数学(文)一轮教学案:第十章第5讲 圆锥曲线的综合应用 Word版含解析

数学(文)一轮教学案:第十章第5讲 圆锥曲线的综合应用 Word版含解析
数学(文)一轮教学案:第十章第5讲 圆锥曲线的综合应用 Word版含解析

第5讲圆锥曲线的综合应用

考纲展示命题探究

考点一轨迹与轨迹方程

1“曲线的方程”与“方程的曲线”

在直角坐标系中,如果某曲线C(看作适合某种条件的点的集合或轨迹)上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系:

(1)曲线上的点的坐标都是这个方程的解.

(2)以这个方程的解为坐标的点都是曲线上的点.

那么,这个方程叫做曲线的方程,这条曲线叫做方程的曲线.2求动点的轨迹方程的步骤

(1)建系——建立适当的坐标系;

(2)设点——设轨迹上的任一点P(x,y);

(3)列式——列出动点P所满足的关系式;

(4)代换——依关系式的特点,选用距离公式、斜率公式等将其转化为关于x、y的方程,并化简;

(5)证明——证明所得方程即为符合条件的动点轨迹方程.

注意点求轨迹与轨迹方程时的注意事项

(1)区分“求轨迹”与“求轨迹方程”的不同

一般来说,若遇“求轨迹方程”,求出方程就可以了;若是“求轨迹”,求出方程还不够,还应指出方程所表示的曲线的类型,有时候,问题仅要求指出轨迹的形状,如果应用“定义法”求解,可不求

轨迹方程.

(2)求出动点的轨迹方程后,要检验一些特殊点,通常是轨迹与已知曲线的交点,这些点往往是满足轨迹方程的,但不是所求轨迹上的点.

1.思维辨析

(1)f (x 0,y 0)=0是点P (x 0,y 0)在曲线f (x ,y )=0上的充要条件.( )

(2)方程x 2+xy =x 的曲线是一个点和一条直线.( )

(3)到两条互相垂直的直线距离相等的点的轨迹方程是x 2=y 2.( )

(4)方程y =x 与x =y 2表示同一曲线.( )

答案 (1)√ (2)× (3)× (4)×

2.设点M (0,-5),N (0,5),△MNP 的周长为36,则△MNP 的顶点P 的轨迹方程为( )

A.x 225+y 2169=1(x ≠0)

B.x 2144+y 2169=1(x ≠0)

C.x 2169+y 225=1(y ≠0)

D.x 225+y 2169=1(y ≠0) 答案 B

解析 |PM |+|PN |=36-10=26>|MN |,但P 不与M ,N 共线,所以P 的轨迹是以M ,N 为焦点的且去掉长轴端点的椭圆,又c =5,a =13,所以b 2=169-25=144.故选B.

3.已知动点P 在曲线2x 2-y =0上移动,则点A (0,-1)与点P 连线中点的轨迹方程是( )

A .y =2x 2

B .y =8x 2

C .y =4x 2-12

D .y =4x 2

+12 答案 C

解析 设AP 中点为(x ,y ),则P (2x,2y +1)在2x 2-y =0上,即

圆锥曲线定义的运用

圆锥曲线定义的运用》案例分析 双鸭山31 中郭秀涛 一、教学内容分析 本课选自《全日制普通高级中学教科书(必修)?数学》(人教版)高二(上),第八章(圆锥曲线方程复习课) 圆锥曲线的定义反映了圆锥曲线的本质属性, 它是无数次实践后的高度抽象. 恰当地利用定义解题, 许多时候能以简驭繁. 因此, 在学习了椭圆、双曲线、抛物线的定义及标准方程、几何性质后,我认为有必要再一次回到定义, 熟悉“利用圆锥曲线定义解题”这一重要的解题策略. 二、学生学习情况分析 我所任教班级的学生是初中开始“课程改革”后的第一届毕业生,他们在初中三年的学习中,接受的是“新课改”的理念,学习的是“新课标”下的课程、教材,由于05 年高中“课改”还未全面推行,因此如今他们面对的高中教材还是旧教材。 与以往的学生比较,这届学生的特点是:参与课堂教学活动的积极性更强,思维敏捷,敢于在课堂上发表与众不同的见解,但计算能力较差,字母推理能力较弱,使用数学语言的表达能力也略显不足。 三、设计思想 由于这部分知识较为抽象, 难以理解. 如果离开感性认识, 容易使学生陷入困境,降低学习热情. 在教学时, 我有意识地引导学生利用波利亚的一般解题方法处理习题, 针对学生练习中产生的问题, 进行点评, 强调“双主作用”的发挥. 借助多媒体动画, 引导学生主动发现问题、解决问题, 主动参与教学,在轻松愉快的环境中发现、获取新知, 提高教学效率. 四、教学目标 1.深刻理解并熟练掌握圆锥曲线的定义,能灵活应用定义解决问题;熟练掌握焦点坐标、顶点坐标、焦距、离心率、准线方程、渐近线、焦半径等概念和求法;能结合平面几何的基本知识求解圆锥曲线的方程。 2.通过对练习,强化对圆锥曲线定义的理解,培养思维的深刻性、创造性、科学性和批判性, 提高空间想象力及分析、解决问题的能力;通过对问题的不断引申, 精心设问, 引导学生学习解题的一般方法及联想、类比、猜测、证明等合情推理方法. 3.借助多媒体辅助教学, 激发学习数学的兴趣. 在民主、开放的课堂氛围中, 培养学生敢想、敢说、勇于探索、发现、创新的精神. 五、教学重点与难点: 教学重点

圆锥曲线大题专题训练答案和题目

圆锥曲线大题专题训练 1.如图,曲线G 的方程为22(0)y x y =≥.以原点为圆心.以(0)t t >为半径的圆分别 与曲线G 和y 轴的正半轴相交于点A 与点B .直线AB 与x 轴相交于点C . (Ⅰ)求点A 的横坐标a 与点C 的横坐标 c 的关系式 (Ⅱ)设曲线G 上点D 的横坐标为2a +, 求证:直线CD 的斜率为定值. 1.解: (Ⅰ)由题意知,(A a . 因为OA t =,所以2 2 2a a t +=.由于0t > 由点(0)(0)B t C c ,,,的坐标知,直线BC 的方程为 1c t +=. 又因点A 在直线BC 上,故有 1a c +=,将(1)代入上式,得1a c =, 解得2c a =+ (Ⅱ)因为(2D a +,所以直线CD 的斜率为 1CD k = ===-. 所以直线CD 的斜率为定值. 2.设F 是抛物线2 :4G x y =的焦点. (I )过点(04)P -,作抛物线G 的切线,求切线方程; (II )设A B ,为抛物线G 上异于原点的两点,且满足0FA FB =u u u r u u u r g ,延长AF ,BF 分别交抛物线G 于点C D ,,求 四边形ABCD 面积的最小值. 2.解:(I )设切点2 004x Q x ?? ???,.由2x y '=,知抛物线在Q 点处的切线斜率为02x ,故所求切线方程为 2000()42x x y x x -=-. 即2 04 24x x y x =-. 因为点(0)P -4,在切线上. 所以2 044 x -=-,2 016x =,04x =±.所求切线方程为24y x =±-. (II )设11()A x y ,,22()C x y ,. 由题意知,直线AC 的斜率k 存在,由对称性,不妨设0k >.

【智博教育原创专题】三大圆锥曲线经典结论

1 注重结论 巧妙应用之三大圆锥曲线经典结论 【结论1】在椭圆22 221(0)x y a b a b +=>>上不与坐标轴平行的弦的斜率与该弦中点和坐标原点连线的斜率之积为定值22b a -(注:若椭圆焦点在y 轴上时,即0b a >>,则定值为2 2a b -)。 【证明】设原点为1122,(,),(,)O A x y B x y 是椭圆上的任意不同的两点,00(,)P x y 是弦AB 中点。 221122 120221202222 1221x y x x x a b y y y x y a b ?+=?+=?????+=??+=??,由以上几式可得:1212121222()()()()0x x x x y y y y a b +-+--=。可转化为201 22120y y y b x x x a -?=-,即22AB OP b k k a ?=-。 【结论2】双曲线22 221(0,0)x y a b a b -=>>上不与坐标轴平行的弦的斜率与该弦中点和坐标原点连线的斜率之积为定值22b a (注:若双曲线为焦点在y 轴上的形式,则定值为2 2a b )。 【证明】设原点为1122,(,),(,)O A x y B x y 是双曲线上的任意两个不同的点,00(,)P x y 是弦AB 的中点。 221122 120221202222 1221x y x x x a b y y y x y a b ?-=?+=?????+=??-=??,由以上几式可得:1212121222()()()()0x x x x y y y y a b +-+--=。可转化为201 22120y y y b x x x a -?=-,即22AB OP b k k a ?=。 【结论3】抛物线22y px =上不与坐标轴平行的弦的斜率与该弦中点和坐标原点连线的斜率之积为0 p x (0x 为弦中点的横坐标)。 【证明】设原点为1122,(,),(,)O A x y B x y 为22y px =上任意两个不同的点,00(,)P x y 为弦AB 中点。 212011212022 2222x x x y px y y y y px ?+==?????+==???,可得121212()()2()y y y y p x x +-=-,两边同除以12()x x +得:1212121212()()2()y y y y p x x x x x x +--=++,即得:01 212000 ,AB OP y y y p p k k x x x x x -?=?=-。 在解决圆锥曲线中有关弦的斜率与中点坐标问题时,利用“设而不求,代点作差”较麻烦,灵活运用上述结论,能够快速、简捷地解决圆锥曲线的有关问题。 1. 求中心在原点O , 一焦点为,截直线32y x =-所得弦的中点横坐标为 12 的椭圆的方程。 【解析】设32y x =-与椭圆交于1122(,),(,),A x y B x y AB 中点为1 20001(,),22 x x P x y x +==在32y x =-上得012y =-,由上述结论知22AB OP b k k a ?=-,而3,1AB OP k k ==-。所以2 23b a =。由题意

圆锥曲线的定义及其应用

圆锥曲线的定义及其应用 一、教学目标: 1.进一步明确圆锥曲线定义,并用定义解决有关问题; 2.通过发散思维和创新思维的训练,培养学生的探究能力; 3.培养学生用运动变化的观点分析和解决问题. 二、教学重点、难点:圆锥曲线定义的灵活应用. 三、教学方法:教师引导启发与学生自主探索相结合. 四、教学过程: (一)引入: 问题1:平面内到定点12(3,0),(3,0)F F -的距离之和为8的点P 的轨迹是什么? 121286PF PF F F +=>= ∴P 的轨迹是以12(3,0),(3,0)F F -为焦点的椭圆,方程是22 1167 x y + = 问:(1)若到两定点距离之和为改为6,则点P 的轨迹是什么? ( 以12,F F 为端点的线段) (2)若改为到两定点距离之差为2,则P 点的轨迹是什么? (以12,F F 为焦点的双曲线的一支) (3)若改为到两定点距离之差为6,则P 点的轨迹是什么? (以12,F F 为端点的射线) (通过提问,让学生对圆锥曲线的第一定义进行回顾,并且进一步明确定义中所含的限制条件) 由学生总结椭圆和双曲线的定义 问题2:已知定点F (1,0),定直线:1l x =-,设一动点P 到直线l 的距离为d ,若有PF d =,则P 点的轨迹是什么? (F l ?,∴P 点的轨迹是以F (1,0)为焦点,以直线:1l x =-为准线的抛物线。) 问:(1)若点F 改为(-1,0),则点P 的轨迹是什么? (2)当 PF d 为何值时,所求轨迹是椭圆? (3)当PF d 为何值时,所求轨迹是双曲线? (通过提问,让学生对圆锥曲线的统一定义进行回顾和巩固,注意圆锥曲线第二定义的联系和区别) 由学生总结圆锥曲线的统一定义,。

圆锥曲线定义的应用

圆锥曲线定义的应用 一、复习提问:(写成学案的形式由学生填写) 先由学生讨论回答定义中应注意的几个问题及定义的作用 教师总结: (1)注意将定义中的常数a 2与|F 1F 2|进行比较 (2)注意双曲线定义中的绝对值对轨迹的影响 (3)第一定义给出了圆锥曲线上的点与两焦点间距离的和(或差)的关系; 第二定义是圆锥曲线上的点到焦点的距离与到相应准线的距离之间进 行转化的依据 一、 思维点拨 1、涉及到圆锥曲线上的点与两焦点问题可考虑利用第一定义解决 2、涉及焦点、准线、离心率及圆锥曲线上的点中的三者,常用第二定义解决 二、 基础练习 1、已知21,F F 是椭圆)0(122 22>>=+b a b y a x 的两个焦点,A 、B 时过焦点的弦,则2ABF ?的周长为( ) (A ) 2 a (B) 4 a (C) 8 a (D) 2 a + 2 b 2、已知两定点)0,5(1-F ,)0,5(2F ,动点P 满足-||1PF ,2||2a PF =当3=a 和 5=a 时,点P 的轨迹分别为( ) (A )两个双曲线 (B) 两条射线 (C) 双曲线的一支和一条射线 (D) 双曲线的两支

3、P 是双曲线136 642 2=-y x 上一点,21,F F 是它的两个焦点,且,17||1=PF 则=||2PF ____________ 4、椭圆116 252 2=+y x 上一点P 到椭圆左焦点的距离为3,则点P 到椭圆右准线的距离为_________,点P 到左右准线的距离比为_________。 评注:(1)第3题学生往往忽视||1PF ≥a c -导致得出错误结论 (2) 第4题可利用第二定义将点P 到左右准线的距离比转化为到相应的 两焦点的距离比 三、 典例解析 例1、相距2000m 的两个哨所A 、B 听到远出传来的炮弹爆炸声。已知当时声 速是330m/s ,在A 哨所听到爆炸声的时间比在B 哨所听到的时间相差4s , 试判断爆炸点P 在什么样的曲线上,并求出曲线方程。 思路分析:(1)什么原因导致在在A 哨所和在B 哨所听到爆炸声的时间不同 ? (2)应如何理解时间“相差”4s ? 解答:(略) 学生思考:如何改变条件轨迹变为双曲线的一支? 评注:1、有关动点与两定点的距离和(或差)为定值的轨迹问题,应利用定 义法求轨迹,并注意将定值与两定点间的距离进行比较 2、求轨迹的题目中若没有建系,则应建系设点,写出对应的轨迹方程, 若轨迹为双曲线则更应注意绝对值对轨迹的影响 练习1、在平面直角坐标系中,已知三角形ABC 中BC 边长为4,且三边AC 、 BC 、AB 长依次成等差数列,求顶点A 的轨迹方程。 思考:若增加条件∣AC ∣>∣BC ∣>∣AB ∣顶点A 的轨迹方程会如何改变 ? 练习2、已知定圆9)3(:,1)3(:222221=++=+-y x C y x C ,动圆C 与C 1、C 2 都相内切,求动圆圆心C 的轨迹方程。 思考:若将条件改为与C 2相切,动圆圆心C 的轨迹方程回如何改变 ?

【试卷】高三圆锥曲线专题测试题及答案

高三圆锥曲线专题测试题 一、选择题 1.椭圆222312x y +=的两焦点之间的距离为( ) A. C. 2.椭圆2 214 x y +=的两个焦点为12F F ,,过1F 作垂直于x 轴的直线与椭圆相交,一个 交点为P ,则2PF =( ) C.72 D.4 3.双曲线22 22 1124x y m m -=+-的焦距是( ) A.8 B.4 C. D.与m 有关 4.焦点为(06),且与双曲线2 212x y -=有相同的渐近线的双曲线方程是( ) A.22 11224 x y -= B.22 12412y x -= C.2212412 x y -= D.22 11224 y x -= 5.抛物线的焦点在x 轴上,抛物线上的点(3)P m -,到焦点的距离为5,则抛物线的标准方程为( ) A.24y x = B.28y x = C.24y x =- D.28y x =- 6.焦点在直线34120x y --=上的抛物线的标准方程为( ) A.216y x = 或 212x y =- B. 216y x =或 216x y = C. 216y x =或212x y = D.212y x =-或216x y = 7.椭圆22 213x y m m +=-的一个焦点为(01), ,则m 等于( ) A.1 B.2-或1 D.53 8.若椭圆的短轴为AB ,它的一个焦点为1F ,则满足1ABF △为等边三角形的椭圆的离心率是( ) A.14 B.12 9.以双曲线22312x y -+=的焦点为顶点,顶点为焦点的椭圆的方程是( )

A.22 11612 x y += B.22 1164x y += C.22 11216 x y += D.22 1416 x y += 10.经过双曲线228y x -=-的右焦点且斜率为2的直线被双曲线截得的线段的长是( ) C. D.11.一个动圆的圆心在抛物线28y x =上,且动圆恒与直线20x +=相切,则动圆必过定点( ) A.(02), B.(02)-, C.(20), D.(40), 12.已知抛物线24x y =的焦点F 和点(18)A P -,,为抛物线上一点,则PA PF +的最小值是( ) A.16 B.12 C.9 D.6 三、填空题 13.已知椭圆22 14924x y +=上一点P 与椭圆的两个焦点12F F ,连线的夹角为直角,则 12PF PF =· . 14.已知双曲线的渐近线方程为34 y x =±,则双曲线的离心率为 . 15.圆锥曲线内容体现出解析几何的本质是 . 16.当以椭圆上一点和椭圆两焦点为顶点的三角形的面积的最大值为1时,椭圆长轴的最小值为 . 三、解答题 17.若椭圆的对称轴在坐标轴上,两焦点与两短轴的端点恰好是正方形的四个 1,求椭圆的方程.

圆锥曲线三大难点解读

圆锥曲线三大难点 难点一、最值与定值(定点)问题 圆锥曲线的最值与定值(定点)问题一直是高考的一大难点. 最值问题求解策略是:几何法与代数法,前者用于条件与结论有明显几何意义,利用图形性质来解决的类型;后者则将结论转化为目标函数,结合配方法、判别式法、基本不等式及函数的单调性等知识求解. 定值(定点)问题求解策略是:从特殊入手,求出定点或定值,再证明这个点(值)与变量无关.也可以在推理、计算过程中消去变量,直接得到定点(或定值). 例1 (江西卷理21)如图1,椭圆 22 22:1(0)x y Q a b a b +=>>的右焦点(0)F c ,,过点F 的一动直线m 绕点F 转动,并且交椭圆于A B ,两点,P 是线段AB 的中点. (1)求点P 的轨迹H 的方程; (2)在Q 的方程中,令21cos sin a θθ=++, 2sin 0b θθπ? ?=< ?2??≤,确定θ的值,使原点距椭圆Q 的右准线l 最远, 此时,设l 与x 轴交点为D .当直线m 绕点F 转动到什么位置时, ABD △的面积最大? 分析:求轨迹方程可用“设而不求”法,考虑AB 的斜率是否存在,注意到AB 与PF 共线,得方程为222220b x a y b cx +-=;在第(2)问中,由2a 、2b 不难得到满足要求的1c =,为避免讨论直线m 的斜率是

否存在,可设m 的方程为1x ky =+,再利用三角函数求出θ,ABD △的面积用A B ,纵坐标可表示为121 2 S y y = -,当直线m 垂直于x 轴时,ABD △的面积最大. 点评:本题集轨迹方程、最值问题、动态几何于一身,运用了点差法、分类讨论思想、二次方程根与系数的关系、三角函数的有界性、分离变量法、均值不等式法等,对各种能力的综合要求非常高. 例2 (全国卷Ⅱ理21文22)已知抛物线24x y =的焦点为F , A B ,是抛物线上的两动点,且(0)AF FB λλ=>.过A B ,两点分别作抛物线的切线,设其交点为M . (1)证明FM ·AB 为定值; (2)设ABM △的面积为S ,写出()S f λ=的表达式,并求S 的最小值. 简解:(1)(01)F , ,设点A B ,的横坐标为12x x ,,则过点A B ,的切线分别为2111()42 x x y x x -=-,2 222()42x x y x x -=-,结合AF FB λ=,求得 0FM AB =为定值; (2) FM AB =,则 ABM △的面积 3 3 124 2 22FM AB S 1= =?=≥. 难点二、求参数范围(或值)问题 求参数范围问题的求解策略是:根据题意结合图形列出所讨论参数适合的不等式(组),利用线性规划得出参数的取值范围.有时候

圆锥曲线的统一定义 (2)

§2.5圆锥曲线的统一定义 教学目的: 1、知识与技能: 掌握椭圆、双曲线的第二定义以及准线的概念 2.过程与方法 类比抛物线的定义引出椭圆和双曲线的第二定义,借助几何画板等多媒体手段探究出轨迹的形成,进一步推导出椭圆和双曲线的方程。 3.情感、态度与价值观 通过本节课的学习,可以培养我们类比推理的能力,探究能力,激发我们的学习兴趣,培养学生思考问题、分析问题、解决问题的能力. 教学重点:圆锥曲线的统一定义的形成 教学难点:圆锥曲线方程的推导 教学过程: 一.情境设置 复习回顾 1、抛物线的定义: 探究与思考: 1≠d PF 呢 2、在推导椭圆的标准方程时,我们曾得到这样一个式子: 将其变形为: 你能解释这个式子的几何意义吗? 二、知识建构 例1.已知点P(x,y)到定点F(c,0)的距离与它到定直线c a x l 2 :=的距离的比是常数 c a (a>c>0),求 P 的轨迹. 变题:已知点P(x,y)到定点F(c,0)的距离与它到定直线c a x l 2 := 的距离的比是常数 c a (c>a>0),求P 的轨迹. 222)(y c x a cx a +-=-a c x c a y c x =-+-22 2)(

圆锥曲线的统一定义:平面内到一定点 F 与到一条定直线l 的距离之比为常数 e 的点的轨迹.( 点F 不在直线l 上) (1)当 0< e <1 时, 点的轨迹是 (2)当 e >1 时, 点的轨迹是 (3)当 e = 1 时, 点的轨迹是 其中常数e 叫做圆锥曲线的离心率, 定点F 叫做圆锥曲线的焦点, 定直线l 就是该圆锥曲线的准线. 思考 1、上述定义中只给出了一个焦点,一条准线,还有另一焦点,是否还有另一准线? 2、另一焦点的坐标和准线的方程是什么? 3、题中的|MF|=ed 的距离d 到底是到哪一条准线的距离?能否随意选一条? 准线: 定义式: )0(12222>>=+b a b y a x ) 0,0(122 22>>=-b a b y a x

圆锥曲线第二定义在一些题目中的应用(供参考)

圆锥曲线第二定义在一些题目中的应用 北京一零一中学数学组 何效员 圆锥曲线的第二定义:平面上到定点与到定直线的距离的比为常数e 的点的轨迹是圆锥曲线概念的重要组成部分,它揭示了圆锥曲线之间的内在联系,是圆锥曲线在极坐标系下 具有统一形式的基本保证。利用圆锥曲线的第二定义,在某些情形下,可以更方便的求解一些题目。 但当我们利用第二定义时,有时候会忽略一个条件,即平面上的这个定点不能在定直线上,否则得到的曲线不是圆锥曲线。如:考虑坐标平面上,到定点(1,1)与到定直线1x =的距离之比为常数e 的点的轨迹讨论如下: ① 当1e =时,点的轨迹方程为1,(1)y x =≠, 直线去掉一点; ② 当1e >时,点的轨迹方程为211(1),y e x -=±-- (1)x ≠,两条直线去掉一点; ③ 当1e <时,点的轨迹不存在。 下面我们就一些具体的题目来体会第二定义的妙用。 例1 已知椭圆22 143 x y +=内一点(1,1)P -,F 为右焦点,椭圆上有一点M 使 ||2||MP MF +的值最小,求点M 的坐标。 分析:若按常规思路,设点(,)M x y ,右焦点(1,0)F , 则2222 ||2||(1)(1)2(1)MP MF x y x y +=-+++-+, 求其最小值无疑是困难,观察2||MF ,设M 点到右准线的距离d , ||1 2 MF c e d a ===,2||MF d ∴=,这样 ||2||MP MF +就转化为在椭圆上寻找一点到(1,1)P -的距离与到直线2 4a x c == M P F M x = 4 O y x

的距离和最小,当且仅当MP ⊥直线4x =时,点M 在点P 和直线4x =之间时取得,此时M 的坐标为26 ( ,1)3 -. 例2 已知椭圆方程为22 221(0)y x a b a b +=>>,求与这个椭圆有公共焦点的双曲线,使得 它们的交点为顶点的四边形的面积最大,并求出相应的四边形的顶点坐标。 分析:本体若通过椭圆与双曲线方程联立求解交点坐标, 继而讨论四边形面积的表达式,求出使面积最大时 的双曲线方程,计算会十分麻烦,考虑到椭圆和双 曲线有共同的焦点,不妨利用第二定义求解。 设所求双曲线方程为 22 2 21(,0)y x m n m n -=>,其中 22222c a b m n =-=+,设两曲线在第一象限内的交点111(,)P x y ,12,l l 分别为椭圆,双曲线的上准线,过1P 作11PQ l ⊥于Q ,1 2PR l ⊥于R , 22 1211111||||||||||c a c m PF e PQ e PR y y a c m c === -=-, 2211()()a m m y a y c c ∴-=-,解得 1am y c =,代入椭圆方程22221y x a b +=,得 1bn x c = ,利用双曲线与椭圆的对称性知 22 1122 4422abmn m n S x y ab ab c c +==≤?=,等号当且仅当22m n c ==时取得,故所求双曲线方程为22 2 2 2 a b y x --=,相应的四个顶点坐标为22(,)b a ±±. 例3 已知椭圆()22 2210x y a b a b +=>>的两个焦点分别为()1,0F c -和()2,0F c ,过点

[高中数学]圆锥曲线专题-理科

圆锥曲线专题 【考纲要求】 一、直线 1.掌握直线的点方向式方程、点法向式方程、点斜式方程,认识坐标法在建立形与数的关 系中的作用; 2.会求直线的一般式方程,理解方程中字母系数表示斜率和截距的几何意义:懂得一元二 次方程的图像是直线; 3.会用直线方程判定两条直线间的平行或垂直关系(方向向量、法向量); 4.会求两条相交直线的交点坐标和夹角,掌握点到直线的距离公式. 二、圆锥曲线 1.理解曲线的方程与方程的曲线的意义,并能由此利用代数方法判定点是否在曲线上,以 及求曲线交点; 2.掌握圆、椭圆、双曲线、抛物线的定义,并理解上述曲线在直角坐标系中的标准方程的 推导过程; 3.理解椭圆、双曲线、抛物线的有关概念及简单的几何特性,掌握求这些曲线方程的基本 方法,并能根据曲线方程的关系解决简单的直线与上述曲线有两个交点情况下的有关问题; 4.能利用直线和圆、圆和圆的位置关系的几何判定,确定它们之间的位置关系,并能利用解 析法解决相应的几何问题. 【知识导图】【精解名题】 一、弦长问题 例1 如图,已知椭圆 2 21 2 x y +=及点B(0, -2),过点B引椭圆的割线(与椭圆相交的直线)BD 与椭圆交于C、D两点 (1)确定直线BD斜率的取值范围 (2)若割线BD过椭圆的左焦点 12 , F F是椭圆的右焦点,求 2 CDF ?的面积 y x B C D F1F2 O

二、轨迹问题 例2 如图,已知平行四边形ABCO,O 是坐标原点,点A 在线段MN 上移动,x=4,y=t (33)t -≤≤上移动,点C 在双曲线 22 1169 x y -=上移动,求点B 的轨迹方程 三、对称问题 例3 已知直线l :22 2,: 1169 x y y kx C =++=,问椭圆上是否存在相异两点A 、B,关于直线l 对称,请说明理由 四、最值问题 例4 已知抛物线2 :2()C x y m =--,点A 、B 及P(2, 4)均在抛物线上,且直线PA 与PB 的倾斜角互补 (1)求证:直线AB 的斜率为定值 (2)当直线AB 在y 轴上的截距为正值时,求ABP ?面积的最大值 五、参数的取值范围 例 5 已知(,0),(1,),a x b y → → == ()a → +⊥()a → - (1)求点P (x, y )的轨迹C 的方程 (2)直线:(0,0)l y kx m k m =+≠≠与曲线C 交于A 、B 两点,且在以点D (0,-1)为圆心 的同一圆上,求m 的取值范围 六、探索性问题 例6 设x, y ∈R,,i j →→ 为直角坐标平面内x, y 轴正方向上的单位向量,若向量 (2)a x i y j → →→=++,且(2)b x i y j →→→=+-且8a b →→ += (1)求点M (x, y )的轨迹方程 (2)过点(0,3)作直线l 与曲线C 交于A 、B 两点,设OP OA OB → → → =+,是否存在这样的直线l,使得四边形OAPB 是矩形?若存在,求出直线l 的方程;若不存在,请说明理由

高中数学学案:圆锥曲线的定义在解题中的应用

高中数学学案:圆锥曲线的定义在解题中的应用 1. 了解圆锥曲线的统一定义,能够运用定义求圆锥曲线的标准方程. 2. 理解圆锥曲线准线的意义,会利用准线进行相关的转化和计算. 1. 阅读:选修11第52~53页(理科阅读选修21相应内容);阅读之前先独立书写出圆锥曲线的统一定义,并尝试根据圆锥曲线的统一定义推导出椭圆方程. 2. 解悟:①写出圆锥曲线的统一定义,写出椭圆x 2a 2+y 2b 2=1(a>b>0)和双曲线x 2a 2-y 2 b 2=1(a>0,b>0)的准线方程;②椭圆、双曲线、抛物线各有几条准线?有什么特征? 3. 在教材上的空白处完成选修11第54页练习第2题(理科完成选修21相应任务). 基础诊断 1. 点P 在椭圆x 225+y 2 9=1上,它到左焦点的距离是它到右焦点距离的两倍,则点P 到左准线 的距离为 25 3 . 解析:设椭圆的左,右焦点分别为F 1,F 2,由题意知PF 1+PF 2=2a =10,PF 1=2PF 2,所以PF 1=203,PF 2=103.因为椭圆x 225+y 29=1的离心率为e =45,所以点P 到左准线的距离d =PF 1e =20 345=253. 2. 已知椭圆x 225+y 29=1上一点的横坐标为2,则该点到左焦点的距离是 33 5 . 解析:椭圆x 225+y 29=1,则a =5,b =3,c =4,所以离心率e =c a =4 5.由焦半径公式可得该点到左 焦点的距离为a +ex =5+45×2=33 5. 3. 焦点在x 轴上,且一个焦点到渐近线的距离为3,到相应准线的距离为9 5的双曲线的标准 方程为 x 216-y 2 9=1 . 解析:设双曲线的方程为x 2a 2-y 2b 2=1,焦点为(-c,0),(c,0),渐近线方程为y =±b a x,准线方程为x =±a 2c ,由题意得焦点到渐近线的距离d =bc a 2+ b 2=bc c = b =3,所以b =3.因为焦点到相应准线的

微专题圆锥曲线几何条件的处理

微专题圆锥曲线几何条件的处理策略 1.平行四边形处理策略 例 1.(2015,新课标2理科20)已知椭圆 222:9(0)C x y m m +=>,直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M . (Ⅰ)证明:直线OM 的斜率与l 的斜率的乘积为定值; (Ⅱ)若l 过点(,)3 m m ,延长线段OM 与C 交于点P ,四边形OAPB 能否为平行四边形?若能,求此时l 的斜率,若不能,说明理由. 【答案】(Ⅰ)详见解析;(Ⅱ )能,4 4+ 【解析】试题分析:(Ⅰ)题中涉及弦的中点坐标问题,故可以采取“点差法”或“韦达定理”两种方法求解:设端点,A B 的坐标,代入椭圆方程并作差,出现弦AB 的中点和直线l 的斜率;设直线l 的方程同时和椭圆方程联立,利用韦达定理求弦AB 的中点,并寻找两条直线斜率关系; (Ⅱ)根据(Ⅰ)中结论,设直线OM 方程并与椭圆方程联立,求得M 坐标,利用2P M x x =以及直线l 过点(,)3 m m 列方程求k 的值. 试题解析:(Ⅰ)设直线:l y kx b =+(0,0)k b ≠≠,11(,)A x y ,22(,)B x y ,(,)M M M x y . 将y kx b =+代入222 9x y m +=得2222(9)20k x kbx b m +++-=,故122 29 M x x kb x k +==-+, 2 99 M M b y kx b k =+=+.于是直线OM 的斜率9M OM M y k x k ==-,即9OM k k ?=-.所以直线OM 的斜率与l 的斜率的乘积为定值. (Ⅱ)四边形OAPB 能为平行四边形. 因为直线l 过点(,)3 m m ,所以l 不过原点且与C 有两个交点的充要条件是0k >,3k ≠. 由(Ⅰ)得OM 的方程为9y x k =-.设点P 的横坐标为P x .由2229,9, y x k x y m ? =-???+=?得222 2981P k m x k =+ ,即P x =.将点(,)3m m 的坐标代入直线l 的方程得(3) 3 m k b -=,因此2(3)3(9)M mk k x k -=+.四边形OAPB 为平行四边形当且仅当线段AB 与线段OP 互相平分, 即2P M x x = = 2(3)23(9) mk k k -?+ .解得14k = 24k =0,3i i k k >≠,1i =,2,所以当l 的斜率为 4 4+OAPB 为平行四边形. 考点:1、弦的中点问题;2、直线和椭圆的位置关系. 2.直角三角形处理策略 例2.椭圆 22 22x y a b +=(0a b >> (1)求椭圆的方程;2 214 x y += (2)过点(0,4)D 的直线l 与椭圆C 交于两点,E F ,O 为坐标原点,若OEF ?为直角三角形,求直线l 的斜率 解析:(2)根据题意,过点(0,4)D 满足题意的直线斜率存在,设:4l y kx =+,联立 22 414 y kx x y =+???+=??消去y 得22 (14)32600k x kx +++=,

圆锥曲线定义的运用(精)

圆锥曲线定义的运用 一、教学内容分析 本课选自《全日制普通高级中学教科书(必修) 数学》(人教版)高二 (上),第八章(圆锥曲线方程复习课) 圆锥曲线的定义反映了圆锥曲线的本质属性,它是无数次实践后的高度抽象.恰当地利用定义解题,许多时候能以简驭繁.因此,在学习了椭圆、双曲线、抛物线的定义及标准方程、几何性质后,我认为有必要再一次回到定义,熟悉“利用圆锥曲线定义解题”这一重要的解题策略. 二、学生学习情况分析 我所任教班级的学生是初中开始“课程改革”后的第一届毕业生,他们在初中三年的学习中,接受的是“新课改”的理念,学习的是“新课标”下的课程、教材,由于05年高中“课改”还未全面推行,因此如今他们面对的高中教材还是旧教材。 与以往的学生比较,这届学生的特点是:参与课堂教学活动的积极性更强,思维敏捷,敢于在课堂上发表与众不同的见解,但计算能力较差,字母推理能力较弱,使用数学语言的表达能力也略显不足。 三、设计思想 由于这部分知识较为抽象,难以理解.如果离开感性认识,容易使学生陷入困境,降低学习热情.在教学时,我有意识地引导学生利用波利亚的一般解题方法处理习题, 针对学生练习中产生的问题,进行点评,强调“双主作用”的发挥.借助多媒体动画,引导学生主动发现问题、解决问题,主动参与教学,在轻松愉快的环境中发现、获取新知,提高教学效率. 四、教学目标 1.深刻理解并熟练掌握圆锥曲线的定义,能灵活应用定义解决问题;熟练掌握焦点坐标、顶点坐标、焦距、离心率、准线方程、渐近线、焦半径等概念和求法;能结合平面几何的基本知识求解圆锥曲线的方程。 2.通过对练习,强化对圆锥曲线定义的理解,培养思维的深刻性、创造性、科学性和批判性,提高空间想象力及分析、解决问题的能力;通过对问题的不断引申,精心设问,引导学生学习解题的一般方法及联想、类比、猜测、证明等合情推理方法. 3.借助多媒体辅助教学,激发学习数学的兴趣.在民主、开放的课堂氛围中,培养学生敢想、敢说、勇于探索、发现、创新的精神. 五、教学重点与难点: 教学重点 1.对圆锥曲线定义的理解 2.利用圆锥曲线的定义求“最值” 3.“定义法”求轨迹方程 教学难点:

文科圆锥曲线专题练习与答案

文科圆锥曲线 1.设12F F 是椭圆2222:1(0)x y E a b a b +=>>的左、右焦点,P 为直线32 a x =上一点,12PF F ?是底角为30o 的等腰三 角形,则E 的离心率为( ) () A 12 () B 23 () C 3 4 () D 4 5 【答案】C 【命题意图】本题主要考查椭圆的性质及数形结合思想,是简单题. 【解析】∵△21F PF 是底角为030的等腰三角形, ∴0 260PF A ∠=,212||||2PF F F c ==,∴2||AF =c ,∴322 c a = ,∴e =34, 2.等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162 =的准线交于,A B 两点,AB =;则C 的实轴长为( ) ()A ()B ()C 4 ()D 8 【命题意图】本题主要考查抛物线的准线、直线与双曲线的位置关系,是简单题. 【解析】由题设知抛物线的准线为:4x =,设等轴双曲线方程为:2 2 2 x y a -=,将4x =代入等轴双曲线方程解 得y =,∵||AB =a =2, ∴C 的实轴长为4,故选C. 3.已知双曲线1C :22 221(0,0)x y a b a b -=>>的离心率为2.若抛物线22:2(0)C x py p =>的焦点到双曲线1C 的渐近线的距 离为2,则抛物线2C 的方程为 (A) 2x y = (B) 2x y = (C)28x y = (D)216x y = 考点:圆锥曲线的性质 解析:由双曲线离心率为2且双曲线中a ,b ,c 的关系可知a b 3=,此题应注意C2的焦点在y 轴上,即(0,p/2) 到直线x y 3= 的距离为2,可知p=8或数形结合,利用直角三角形求解。 4.椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为 (A ) 2211612x y += (B )221128x y += (C )22184x y += (D )22 1124 x y += 【命题意图】本试题主要考查了椭圆的方程以及性质的运用。通过准线方程确定焦点位置,然后借助于焦距和准线求解参数,,a b c ,从而得到椭圆的方程。 【解析】因为242c c =?=,由一条准线方程为4x =-可得该椭圆的焦点在x 轴上县2 2448a a c c =?==,所以222 844b a c =-=-=。故选答案C 5.已知1F 、2F 为双曲线22 :2C x y -=的左、右焦点,点P 在C 上,12||2||PF PF =,则12cos F PF ∠=

圆锥曲线发展史

圆锥曲线发展史 对的研究大致经历了如下几个阶段。 一.最初发现 早在公元前5世纪~ 公元前4世纪,古希腊巧辩学派的数学家提出了“化圆为方”、“立方倍积”和“三等分任意角”三大不可能问题。当初,他们并不知道这是不可能问题,所以努力想解决这些它们。虽然他们没有能解决这三大问题,但是却获得了不少意外的成果。据说,圆锥曲线的被发现,就是从这里开始的。 古希腊数学家希波克拉底(Hippocrates of Chios 公元前460),在解决“立方倍积” 问题时,发现圆锥曲线。另外一位古希腊数学家梅内克缪斯(Menaechmus 公元前375 ~ 公元前325),用平面截不同的圆锥,发现圆锥曲线。 关于圆锥曲线的被发现还有一说,根据数学史家诺伊格鲍尔(Neugebauer,Otto 1898~ ?)的意见,圆锥曲线可能是在制作日晷时被发现的。可惜,关于日晷的发明和制作在古代就已失传,所以不可详考。 二.奠基工作 在古希腊,有许多数学家都研究过圆锥曲线。譬如,老阿里斯泰库斯(The Elder Aristacus 约公元前4世纪)、欧几里得、阿基米德、厄拉多塞(Eratosthenes 公元前274~公元前194)和阿波罗尼(Apollonius 公元前260 ~ 公元前190)等。其中,阿波罗尼的《圆锥曲线》是最杰出的,它与欧几里得的《几何原本》同被誉为古希腊几何登峰造极之作。 《圆锥曲线》8篇,共487个命题。 第1 篇,圆锥曲线的定义、性质; 第2 篇,双曲线渐近线的作法、性质,由此引入共轭双曲线,圆锥曲线切线的作法; 第3 篇,圆锥曲线与其切线、直径所成图形的面积,极点极线的调和性,焦点的性质; 第4 篇,极点极线的其它性质,各种位置的圆锥曲线可能有的交点数; 第5 篇,从特定点到圆锥曲线所能作的最长线和最短线; 第6 篇,全等圆锥曲线、相似圆锥曲线及圆锥曲线弓形; 第7 篇,有心圆锥曲线两共轭直径; 第8 篇,失传,也许是关于如何定出有心圆锥曲线的共轭直径,使其长度的某些函数具有给定的值。 《圆锥曲线》现在的版本中,前4卷是从12~13世纪的希腊手稿本复制的,其后的3卷是从1290年阿拉伯译本转译的,第8卷已失传,现为17世纪的哈雷根据帕普斯书中的启示而搞出来的一个代替稿。阿波罗尼总结了前人的成就,提出了自己的创见,在《圆锥曲线》中,将圆锥曲线的性质收集殆尽,以至以致后代学者在千余年间对圆锥曲线的性质几乎没有插足的余地。以下,我们仅介绍阿波罗尼关于圆锥曲线的基础性的工作。 在古希腊,阿波罗尼之后,帕普斯(Pappus 约4 世纪)对圆锥曲线也作了重要的工作,即在《数学汇编》证明:与定点及定直线的距离成定比例的点的轨迹是圆锥曲线。这是阿波罗尼的《圆锥曲线》中所没有的。总而言之,在古希腊对圆锥曲线的研究就有一个十分清楚的轮廓,只是由于没有坐标系统,所以在表达形式上存在着不容忽视的缺陷。 三.长期停滞 在阿波罗尼的《圆锥曲线》问世后的13 个世纪里,整个数学界对圆锥曲线的研究没有什么进展。公元11 世纪,中亚数学家海雅姆(Khaym,Omar 1048 ~ 1131)利用圆锥曲线来解三次方程,而对圆锥曲线本身并没有深入的研究。

圆锥曲线定义及其应用

圆锥曲线定义及其应用 授课人:杨海芳 一、教学目标 1、 知识目标:能掌握圆锥曲线的二种定义及熟练灵活地应用定义求轨迹方程,距离,最值等问题。 2、 能力目标:能够准确地运用圆锥曲线的定义来解决实际问题,培养学生应用意识,提高分析,解决问题的能力。 二.、难点 圆锥曲线定义的灵活应用 三、教具 多媒体教学课件 四、教学过程 第一环节:经典回顾 圆锥曲线的定义:第一定义。第二定义。 第二环节:定义的应用 1.距离问题 例1、椭圆 上一点P 到右焦点F2的距离为7,求P 到左焦点的距离 思考: 变式1:求点P 到左准线的距离? 变式2:求点P 到右准线的距离? 2.坐标问题 例2.求抛物线y2=12x 上与焦点的距离等于9的点的坐标 由例2请大家在椭圆或双曲线上设计一道题目??? 注意:1、涉及椭圆双曲线上的点与两个焦点构成的三角形问题,常用第一定义来解决; 116252 2=+y x y F2 P X O F1 L1 L2 P2 P1 · · F M l N x o y

2、涉及焦点、准线、离心率、圆锥曲线上的点中的三者,常用统一定义解决问题. 第三环节:探究引申 1.轨迹问题 例3、已知动圆A 和圆B :(x+3)2+y2=81内切,并和圆C :(x-3)2+y2=1外切,求动圆圆心A 的轨迹方程。 分析:圆内外切时圆心与切点有何关系? 变式1:求三角形ABC 面积的最大值; 2.最值问题 变式2已知椭圆 中B 、C 分 别为其 左、右焦点和点M (2,2) ,试在椭圆上找一点A ,使: (1) 取得最小值; 点评: 1、在求轨迹方程时先利用定义判断曲线形状,可避免繁琐的计算; 2、一般,设A 为曲线含焦点F 的区域内一点在曲线上求一点P ,使|PF|+1/e|PA| 的值最小,都可以过点A 作与焦点F 相应准线的垂线,则垂线段与曲线的交点即为所求之点。 四、小结反思: 1、本节的重点是掌握圆锥曲线的定义在解题中的应用,要注意两个定义的区别和联系。 2、利用圆锥曲线的定义解题时,要注意曲线之间的共性和个性 3、利用圆锥曲线的定义解题时,要用数形结合、化归思想,以得到解题的最佳途径 4、有些最值问题要灵活地利用圆锥曲线的定义将折线段和的问题化归为平面几何中的直线段最短来解决。 y B C O x A AB AM 35+1162522=+y x 变式3:已知椭圆 中B 、C 分别为其 左、右焦点;又点 M ,试在椭圆上找一点 A,使: 取得最小值. 1162522=+y x )2,2(AC AM +

圆锥曲线三大难点解读

圆锥曲线三大难点解读 山东 王中华 李燕 2006年高考数学试题圆锥曲线部分全面考查曲线定义、简单性质等基础知识,还对最值与定值(定点)、求参数范围(或值)、存在与对称等问题加大了考查力度.本文对各地考题归类整理,并探讨这三大难点的求解策略. 难点一、最值与定值(定点)问题 圆锥曲线的最值与定值(定点)问题一直是高考的一大难点. 最值问题求解策略是:几何法与代数法,前者用于条件与结论有明显几何意义,利用图形性质来解决的类型;后者则将结论转化为目标函数,结合配方法、判别式法、基本不等式及函数的单调性等知识求解. 定值(定点)问题求解策略是:从特殊入手,求出定点或定值,再证明这个点(值)与变量无关.也可以在推理、计算过程中消去变量,直接得到定点(或定值). 例1 (江西卷理21)如图1,椭圆2222:1(0) x y Q a b a b +=>>的右焦点(0)F c ,,过点F 的一动直线m 绕点F 转动,并且交椭圆于A B ,两点,P 是线段AB 的中点. (1)求点P 的轨迹H 的方程; (2)在Q 的方程中,令2 1cos sin a θθ=++, 2sin 0b θθπ? ?=< ?2??≤,确定θ的值,使原点距椭圆Q 的右准线l 最远,此时,设l 与 x 轴交点为D .当直线m 绕点F 转动到什么位置时,ABD △的面积最大? 分析:求轨迹方程可用“设而不求”法,考虑AB 的斜率是否存在,注意到AB 与PF 共线,得方程为2 2 2 2 2 0b x a y b cx +-=;在第(2)问中,由2 a 、 2b 不难得到满足要求的1c =,为避免讨论直线m 的斜率是否存在,可设m 的方程为1x ky =+,再利用三角函数求出θ, ABD △的面积用A B ,纵坐标可表示为121 2 S y y =-, 当直线m 垂直于x 轴时,ABD △的面积最大. 点评:本题集轨迹方程、最值问题、动态几何于一身,运用了点差法、分类讨论思想、二次方程根与系数的关系、三角函数的有界性、分离变量法、均值不等式法等,对各种能力的综合要求非常高. 注:与最值相关的试题,还有江西卷理科第9题、北京卷理科第19题、全国卷I 理科第20题、文科第21题、山东卷文科第21题等. 例2 (全国卷Ⅱ理21文22)已知抛物线2 4x y =的焦点为F ,A B ,是抛物线上的两动点,且(0)AF FB λλ=>u u u r u u u r .过A B ,两点分别作抛物线的切线,设其交点为M . (1)证明FM u u u u r ·AB u u u r 为定值;

相关文档
最新文档