__________。 (A)对称性(B)稀疏性(C)奇异性 三.简答题(共20分,每题5分) 1、简述有限单元法结构刚度矩阵的特点。 2、简述有限元法中选取单元位移函数(多项式)的一般原则。 3、简述有限单元法的收敛性准则。

十字轴万向节建模及有限元分析

十字轴三维建模 1.建立直径57高87的圆柱 1)单击圆柱命令,指定矢量(+Z),和起始点(0,-43.5,0) 2)输出直径57,高度87 2. 在已有圆柱体的上下端面,建立直径51,高9圆柱体 3.在上述阶梯轴的上下端面,建立直径45高30的圆柱体,得到如下模型 4.插入-关联复制-实例特征-圆形阵列,选择所有已经建成的特征,确定,按图示设定阵列参数,确定,选择‘点和轴’,选择X轴,确定,得到如下模型

5.倒斜角,4x4 6.倒圆角R25 选择交叉的4条边,输出如图参数

7.单击“孔命令,选择任意两个不平行端面圆的圆心,按图示设定参数后,确定 8.对每个孔倒斜角,1x1,得到最后的十字轴模型

万向节叉三维建模 1.建立地面圆柱体直径165高20 指定点为坐标原点,指定矢量为+Z 2.拉伸耳环主体 1)选择‘拉伸’,单击截面中的‘绘制曲线’,选择现有平面的YZ平面,进入草绘环境。按照二维图纸绘制拉伸截面,绘制完成后,单击“完成草图”退出草图界面 2)按如下设置参数后,单击‘确定’,完成耳环主体的拉伸,如图

3.切除部分实体 1)选择‘拉伸’,单击截面中的‘绘制曲线’,选择现有平面的XZ平面,进入草绘环境。按照二维图纸绘制拉伸截面,绘制完成后,单击“完成草图”退出草图界面 2)按如下设置参数(注:布尔运算,选择‘求差’),单击‘确定’,完成耳环主体的拉伸,如图

4. 切除部分实体 1)选择‘拉伸’,单击截面中的‘绘制曲线’,选择现有平面的XZ平面,进入草绘环境。按照二维图纸绘制拉伸截面,绘制完成后,单击“完成草图”退出草图界面 2)按如下设置参数(注:布尔运算,选择‘求差’),单击‘确定’,完成耳环主体的拉伸,如图

华科大有限元分析题及大作业题答案——船海专业(DOC)

姓名:学号:班级:

有限元分析及应用作业报告 一、问题描述 图示无限长刚性地基上的三角形大坝,受齐顶的水压力作用,试用三节点常应变单元和六节点三角形单元对坝体进行有限元分析,并对以下几种计算方案进行比较: 1)分别采用相同单元数目的三节点常应变单元和六节点三角形单元计算; 2)分别采用不同数量的三节点常应变单元计算; 3)当选常应变三角单元时,分别采用不同划分方案计算。

二、几何建模与分析 图1-2力学模型 由于大坝长度>>横截面尺寸,且横截面沿长度方向保持不变,因此可将大坝看作无限长的实体模型,满足平面应变问题的几何条件;对截面进行受力分析,作用于大坝上的载荷平行于横截面且沿纵向方向均匀分布,两端面不受力,满足平面应变问题的载荷条件。因此该问题属于平面应变问题,大坝所受的载荷为面载荷,分布情况及方向如图1-2所示,建立几何模型,进行求解。 假设大坝的材料为钢,则其材料参数:弹性模量E=2.1e11,泊松比σ=0.3 三、第1问的有限元建模 本题将分别采用相同单元数目的三节点常应变单元和六节点三角形单元计算。 1)设置计算类型:两者因几何条件和载荷条件均满足平面应变问题,故均取Preferences为Structural 2)选择单元类型:三节点常应变单元选择的类型是PLANE42(Quad 4node42),该单元属于是四节点单元类型,在网格划分时可以对节点数目控制使其蜕化为三节点单元;六节点三角形单元选择的类型是PLANE183(Quad 8node183),该单元属于是八节点单元类型,在网格划分时可以对节点数目控制使其蜕化为六节点单元。因研究的问题为平面应变问题,故对Element behavior(K3)设置为plane strain。 3)定义材料参数 4)生成几何模 a. 生成特征点 b.生成坝体截面 5)网格化分:划分网格时,拾取所有线段设定input NDIV 为10,选择网格划分方式为Tri+Mapped,最后得到200个单元。 6)模型施加约束: 约束采用的是对底面BC全约束。 大坝所受载荷形式为Pressure,作用在AB面上,分析时施加在L AB上,方向水平向右,载荷大小沿L AB由小到大均匀分布(见图1-2)。以B为坐标原点,BA方向为纵轴y,则沿着y方向的受力大小可表示为: ρ(1) = gh P- =ρ g = - 10 {* } 98000 98000 (Y ) y

非线性有限元方法及实例分析

非线性有限元方法及实例分析 梁军 河海大学水利水电工程学院,南京(210098) 摘 要:对在地下工程稳定性分析中常用的非线性方程组的求解方法进行研究,讨论了非线性计算的迭代收敛准则,并利用非线性有限元方法分析了一个钢棒单轴拉伸的实例。 关键词:非线性有限元,方程组求解,实例分析 1引 言 有限单元法已成为一种强有力的数值解法来解决工程中遇到的大量问题,其应用范围从固体到流体,从静力到动力,从力学问题到非力学问题。有限元的线性分析已经设计工具被广泛采用。但对于绝大多数水利工程中遇到的实际问题如地下洞室等,将其作为非线性问题加以考虑更符合实际情况。根据产生非线性的原因,非线性问题主要有3种类型[1]: 1.材料非线性问题(简称材料非线性或物理非线性) 2.几何非线性问题 3.接触非线性问题(简称接触非线性或边界非线性) 2 非线性方程组的求解 在非线性力学中,无论是哪一类非线性问题,经过有限元离散后,它们都归结为求解一个非线性代数方程组[2]: ()()()00 021212211=… …==n n n n δδδψδδδψδδδψΛΛΛ (1.1) 其中n δδδ,,,21Λ是未知量,n ψψψ,,,21Λ是n δδδ,,,21Λ的非线性函数,引用矢量记 号 []T n δδδδΛ21= (1.2) []T n ψψψψΛ21= (1.3) 上述方程组(1.1)可表示为 ()0=δψ (1.4) 可以将它改写为 ()()()0=?≡?≡R K R F δδδδψ (1.5) 其中()δK 是一个的矩阵,其元素 是矢量的函数,n n ×ij k R 为已知矢量。在位移有限 元中,δ代表未知的结点位移,()δF 是等效结点力,R 为等效结点荷载,方程()0=δψ表示结点平衡方程。 在线弹性有限元中,线性方程组

有限元法试题

《汽车有限元基础》2009-2010二学期考试试卷

《汽车有限元基础》2009-2010第二学期考试试卷 一、填空题 1. 有限元法的基本思想是用个单元的集合来代替原来具有个自由 度的连续体。 2. 单元刚度矩阵K中元素K ij的物理意义:当单元第j个自由度产生而其它自由度固定时,在第i个自由度产生的。 3.按照各杆轴线及外力作用线在空间的位置,杆系结构可分为: 和。4.平面刚架中各单元发生轴向拉压变形及面内的弯曲变形,而且这两种变形相互独立,因此刚架单元可以看成是由单元和单元叠加而成。因此,平面刚架单元的节点位移应包含个平动分量和个转动分量。 5.工程中常用的薄板单元有:单元和单元。6.有限元分析的主要步骤先后为:(1) 网格划分, (2) , (3) 。 7. 单元特性分析的主要内容先后为:(1) 、(2) 、(3) 应力或内力、(4) 、(5) 单元节点载荷。 8.对于弹性变形体,承受的外载荷共有三种:集中载荷、和。在有限元法中,对于没有作用在节点上的这些外载荷,是按照的原则将其移置到节点上。 9.工程中任一平板,若其厚度为t,板面宽度为b,当t/b小于时可以认为是薄板。常用的薄板单元有:单元和单元。10.薄壳单元中的应力可看成平面应力问题和问题中两种应力的叠加。 11.求解结构系统的动力响应时,常用的两种求解方法为:和 12.在有限元分析中,为了描述几何模型和有限元模型,需要用到几种坐标系: (1) (2) (3) 和(4)

《汽车有限元基础》2009-2010第二学期考试试卷 二、 问答题 1.某一薄板矩形单元的节点编号按照逆时针依次为i 、j 、m 和p 。假设该单元每个节点的位移表示为{}{}T yi xi i i w θθδ=, (i, j, m, p );该单元每个节点的载荷表示为{}{}T iy ix i i T T Z F θθ=,(i, j, m, p )。请写出该单元的单元节点位移列阵和单元 节点载荷列阵。 2.请写出使用有限元分析软件时,进行数据前处理的主要工作内容。 3.右下图为一典型三节点三角形平面单元,节点按照逆时针依次编号为i 、j 和m ,节点的坐标依次为(x i ,y i ),(x j ,y j )、(x m ,y m )。假设单元内任意一点的两个位移分量分别表示u 和v 。请写出该单元位移模式的多项式形式,并简述待定常数个数的确定理由。 4. 请简述针对动力问题的有限元分析的基本步骤。

有限元分析大作业试题

有限元分析习题及大作业试题 要求:1)个人按上机指南步骤至少选择习题中3个习题独立完成,并将计算结果上交; 2)以小组为单位完成有限元分析计算; 3)以小组为单位编写计算分析报告; 4)计算分析报告应包括以下部分: A、问题描述及数学建模; B、有限元建模(单元选择、结点布置及规模、网格划分方 案、载荷及边界条件处理、求解控制) C、计算结果及结果分析(位移分析、应力分析、正确性分 析评判) D、多方案计算比较(结点规模增减对精度的影响分析、单 元改变对精度的影响分析、不同网格划分方案对结果的 影响分析等) E、建议与体会 4)11月1日前必须完成,并递交计算分析报告(报告要求打印)。

习题及上机指南:(试题见上机指南) 例题1 坝体的有限元建模与受力分析 例题2 平板的有限元建模与变形分析 例题1:平板的有限元建模与变形分析 计算分析模型如图1-1 所示, 习题文件名: plane 0.5 m 0.5 m 0.5 m 0.5 m 板承受均布载荷:1.0e 5 P a 图1-1 受均布载荷作用的平板计算分析模型 1.1 进入ANSYS 程序 →ANSYSED 6.1 →Interactive →change the working directory into yours →input Initial jobname: plane →Run 1.2设置计算类型 ANSYS Main Menu : Preferences →select Structural → OK 1.3选择单元类型 ANSYS Main Menu : Preprocessor →Element T ype →Add/Edit/Delete →Add →select Solid Quad 4node 42 →OK (back to Element T ypes window) → Options… →select K3: Plane stress w/thk →OK →Close (the Element T ype window) 1.4定义材料参数 ANSYS Main Menu : Preprocessor →Material Props →Material Models →Structural →Linear →Elastic →Isotropic →input EX:2.1e11, PRXY :0.3 → OK 1.5定义实常数 ANSYS Main Menu: Preprocessor →Real Constant s… →Add … →select T ype 1→ OK →input THK:1 →OK →Close (the Real Constants Window)

(完整版)福州大学有限元考试题

一 判断题(20分) (×)1. 节点的位置依赖于形态,而并不依赖于载荷的位置 (√)2. 对于高压电线的铁塔那样的框架结构的模型化处理使用梁单元 (×)3. 不能把梁单元、壳单元和实体单元混合在一起作成模型 (√)4. 四边形的平面单元尽可能作成接近正方形形状的单元 (×)5. 平面应变单元也好,平面应力单元也好,如果以单位厚来作模型化 处理的话会得到一样的答案 (×)6. 用有限元法不可以对运动的物体的结构进行静力分析 (√)7. 一般应力变化大的地方单元尺寸要划的小才好 (×)8. 所谓全约束只要将位移自由度约束住,而不必约束转动自由度 (√)9. 同一载荷作用下的结构,所给材料的弹性模量越大则变形值越小 (×)10单元位移函数包括了常应变和刚体位移,则该单元一定是完备协调单元。 二、填空(20分) 1.平面应力问题与薄板弯曲问题的弹性体几何形状都是 薄板 ,但前者受力特点是: 平行于板面且沿厚度均布载荷作用 ,变形发生在板面内; 后者受力特点是: 垂直于板面 的力的作用,板将变成有弯有扭的曲面。 2.平面应力问题与平面应变问题都具有三个独立的应力分量: σx ,σy ,τxy ,三个独立的应变分量:εx ,εy ,γxy ,但对应的弹性体几何形状前者为 薄板 ,后者为 长柱体 。3.位移模式需反映 刚体位移 ,反映 常变形 ,满足 单元边界上位移连续 。 4.单元刚度矩阵的特点有:对称性 , 奇异性 ,还可按节点分块。 5.轴对称问题单元形状为:三角形或四边形截面的空间环形单元 ,由于轴对称的特性,任意一点变形只发生在子午面上,因此可以作为 二 维问题处理。 6.等参数单元指的是:描述位移和描述坐标采用相同的形函数形式。等参数单元优点是:可以采用高阶次位移模式,能够模拟复杂几何边界,方便单元刚度矩阵和等效节点载荷的积分运算。 7.有限单元法首先求出的解是 节点位移 ,单元应力可由它求得,其计算公式为{}{}[][]e D B σδ=。(用符号表示即可) 8.一个空间块体单元的节点有 3 个节点位移: u ,v ,w 9.变形体基本变量有位移应变应力 基本方程 平衡方程 物理方程 几何方程 10.实现有限元分析标准化和规范化的载体就是单元

基于Simulation传动轴的分析与研究

基于Simulation传动轴的分析与研究 摘要:轴是组成机器的主要零件之一,一切作回转动运的传动零件都必须安装在轴上才能进行运动及动力的传递,传动轴在初步设计后,必须要经过复杂的的数学验证,这样的计算在对于轴的材料选择有好几种时显得更是繁琐。如今利用Solidworks中的Simulation 有限元分析软件对其首先进行静力学分析,在传动轴满足应力分析后再对其进行疲劳寿命分析。经过分析,在实际应力加载下,传动轴完全满足应力强度,其寿命也是完全满足设计要求。 关键词:传动轴;Simulation;疲劳分析 1.传动轴的静力学分析 1.1 传动轴有限元模型的建立 传动轴材料选取合金钢,其弹性模量210GPa,泊松比0.28,屈服强度620MPa。 在Solidworks软件中建立传动轴三维模型,并利用solidworks中simulation模块分析,进行网格划分,得到有限元模型图,单元格尺寸为25.4941mm,划分得到网格单元数为20625个,自由节点数为31008个。图1为传动轴的有限元模型。 图1 传动轴的有限元模型 1.2载荷及约束的加载 此副轴在正常工作是由键传动驱动力,故在轴的左端键槽两侧施加固定几何体约束,在轴承安装位置施加轴承支撑,并在键槽位置施加向下的压力F=67.56KN用以产生竖直方向上的弯矩;在键槽侧面施加F=185.62KN的力用以产生扭矩和水平方向的弯矩。图2 为载荷及约束的加载情况。 图2 载荷及约束的加载 1.3分析结果

上述操作完成后,对该传动轴分析计算得到如图3所示的结果。 应力结果总位移结果 图3 传动轴的静态分析结果 由图3可知,除了键槽部分产生应力集中以外,其值为249MPa,其余地方的应力均较小。传动轴最大变形为0.3mm,完全满足传动要求。 2.传动轴的疲劳分析 选择随机交互应力,采用对等应力计算交替应力,设置疲劳强度缩减因子为0.9,S-N曲线采用基于ASME奥氏体钢曲线。载荷周期设置为106,载荷类型选择LR=0,运行计算结果如图4所示。 损坏疲劳图解生命疲劳图解 图4 传动轴疲劳分析结构图 有图5可以看出,理论上合金钢钢材质的传动轴的寿命是无限的。 3.总结 本文针对某一个传动装置中的传动副轴,利用了solidworks中simulation模块对其进行了静态分析和疲劳分析,得到应力和位移结果以及损坏和生命疲劳图解,由结果可知传动轴完全满足使用要求。

ansys有限元分析大作业

ansys有限元分析大作业

有限元大作业 设计题目: 单车的设计及ansys有限元分析 专业班级: 姓名: 学号: 指导老师: 完成日期: 2016.11.23

单车的设计及ansys模拟分析 一、单车实体设计与建模 1、总体设计 单车的总体设计三维图如下,采用pro-e进行实体建模。 在建模时修改proe默认单位为国际主单位(米千克秒 mks) Proe》文件》属性》修改

2、车架 车架是构成单车的基体,联接着单车的其余各个部件并承受骑者的体重及单车在行驶时经受各种震动和冲击力量,因此除了强度以外还应有足够的刚度,这是为了在各种行驶条件下,使固定在车架上的各机构的相对位置应保持不变,充分发挥各部位的功能。车架分为前部和后部,前部为转向部分,后部为驱动部分,由于受力较大,所有要对后半部分进行加固。

二、单车有限元模型 1、材料的选择 单车的车身选用铝合金(6061-T6)T6标志表示经过热处理、时效。 其属性如下: 弹性模量:) .6+ 90E (2 N/m 10 泊松比:0.33 质量密度:) 3 2.70E+ N/m (2 抗剪模量:) 60E .2+ N/m (2 10 屈服强度:) .2+ (2 75E 8 N/m 2、单车模型的简化 为了方便单车的模拟分析,提高电脑的运算

效率,可对单车进行初步的简化;单车受到的力的主要由车架承受,因此必须保证车架能够有足够的强度、刚度,抗振的能力,故分析的时候主要对车架进行分析。简化后的车架如下图所示。 3、单元体的选择 单车车架为实体故定义车架的单元类型为实体单元(solid)。查资料可以知道3D实体常用结构实体单元有下表。 单元名称说明 Solid45 三维结构实体单元,单元由8个节点定义,具有塑性、蠕变、应力刚化、 大变形、大应变功能,其高阶单元是 solid95

完整word版有限元分析大作业报告要点

船海1004 黄山 U201012278 有限元分析大作业报告 试题1: 一、问题描述及数学建模 图示无限长刚性地基上的三角形大坝,受齐顶的水压力作用,试用三节点常应变单元和六节点三角形单元对坝体进行有限元分析,并对以下几种计算方案进行比较: (1)分别采用相同单元数目的三节点常应变单元和六节点三角形单元计算;(2)分别采用不同数量的三节点常应变单元计算; (3)当选常应变三角单元时,分别采用不同划分方案计算。 该问题属于平面应变问题,大坝所受的载荷为面载荷,分布情况及方向如图所示。

二、采用相同单元数目的三节点常应变单元和六节点三角形单元计算 1、有限元建模 (1)设置计算类型:两者因几何条件和载荷条件均满足平面应变问题,故均取Preferences为Structural (2)选择单元类型:三节点常应变单元选择的类型是Solid Quad 4 node182;六节点三角形单元选择的类型是Solid Quad 8 node183。因研究的问题为平面应变问题,故对Element behavior(K3)设置为plane strain。 (3)定义材料参数:弹性模量E=2.1e11,泊松比σ=0.3 (4)建几何模型:生成特征点;生成坝体截面 (5)网格化分:划分网格时,拾取lineAB和lineBC,设定input NDIV 为15;拾取lineAC,设定input NDIV 为20,选择网格划分方式为Tri+Mapped,最后 得到600个单元。

1 船海1004 黄山 U201012278 (6)模型施加约束:约束采用的是对底面BC全约束。大坝所受载荷形式为Pressure,作用在AB面上,分析时施加在L上,方向水平向右,载荷大小沿L 由小到大均匀分布。以ABAB B为坐标原点,BA方向为纵轴y,则沿着y方向的受力大小可表示为: P?gh?gyY}*{?)??98000?9800(10? 2、计算结果及结果分析 (1)三节点常应变单元 三节点常应变单元的位移分布图

有限元法基础试题

有限元法基础试题(A ) 一、填空题(5×2分) 1.1单元刚度矩阵e T k B DBd Ω = Ω? 中,矩阵B 为__________,矩阵D 为___________。 1.2边界条件通常有两类。通常发生在位置完全固定不能转动的情况为_______边界,具体指定有限的非零值位移的情况,如支撑的下沉,称为_______边界。 1.3内部微元体上外力总虚功: ()(),,,,e x x xy y bx xy x y y by d W F u F v dxdy δστδτσδ??=+++++??+(),,,,x x y y xy y x u v u u dxdy σδσδτδδ??+++??的表达式中,第一项为____________________的虚功,第二项为____________________的虚功。 1.4弹簧单元的位移函数1N +2N =_________。 1.5 ij k 数学表达式:令j d =_____,k d =_____,k j ≠,则力i ij F k =。 二、判断题(5×2分) 2.1位移函数的假设合理与否将直接影响到有限元分析的计算精度、效率和可靠性。( ) 2.2变形体虚功原理适用于一切结构(一维杆系、二维板、三位块体)、适用于任何力学行为的材料(线性和非线性),是变形体力学的普遍原理。 ( ) 2.3变形体虚功原理要求力系平衡,要求虚位移协调,是在“平衡、协调”前提下功的恒等关系。 ( ) 2.4常应变三角单元中变形矩阵是x 或y 的函数。 ( ) 2.5 对称单元中变形矩阵是x 或y 的函数。 ( ) 三、简答题(26分) 3.1列举有限元法的优点。(8分) 3.2写出有限单元法的分析过程。(8分) 3.3列出3种普通的有限元单元类型。(6分) 3.4简要阐述变形体虚位移原理。(4分) 四、计算题(54分) 4.1对于下图所示的弹簧组合,单元①的弹簧常数为10000N/m ,单元②的弹簧常数为20000N/m ,单元③的弹簧常数为10000N/m ,确定各节点位移、反力以及单元②的单元力。(10分) 4.2对于如图所示的杆组装,弹性模量E 为10GPa ,杆单元长L 均为2m ,横截面面积A 均为2×10-4m 2,弹簧常数为2000kN/m ,所受荷载如图。采用直接刚度法确定节点位移、作用力和单元②的应力。(10分)

汽车传动轴有限元分析

汽车传动轴有限元分析 【摘要】汽车传动轴是汽车重要组成部分之一,在保证传动轴的强度和刚度的同时要尽可能节约材料。用有限元分析软件ANSYS对汽车传动轴整轴进行了有限元静力分析和模态分析。ANSYS可以比较完美的分析传动轴的结构和振动模态,根据分析结果可以设计出比较完美的传动轴。 【关键词】传动轴;静力分析;模态分析;ANSYS 0.引言 在工程领域中应用最广泛的数值模拟方法是有限单元分析法,有限元分析( FEA,Finite Element Analysis)是在力学模型上近似的数值分析方法,它的基本思想可概括为一句话:“先分后合”或“化整为零又积零为整”。具体地说,就是将连续体或结构划分为许多单元,通过一些节点把有限个单元连成集合体代替原来的连续体或结构,即把连续体转化为离散模型来进行力学分析。根据分块近似的思想,选择简单的函数近似地表示单元内位移变化规律,利用力学推导建立单元的平衡方程组,再把所有单元的方程组集合成表示整个结构的力学特性的代数方程组,最后引入边界条件求解代数方程组获得数值解。该软件在机械制造业、航天航空、汽车交通、桥梁等领域的产品设计、科学研究方面得到了广泛应用。现在国内外用得最广泛的就是运用有限元对汽车传动轴做静力分析和振动模态分析,根据分析结果来确定传动轴的强度和振动是否符合性能要求。 1.整轴设计 (1)根据设计的传动轴的尺寸,在ANSYS软件中建立整传动轴的三维实体模型。 (2)定义单元的类型。传动轴属于三维实体块模型,所有的分析都采用SOLID45号单元(SOUD45号单元不需要定义实常数)。 (3)确定整轴零件材料,一般为45#钢和40Cr。 (4)网格划分生成物理模型。采用网格划分工具对其进行网格划分。划分的时候要注意,不同材料的结构划分网格的时候要选择与之对应的单元类型和材料特性。网格划分完成后要将重合的节点合并为一个节点。划分网格后的整传动轴的模型,其中总节点个数13290个。 2.加载和求解 变速箱输入双向扭矩最大4500N*m,最小1400N*m。校核强度和刚度是单向,所以取变速箱的最大输出扭矩为4500/2=2250N*m。将扭矩转换为切向力施加到轴的圆周面上的每个节点上的力F=M/( R*n),式中M是扭矩;R是轴的圆周处的半径大小;n是圆周面上的节点个数。此次施加载荷的方法是在传动输入端施加扭矩载荷,传动轴传出的一端施加全部约束。在最左边的轴圆周面上的每个节点上施加自由度约束,将每个节点的所有自由度约束住。最右边轴圆周面上施加扭矩载荷,圆周轴径R=0.0445m,节点数n=174。每个节点上的切向力F=2250/(0.0445*174)N=290.585N载荷施加完成了,就可以开始求解。选择所有的元素,选择分析类型为结构静力分析,开始求解。 3.后处理 求解完成后就进入了结果后处理,要经过读结果显示结果列表,查看结构是否正确。然后查看在力载荷和约束载荷下的变形图、位移云图和应力云图。仔细观察各个图形,对每个图形进行分析并绘制图形。然后运动所学力学知识来分析

重庆大学研究生有限元大作业教学内容

重庆大学研究生有限 元大作业

课程研究报告 科目:有限元分析技术教师:阎春平姓名:色学号: 2 专业:机械工程类别:学术 上课时间: 2015 年 11 月至 2016 年 1 月 考生成绩: 阅卷评语: 阅卷教师 (签名)

有限元分析技术作业 姓名: 色序号: 是学号: 2 一、题目描述及要求 钢结构的主梁为高160宽100厚14的方钢管,次梁为直径60厚10的圆钢管(单位为毫米),材料均为碳素结构钢Q235;该结构固定支撑点位于左右两端主梁和最中间。主梁和次梁之间是固接。试对在垂直于玻璃平面方向的2kPa 的面载荷(包括玻璃自重、钢结构自重、活载荷(人员与演出器械载荷)、风载荷等)作用下的舞台进行有限元分析。 二、题目分析 根据序号为069,换算得钢结构框架为11列13行。由于每个格子的大小为1×1(单位米),因此框架的外边框应为11000×13000(单位毫米)。 三、具体操作及分析求解 1、准备工作 执行Utility Menu:File → Clear&start new 清除当前数据库并开始新的分析,更改文件名和文件标题,如图1.1。选择GUI filter,执行 Main Menu: Preferences → Structural → OK,如图1.2所示

图1.1清除当前数据库并开始新的分析 图1.2 设置GUI filter 2、选择单元类型。 执行Main Menu: Preprocessor →Element Type →Add/Edit/Delete →Add→ select→ BEAM188,如图2.1。之后点击OK(回到Element Types window) →Close

有限元分析报告大作业

有限元分析》大作业基本要求: 1.以小组为单位完成有限元分析计算,并将计算结果上交; 2.以小组为单位撰写计算分析报告; 3.按下列模板格式完成分析报告; 4.计算结果要求提交电子版,一个算例对应一个文件夹,报告要求提交电子版和纸质版。 有限元分析》大作业 小组成 员: 储成峰李凡张晓东朱臻极高彬月 Job name :banshou 完成日 期: 2016-11-22 一、问题描述 (要求:应结合图对问题进行详细描述,同时应清楚阐述所研究问题的受力状况 和约束情况。图应清楚、明晰,且有必要的尺寸数据。)如图所示,为一内六角螺栓扳手,其轴线形状和尺寸如图,横截面为一外 接圆半径为0.01m的正六边形,拧紧力F为600N,计算扳手拧紧时的应力分布 图1 扳手的几何结构 数学模型

要求:针对问题描述给出相应的数学模型,应包含示意图,示意图中应有必要的尺寸数据;

图 2 数学模型 如图二所示,扳手结构简单,直接按其结构进行有限元分析。 三、有限元建模 3.1 单元选择 要求:给出单元类型, 并结合图对单元类型进行必要阐述, 包括节点、自由度、 实常数等。) 图 3 单元类型 如进行了简化等处理,此处还应给出文字说

扳手截面为六边形,采用4 节点182单元,182 单元可用来对固体结构进行

二维建模。182单元可以当作一个平面单元,或者一个轴对称单元。它由4 个结点组成,每个结点有2 个自由度,分别在x,y 方向。 扳手为规则三维实体,选择8 节点185单元,它由8 个节点组成,每个节点有3 个自由度,分别在x,y,z 方向。 3.2 实常数 (要求:给出实常数的具体数值,如无需定义实常数,需明确指出对于本问题选择的单元类型,无需定义实常数。) 因为该单元类型无实常数,所以无需定义实常数 3.3材料模型 (要求:指出选择的材料模型,包括必要的参数数据。) 对于三维结构静力学,应力主要满足广义虎克定律,因此对应ANSYS中的线性,弹性,各项同性,弹性模量EX:2e11 Pa, 泊松比PRXY=0.3 3.4几何建模由于扳手结构比较简单,所以可以直接在ANSYS软件上直接建模,在ANSYS建 立正六 边形,再创立直线,面沿线挤出体,得到扳手几何模型 图4 几何建模

西工大有限元试题附答案68872

1.针对下图所示的3个三角形元,写出用完整多项式描述的位移模式表达式。 2.如下图所示,求下列情况的带宽: a)4结点四边形元; b)2结点线性杆元。 3、对上题图诸结点制定一种结点编号的方法,使所得带宽更小。图左下角的四边形在两种不同编号方式下,单元的带宽分别就是多大? 4、下图所示,若单元就是2结点线性杆单元,勾画出组装总刚后总刚空间轮廓线。系统的带宽就是多大?按一右一左重新编号(即6变成3等)后,重复以上运算。

5. 设杆件1-2受轴向力作用,截面积为A,长度为L,弹性模量为E,试写出杆端力F1,F 2与杆端位移21,u u 之间的关系式,并求出杆件的单元刚度矩阵)(][e k 6、设阶梯形杆件由两个等截面杆件\o \a c(○,1)与错误!所组成,试写出三个结点1、2、3的结点轴向力F 1,F 2,F3与结点轴向位移321,,u u u 之间的整体刚度矩阵[K]。 7. 在上题的阶梯形杆件中,设结点3为固定端,结点1作用轴向载荷F 1=P,求各结点的轴向位移与各杆的轴力。 8、 下图所示为平面桁架中的任一单元,y x ,为局部坐标系,x,y 为总体坐标系,x 轴与x 轴的夹角为 。 (1) 求在局部坐标系中的单元刚度矩阵 )(][e k (2) 求单元的坐标转换矩阵 [T]; (3) 求在总体坐标系中的单元刚度矩阵 )(][e k

9.如图所示一个直角三角形桁架,已知27/103cm N E ?=,两个直角边长度cm l 100=,各杆截面面积210cm A =,求整体刚度矩阵[K ] 。 10. 设上题中的桁架的支承情况与载荷情况如下图所示,按有限元素法求出各结点的位移与各杆的内力。

相关文档
最新文档