电喷雾傅立叶变换离子回旋共振高分辨质谱实验

电喷雾傅立叶变换离子回旋共振高分辨质谱实验
电喷雾傅立叶变换离子回旋共振高分辨质谱实验

电喷雾傅立叶变换离子回旋共振高分辨质谱实验

一、电喷雾-傅立叶变换离子回旋共振高分辨质谱

近年来随着质谱技术的不断进步,质谱分辨率越来越高,傅立叶变换离子回旋共振质谱(FT-ICR MS) 是一种具有超高质量分辨能力的新型质谱仪,在石油组分相对分子质量范围(200 - 1000 Da)内分辨率高达几十万甚至上百万,可精确地确定由C、H、S、N、O及其主要同位素所组成的各种元素组合,使得从石油酸的分子元素组成层次上研究石油组成成为可能,即石油组学(Petroleomics)。电喷雾(ESI)结合傅立叶变换离子回旋共振质谱可直接进样分析原油样品,不需做任何前处理,是从分子水平表征原油的一种强大手段。下面将主要介绍电喷雾(ESI)与傅立叶变换离子回旋共振质谱仪(FT-ICR MS)的基本原理

1) 电喷雾(ESI)原理

电喷雾(ESI)是由Fenn发明的一种软电离技术,通常没有碎片离子峰,只有整体分子的峰,能够从高浓度复杂烃类基质中选择性地电离微量的杂原子极性化合物,广泛用作多种质谱仪的电离源。

图1 电喷雾电离源(ESI)示意图

ESI的工作原理是:样品溶液从具有雾化气套管的毛细管流出时,在电场和雾化气(通常是氮气)的作用下喷成雾状的带电微液滴;在热气体作用下,液滴中溶剂被快速蒸发,液滴直径不断变小,表面电荷密度不断增大。当达到瑞利限度时,即表面电荷产生的库仑斥力与液滴表面张力大致相等,则会发生“库仑爆炸”,产生带电的更小微滴,最终把样品离子从液滴中排挤出来,形成的样品离子通过锥孔、聚焦透镜进入分析器后被检测。产生的样品离子可能带单电荷或多

电荷,这和样品分子中的酸性和碱性基团数量有关。通常小分子样品得到带单电荷的准分子离子;大分子样品则得到多种多电荷离子。

通常认为电喷雾可以用两种机制来解释:

(1)小分子离子蒸发机制:在喷针针头与施加电压的电极之间形成强电场,该电场使液体电,带电的溶液在电场的作用下向带相反电荷的电极运动,并形成带电的液滴,由于小雾滴的分散,比表面增大,在电场中迅速蒸发,结果使带电雾滴表面单位面积的场强极高,从而产生液滴的“爆裂”。重复此过程,最终产生分子离子。

(2)大分子带电残基机制:首先也是电场使溶液带电,结果形成带电雾滴,带电的雾滴在电场作用下运动并迅速去溶,溶液中分子所带电荷在去溶时被保留在分子上,结果形成离子化的分子。

一般来讲,电喷雾方法适合使溶液中的分子带电而离子化。离子蒸发机制是主要的电喷雾过程,但对质量大的分子化合物,带电残基的机制也会起相当重要的作用。电喷雾也可测定中性分子,它是利用溶液中带电的阳离子或阴离子吸附在中性分子的极性基团上而产生分子离子。

ESI对石油中占绝大多数的烃类化合物没有电离作用,而在正离子和负离子模式下选择性地电离石油中微量的碱性(主要是碱性氮化物)和酸性(主要是环烷酸)化合物,中性氮化物一般会出现在负离子谱图中,但电离选择性较差。

2) 傅立叶变换离子回旋共振质谱仪简介

FT-ICR MS的核心是分析池,在垂直磁场方向上设置互相垂直的两组电极,一组电极激发电子使其以较大半径产生回旋运动,另一组则接收由周期性运动于两极之间带电离子产生的感应电流,检测极接收的高频电流周期与离子的回旋运动周期相同,根据不同质荷比离子的回旋周期不同的原理,就可通过检测电流信号的频率来计算离子的质荷比,而且信号的强度反映离子的丰度。

实际检测时多种质荷比离子同时进入检测池,FT-ICR MS用特定波形的高频电场,把某一质量范围内的离子同时激发到半径较大的回旋轨道上,各离子以各自的回旋频率运动,在检测极上就感应出叠加的多种频率电流信号,通过傅立叶变换可快速把时域谱变换成频域谱,再从频率换算成质荷比,最终获得各离子的质荷比及丰度。

FT-ICR MS无需将离子分离,同时检测不同离子的质荷比及丰度,具有较扫描型质谱(磁质谱、四极杆等)高得多的灵敏度;用感应电流检测离子的方式是非破坏性的,离子可继续被储存、分析,从而实现多级质谱分析。它还具有两个重要的特点:超高分辨能力和质量精确度,很容易实现几十甚至上百万的分辨率,

新型仪器无需内标就能达到小于2 ppm的质量准确度。

图2 傅立叶变换离子回旋共振质谱仪分析池原理示意图

图3 傅立叶变换离子回旋共振质谱仪仪器结构示意图

二、实验目的

理解电喷雾-傅立叶变换离子回旋共振高分辨质谱的基本原理、基本结构,掌握样品配制、开关机步骤、优化分析条件等基本操作和注意事项,学习分析软件的使用、简单识别谱峰、深入理解数据处理过程、判断谱图质量,掌握关键影响因素并能调试仪器参数至最佳分析条件,了解傅立叶变换离子回旋共振质谱仪在石油组成分析中的重要作用。

三、实验内容

1、通过配制样品,学习称量样品、选择溶剂及配制特定浓度样品的方法和注意事项;

2、确认仪器状况正常后,练习开关机步骤;

3、学习软件的使用和谱图识别,包括正负离子模式谱图、质量范围、质量重心、峰形好坏、仪器校准与内部校准方法、校准表的建立等;

4、通过调试关键参数,深入理解离子的产生、传输、检测和采集到的谱图之间的联系。

四、使用仪器

美国Bruker公司Apex-Ultra型9.4T傅立叶变换离子回旋共振质谱仪。五、实验步骤

六、实验报告要求

1、基本信息:时间、地点、同组人员、指导老师、报告人

2、实验内容

3、质谱图数据处理

4、思考题:

(1) 高分辨质谱与气相色谱质谱仪的各自优势是什么?

(2) 使用高分辨质谱分析重质油组成有什么优势?

浅析电喷雾质谱仪中的电喷雾系统

浅析电喷雾质谱仪中的电喷雾系统 王化斌 刘钟栋 郑隆钰 卢奎 (郑州工程学院,郑州 450052) 曹书霞 (郑州大学,郑州 450052) 刘艳 (清华大学,北京 100084) 摘 要:本文主要介绍了电喷雾质谱仪中的电喷雾部分的基本组成及基本原理。主要包括电喷雾的过程、喷雾源、气相离子的选择以及在电喷雾系统中发生的相关气相化学反应。最后介绍了电喷雾质谱的优缺点。 关键词:电喷雾,电喷雾质谱仪 The Basic Construction and Principles of the Electro_spray System in Electro_spray Mass Spectrometry Wang Huabin,Liu Zhongdong,Zheng Longyu,Lu Kui (Zhengzhou Institute of Technology,Zhengzhou 450052) Cao Shuxia (Zhengzhou University,Zhengzhou 450052) Liu Yan (Tsinghua University,Beijing 100084) Abstract:This article mainly introduced the basic construction and principles of the electro_spray sys tem of electro_spray mass spectrometry including the processes of electro_spraying,sampling gas phase ions and the accompanying chemical reactions and last the authors gave a roughly summary of the electro_spray mass spectrometry s advantages and disadvantages. Key words:Electro_spray,Electro_spray mass spectrometry 前言 电喷雾作为一种产生气相离子的方法是由Dole和他的合作者们于1968年提出的,在1973年,Dole等人提出将电喷雾与传统质谱仪联用,而 95

液相质谱-电喷雾离子源(ESI)的五大常见问题

液质联用技术是目前最常用的一种分析检测仪器,今天小编通过问答形式,详细介绍一下液质联用中的ESI离子源技术,透过原理,解答您在分析过程中的常见的疑惑。 一、ESI电喷雾离子源的基本原理是什么? 图1. 三重串联四极杆质谱构造图 我们通过分解的方式来窥探一下ESI产生离子化的基本过程 液相色谱作为进样系统和分离系统: 待分析物通过液相色谱系统在色谱柱上得到分离,被流动相带入电喷雾针。

图2. ESI电喷雾离子源构造图 ●电喷雾针: 电喷雾针为套管式结构,中空管道,如上图,中间为流动相通道,两侧翼为雾化气通道,电喷雾针中的喷雾气,形成喷雾压力,流动相液体随喷雾气,被压入大气压气化腔室(见图1)形成喷雾。 ●电场梯度: 在喷雾针、和离子锥孔处的反电极之间形成电场梯度,液滴在此处形成正离子或负离子,正负离子形成与化合物的性质相关。 ●脱溶剂气: 被加热的逆向的反吹气,与液滴发生热量交换,使得带电液滴脱溶剂化,库伦爆炸在此过程中反复进行,最终形成裸露的气相离子,通过离子传输组件,进入四极杆质量过滤器中。 ●加热鞘气(辅助脱溶剂化):

加热的鞘气,在喷针的两端,和喷针平行处,其作用,一个是热量交换,使得带电液滴气化,另外一个目的是实现离子聚焦,防止离子的逃逸。 二、质谱中的各种“气”和各种“电压”,您了解吗? 反吹气(又名气帘气或者脱溶剂气): 反吹气,和气帘气,脱溶剂气其实是不同的名称,从锥孔(或者毛细管)出来的加热气,运动轨迹和离子运行轨迹相反,所以有的叫它”反吹气”,又因为这种加热的气体,对于进入离子

通道前的带电液滴,与之进行热量交换,起到了脱溶剂化的效果,又被称为“脱溶剂气”,在与离子传输相反的道路上,它形成了一道像窗帘一样,阻隔了中性分子进入离子通道的路线,降低了本底干扰,所以也被称为”气帘气”。 ?喷雾气: 我们可以看到,雾化气在喷雾针平行的方向上,其主要作用在于形成喷雾压力,使得经过喷针的液流,形成细小的雾滴(此过程带电和雾化同时进行)。 ?碰撞气: (基于3Q质谱来说明),则是在质谱的碰撞池中,将来自于第一个四级杆筛选过滤后传输来的离子,与之发生碰撞,离子被撞碎后,送到第三个四极杆,由于为了防止产生碎片的复杂性,碰撞气只传递动量,不参与反应,所以一般采用高纯的惰性气体。 ?电喷雾电压: 这个施加在喷雾针上的电压,主要是用来将经过色谱柱后的流动相,到达喷雾针处形成的液滴,使之带上电荷,改变电压的正负性,其可使得液滴带上正电荷或者负电荷,这个喷雾电压,实际上使得在喷雾针到反电极之间形成电场梯度,带电机理可以看作一种电泳机制。

生物质谱技术

生命科学被誉为21世纪的最前沿科学之一,随着人类第一张基因序列草图的完成和发展,生命科学的研究也将进入一个崭新的后基因组学,即蛋白质组学时代。正如基因草图的提前绘制得益于大规模全自动毛细管测序技术一样,后基因组研究也将会借助于现代生物质谱技术等得到迅猛发展。本文拟简述生物质谱技术及其在生命科学领域研究中的应用。 1.质谱技术 质谱(MassSPectrometry)是带电原子、分子或分子碎片按质荷比(或质量)的大小顺序排列的图谱。质谱仪是一类能使物质粒子高化成离子并通过适当的电场、磁场将它们按空间位置、时间先后或者轨道稳定与否实现质荷比分离,并检测强度后进行物质分析的仪器。质谱仪主要由分析系统、电学系统和真空系统组成。 质谱分析的基本原理 用于分析的样品分子(或原子)在离子源中离化成具有不同质量的单电行分子离子和碎片离子,这些单电荷离子在加速电场中获得相同的动能并形成一束离子,进入由电场和磁场组成的分析器,离子束中速度较慢的离子通过电场后偏转大,速度快的偏转小;在磁场中离子发生角速度矢量相反的偏转,即速度慢的离子依然偏转大,速度快的偏转小;当两个场的偏转作用彼此补偿时,它们的轨道便相交于一点。与此同时,在磁场中还能发生质量的分离,这样就使具有同一质荷比而速度不同的离子聚焦在同一点上,不同质荷比的离子聚焦在不同的点上,其焦面接近于平面,在此处用检测系统进行检测即可得到不同质荷比的谱线,即质谱。通过质谱分析,我们可以获得分析样品的分子量、分子式、分子中同位素构成和分子结构等多方面的信息。 质谱技术的发展 质谱的开发历史要追溯到20世纪初J.J.Thomson创制的抛物线质谱装置,1919年Aston制成了第一台速度聚焦型质谱仪,成为了质谱发展史上的里程碑。

电喷雾质谱

电喷雾电离质谱(电喷雾部分)的简介 ESI-MS的大概结构 电喷雾质谱主要有两部分组成, 电喷雾部分和质谱仪部分。电喷雾部分可以提供一种相对简单的方式, 使非挥发性溶液相的离子转入到气相; 而质谱仪部分则可以提供一种灵敏的、直接的检验。 ESI的基本原理 ESI 是一种离子化技术, 它将溶液中的离子转变为气相离子而进行MS分析。电喷雾过程可简单描述为: :样品溶液在电场及辅助气流的作用下喷成雾状带电液滴,挥发性溶液在高温下逐渐蒸发,液滴表面的电荷体密度随半径减少而增加,当达到雷利极限时,液滴发生库伦爆破现象,产生更小的带电微滴。上述过程不断反复,最终实现样品的离子化。由于这一过程即没有直接的外界能量作用于分子,因此对分子结构破坏较少,是一种典型的“软电离”方式。

ESI过程 ESI过程中大致可以分为液滴的形成、去溶剂化、气相离子的形成3 个阶段。 液滴的形成和雾化 样品溶液通过雾化器进入喷雾室, 这时雾化气体通过围绕喷雾针的同轴套管进入喷雾室, 由于雾化气体强的剪切力及喷雾室上筛网电极与端板上的强电压( 2~6 kV) ,将样品溶液拉出, 并将其碎裂成小液滴。随着小液滴的分散, 由于静电引力的作用, 一种极性的离子倾向于移到液滴表面, 结果样品被载运并分散成带电荷的更微小液滴。液滴的形成及电喷雾过程如图2 所示。 去溶剂化和离子的形成进入喷雾室内的液滴, 由于加热的干燥气-氮气的逆流使溶剂不断蒸发, 液滴的直径随之变小,并形成一个“突出”使表面电荷密度增加。当达到Rayleigh( 雷利) 极限时, 电荷间的库仑排斥力足以抵消液滴表面张力时, 液滴发生爆裂, 即库仑爆炸, 产生了更细小的带电液滴, 离子的形成如图 3所示。

电喷雾电离质谱的简介与改进

电喷雾电离质谱

电喷雾电离质谱(电喷雾部分)的简介与改进 摘要:本文主要围绕电喷雾电离质谱的电喷雾部分的结构,原理,电喷雾的过程,以及其优缺点和应用对其做了简要的介绍,并在最后提出了一些改进的建议。希望通过本文的介绍大家可以进一步了解电喷雾电离质谱,并引起大家对电喷雾电离质谱的重视,在以后的实际运用中使其发挥更大的作用。关键字:电喷雾电离质谱质谱分析 Abstract: This paper mainly introduces the structure, principle, electrospray ionization process of ESI in ESI-MS(electrospray ionization mass spectrometry), as well as its advantages、disadvantages and application, and concludes with some suggestions for improvement。 Through this paper I hope all of you can learn more about ESI-MS, draw your attention on ESI-MS, and let ESI-MS play a greater role in the practical application。Keywords: ESI-MS Mass Spectrometry 引言:电喷雾作为一种产生气相离子的方法是由Dole 和他的合作者们于1968 年提出的, 在1973年, Dole 等人提出将电喷雾与传统质谱仪联用, 而到1984 年才被用于实验中。电喷雾质谱作为一种较新的分析手段, 它正越来越广泛地被人们所利用。自从90 年代以来, 关于电喷雾质谱发展、应用和功能方面的出版物呈指数上升。但是在日常学习生活中电喷雾质谱却鲜为人知,对于质谱部分的介绍有很多书籍可以参考, 但对于电喷雾部分,国内关于此方面系统介绍的书籍、文章却极少。因此在此做一些介绍,并针对在实际分析工作中存在的一些问题提出一些改进的意见。 ESI-MS的大概结构 电喷雾质谱主要有两部分组成, 电喷雾部分和质谱仪部分。电喷雾部分可以提供一种相对简单的方式, 使非挥发性溶液相的离子转入到气相; 而质谱仪部分则可以提供一种灵敏的、直接的检测方式。 图 1电喷雾质谱示意图

电喷雾电离质谱及其在蛋白质化学研究中的应用.

电喷雾电离质谱及其在蛋白质化学研究中的应用 桑志红综述杨松成审校 (国家生物医学分析中心北京100850) 摘要本文综述了电喷雾电离质谱及其在蛋白质化学研究中的应用。由于电喷雾电离质谱可产生多电荷峰,因此大大扩大了检测的分子质量范围,同时灵敏度高,另外它可与HPLC 及高效毛细管电泳分离技术联用,扩大了质谱在蛋白质化学研究中的应用。 关键词电喷雾电离;质谱;蛋白质化学 在有机化合物结构的鉴定中,质谱、核磁、红外及紫外等分析手段,从不同的侧面提供了化合物的结构信息。质谱以质量分析为基础,灵敏度高,可提供化合物的分子量、分子式(高分辨质谱)以及一些有关的结构信息。经典的有机质谱要求待测物能气化,有一定纯度,热稳定性好等条件,因此,极性高,不易气化,热不稳定以及不纯的化合物难以用经典质谱测定。近年来随着有机质谱在质谱硬件、软件、电离技术的发展,以及与各种分离方法相联(如色质联用技术)的接口的不断完善,扩大了化合物的检测范围,在分子量测定方面,已从化学小分子扩展到生物大分子,可测定的分子量达到几十万道尔顿。 质谱有多种电离方法,包括场解吸、等离子体解吸、激光解吸、快速粒子轰击、热喷雾电离和大气压电离等。每一种电离方法都有一定的分子量检测范围,一般认为热喷雾的分子量检测最大范围约8ku,快原子轰击为25ku。但是随着分子质量的增加,所有分析方法的灵敏度均有所下降。 电喷雾电离质谱(ESI-MS)由于可以产生多电荷峰,与传统的质谱相比扩大了检测的分子质量范围,同时提高了灵敏度,使一种M/Z限制在一定范围的四极质谱,就可以分析分子质量超过200ku的蛋白质[1]。另外ESI-MS方法产生一系列的多电荷峰,可以得到准确的分子量,它还可与HPLC和高效毛细管电泳(CE)分离方法相连接,扩大了质谱在生物领域的应用。 电喷雾现象的出现可以追溯到两个世纪之前,但真正把电喷雾作为一种电离方法的创新性的研究是由Dole等在大约30前开始的,他们研究的目的是用电喷雾来产生气态大离子。1984年Yamashita等把大气压电喷雾电离技术与四极质谱结合起来,同年,Alexandror把它和磁质谱结合起来。1988年Fenn研究小组报道了用ESI-MS得到了带有45个正电荷分子量为40ku的蛋白质,随后ESI-MS在生物大分子的研究领域进入了一个全新的发展阶段。到

解读ESI电喷雾质谱

解读ESI电喷雾质谱 第三页 电喷雾的产生 电喷雾 当在液体流上加上高电压,会产生液滴,这种技术被称为电喷雾。例如:HPLC流出的就是液体流。在20世纪早期这种产生液滴的方法有各种各样的应用。在电喷雾中,较大的液滴不断爆裂成更小的液滴,最后, 被分析物解离为离子进入气态。 在这里,纯粹的电喷雾指不使用雾化气。在更高的LC流速下,使用鞘气在帮助完成雾化过程。一些研究者称这种方法为“气动辅助的电喷雾”(pneumatically assisted electrospray)。

举例 在这个例子中,一个单肽离子化产生一个带电部分和一个不带电部分。分子中正电荷的数量常和分子中碱基位点的数目是相关的。在质谱的正离子采集模式下,分析物在低pH下喷出,更容易形成正离子。在质谱的负离子采集模式下,在分子等电点以上的负离子化有利于产生去质子的分子。ESI质谱的基本原则是:在质谱本身能用其电场影响分子之前,分子必须能够带电。下面的部分我们会介绍质谱中为什么会出现分子群。 注:大部分从胰蛋白酶酶解产生的肽,会有两个潜在的质子化的位点:氨基和碱性的C端残基,赖氨酸或精氨酸。 液质联用流动相的选择 1)甲醇vs乙腈 甲醇: 优点:便宜、相同的保留因子所需要的甲醇的比例大,有机相浓度大有利于离子化。 缺点:反压高,洗脱能力差。 乙腈: 优点:洗脱能力强(色谱峰窄),反压低。 缺点:价格较高。 2)有机相的比例: 一般有机相比例太低,不利于雾化,太高不利于离子化(且背景较高)。推荐使

用40%左右的有机相比例。 3)梯度vs等梯度 梯度洗脱有利于未知样品的测试,但所需要的时间较长,且信号稳定性较差。等梯度洗脱,常用于2-3个保留时间较近的化合物的测试,所需时间短(2-3min),且信号稳定。 流动相过滤 预防:所有的流动相(水相,有机相,盐溶液等),必须用0.45um的滤膜过滤;仪器不使用时,需将溶剂滤头从水相或缓冲液相中取出,并浸泡在有机溶剂中,否则会导致霉菌和微生物的生长,造成溶剂滤头堵塞。 吸滤头 材质:不锈钢烧结,陶瓷,玻璃,聚四氟等 故障:堵塞,流路不畅(水相滤头容易产生) 表现:管路中不断有气泡生成,而且容易造成流量不准,严重的话压力波动 原因:水中细菌、流动相中颗粒、空气中灰尘等 措施:用5%稀硝酸,超声波清洗,再用蒸馏水清洗,最好一个月洗一次(玻璃材质的不能超声) 对不能用在做LC-MS的流动相系统中加甲酸钠或醋酸钠。 因为无论你使用ESI还是APCI源,这样的盐类都不能挥发,结果很可能是堵住离子源后方的加热毛细管,这时问题就很严重了。 我不大清AB,Agilent的公司的质谱仪对于不挥发性的盐的耐受能力如何,但是就我们实验室的几台Finnigan公司的质谱仪情况来看,无论是离子阱质谱仪还是三重四极杆的质谱仪,都不能在流动相系统中加入不挥发性的盐类。如果实在是必须在流动相中加缓冲盐以调节峰形,我使用的唯一的缓冲盐就是可以挥发的醋酸铵,而且浓度也严格控制在10 mM以下。即便这样,晚上作完实验打开仪器的离子源也还是发现在离子源里有层白色的膜。 总之,对于LC-MS,能不用盐就尽量不要用缓冲盐了。若做的药物对于正离子响应好,一般采用甲醇-水-甲酸系统或乙腈-水-甲酸系统就完全可以搞定;若做的药物对于负离子响应好,一般采用甲醇-水-氨水系统或乙腈-水-氨水系统也完全可以搞定。 从我的经验来看,M+Na峰离子确实不稳定,对M+Na峰进行二级全扫描质谱分析,几乎不可能得到稳定的二级碎片离子。M+Na峰和M+NH4峰的情况是类似的。我做过大约30个药物的体内样品LC-MS-MS定量分析,约有10%的药物出现M+Na峰或M+NH4峰,我从来不用它们做定量分析的离子。我认为很难做好。

电喷雾傅立叶变换离子回旋共振高分辨质谱实验

电喷雾傅立叶变换离子回旋共振高分辨质谱实验 一、电喷雾-傅立叶变换离子回旋共振高分辨质谱 近年来随着质谱技术的不断进步,质谱分辨率越来越高,傅立叶变换离子回旋共振质谱(FT-ICR MS) 是一种具有超高质量分辨能力的新型质谱仪,在石油组分相对分子质量范围(200 - 1000 Da)内分辨率高达几十万甚至上百万,可精确地确定由C、H、S、N、O及其主要同位素所组成的各种元素组合,使得从石油酸的分子元素组成层次上研究石油组成成为可能,即石油组学(Petroleomics)。电喷雾(ESI)结合傅立叶变换离子回旋共振质谱可直接进样分析原油样品,不需做任何前处理,是从分子水平表征原油的一种强大手段。下面将主要介绍电喷雾(ESI)与傅立叶变换离子回旋共振质谱仪(FT-ICR MS)的基本原理 1) 电喷雾(ESI)原理 电喷雾(ESI)是由Fenn发明的一种软电离技术,通常没有碎片离子峰,只有整体分子的峰,能够从高浓度复杂烃类基质中选择性地电离微量的杂原子极性化合物,广泛用作多种质谱仪的电离源。 图1 电喷雾电离源(ESI)示意图 ESI的工作原理是:样品溶液从具有雾化气套管的毛细管流出时,在电场和雾化气(通常是氮气)的作用下喷成雾状的带电微液滴;在热气体作用下,液滴中溶剂被快速蒸发,液滴直径不断变小,表面电荷密度不断增大。当达到瑞利限度时,即表面电荷产生的库仑斥力与液滴表面张力大致相等,则会发生“库仑爆炸”,产生带电的更小微滴,最终把样品离子从液滴中排挤出来,形成的样品离子通过锥孔、聚焦透镜进入分析器后被检测。产生的样品离子可能带单电荷或多

电荷,这和样品分子中的酸性和碱性基团数量有关。通常小分子样品得到带单电荷的准分子离子;大分子样品则得到多种多电荷离子。 通常认为电喷雾可以用两种机制来解释: (1)小分子离子蒸发机制:在喷针针头与施加电压的电极之间形成强电场,该电场使液体电,带电的溶液在电场的作用下向带相反电荷的电极运动,并形成带电的液滴,由于小雾滴的分散,比表面增大,在电场中迅速蒸发,结果使带电雾滴表面单位面积的场强极高,从而产生液滴的“爆裂”。重复此过程,最终产生分子离子。 (2)大分子带电残基机制:首先也是电场使溶液带电,结果形成带电雾滴,带电的雾滴在电场作用下运动并迅速去溶,溶液中分子所带电荷在去溶时被保留在分子上,结果形成离子化的分子。 一般来讲,电喷雾方法适合使溶液中的分子带电而离子化。离子蒸发机制是主要的电喷雾过程,但对质量大的分子化合物,带电残基的机制也会起相当重要的作用。电喷雾也可测定中性分子,它是利用溶液中带电的阳离子或阴离子吸附在中性分子的极性基团上而产生分子离子。 ESI对石油中占绝大多数的烃类化合物没有电离作用,而在正离子和负离子模式下选择性地电离石油中微量的碱性(主要是碱性氮化物)和酸性(主要是环烷酸)化合物,中性氮化物一般会出现在负离子谱图中,但电离选择性较差。 2) 傅立叶变换离子回旋共振质谱仪简介 FT-ICR MS的核心是分析池,在垂直磁场方向上设置互相垂直的两组电极,一组电极激发电子使其以较大半径产生回旋运动,另一组则接收由周期性运动于两极之间带电离子产生的感应电流,检测极接收的高频电流周期与离子的回旋运动周期相同,根据不同质荷比离子的回旋周期不同的原理,就可通过检测电流信号的频率来计算离子的质荷比,而且信号的强度反映离子的丰度。 实际检测时多种质荷比离子同时进入检测池,FT-ICR MS用特定波形的高频电场,把某一质量范围内的离子同时激发到半径较大的回旋轨道上,各离子以各自的回旋频率运动,在检测极上就感应出叠加的多种频率电流信号,通过傅立叶变换可快速把时域谱变换成频域谱,再从频率换算成质荷比,最终获得各离子的质荷比及丰度。 FT-ICR MS无需将离子分离,同时检测不同离子的质荷比及丰度,具有较扫描型质谱(磁质谱、四极杆等)高得多的灵敏度;用感应电流检测离子的方式是非破坏性的,离子可继续被储存、分析,从而实现多级质谱分析。它还具有两个重要的特点:超高分辨能力和质量精确度,很容易实现几十甚至上百万的分辨率,

电喷雾质谱仪操作规程

电喷雾质谱仪操作规程 (非实验操作人员严禁操作机器,严禁改动实验参数) 1.进入操作间时请换上拖鞋,并穿上实验服。 2.打开喷雾腔,去掉橡皮帽,安装喷雾遮盖,关上喷雾腔,小心不要夹到输送氮气的塑料管。3.进入esquire Control窗口,调到standby模式。进入菜单栏Option 下vacuum system 查看真空状态,Fore: 3.0 mbar, High: 1.5 × 10 -5 mbar, 必须达到此数值以下才能操作。没有达到时,将仪器调到shutdown 模式,继续抽真空。关闭对话框。 4.Standby 模式下,调到Tune面板,参数设置如下: Nebulizer: 1.0 psi; Dry Gas: 3.0 l/min; Dry Temp: 300 °C 等到机器温度稳定地达到300 °C 时才能开始操作,操作时参数设置如下: Nebulizer: 7.0 psi; Dry Gas: 4.0 l/min; Dry Temp: 300 °C 除多肽和蛋白样品可稍做改动外,其他有机小分子勿改动参数。前面的参数为设置值,后面为实际值,如果实际值跟不上设置值的改动变化时,需要更换液氮。做样间隔时,重新将参数设置为: Nebulizer: 1.0 psi; Dry Gas: 3.0 l/min; Dry Temp: 300 °C 中午下午休息时,将机器调为shutdown 模式。 5. 缓慢用甲醇清洗注射器4到5次后,清洗仪器管线,先推两次空针再用甲醇清洗4到5次。 6.用甲醇或乙腈稀释样品,样品浓度应尽可能稀,在10 μmol/L – 100 μmol/L 数量级即可,样品必须是清澈透明的,决不允许有沉淀和漂浮物。 7.打开进样器开关。进样器的流量已设为240 μl/h,勿改动。把注射器与仪器管线连好后,安装在进样器上。 8.点击工具栏设置保存路径,Tune面板中更改Target Mass、 Scan范围、Nebulizer: 7.0 psi、Dry Gas: 4.0 l/min,Mode面板中选择离子模式,其他参数勿动。点击Operate模式,同时按下进样器右起两个按键,看到显示屏上有信号时松手,再按下run/stop键开始进样,点击工具栏保存。重新调至Standby模式,按下进样器run/stop键停止进样。如果离子强度达到107甚至更高,立即停止进样,重新稀释样品。 9. 特别注意:在做同一个样品时,如果要在Mode面板中转换离子模式,即正负离子的转换, 一定要先将机器调为Standby,再转换离子模式,切记切记!!以前我们是在Operate模式

磷酸化酪氨酸的电喷雾质谱研究

https://www.360docs.net/doc/c118437514.html, 磷酸化酪氨酸的电喷雾质谱研究 石伟群,赵玉芬,李艳梅* 清华大学化学系生命有机磷化学及化学生物学教育部重点实验室 北京 100084 E-mail: limy@https://www.360docs.net/doc/c118437514.html, 摘要:酪氨酸磷酸化是一种重要的蛋白质翻译后修饰,它在细胞分化和细胞信号转导方面发挥着不可替代的作用,利用电喷雾质谱(ESI-MS)和多级质谱(ESI-MS n)是确定蛋白质磷酸化和磷酸化的位点的有效方法。本文研究了磷酸化酪氨酸负离子模式的ESI-MS和ESI-MS n,发现了磷酸化酪氨酸在气相条件下通过五配位磷的共价二聚,二聚体容易脱去两个酪氨酸分子形成还状的HP2O6-离子。 关键词: 酪氨酸, 磷酸化,电喷雾质谱 1.引言 随着近代生物化学和分子生物学的飞速发展,已经证实蛋白质可逆磷酸化几乎调节着生命活动的所有过程,尤其在细胞应答外界刺激时,蛋白质可逆磷酸化是目前所知道的最主要的信号传递方式[1-3]。1992年,Krebs和Fisher因在蛋白质可逆磷酸化研究方面的突出贡献而被授予诺贝尔生理学和医学奖。发现于十几年前的酪氨酸残基磷酸化是在细胞调节领域振奋人心的发展之一[4],它很好的证实了受体或者膜结合蛋白酪氨酸激酶(PTKs)提供了最初的信息,蛋白激酶具有使蛋白质磷酸化的作用,从而能够引导下一步酶的活性,最后导致细胞生长,增殖和分裂[5-7]。 ESI-MS采用的是一种软电离技术,主要只产生分子离子峰,因而相对于其它类型质谱,大大简化了谱图,同时多电荷离子的形成可以分析大分子量(如长肽)的化合物。ESI-MS n是鉴定化合物结构的一种十分重要的方法,它可以确认母离子和子离子之间的归属,从而提供化合物比较准确的结构信息。本文我们利用ESI-MS 和ESI-MS n发现了磷酸化酪氨酸在气相条件下通过五配位磷的共价二聚,并研究了二聚体的质谱裂解规律。

电喷雾离子源质谱原理ppt

Electrospray Ionization Mass Spectrometry Jessica Gilman Courtney Mashburn 17 September 2002 Chemistry 5181 “Many users tend to view ESI as a ‘Black Box,’ because sources of instability, background, interference, competition, and suppression are not always understood.”

Outline l Introduction l Ionization Process l Introduction of Ions into MS l Operational Conditions and Parameters l Solvent and Analyte Characteristics l Sensitivity and Detection Limits l Tandem Techniques l Summary Introduction l ESI allows for large, non-volatile molecules to be analyzed directly from the liquid phase l Used for: l Mass determination of biomolecules l Analysis and sequencing of proteins and oligonucleotides l Analyzing drugs, pesticides, and carbohydrates l Long chain fatty acids

相关文档
最新文档